A REMARK ABOUT THE EMBEDDING

 $(H(E/F), \tau) \rightarrow (H(E), \tau),$

WITH $\tau = \tau_0$, τ_ω ,

IN FRECHET SPACES

S. PONTE (1)

Abstract. In a recent paper by Aron-Moraes-Ryan [2], it is proved that when E is a complex Banach space, F is a closed subspace of E and U is a balanced open subset of E, then the mapping

$$f \in H(\pi(U)) \to f \circ \pi \in H(U),$$

where π is the canonical mapping from E onto E/F, is a topological isomorphism from $(H(\pi(U)), \tau)$ onto a closed subspace of $(H(U), \tau)$, where $\tau = \tau_0, \tau_\omega$.

The aim of this remark is to show that the same result is true, with τ_0 for Fréchet spaces, and with τ_{ω} for Fréchet-Schwartz spaces. Also we prove that this result is not true with τ_{ω} for some Fréchet-Montel spaces and with τ_{δ} for some nuclear Fréchet spaces.

For a complex locally convex space E and an open subset U of E, H(U) will denote the space of all holomorphic functions on U. On H(U) we will consider the usual topologies τ_0 , τ_ω and τ_δ : τ_0 is the compact open topology, τ_ω is the Nachbin ported topology, it is the locally convex topology generated in H(U) by the seminorms p on H(U) which are ported by some compact subset K of U; p is ported by K if for every open subset V of U, $K \subset V$, there exists C > 0 such that

$$p(f) \le C \sup\{|f(x)| : x \in V\} \text{ for all } f \in H(U).$$

 τ_{δ} is the locally convex topology generated in H(U) by the seminorms p on H(U) such that for every increasing countable open cover of $U, (U_n)$, there exist C > 0 and $k \in \mathbb{N}$ such that

$$p(f) \le C \sup\{|f(x)| : x \in U_k\} \text{ for all } f \in H(U).$$

To prove that the mapping $f \to f \circ \pi$ is an embedding of $(H(\pi(U)), \tau_0)$ in $(H(U), \tau_0)$, when E is a Fréchet space, we need the following result:

Lemma. Let E be a Fréchet space and U an open subset of E. Then for every compact subset J of $\pi(U)$ there is a compact subset K in U such that $\pi(K) = J$.

The proof of this Lemma is analogous to that of Proposition 18, Section 2, Chapter IX in [3] using the fact that every open subset of a Fréchet space is homeomorphic to a complete metric space ([7], Th. 2.76). See also [6], p. 57.

⁽¹⁾ Supported by the D.G.I.C.Y.T. of Spain. PB87-1031.

218 S. Ponte

Theorem 1. If E is a Fréchet space, then the mapping $f \to f \circ \pi$ is an isomorphism of $(H(\pi(U)), \tau_0)$ onto a closed subspace of $(H(U), \tau_0)$.

Proof. It is clear that this mapping is linear, injective and continuous. It is also open onto its image as a direct consequence of the Lemma. Since $(H(\pi(U)), \tau_0)$ is complete ([4], p. 129), this image is closed in $(H(U), \tau_0)$.

Let us consider now a Fréchet-Schwartz space E and a closed subspace F of E. It is known ([5]) that E/F is also a Fréchet-Schwartz space.

By a result of Mujica [8], the topologies τ_0 and τ_ω agree on H(U)(U) being a balanced open subset of a Fréchet-Schwartz space), then from Theorem 1 we obtain

Theorem 2. If E is a Fréchet-Schwartz space and F is a closed subspace of E, then the mapping $f \to f \circ \pi$ is a topological isomorphism of $(H(\pi(U)), \tau_{\omega})$ onto a closed subspace of $(H(U), \tau_{\omega})$ for every balanced open subset U of E.

When one considers Fréchet-Montel spaces which are not Schwartz spaces the situation can change as the following shows.

Let $\lambda(A)$ be a Fréchet-Montel-Köthe echelon space. By a resault of Ansemil-Ponte [1], for this kind of spaces we have that

$$(H(U),\tau_0)=(H(U),\tau_\omega)$$

for every balanced open subset U of $\lambda(A)$.

On the other hand, if $\lambda(A)$ is a Fréchet-Montel, non Schwartz, Köthe echelon space, then it has a quotient which is isomorphic to ℓ^1 ([9], see also [10]). Then this quotient is not a Montel space.

Since for E a Fréchet space, the equality $(H(U), \tau_0) = (H(U), \tau_\omega)$ for some open subset U of E implies that E is a Montel space ([4]), we have the following

Theorem 3. For every Fréchet-Montel, non Schwartz, Köthe echelon space $\lambda(A)$ there is a closed subspace F of $\lambda(A)$ such that the mapping

$$(H(\pi(U)), \tau_{\omega}) \to (H(U), \tau_{\omega})$$

$$f \to f \circ \pi$$

is not embedding for every balanced open subset U of $\lambda(A)$.

Proof. Let us consider a closed subspace F of $\lambda(A)$ such that $\lambda(A)/F$ is not a Montel space. Then $\tau_0 \neq \tau_\omega$ on $H(\pi(U))$. If the mapping $f \to f \circ \pi$ is an isomorphism from $(H(\pi(U)), \tau_\omega)$ onto a closed subspace of $(H(U), \tau_\omega)$, then, since $\tau_0 = \tau_\omega$ on H(U), we get a contradiction by Theorem 1.

Note. For the τ_{δ} topology there is an analogous to Theorem 3 when E is a nuclear Fréchet space which has property (DN). Indeed, it is known that when E is a nuclear Fréchet space $\tau_0 = \tau_{\delta}$ on H(E) if and only if E has (DN) ([4]). Since there are nuclear Fréchet spaces with (DN) (for exemple $H(\mathbb{C})$) with quotients which do not have (DN) ($\mathbb{C}^{\mathbb{N}}$ is a quotient of $H(\mathbb{C})$ which does not have (DN)), then a similar proof to one in Theorem 3 shows the note. This last note is due to the referee whom I would like to thank.

REFERENCES

- [1] J.M. ANSEMIL, S. PONTE, The compact open and the Nachbin ported topologies on spaces of holomorphic functions, Arch. Math.51 (1988) 65-70.
- [2] R.M. Aron, L.A. Moraes, R.A. Ryan, Factorization of holomorphic mappings in infinite dimension, Math. Ann. 277 (1987) 617-628.
- [3] N. BOURBAKI, Elements of Mathematics: General Topology, Part 2, Addison Wesley, 1966.
- [4] S. DINEEN, Complex Analysis in Locally Convex Spaces, North-Holland Math. Stud. 57, 1981.
- [5] A. GROTHENDIECK, Sur les espaces (F) and (DF), Summa Brasil. Math. 3, 1954.
- [6] A. GROTHENDIECK, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955)
- [7] J.G. HOCKING and G.S. YOUNG, Topology, Addison-Wesley, 1961.
- [8] J. Munca, A Banach-Dieudonné theorem for germs of holomorphic functions, J. Funct. Anal. 27 (1984) 31-48.
- [9] M. VALDIVIA, Topics in Locally Convex Spaces, North-Holland Math. Stud. 67, 1982.
- [10] M. VALDIVIA, (F)-Spaces and strict (LF)-spaces, Math. Z. 195 (1987) 345-364.

Received December 2, 1988.

S. Ponte
Departamento de Analisi Matemático
Facultad de Matemática
Universidad Complutense
28040 Madrid, Spain