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AFFINE CONNECTIONS FOR
2-OSCULATING VECTOR FIELDS AND GEODESICS *

L. DI TERLIZZI, F, VERROCA

Abstract. We study the geodesics, with respect to the connections for 2-osculating vector
fields, as projections of standard horizontal vector fields. Then, we consider the connections
on the principal bundle of affine 2-osculating frames, and on its reductions. Finally, when it is
possible we characterize the geodesics as the curves whose development is (an open infterval
of) a straight line.

INTRODUCTION

It is well known that, given a linear connection on a manifold M , the geodesics are char-
acterized as projections, on M , of integral curves of standard horizontal vector fields on the
bundle of linear frames of M . Another characterization is obtained considering the affine
fibre bundle of M : then the geodesics are the curves whose development is a straight line
([5], [3]). In [8] the geodesics with respect to a connection for 2-osculating vector fields
which preserves the osculating order are studied; here it is proved that a theorem of existence
and uniqueness for given initial conditions of 2-osculation does not exist. It follows that,
characterizations as the classical ones, can not exist. The aim of this paper is to study the
relationships between the geodesics with respect to the connections for 2-osculating vector
fields and the curves which are projections of standard horizontal vector fields on the reduced

bundles P and P’ of the bundle P of 2-osculating frames of M (cfr. §2).

—~2
In §3 we consider the affine principal bundle £ 2, its reduced bundles .4 and 4"
corresponding to P and P', and the affine vector bundle A%2( M) ; we study the affine (gen-

eralized) connections and, in §4 we prove that, given an affine connection on the bundle .4 2 :
the geodesics are the curves on M whose development in A2( M) is a straight line.

1. PRELIMINARIES

Let M be a C*-differentiable manifold, of dimension n. We denote with G . the linear
group GL(g,R), with L = (L(M),M,n,,G ) the principal bundle of linear frames of
M and with T, (M) the tangent vector space at p to M. We use the same notation and
terminology of [7]. The bundle P = (P(M), M, n,G,) of 2-osculating frames of M has
been studied in [7]: here 1t is proved that the group G, is reducible to its two subgroups:

- a b
G=4q0€G,a= L a€EG ,beM! ceCG
0 c

m

* Work partially supported by M.P.L.
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G'=<{d €Gld = ,a€G,,be M

2 uE,i u":?

1
mn+ 1) 4 e® has generic entry — 8‘:. , (cfr. [7]). The respective reduced

2
J
boundles are denoted by P = (P(M),M,%,@&) and P' = (P (M) ,M,n',G') and the

vector bundle, associated with P, P and P’ is denoted by a (M). We refer to [7] for the
properties of these bundles and of the connections on them. We recall that, if (U, ¢) is a

where m =

1
coordinate neighborhood of M, and p € U, the family e, = ((Ei)p’ E(E‘f)f") 1 €I =

d _ ok
8z’ VT 359z
of C?f, (M), which is called natural 2-osculating frame in p corresponding to (U, ¢). Finally,
the g -osculating vector field, ¢ = 2 , to a C* -differentiable curve, 7 : [a,b] — M, is defined

1

putting, for each s € [a,b], 72 (s) = 7-3 (eu + 5 em) , where 72 is the differential of order

{1:21"”“}:(‘{1]‘) €J= {(1:}) €1l x Ilié}-},Where €; = 1S a basis

: 1 . :
20of 7in s and (Em > Em) 1s the natural 2-osculating frame of R . Moreover, we have:

(1.1) (s) =

(dr‘ 1 424

N (e) +1 d* d+
ds 2 ds? (s T )

where 7* = ' o7 and 1, 7 € I.7 is called a geodesic for a connection I" on P (on P') if the
field 72 (s) is parallel along 7 with respectto I .

