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FLOW-INVARIANT SETS
C. TERP

INTRODUCTION

Let S be a subset of some normed space E and let ¥ : U — FE be a continuous function

defined on an open subset U containing S. We consider functions z : [0,T] — U which
satisfy the differential equation

(1) (1) = x(x(1))

forall t € [0,T], where T is a positive number, depending on z. Such functions will be
called solutions of (1). We say that S is invariant with respect to (1), if every solution of (1)
with z(0) € S remains in S, thatis z([0,7T]) C S.

Early results concerning the characterization of invariant sets in the finite dimensional
case £ = R™ were obtained by Nagumo [Na42]. Further research was independently done
by Bony [B069], Brezis [Br70], Crandall [Cr72], Hartman [Ha72] and Yorke [Y067], [Y070].
Different conditions imposed on S and y by Bony and Brezis respectively were related with
one another by Redheffer [Re72]. He elucidated as well as generalized their results. There
was even some progress in the case of infinite dimensional spaces. Redheffer and Walter
[ReWa75] were the first to investigate this field. Their results were extended by Volkmann
[Vo73], [Vo75]. Finally, Martin [Ma73] and Volkmann [Vo76] came to far-reaching general-
1izations in case F is a Banach-space.

This note offers an alternative approach based on an elementary lemma from the theory
of functions of one real variable. As a corollary we obtain a slightly more general version
of Brezis’ Invariance Theorem. In this fashion it becomes evident that the latter is a higher
dimensional generalization of the lemma from one-dimensional calculus.

Lemma. Let f: [a,b] — R be a continuous function with f(a) = 0. Assume there exists
a number ¢ > 0 such that the differential inequality

) i ot f(z+ hi S0P

f(z)

holds for all £ € [a,b) with the possible exception of some countable subset D C (a,b) .
Then f <0.

Proof. Let {r,},.n be some enumeration of D and let ¢ > 0 be an arbitrary positive
number.
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For each y € [a,b] we define the following subset of [a, b]

(3) M(y) := {me [a,y) : f(z) < ee“(xz —a) (1+ E -il;-) } :

Ta<I
This set depends also on €. Now, M(y) is not the empty set because of a € M(y). We

set m := sup M(y). Since E -jl: is a left-continuous function with respect to x, every
T <Z
increasing sequence in M (y) converges to a pointin M (y) . This yields m € M(y). We
claim that m = y and prove it by deriving a contradiction from the assumption m < y.
Suppose m < y. We distinguish two cases.
@ m ¢ {r.}uen
By (2) there exists a positive number d > 0 satisfying m + d < y and

fim+d — j(m) <cf(m)+ (14 cd)ee™ (1+ E 51:) .

d
f“t:m

A simple calculation yields

r.<m

f(m+d) <(1+cd)f(m)+(1+cd)ee™d (l+ E -;;) .

On accountof m € M(y) and 1+ cd > 0 we get

f(m+d) <(1+ cd) (:-:e""‘(m-a) (1+ E %))

r,<m

1
+(1+cd)ee™d | 1+ E 7w

T, <m

=(1+cd)ee™(m+d—a) (1+ E —21—“

L <m

Since 0 < 1+ ch < e® for h > 0, it finally follows

211

r.<m+d

1
=ee™D(m+d—a) |1+ 5 |
r.<m+d

f(m+d) < eZee™(m+d—a) (1+ i)
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This implies m + d € M (y) because of (3), contradicting m = sup M(y).
(i) m=r, forsome k € N.

Since f is continuous and m # a, there exists a positive number d > 0 suchthat m+d <
y and

f(m+ d) £f(m)+sem(m-u)%‘
By (3) we may thus infer
f(m+d) <ee™(m—a) (]+ E _2}:) +Eem(m~ﬂ)-2l—k

T, <m

1 1
=ege(m—a) |1+ — |+

1
< eef™D(m+ d—a) (1+ E F)

r,<m+d

Hence m + d € M(y), a contradiction.

We thus conclude m = y, yielding y € M(y). Since y € M(y) C M(b) for each
y € [a,b],we have [a,b] C M(b) C [a,b]. That gives M(b) = [a,b]. Consequently

f(z) < €ee”*(z — a) (1 + z %) < 2¢ee(b—a)

T, <%

holds for each z € [a,b]. Since € > 0 was arbitrary, f < 0 follows. o

Ifweset §:=(—00,0] and x(z) := cx forall z € R then the Lemma simply says that
S 1s invariant with respect to (1). We have thus treated a very special case. But soon this case
will show itself to be the core of the Invariance Theorem of Brezis.

