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MAXIMAL PARTIAL SPREADS
AND CENTRAL GROUPS

N.L. JOHNSON (D

1. INTRODUCTION

A partial spread in PG(3,q) is a set of mutually skew lines. The cardinality of a partial
spreads is less than or equal to ¢g° + 1 and shall be called the degree. If the degree is ¢, the
integer g2 + 1 — t is called the deficiency. Partial spreads of deficiency 0 are called spreads
and are equivalent to translation planes of order ¢ and kernel containing G F((¢) obtained by
considering the projective space as the lattice of subspaces of a 4-dimensional vector space V,

over GF(gq). The ¢* + 1 lines of PG(3, ¢) are realized as a set of 2-dimensional subspaces.
The points of the plane are the 4-vectors and the lines are translate of the spread subspaces
(components in the plane). Similarly, there 1s a correspondence between translation nets of
degree ¢* + 1 — t and partial spreads of deficiency t.

A partial spread P is maximal if and only if P cannot be extended to a partial spread of
smaller deficiency. We shall adopt the terminology of Jungnickel [20] and say that a partial
spread is extendable if can be imbedded into a partial spread of smaller deficiency.

If P is a partial spread, let T, denote the corresponding translation net. If T can be
embedded in an affine plane, we shall say that the net and the partial spread is imbeddable
otherwise unimbeddable (Jungnickel [20] (1.2)). Note that if a maximal partial spread is
imbeddable into a translation plane then the corresponding translation plane cannot have all
of its components as 2-dimensional subspaces; the kernel of the corresponding translation
plane is smaller than GF(q).

In this article, we shall be concerned with the construction of maximal partial spreads of
deficiency g — 1 or g and consider the question of imbeddability. By Jungnickel, if a partial
spread of deficiency ¢ — 1 or ¢ can be embedded in some affine plane then the plane 1s a
translation plane and we may use the terminology as above.

Jungnickel [20] shows that any maximal partial spread of deficiency g is unimbeddable.
However, the known maximal partial spreads of deficiency ¢ — 1 are imbeddable. In his
concluding remarks of [20], Jungnickel lists several open problems which refer to maximal
partial spreads of deficiency g— 1. In particular, the following question is raised: Are maximal
partial spreads in PG(3, q) and deficiency q — 1 always imbeddable?.

We consider maximal partial spreads which may be constructed by collineation groups &G
acting on translation planes of order g2 and kernel containing K = GF(q) such thatG fixes a
2-dimensional K -subspace pointwise and which leaves invariant a 2-dimensional K -subspace
which 1s not a component. We shall call such a group a central group. We shall further say
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that a central group is of type i if and only if either the group is a central collineation group
and the group leaves invariant exactly i Baer subplanes of a particular net of degree g + 1
which are 2-dimensional K -subspaces or the group is a Baer group and the net defined by the
parallel classes of the fixed point space of the group contains exactly i Baer subplanes which
are K -subspaces. We note in section 2that: = 1,2 org+ 1.

In section 2, we give our main result on central groups and maximal partial spreads:

Theorem 2.6. Let w denote a translation plane of order ¢* and kernel containing K =
GF(q). Let G be a central group in the translation complement of type s. Let N; denote
the partial spread of degree q + 1 which contains the i Baer subplanes determined by a G
invariant 2-dimensional K -subspace n,. Let M denote the set of components of m which do

not belong to N;. Then
(1) M U{Baer subplanes of N; which are K -subspaces}correspond to a maximal partial

spread in PG(3, K) of degree ¢* — q + i (deficiency ¢ + 1 — 1).
(2) The maximal partial spread of (1) is imbeddable if and only if the net N, is a derivable

net.
(3) If 1 = 1 then the maximal partial spread of (1) is unimbeddable.

In section 3, we list the known maximal partial spreads of deficiency ¢ — 1 and g con-
structed by maximal central groups. In particular, we give some examples of some unimbed-
dble maximal partial spreads of deficiency ¢ — 1 thus answering the question raised in Jung-
nickel and listed above. We shall see that there are a large number of examples of maximal
partial spreads. However, isomorphisms results for partial spreads are fairly difficult to ob-
tain. So, in section 4, we give some remarks on isomorphism of a particular type of maximal
partial spread.

Acknowledgement: The author is indebted to Professor Mauro Biliotti for helpful sugges-
tions in the preparation of this article.