2. GEODESICS AS PROJECTIONS OF INTEGRAL CURVES
OF STANDARD HORIZONTAL VECTOR FIELDS

As in §8 of [7] we consider the morphism f: P — L defined as follows: for each @ € P

a b _
fixed a coordinate neighborhood (U, ¢) such that p = (%) € U and a = €EG
0 c

such that © = ng, where e, is the natural 2-osculating frame in p corresponding to (U, ¢),

n / a b\
we put f(m = { (E (ei)pu;) ] , and for each a = e G, we put
j=12,.n \0 ‘)

f(ﬁ} =qa. Ifj: P — P denote the morphism of inclusion, we put f' = fu 7.

i=1
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Definition 2.1. We call canonical 1-form of P', the 1-form ¢' on P’ taking values in R*,
defined by 6,,(X) = u'_ (7 ,(X)) ,for each X € T,(P"), where u' € P’ is considered as

isomorphism of R*.on @y, (M) .

Definition 2.2. Let I'! be a connection on P'. For each £ = (£,0) € R®* x R™ = R?,
we call standard horizontal vector field corresponding to € the horizontal vector field B'(§)
such that, for each u' € P',nl,(B'(§),) = u'(§).

It is easy to verify that 6'(B'(§)) = &€ #0 = v € P : B'(§), # O;Va' € G :
(R,),(B'(€)) = B'(a’"'¢). We denote by B(¢&) the standard horizontal vector field cor-

responding to £ = (£,0) € R™ x R™ = R*, with respect to a connection I onP (cfr.
(7).

Proposition 2.1. Let " be a connection on P and T the connection induced on L by f
Then, for each £ = (£,0) e R®* x R™ = R*, we have:

a) f maps B(€) into the standard horizontal vector field B(£) corresponding to € , with
respectto I' .

b) The projection on M of any integral curve of §( £) is a geodesic for T .

a) We observe that for each @ € P, f()(£) = @(§), so
(73 (Fa(B(E)R)) = (m, 0 H(B(E)) = Ty (B(£)y) = T(E) = (F(W)(§).

Moreover f,(B(£)) is horizontal with respect to I and then f,(B(€)) = B(§).

b) Let v : [a,b] — P be a integral curve of ﬁ(f). Then, for the curve ¢ = fu v
[a,b] — L wehave, foreach s € [a,b] :

K(8) = fri(1(9)) = Fr9 (B(O)yn)) = B(E)isy

Therefore c is an integral curve of B(§). By prop. 6.3 of chap. III of [5], it follows that
m o~y = m; oc is a geodesic for I' .

Remark 2.1. An analogous result to prop. 2.1 in the case of a connection I’ on P’ and for
the connection induced on L by f’ is true.

Proposition 2.2, Let I'! be a connection on P' and T : [a,b] — M be a differentiable
curve of M . If T is a geodesic for T"', then T is the projection on M of an integral curve of
a standard horizontal vector field in P' with respectto T’ .

Suppose that O € [a,b] and put p = 7(0). Let us denote with (z,),s € [a,b], the
curve 7. We consider u, € 7'~'(p) and we put 7 = (u,),s € [a,b], the horizontal lift
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of 7 to P’ with origin at u,. There exists then, a coordinate neighborhood (U, ¢) such
that p € U and u, = g,, where &, 1s the natural 2-osculating frame in p corresponding to

(U, ¢) . We suppose that 7([a,b]) C U and, for each s € [a,b], let g, be the 2-osculating
natural frame in z, corresponding to (U, ¢) . We put &, = £'(e;), and we denote, for each
s € [a,b] by If the ¢-osculating vector to 7 in z,,q= 2. By (1.1) we have:

o 1 .. S 1 2£4¢7
2 _ 3 - 1 —
7o = (€ +m)(edy+ 5 €€(e)p = €+ M+ 5 ) T (o)
(iJ)eJ /
ﬂE bﬂ
Moreover, for each s € [a, b], there exists a), = 2 € G’ with g identity matrix
0 a,

and u, = ¢, a’. Denoted by 7 the parallel displacement in &*( M), determined by I’

€
—'Il
along T, since 7 is a geodesic, for each s € [a, b, we have z2 = 70 (x3) = u,(ug ' (z3)).