Definition. Let S be a closed subset of a normed space L, and suppose =,y € L. We say

that y is a subtangent vector to S at x if there exist a subset D C Ry \ {0} havingOasa
limit point and a function r : D — § satisfying

. 1(h) —z _
(4) hlgg" h B

Y.

The set of all subtangent vectors of S at z is denoted by L _(S) .
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Theorem. Let S be a closed subset of R™, and let U C R™ be an open subset containing
S. Suppose that x : U — R™ is a locally Lipschitz-continuous function satisfying x(y) €
L. (S) foreachy € S.Then § is invariant with respect to (1).

Proof. Let z : [0,T] — U be a solution of the differential equation

z(t) = x(z(1))

forallt € [0,T]. Assume z(0) € S.
Since S is closed, there exists at least one element in §' attaining the minimal distance
“;E ||z(t) — s|| between z(t) and S. Let z(t) be such an element foreach t € [0,T]. This

defines a function z : [0,T] — § satisfying

(5) lz(t) — 2(B)|| = inf ||z() ~ s

We give our proof by deriving a contradiction from z([0,T]) € §. Let us therefore assume
z([0,T]) LS.

Since z is continuous and S is closed, the set {t € [0,T] : z(t) ¢ S} is open with
respect to [0, T]. Hence there exists an interval [a,b] C [0,T] satisfying z(e) € S and
z((a,b]) NS = @. Now, we choose a strictly positive number r, such that x satisfies a
Lipschitz-condition with constant ¢ on B, (z(a)), and a number b’ € (a,b] with

(6) z([a,b]) C B,(z(a)).

From z(a) € S we infer ||z(t) — z(a)|| > ilégum(t) — 8|| = ||z(t) — 2(t)||. Hence

|2(t) — z(a)|| < ||z(t) — z()|] + ||z(t) — z(a)]| < ||z(a) — z(t)|| + ||z(?) — z(a)|| <
r+r=2r foreach t € [a,b']. We conclude

(7) 2([a,d']) C B,,(x(a)).

Now, let us take ¢t € [a,d’]. By assumption x(2(t)) € L,(S). According to (4) this
yields a set D, C R, \{0} having 0 as a limit point and a function r, : D, — § satisfying

.1 (h) —2(t) _
.ﬁlla.nﬁ1+ h = x(2(1)).
We thus have a function s, : D, — R" with
(8) r,(h) = z(t) + hx(2(t)) + hs,(h) and lim s,(h)=0.

h—0+
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Since z(t) = x(z(t)), there exists a function u, : D, — R™ satisfying

(9) z(t+ h) = 2(t) + hx(=(t)) + hu(h) and  lim u,(h) = 0.

Now, we have r,(h) € § forall h € D,. This yields

l|lz(t+ h) — 2(t + h)|| = i‘ng”I” + h) — s|| < ||z(t+ h) — r,(h)||.

Combining this inequality with (8) and (9), we infer

lz(t + h) — 2(t + B)|| < ||z(2) + hx(2(2)) + hu,(h) — 2(2) — hx(2(2)) — hs,(h)||
< flz(t) = 2(0) || + Al|x(z(2)) — x(2()) || + hl[u,(h) — s, (B)]].

Since x is Lipschitz-continuous on B, (z(a)) withconstant ¢,and z(t), z(t) € B,,(z(a))
by (6) and (7) respectively, we get

(10) ||lz(t+h) —2(t+ h) || < ||z(2) — 2(B) ||+ hel|z(2) — 2() ||+ A(]|u, (R ]|+ |5, (A)]) -

Setting f(t) := ||z(t) — 2()|| for t € [a,d'], we conclude

f(t+h) — f(2)

< cf () + [|u(R)]| + ||s,(h)|| Vh € D;.

h
Now, hlir9+ u,(h) =0 and hli% s,(h) = 0 yield
(11) lim inf f(”hi“f(” < cf ().

