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A REMARK ABOUT THE EMBEDDING
(H(E/F),7) = (H(E),7),

WITH 7= 7, 7,,

IN FRECHET SPACES

S. PONTE (Y

Abstract. In a recent paper by Aron-Moraes-Ryan [2], it is proved that when E is a complex
Banach space, F' 1s a closed subspace of E and U is a balanced open subset of E, then the
mapping
fe Hn(U)) —» fowe H(U),

where w 1s the canonical mapping from E onto E[F, is a topological isomorphism from
(H(m(U)),7) onto a closed subspace of (H(U), 1), whereT=1,, T,.

The aim of this remark is to show that the same result is true, with v, for Fréchet spaces,
and with T, for Fréchet-Schwartz spaces. Also we prove that this result is not true with 7, for
some Fréchet-Montel spaces and with T; for some nuclear Fréchet spaces.

For a complex locally convex space E and an open subset U of E, H(U) will denote the
space of all holomorphic functions on U. On H(U) we will consider the usual topologies
Ty, T, and 75 © 7, 1s the compact open topology, 7, 1s the Nachbin ported topology, it is the
locally convex topology generated in H(U) by the seminorms p on H(U) which are ported
by some compact subset K of U; p is ported by K if foreveryopensubset Vof U, K C V,
there exists C > 0 such that

p(f) < Csup{|f(z)|:z €V} forall fe H(U).

75 1 the locally convex topology generated in H(U) by the seminorms p on H(U) such that
for every increasing countable open cover of U, (U,), there exist C > 0 and k € N such
that

p(f) < Csup{|f(z)|: z €U} forall fe H(U).

To prove that the mapping f — f o« is an embedding of (H(w(U)), ) in (H(U), 1),
when E is a Fréchet space, we need the following result:

Lemma. Let E be a Fréchet space and U an open subset of E. Then for every compact
subset J of w(U) there is a compact subset K in U such that wn( K) = J.

The proof of this Lemma is analogous to that of Proposition 18, Section 2, Chapter IX in
[3] using the fact that every open subset of a Fréchet space is homeomorphic to a complete
metric space ([7], Th. 2.76). See also [6], p. 57.
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Theorem 1. If E is a Fréchet space, then the mapping f — f o w is an isomorphism of
(H(w(U)), ) onto a closed subspace of (H(U), 7).

Proof, 1t 1s clear that this mapping is linear, injective and continuous. It is also open onto
its image as a direct consequence of the Lemma. Since ( H(w(U)), 7,) i1s complete ({4], p.
129), this image is closed in (H(U), 1,). |

Let us consider now a Fréchet-Schwartz space F and a closed subspace F' of E. It is
known ([5]) that E/F is also a Fréchet-Schwartz space.

By a result of Mujica (8], the topologies 7, and 7, agree on H(U)(U being a balanced
open subset of a Fréchet-Schwartz space), then from Theorem 1 we obtain

Theorem 2. If FE is a Fréchet-Schwartz space and F is a closed subspace of E, then the
mapping f — f ow isa topological isomorphism of (H(w(U)),7,) onto a closed subspace
of (H(U),7,) for every balanced open subset U of E.

When one considers Fréchet-Montel spaces which are not Schwartz spaces the situation
can change as the following shows.

Let A(A) be a Fréchet-Montel-Kthe echelon space. By a resault of Ansemil-Ponte [1],
for this kind of spaces we have that

(H(U),7) = (H(U),7,)

for every balanced open subset U of A(A).

On the other hand, if A( A) is a Fréchet-Montel, non Schwartz, Kothe echelon space, then
it has a quotient which is isomorphic to £' ([9], see also [10]). Then this quotient is not a
Montel space.

Since for E a Fréchet space, the equality ( H(U), ) = (H(U), 7,) for some open subset
U of E implies that E is a Montel space ([4]), we have the following

Theorem 3. For every Fréchet-Montel, non Schwartz, Kothe echelon space M\( A) there is a
closed subspace F of A\( A) such that the mapping

(H(=®(U)),7,) = (H{U),7,)

f—form
is not embedding for every balanced open subset U of A\( A).

Proof. Let us consider a closed subspace F' of A( A) such that A(A)/F is not a Montel
space. Then 7y # 7, on H(w(U)). If the mapping f — f o w is an isomorphism from
(H(w(U)),t,) onto a closed subspace of (H(U), 7,), then, since 7, = 7, on H(U), we
get a contradiction by Theorem 1.
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Note. For the 75 topology there is an analogous to Theorem 3 when E is a nuclear Fréchet
space which has property (DN). Indeed, it is known that when E is a nuclear Fréchet space
o = T on H(E) if and only if E has (DN) ([4]). Since there are nuclear Fréchet spaces

with (DN) (for exemple H( @€ ) ) with quotients which do not have (DN) (C Nisa quotient of
H{( €) which does not have (DN)), then a similar proof to one in Theorem 3 shows the note.
This last note is due to the referee whom I would like to thank.
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