2. THE CONSTRUCTION

Let « denote a translation plane of order g? and kernel K isomorphic to GF(q). LetG denote
a collineation group in the translation complement.

According to the definition given in section 1, there are exactly the following types of
central groups G

(2.1) Elation type i, the group G is an affine elation group and fixes a Baer subplane n,
which is a 2-dimensional K -subspace. There are exactly i Baer subplanes in the net N,

defined by the paraliel classes of 7, which are G invariant.
(2.2) Homology type i; the group G is an affine homology group and fixes a Baer subplane
7 Which is a 2-dimensional K -subspace. There are exactly i Baer subplanes in the net N,

defined by the parallel classes of n, which are G invariant.
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(2.3) Baer-shear type i; the group G is a Baer group of order dividing ¢ and > 2. The
net N,ﬂ defined by the parallel classes of the fixed point space of G (which is a K -space by

Foulser [4]) contains exactly i Baer subplanes which are K -subspaces and are (G invariant.
(2.4) Baer-strain type i; the group G is a Baer group of order dividingg— 1 and > 2. The
net N, defined by the parallel classes of the fixed point space of (7 (again is a K'=subspace

by Foulser [4]) contains exactly i Baer subplanes which are K -subspaces and are & invariant.

Lemma 2.5. If G is a central group of type i of a translation plane w of order g* and kernel
K isomorphic to GF(q) theni=1,2,0rq+ 1.

Proof. By definition, ¢ > 1. If ¢ > 3 then by Foulser [3], then are 1 + |Kerneln,| Baer
subplanes incident with the zero vector of the net N, so the net must be derivable as =,
is Desarguesian. Now, we may use Biliotti-Lunardon [1] to observe that in this latter case,
i = g+ 1. If G is an elation or homology collineation group then G leaves every Baer subplane
of the net N, invariant (see e.g. Liineburg [22] (4.7)) and in particular, leaves invariant each
such Baer subplane which is a K -subspace.

We are essentially uninterested in the situation i = g+ 1 since it will not produce nontrivial
maximal pa:tiai spreads. We shall say that a central group of type 1 1s nontrivial if and only 1if
i¥q+ 1.

Probably the central groups that are easiest to study are the maximal central groups, the
order of an elation or Baer-shear group of type 1 is ¢ and the order of a homology or Baer-strain
groupof typesis g — 1.

There is a 1-1 correspondence between nontrivial maximal Baer-shear or Baer-strain
groups and maximal partial flocks of quadratic cones or of hyperbolic quadrics of deficiency
one respectively (missing one circle - see the main result of Johnson [11]). By utilizing this
connection, it i shown in Johnson [12] (using a result of Payne and Thas) that there are no
nontrivial maximal Baer-shear central groups of even order.

Furthermore, there are no known odd order examples. There are, however, two interesting
examples of nontrivial maximal Baer-strain groups of orders 4 and 9 respectively. These lead
to maximal partial spreads of order ¢* and degree ¢ — ¢+ 2 (deficiency g — 1) where g = 3
or 4 and, as mentioned above, to maximal partial flocks of hyperbolic quadrics of deficiency
one in PG(3,q) for g = 4 or9 (see Johnson and Pomareda [18]). In both cases, the maximal
partial spreads are imbeddable.

We now give the proof of (2.6) stated in the introduction. Assume the hypothesis of (2.6).

Assume that the partial spread P defined in the statement of (2.6) is not maximal. Then let
L denote a 2-dimensional K -subspace which is disjoint from the component subspaces of P.
Then L is either a component of 7 or a Baer subplane of o since m has dimension 4 over K.
Thus, L must define a Baer subplane of the net N,. If GG 1s a central collineation group then
(G must leave L invariant. Thus, in any situation, then L, must be one of the original 1 Baer
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subplanes of N, which are 2-dimensional K -subspaces and thus we obtain a contradiction.
This proves (1) of (2.6). Note that there is a similar construction in Jungnickel [20] (6.1).

Now by Jungnickel [20] (3.2), if the net P is imbeddable into an affine plane X then the
plane X is a translation plane. Now X and « both share the net M. But, the net M has critical
deficiency (Ostrom [23]). Hence, by Ostrom [23], £ and 7 are either equal or Z is derived
from w. Thus, Z must be derived from o which forces the net N; to be derivable. This proves
part (2).