Since d(y, S) := iﬂg lly — s|| is continuous with respect to y, continuity of f follows. In
L1S

addition, we have f(0) = 0 and (11). We may thus invoke the Lemma to conclude f < 0.
But f assumes only positive values, hence f = 0. This means z([a,d']) C S, contradicting
z((a,b']) NS = 0. =

Note. Infact the Lemmashows that f(z) := kx for k > 0 is a restricted uniqueness function
in the sense of Redheffer [Re72].

Our restriction to finite dimensional spaces is necessitated by the existence of a function
z: [0,T] — § satisfying (5), which is a consequence of the fact that S contains at least one
element 2’ of minimal distance between S and z(t) . This of course is true for closed subsets
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of R". We may therefore easily generalize the Invariance-Theorem to infinite dimensional
normed spaces in case S is a distance set, that is foreach z € L we have a 2’ € § satisfying
inf ||z — s|| = ||z — 2|].

inf ||z — s|| = ||z — ]|

Yet, there is a more satisfactory generalization, proved independently by Martin [Ma73]
and Volkmann [Vo76]. They showed that the Invariance-Theorem of Brezis remains valid for
arbitrary closed subsets of Banach-spaces, provided that y satisfies a more stringent condition
than being locally Lipschitz-continuous.

Further generalizations were obtained by Hormander [H681] and Lawson [La87]. They
investigated closed subsets of finite dimensional euclidean spaces which are invariant with
respect to certain vector-field-distributions.



Flow-invariant sets 227

REFERENCES

[Bo69] J.H. BoNy, Principe du Maximum, inégalité de Harnack et unicité du probléme de Cauchy pour les
opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble) 19 (1969) 277-304.

[Bou61] N. BoUurBAKlI, Fonctions d’ une variable réelle, Chap. 1-VII, Hermann, Parnis (1961).
[Br70] H. BRrezs, On a characterization of flow-invariant sets, Comm. Pure Appl. Math. 23 (1970) 261-263.

[C172] M.G. CRANDALL, A generalization of Peano's existence theorem and flow-invariance, Proc. Amer.
Math. Soc. 36 (1972) 151-155.

[Ha72] Ph. HARTMAN, On invariant sets and on a theorem of Wazewski , Proc. Amer. Math. Soc. 32 (1972)
511-520.

[Ho81] L. HORMANDER, Pseudodifferential operators of principal type, in: Singularities in Boundary Value
Problems (H. Gamir ed.), Reidel, (1981) 69-96.

[La87] 1.D. LawsoN, Fields of tangent sets and Hofmann cones , Semigroup Forum 35 (1987) 1-27.

[Ma73] R.H. MARTIN jr., Differential equations on closed subsets of a Banach space, Trans. Amer. Math. Soc.
179 (1973) 399-414.

[Nad42] M. Nacumo, Uber die Lage der Integralkurven gewéhnlicher Differentialgleichungen, Proc. Phys.-
Math. Soc. Japan (3) 24 (1942) 551-559.

[Re72] R.M. REDHEFFER, The theorems of Bony and Brezis on flow-invariant sets, Amer. Math. Monthly 79
(1972) 740-747.

[Re81] R.M. REDHEFFER, Increasing functions, Aequationes Math. 22 (1981) 119-133.

[ReWa75] R.M. REDHEFFER, W. WALTER, Flow-invariant sets and differential inequalities in normed spaces,
Appl. Anal. 5§ (1975) 149-161.

[Vo73] P. VOLKMANN, Uber die Invarianz konvexer Mengen und Differentialungleichungen in einem
normierten Rawne , Math. Ann. 203 (1973) 201-210.

[Vo75] P. VOLKMANN, Uber die Invarianzsdize von Bony und Brezis in normierten Riumen, Arch. Math. 26
(1975) 89-93.

[Vo76] P. VOLKMANN, Uber die positive Invarianz einer abgeschlossenen Teilmenge eines Banachschen
Raumes bezilglich der Differentialgleichung u' = f(t,u), J. Reine Angew. Math. 285 (1976) 59-
65.

[Yo67] J.A. YORKE, Invariance for ordinary differential equations, Math. Systems Theory 1 (1967) 353-372,
(Correction: Math. Systems Theory 2 (1968) 381).

[Yo70] J.A. YORKE, Differential inequalities and non-Lipschitz scalar functions, Math. Systems Theory 4
(1970) 140-153.

Received December 16, 1988.

Chnistian Terp

Fachbereich Mathematik

Technische Hochschule Darmstadt

6100 Darmstadt, Federal Republic of Germany