Then, u;'(22) = ug'(z3), that is, for each s € [a,b], with respect to the frame u,, z2
has the same components as zz with respect to the frame u, = e, That is, if we put u, =

((u)y, (8;),),4 € I, (i, §) € J, we have:

28¢7
1+ 6;5

2 = (£ + n)(u),+ Y

(sJ)ed

( u:’j)a

It follows that, with respect to the frame ¢, = u,(a’) ™', we have, for each s € [a, b]

i chek nehgk
o2 = ((u,);(fiﬂmz PO ) (e +5 3 (@@ 25 e,

h hk h
(hk)EJ 1+ 6 z A 1+ 6
{llj:l EJ
(h,k)

On the other hand, if we put z, = E(Ei)x, , we have, with respect to the frame e :

2= @, + 1 3 266 ¢,
. m iz, ) 52 1+ 8 ij/z,”

L .

By the last equalities, we obtain, with a direct computation, that for each 1 € I, for each

L]

s € [a,b],(a,)i¢" = €, and then, for each s € [a,b], with respect to the frame u_, we
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have z, = £,(a;")i(u;), = €¥(u,),, that is, with respect to the frame u,, ¢, has the same
components as &, with respect to the frame u, = ¢,. Then z, = u,(ug '(zp)). If we

put £ = (') € R™; let B'(§) be the standard horizontal vector field corresponding to § =
(£,0) e R*"xR™ = R* withrespectto I'' on P'. We have, u:z(ﬂL.(ﬂ!)) = u7l(%,) = ¢.

It follows that wL_(ﬂ,) = u,(£) and, by the definition of B'(§), B"(f)u_ = u,,l.e. thecurve

7 is an integral curve of a standard horizontal vector field. Since 7'(u,) = z, the result
follows.

Corollary 2.1. Let I"' be a connection on P' and I" the connection inducedon L by f'.If
T is a geodesic for T'', then 1 is a geodesic for T .

The proof follows by prop. 2.2 and by remark 2.1.

3. GENERALIZED AFFINE CONNECTIONS AND AFFINE CONNECTIONS
Let A4 i(M ) be the vector space (ﬁi(M ) considered as an affine real space and A! the

vector space R* considered as an affine space. We consider the groups:

a §
A(t,R)=43€G, |a= ,a€QG,, £ ER'
0 1
- a ¢ ~
A(t,R) = Ja€A(t,R)|e= , 0€G, {€R”
0 1
a' £ ¢
A(t,R)=<a€ A(t,R)|a = a €@, Ee€R"}, wheref = (0) eR’.
0 1

It is well known that we can identify A(¢, R) with the group of the affine transformations

of A and ;‘-i'(t, R ) with the subgroup of the affine transformations of A* that preserve R".
Moreover the sequence

(1) 0 - R!'3 ALR) 5 G -1
U ¢ a §
with a(§) = and = a is a splitting exact sequence. The splitting
0 1 0 1
a 0
morphism v : G, — A(t,R) 1s given by n(a) = . It follows that A(f,R)

0 1
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is a semidirect product of R and G, and the Lie algebra «(t,R) is semidirect sum of

#7(t,R) and R*. Moreover we have ad(G,)(R*) = R*. Analogous results hold for the
sequences:

U—rR“:rZ(t,R)ié—}l; O-ﬁR“E}A’(t,R)iG—rl

where @, E,ﬁ,u’,ﬁ’,q"are defined as a, 8, 7.

Definition 3.1. We call 2-osculating affine frame at a point p € M ,any (F; Fy,...,F,) €
(@i(M))‘“ suchthat (Fy,...,F,) isa2-osculating frame in p, that is a basis of@;(M) .

Definition 3.2. We call natural 2-osculating affine frame at a point p € M , a 2-osculating
affine frame in p (Fy; Fy,..., F,), such that F, is a tangent vector at p and (F,,...,F))
Is a 2-osculating natural frame at p.