Actually, the proof of part (3) may be obtained from Jungnickel [20] (3.4). But, note that if
i+ = 1 and the net P is imbeddable then the net N, is derivable by part (2), but then by Biliotti-
Lunardon there must be at least 2 Baer subplanes of N; which are K -subspaces. Thus, we
have the proof to part (3) and thus to our construction result (2.6).

3. THE KNOWN EXAMPLES OF MAXIMAL CENTRAL GROUPS

In this section, we list the known maximal central groups. Note that by (2.6), for each example,
we obtain a maximal partial spread in PG(3, q) of deficiency g or ¢ — 1. In particular, we
give some nonimbeddable maximal partial spreads of deficiency ¢ — 1. We shall organize the
examples in the order given for the types of groups listed in section 2.

Elation type 1

We first consider the elation type 1 groups. This information is also given in Johnson [13]
but here the emphasis was not on maximal partial spreads.

In Johnson [13] (4.4), one of Kantor’s planes obtained by ovoidsinan Q27 (8, g) space may
be represented as follows: Let {(z,,z,,y;,¥,)]|z;,y; € K ¥ GF(q) fori = 1,2} denote
the 4-dimensional vector space V, over K. Letz = (z{,7,),y = (¥,,%,),0 = (0,0).

If ¢ = 3%¢-! then the following equations define a translation plane m of order 3%(?¢-1 .

I U u® + t25+3
r=0,y=2x for all u,t in K and where o = 3°¢. Furthermore, this
-1 u
b b°
I
translation plane admits the elation group E = 0 b |b € K* ).Note that E is
O I

a central group of type 1 as it leaves the 2-dimensional K -space {(0,z,,0,y,)|z,,¥, € K}
invariant and does not fix any further Baer subplane whose parallel classes agree with those
of the previous K -space considered as a Baer subplane.

The complete list of maximal central groups of elation type 1 is as follows:
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Description

(E1)(1) Liineburg-Tits

order 2 4(2e-1)

(E1)X2) Kantor

order 3%(2e-1)

Elation type 1

Group
I b
0
O

be GF(ZZ‘_I) ,o0 = 2%(see[13])

253

be GF(3% 1) o = 3°(see[13])

(E1)(3) Biliotti-Menichetti

order 64

(E1)(4) Jha-Johnson

order 64

I U ut + u
0 u
O
u € GF(8)(see(2])
PI U+ u
U
O

u € GF(8)(see[2])
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Elation type 2

In order to describe the examples of elation type 2, we first recall the construction of Lifting
(see Johnson [10] or [14]).

Let 7 be a translation plane of order ¢g? and kernel containing K & GF(q). Let F contain
K and be isomorphic to GF(g*) where F = K [t] such thatt? = tw + p forw, p in GF(q).
[ o ﬁ
Represent the spread forrbyz =0,y=z (as above 1n

g(ﬁl ﬁ) _Wh( cx, ﬁ) h(ﬂrﬁ)

the example of the Kantor planes) where z, y are 2-vectors over K and for all o, 8 in GF(gq)
and g, h are functions from GF(q) x GF(g) into GF(q).

Define a function f on F' by f(a,8) = g(«a, 8) — h(«a, P)t.

Then there exists a translation plane 7 called the plane lifted from 7 by ¢ of order ¢* and

kernel isomorphic to GF(g?) with spread set definedby z = O,y = z : ’ where
f(v) uf
x,y are 2-vectors over F' and for all u,vin F. ) —
_ I u 0 _
Note that < 0 g | Ju € F> = [ 1s a maximal central group of elation type
O I _

Note that in this case, the maximal partial spreads of order ¢* and degree ¢* — ¢* + 2
(deficiency gz — 1) are always imbeddable as the corresponding net (see (2.6)) 1s derivable
(see e.g. Johnson [8] to check that this statement is valid).

The examples given in Jungnickel [20] (section 6) may be obtained using the construction
method above.

There are a vast number of maximal partial spreads of order ¢* and deficiency ¢* — 1
which may be obtained by elation groups of type 2 by the construction method of lifting. For
example, every translation plane of order ¢g* and kernel containing G F'(g) produces at least
one and usually many. The isomorphism questions are completely open (but see section 4).

Homology type i
Lemma 3.1. Every nontrivial maximal central group of homology type 1 is of type 2.

Proof, Let G be the homology group of type 1. Then |G| = ¢ — 1 and hence the group can
be diagonalized on the coaxis. It now follows that if the group is of type 1 = 1 or 2 then
{(z,,0,y,,0)} and {(0,z,,0,y,)} (see notation and representation of the Kantor planes)
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represent Baer subplanes which are left invariant by a homology group G represented in the

I
form < u 0 |Juisin GF( q)*> where m is a function on GF(gq). The sets of

. 0 m(u) ]
u 0
components of the two Baer subplanes above are {z = 0,y = 0,y = z
n(u) I(u)

where n,l are functions on GF(¢) such that n(1) = O} and {z = O,y = 0,y =

u s(u)
T where s, r are functions on GF(g) such that s(1) = 0} respectively. Since

0 7(u)

the two Baer subplanes share the line y = z and are left invariant under G, it follows that the
components distinctfrom z = 0,y = 0 are defined as an orbitof G. Hence, s(u) = n(u) =0
which implies that the two Baer subplanes share all of their parallel classes. Thus, the group
is of homology type 2 or ¢ + 1. But, GG is assumed nontrivial so the type 1s 2.

J-planes

In Johnson [13], a class of translation planes called (g — 1, ¢ + 1)-planes of order ¢? and
kernel containing G F'(q) is considered. In Johnson, Pomareda, and Wilke [19] this class is
extended to what there is called the class of j-planes. The former set of planes are j = 1-
planes.

Let z2 + zg — f be irreducible over K = GF(q) where f,g € K. Then

U t
lu,t € K ¢ is a field isomorphic to GF(¢?). Let §,, denote the determi-
tf u+tg '
L i
u 1/
nant of for (u,t) # (0,0). Let
tf u+tg

- -

1 0 0 O
0 (6% 0 0
r: I‘-'I":;t'E(;‘E?(q)uI
0 0 u t

0 0 tf u+ig
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LetV = {(z,,2,,¥;, %) |z;,y; € GF(g) fori=1,2}.Letz = (z,,2,),y = (¥;,%,),0 =

(0,0). Then z =

J+1
6u.t -

is defined, the corresponding translation plane is called a j-plane.
Note that letting ¢t = 0 and multiplying the corresponding element of I by the kemel

O,y = O and the I" images of y = z define a spread if and only if
f,_,(u+tg) +(1-u)#0 forallu,tin GF(q),(u,t) ¢ {(1,0),(0,0)}. If a spread

[" ' 0 0 0
0 w21 0 0
homology u~!I, we obtain the element . Hence, there is a corre-
0 0 1 O
0 0 0 1

sponding homology group with axis y = 0 and coaxis z = 0 which has an orbit of components

u

0

represented by y = z for all nonzero u in GF(q).

0 u2j+1

Theorem 3.2. Any j-plane for j nonzero and order g*> admits a maximal homology group of
type 2. There is a corresponding maximal partial spread of order g* and deficiency q — 1.
This maximal partial spread is imbeddable if and onlyif2j+ 1 isapowerof pwherep™ = q
for p a prime.

Proof. By (2.6)(2), it suffices to determine necessary and sufficient conditions on j so that the
indicated net is derivable but is not a K -regulus. But, by Johnson [8], it mustbe that2 7 + 1 1§
a power of a prime in order that the indicated net is derivable. If 7 # O then the corresponding
net cannot correspond to a regulus over the field in question (see also Johnson [7]).

There are a variety of examples of j-planes given in [19]). Each gives rise to a maximal
partial spread in PG(3, ¢) of order g* and deficiency g — 1. In this section, we shall list only
the 7 = 1 planes of Johnson [13] which arise from certain ovoids in 8-dimensional hyperbolic
space and which correspond to certain planes of Kantor [21].

Homology type 2
Translation plane of order g* (f, g)for the polynomial z2 + zg — f
(; =1-plane)
(H2)(1) Kantor (1, 1) (see (3.9) Johnson [13])

order g% even and ¢ = 2mod 3

(o, a?(—3/a)!/?), for o a nonsquare (see [13] (3.9)

(H2)(2) Kantor
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order ¢* even and ¢ = 2mod 3

Note that the above two examples give rise to non-imbeddable maximal partial spreads of
degree g* and deficiency g — 1 (see 3.2).

(H2)(3) Kantor (a, a), for « a nonsquare (see [13] (3.21))
order 327

Note that the above example gives rise to an imbeddable maximal partial spread of order g*
and deficiencyg—1as27+ 1= 3 forj = 1 (see (3.2)).