It 1s easy to verify that the set A4 i of 2-osculating affine frames at p is bjective to the
set of the affine transformations between A* and A: ( M). Moreover, if we put A£2% (M) =

U Jgf, and define 7 : .zé'z(M) — M so that for each u € .féi,?r‘(ﬁ) = p (cfr. [5], [7])
peM
it 1S easy to prove the following results:

Proposition 3.1. 42 = (#2(M),M,7,A(t,R)) is a principal fibre boundle with base

M , total space A*(M) and structure group A(t,R). This boundle is called the principal
fibre bundle of 2-osculating affine frames of M .

Proposition 3.2. The structure group A(t,R) of the bundle A* is reducible to its sub-
groups A(t,R) and A'(t,R).

—~2 ~2 ~
Definition 3.3. The reduced bundle 4 = (A4 (M), M, 7 A(t,R)) is called principal
reduced fibre bundle of the 2-osculating affine frames of M . The reduced bundle .4 e

(A (M), M, 7, A'(t,R)) is called principal reduced fibre bundle of natural 2-osculating
affine frames of M .

It is easy to see that the map ~ : P(M) — £%( M) such that 4(u) = (DF; u) together
with the homomorphism ~ of the sequence (1) gives rise to an injective bundle morphism

and then P is a subbundle of 4% . Analogously the map 8 : A4*(M) — P(M) such that
B(Fy; By, ..., F,) = (F,,..., F) together with the homomorphism g of the sequence (1),

gives rise to a bundle morphism and, moreover 8 o v = id. Analogously P is a subbundle
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—~— D -
of A4 and P is a subbundle of 42, The relative morphisms %, 8,4', # are defined in
an analogous way and Ec-;f = id,f o' = id. Since 2(t,R) = s At,R) ® R and
ad(Gt)(R‘) = R, using the theory of connections on a principal fibre bundle it is easy to

see that, for any connection 1-form @ on £ we have 4*@ = w+ ¢, where w is a connection
1-form on P and ¢ 1s a tensorial 1-form on P of type (G|, R*). Moreover the morphism

B A 2 4P maps the connection I whose 1-form is @ in the connection whose 1-form is
w . Analogousely, since z(t,R) =g @ R" and ud(é)(R“) =R"(&'(t,R)='®R"

—_—2
and ad(G')(R™) = R"™) for any connection 1-form & on .4 (on .£'%) we haveq*d =
w+ ¢ (¥*@ = w + ¢) where w is a connection 1-form on P (on P') and ¢ is a tensorial

1-formon P (on P')of type (G, R?) (of type (G',R?)) taking valuesin R ™. In each case
the 1-form ¢ determines a tensor field of type (1, 1) on M, cfr. [5].

~2
Definition 3.4. A connection on the bundle 4  or on the bundle A4'? is called generalized
affine connection for 2-osculating vector fields. Any generalized affine connection which de-

termines the Kronecker tensor field on M is called affine connection for 2-osculating vector
fields.

s

Using the morphism E : A — P,itis easy to verify that the set of the connections

D —
on # is bijective to the set of the pairs whose first component is a connection on P and

the second component is a tensorial field on M of type (1, 1). Moreover the set of the affine

—D e
connections on £  is bijective to the set of the connections on P. An analogous result holds

for the connections on .42 and P’ using the morphism £'.

~2

Proposition 3.3. Let I' be a connection on P (on P')and T be the connection on A

— ~2
(on A'* )induced by T by means of 5 (of~') and T be the affine connection on 4 (on
A'?) corresponding to T by means of B,(ofB). We have T =T .

From the prop. 6.1. of chap. II of [5] we have to prove that 8 maps the horizontal space

—_ —~2 — —~
Q, of A4£ withrespectto I into the horizontal space Q, of P withrespectto I'.

pr— i —
If wetake u € A4 (M),u € P(M),a € A(t,R) such that ¥ = ~(u)a we have:

Qi = (Rasw(7.(Q,)) and then Bi(Qw) = Quaa) = Qpea» Since B(T) = up(a).

~ ~2
Let E be the vector bundle, associated with .# , with standard fibre A* and projection
T - E — M. Asin prop. 7 of [7] the fibre of E over p € M 1s an affine space of dimension



236 L. D1 Terlizzi, E. Verroca

t isomorphic to A2(M). So, the bundle E has | | AZ(M) as total space and it will be
pEM
denoted by A%2(M).

Definition 3.5. The fibre bundle A*( M), with base M , structure group :4-( t,R) and stan-
dard fibre At is called, affine 2-osculating vector bundle of M .

‘ ~2

Remark 3.1. Since the structure groups of the reduced bundles .4 and .4’ are closed
—~2

subgroups of A(t,R), the vector bundles, associated with .4 and #'? are isomorphic

—~2
to the vector bundle F, associated with £ (cfr. [4]). As in the case of the tangent bundle
T'(M) , we have that the bundle A2( M) is isomorphic to the bundle &*( M) (cfr. [5)).

Definition 3.6. Any (differentiable) section of A*( M) is called pointed (differentiable) g -
osculating vector field, q=1,2.

. ~—2 :
Let I be a connection on #2 (oron £ ,oron .£'2). Givenacurve T on M, we

~2
consider the notions of parallel displacement of the fibres of 4% (or of A4, or of £'2)
along 7, and of parallel displacement along 7 in A%( M) in the usual way (cfr. [5]). Since
the parallel displacement gives rise to an affinity between the fibres of A%( M), it will be

called affine parallel displacement (a.p.d.), while the parallel displacement in &*( M) will
be called linear parallel displacement (1.p.d.).

.o ‘ L= ~2 :
Proposition 3.4. The a.p.d. determined by a connection I" on # , preserves the osculating
order of the pointed osculating vectors.

The proof follows as in prop. 14 of [7].

Proposition 3.5. Let T be a connection on A% and T the connection on P induced by T

by means of . If the a.p.d. determined by T preserves the osculating order of the pointed
osculating vectors, then the l.p.d. determined by I" preserves the osculating order of the
osculating vectors.

Let 7= (z,),s € [0,1], be acurve of M,w, € @, (M), w, = ¢(u,£), with u; €

P(M),E € R°®, where ¢ : P(M) x R! — ﬁ?‘(M) 1s the canonical projection. Let (w,) =
(¢(u,,£)),s € [0,1], be the horizontal lift of 7 to P with origin at u,. Moreover put
Wy = ¥ (wp), where ¥ is the isomorphism of & (M) on A%2(M),and (@,),s € [0, 1],
the horizontal lift of 7 to A%( M) with origin @,. If w, € T, (M) C ﬁiﬂ(M), then

W (wy) = Wy, € A, (M) C AZ (M) and by the hypothesis, for each s € [0,1]T, €
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A, (M),sothat{ € R" C R* and then, for each s € [0,1],w, € T, (M) . Finally, the

l.p.d. T determined by I' , maps 2-osculating non tangent vectors in vectors of the same type,
since the L.p.d. corresponding to the opposite curve of 7 is the inverse isomorphism of 7.

Proposition 3.6. The l.p.d. determined by a connection I'' on P' preserves the osculating
order of the osculating vectors.

The a.p.d. determined by a connection T'! on A4'? preserves the osculating order of the
pointed osculating vectors.

Since P’ is a subbundle of 5, [’ determines a unique connection " on P such that the

reduction morphism maps horizontal subspaces of I'' in horizontal subspaces of . The

l.p.d. determined by I'’ is the same as that determined by I', if the initial point belongs to

P'. By the prop. 14 of [7], the first result follows. The last result can be proved in the same
way.

Proposition 3.7. Let I" be a connection on P and consider the following properties:
a) I' isreducible to a connection I"' on P'.

b) The l.p.d. determined by I' along a differentiable curve of M preserves the osculating
order of the osculating vectors.

c) The parallel displacement determined in P by I' along a differentiable curve of M
maps natural 2-osculating frames in natural 2-osculating frames.

One has: a) <> ¢) anda) = b).