Baer-Shear types

We have mentioned above that there no known examples of maximal Baer-Shear type 1
and there can be no nontrivial examples of even order.

Baer-Strain types

There are exactly two examples of maximal Baer-strain types one of order 4 and one
of order 9 producing maximal partial spreads of order 42 and deficiency 3 and order 9% and

deficiency 8 respectively. Both of these exampels are imbeddable. See Johnson and Pomareda
[19].

4. ISOMORPHISM RESULTS

We have constructed a large variety of maximal partial spreads in PG(3, ¢) of deficiency g
or ¢ — 1. However, there are essentially no isomorphism results on partial spreads so as to
determine if the partial spreads are different. In this section, we offer a few remarks on the
isomorphism problem.

First we note:

Theorem 4.0. Let P, and P, be imbeddable partial spreads of order q* and deficiency q or
g— 1. Let w,,m, denote the (unique) translation planes containing the partial spreads P, , P,
respectively. Then P, is isomorphic to P, only if w, is isomorphic to =, .

Proof. Let f be an isomorphism of P, onto P,. Define m, f to be the affine plane whose
lines are defined by the f-images of lines of ;. Now P, f contains P, so that w, f = w, by
uniqueness.

Also, we have the following fundamental result:
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Theorem 4.1. Let = denote a translation plane of order g* and arbitrary kernel K. Let M
denote a partial subspread of degree q* — q and let N denotes the complementary partial
subspread relative to the spread for m. Let B denote a set of Baer subplanes of N which are
( K -subspaces and let P = B U M. If a collineation g of the partial spread P leaves M (or
B) invariant then g is a collineation of the translation plane .

Proof. First note that since the partial spread admits the full translation group of n, we may
assume that g fixes the point O corresponding to the zero vector. Consider the affine plane
wg whose points are those of m and whose lines are defined as the g-images of the lines of
m. wg and « share the net M and the deficiency of M is what Ostrom [23] terms critical.
Now since 7 and wg both extend M, it follows from Ostrom [23] that either 7 and g are
the same plane and hence g is a collineation group of  or mg is derived from . However, it
would then follow that N is the corresponding derivable net. Thus, the net P is extendable
to the translation plane wg and by Jungnickel [20] (3.1), g must be a collineation group of the
derived plane which fixes the derived net so that g is, in turn, a collineation of .

Now let 7, and w, be two nonisomorphic translation planes of order ¢g* and kernel K &
G F(g) which admit central groups G, for j = 1,2 respectively. Construct the two maximal
partial spreads P; for j = 1,2 asin (2.6). Then, by (4.1), P, is not isomorphic to P, unless
perhaps an isomorphism does not map one Baer subplane set B, onto the other Baer subplane
set B, (see (4.1)). If an 1somorphism does not map the Baer subplane sets together and if
we have a maximal central group then the situation becomes quite pathological. It may be
possible to use group theory to weed out some of these cases.

To illustrate this, we consider the maximal elation type 1 situation for even order.

Let 7 denote a translation plane of order g2 and kemnel K = G F(g) that admits an elation
group E of order g and which leaves a Baer subplane m, invariant such that the net N, defined

by the parallel classes of 7, contains exactly one Baer subplane whichis a K -subspace. Let P
denote the partial spread of components of 7 which are not in N, union w,. Then, by (2.6),

P is a maximal partial spread in PG(3, K ). Further, the normalizer of F in the collineation
group of P must leave 7, Invariant and thus induce, by (4.1), a collineation group of the
translation plane 7. E 1s the maximal elation group of m with axis equal to the axis of F
which can act as a collineation group on P. Thus, if a collineation g of P which fixes the zero
vector O does not normalize E then m, must be moved by g. Note that E9 can fix exactly

one of the g — ¢ + 1(2-dimensional subspaces) elements of P. Let F denote the full group
of P which fixes the zero vector O. Then Np(E) N E? = (1) forallg € F — Ng(FE).
Now assume that ¢ is even. Then | E| is even and we may apply Hering’s results on trivial
normalizer intersection [6]. It follows direclty from Hering that the normal closure of E
1s either SL(2,q),5,(¢9),PSU(3,q), or SU(3,q). In each of these latter three cases, the
number of Sylow 2-subgroups is larger than g> — ¢ + 1. Let S denote a Sylow 2-subgroup
which contains E. Then S fixes the zero vector O and has order 227 for some integer r, and
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the number of elements of P is g> — ¢ + 1 so it follows that S must fix en element of P. It
follows that S fixes exactly one element of P. But, this is a contradiction unless perhaps the
normal closure is SL(2,q). In this case, there are exactly ¢ + 1 elements of P which are
fixed by Sylow 2-groups of SL(2, ¢g) so tht the group must permute the remaining g(g — 2)
elements of P. Let p denote an element of prime order dividing ¢ — 1 in SL(2,¢). Then
p must fix one of these remaining elements. Now since no 2-¢lement can fix any element
of this set R, we must have that the stabilizer of a point T" in R is cyclic of order dividing
g — 1. Hence, there are at least 1/2 (g(¢ + 1)) points in K which are fixed by groups of
order |p|. And, no two of these points can be equal. Let R_ denote the remaining set of