Since P’ is a subbundle of P, if I' is reducible to I"’ the horizontal subspaces of I"' are
mapped in the horizontal subspaces of I" by the reduction morphism. Then, if 7= (z,),s €
[0,1], is a curve of M, the horizontal lifts of 7 in P’ and in P are the same if the initial

point is chosen in P’; then c) follows immediately. Moreover, if w, € G*(M),w, =
¢'(ug,&) with uy € P'(M),€ € R?, where ¢' : P/(M) x R' — &* (M) is the canonical
projection, and mg2  (wg) = To = 7'(1); then the horizontal lift of 7 to @* (M), with

initial point wy , is given by (w,),s € [0,1],w, = ¢'(u,,§), where (u,),s € [0,1], is
the horizontal lift of 7 to P’ with initial point u,. By the prop. 3.6, it follows that the
l.p.d. determined by I' preserves the osculating order of the osculating vectors, that is a)
= b). To prove that ¢) = a), we verify that for each u € P'( M), the horizontal subspace
Q. (P(M)) of T,(P(M)) istangentto P'(M). Forit, fix uy € P(M) C P(M),X €
Quu(P(M)),mu = w'(uy), X = ?TLG(X) €T, (M), andlet 7 = (z,),s €] —¢g,el,e €
R, be a curve of M through z, and such that , = X. Let (u,),s €] — ¢, €[, be the
horizontal lift of 7 in P through u, such that &, = X. By c), foreach s €] — g,¢e[, we

have u, € P'( M), so that the curve (u,), s €] — ¢, [, liesin P'( M) and so, the vector X
is tangent to P'( M) at u,.
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Analogously, we have:

Proposition 3.8. Let T' be a connection on 4'? and consider the properties:

a) I' is reducible to a connection I'' on A'?.

b) Theap.d. determined by I along a differentiable curve of M preserves the osculat-
ing order of the pointed osculating vectors.

¢) The parallel displacement in 4 2 determined by I' along a differentiable curve of
M , maps natural affine 2-osculating frames in natural affine 2-osculating frames.
One has: a) <« ¢) and a)=> b).

4. DEVELOPMENTS

D —

Let I' be an affine connection on .4 ,I" the connection on P induced by I' , and 7 =

(z,),s € [0, 1], adifferentiable curve of M . We denote with 7 the 1.p.d. determined by T
along 7 and with 7, the a.p.d. determined by I' along 7. Finally identifying the points of
T with the zero pointed vector field along 7 we obtain a curve ¢, = 73°(z,),s € [0,1], in

AiD(M).
Definition 4.1. The curve c, = To(z,),s € [0,1], is called development of T in AEH(M ).

Proposition 4.1. With the introduced notation, if we put Y, = 75(z,),s € [0, 1], we have
c,=Y,.

The proof follows as in prop. 4.1., chap. III of [5].
In a similar way, given an affine connection I' on 4’2 , we can consider the development
in Aiu(M) of acurve 7 = (z,),s € [0,1]. Let I'' be the connection on P', induced by

I', 7 the Lp.d. determined by I'' along T and 7' the a.p.d. determined by I'" along .

Definition 4.2. The curve c, = T,(x,),s € [0, 1], is called development of T in Ain(M ).

Proposition 4.2. With the introduced notation, if we put Y, = 73(,),2, = T(2%),s €
[0,1], then ¢é,=Y, and ¢* = Z,.

We suppose that z, € U, for each s € [0, 1], where (U, ¢) is a neighborhood with
coordinates y*. Fixed u, € P'(M) such that n'(uy) = z,, let (u,),s € [0,1], be the
horizontal lift of 7 to P’, with origin at u, . If we put ug = 4'(uy) = (0, uy) € A2 (M),
we have 7 (uj) = z,. Let (u)),s € [0, 1], be the horizontal lift of 7 to .4 '? with origin
at up. Then, there exists a curve of R" (§,),s € [0,1], such that u, = u,a,, where
for each s € [0,1],a(€,) = a,, and u, is identified with 4'(u,). Moreover, since uy =
7' (uy) = ug,qp is the identity matrix. As in prop. 4.1. of chap. III of [5], using the
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connection 1-forms w’ of I'’, and w of I" , we obtain ¢, = Y, foreach s € [0, 1], lete, be
the natural 2-osculating frame in z, corresponding to (U, ¢) . Let us observe that, for each

s € [0,1],u, € P'(M) and so there exists a system (U’, ¢') of local coordinates y* such
that u, is the natural 2-osculating frame corresponding to (U’, ¢'). Itfollowsthatu, = ¢_ o

—El 8
where

a(s) 0(s) 9y’

g, = 0 6d(s) € G and 8(s) = (6,(s)) = (B_y") € qG,,

- 1 1 8%y n

f(s) = (2 i';"(5)> = (2 Byfay*"’(s)) EM_.
Obviously o, is the identity matrix. For each s € [0, 1], the components of the curve
¢, in the affine 2-osculating frame v, = (0;¢, ) = fy’(gzﬂ) are ¢ = —£'1 € I;)cV =

—£Y,(4,7) € J. Moreover the components of ¢, and Y, in v, are:

de, _ _d§ ., dof _ & ..
dS_ dsli'l‘EIr dE ——da,(‘l,})EJ
and by (1.1), the components of ¢ in v, are:
yio 1 & oy dE dE]
(c;)" = 7s 2 de? AEI (c)/ = T ds,:,JEI.

Since o, is the identity matrix, we have ¢ = uy(—£2). On the other hand, computing the
components of £, and z2 in the frame ¢, wehave 22 = u,(—£2). By the last two equalities
if follows that:

Z, = T5(z3) = uo(u; (7)) = .
Corollary 4.1. With the notation in prop. 4.2, the curve T is a geodesic with respect to I'' if
and only if its development in Aiu (M) is astraight line.

We suppose that ([0, 1]) C U, where (U, ¢) is a coordinate neighborhood of M. If T
is a geodesic with respectto I'’, for each s € [0, 1], we have ¢ = 3 (z%) = z4. By (1.1)
it follows that:

de, 1 dc
ﬁ+ > d;’ =const.,, 1 € |
dc: dc!
-&Ei -&-j- = const., 1,] € I
S
dci : . : : .
and so e 1s a constant, for each 1 € I, and c 1s a straight line,

The viceversa is obvious.



240 L. D1 Terlizzi, E Verroca

REFERENCES

[1] I. CATTANEO GASPARINI, Sulle connessiont affini associate ad una data connessione lineare, Ann. Scuola
Normm. Sup. Pisa (3)-10 1956.

[2] I. CATTANEO GASPARINI, Swlle geodetiche di una V, relative a una connessione affine, Atti Accad. Naz.
Lincei, Rend. Cl. Sci. Fis. Mat. Natur. (8) -22, 1957.

[3] I. CATTANEO GASPARINI, Campi basici e trasformazioni affini , Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis.
Mat. Natur. (8) -25, 1958,

4] D. HUSEMOLLER, Fibre bundles , Mc Graw-Hill, 1966.
5] S. KoBayasHi, K. NoMizu, Foundations of differential geometry, Interscience Publishers, 1963.

6] A.M. PASTORE, Connessioni per campi vettoriali 2-osculatori, Rend. Accad. Naz. Sci. XL Mem. Mat
(4),22 1972.

[7]1 A.M. PASTORE, Connessiont sul fibrato principale dei riferimenti 2-osculator: di una varieta differenziabile,
Rend. Circ. Mat. Palermo (2),29 1980.

[8] A.M. PASTORE, Sulle geodetiche rispetto ad una connessione per campi vettoriali osculatori, Rend. Mat.
(7).1, 1981.

[9] J.E. PRricE, Lie groups and compact groups , Cambridge Univ. Press, 1977.

Received June 16, 1987; in revised form: February 6, 1989.
Luigia Di Terlizzi, Francesca Verroca

Dipartimento di Matematica

Campus Universitario

Via G. Fortunato

Bari, Italy