¢ —2qg—q(g+ 1)/2 = (¢®> — 1+ (1 — q) — 4¢)/2 elements. Since |p| cannot divide
this integer, the above argument may be applied so that there is another set of (g(g + 1) /2)
elements (i.e. p must fix at least two elements) within R_ which cannot be the case. Hence,
it must be that the normalizer of E is the full group F' so that the full collineation group of P
must leave invariant the Baer subplane =, and thus induce a collineation group in .

So, we have the following result:

Theorem 4.2. Let E, and E, be central groups of elation type 1 acting on translation planes
m, and w, respectively. Let P, and P, denote the maximal partial spreads of PG(3,q) and
deficiency q constructed respectively via E, for 1 = 1,2 asin (2.6). Assume further that q is
even. Then P, is isomorphic to P, only if the translation planes w, and w, are isomorphic.

Proof. By the above argument, the full collineation group of P, must leave invariant the Ber
subplane ‘!TE, of m, used in the construction. Thus, clearly, any isomorphism from P, onto P,

must map the Baer subplane n}, of 7, onto 75. It follows that there is an induced isomorphism
from o, onto 7, .

Corollary 4.3. The three maximal partial spreads in PG(3,8) of deficiency 8 of maximal
elation type 1 arising fromthe Liineburg-Tits plane, the Biliotti-Menichetti plane, and the Jha-
Johnson plane each of order 64 are mutually nonisomorphic.

S. MORE CENTRAL GROUPS

Actually, the construction (2.6) uses the central group to locate the particular Baer subplanes
used in the construction and is not actually essential to the construction. The following result
of the author shows where to look for such Baer subplanes.

Theorem 5.1. (see Johnson [17]). Let © denote a translation plane of order qr‘ﬂt admitting a
collineation group isomorphic to SL(2,q) where for ¢ = p" and p a prime, the p-elements
are shears. Then there exists a derivable net N containing the set of shears axes which is left
invariant by SL(2,q).
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Now, we may use the construction method noted in Jungnickel [20] (section 6) to construct
maximal partial spreads in some projective geometry provided the derivable net contains Baer
subplanes incident with the zero vector which are not kernel subspaces.

Note that in this situation, we would have a central group of order ¢ acting on a translation
plane of order ¢*.

This actually occurs. That is, there are Foulser-Ostrom planes (see [5]) of odd order ¢*
and kernel GF'(g?) admitting SL(2,q) where the p-clements are elations. And, there are
derivable nets N containing the ¢ + 1 elation axes such that not all of the Baer subplanes
incident with the zero vector are G F'(¢*)-subspaces. Hence:

(5.2). There are Foulser-Ostrom planes of odd order g* that produce maximal partial spreads
in PG(3,q*) of deficiency ¢* — 1.

In section 4, we mentioned the question of isomorphism of maximal partial spreads. In
this above situation, this poses no problem by (4.0) since these maximal partial spreads are
imbeddable.

There are two additional planes worth mentioning here.

In [15], the author shows that there are exactly three mutually nonisomorphic translation
planes of order 16 which may be derived from the semifield plane of order 16 and kemel
G F(4) (including the so-called Lorimer-Rahilly, Johnson-Walker planes of order 16 admit-
ting PSL(2,7) (see [16])). Since each of these three planes have kernel GF'(2), it is clear
that they may be constructed by derivable nets not all Baer subplanes of which are GF'(4)-
subspaces.

Thus:

Note 5.3. There are three mutually nonisomorphic maximal partial spreads in PG(3,4) of
deficiency 3 constructed from the same semifield plane of order 16 and kernel GF(4).

These maximal partial spreads also appear in Bruen and Thas [3].
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