ON SEMIDIRECT PRODUCT OF SEMIGROUPS *

F. CATINO, M.M. MICCOLI

1. INTRODUCTION

Let X be a subset of a semigroup S. We denote by E(X) the set of idempotent elements of X.

An element a of a semigroup S is called E-inversive if there exists $x \in E(S)$ such that $ax \in E(S)$. We note that the definition is not one-sided. Indeed, an a element of a semigroup S is E-inversive iff there exists $y \in S$ such that $ay, ya \in E(S)$ (see [7], [1] p. 98).

A semigroup S is called E-inversive if all its elements are E-inversive. This class of semigroups is extensive. All semigroups with a zero and all eventually regular semigroups [2] are E-inversive semigroups.

Recently E-inversive semigroups reappeared in a paper by Hall and Munn [3] and in a paper by Mitsch [5]. The special case of E-inversive semigroups with pairwise commuting idempotents, called E-dense, was considered by Margolis and Pin [4].

Let S and T be semigroups, and let $\alpha: S \to End(T)$ be a homomorphism of S into the endomorphism semigroup of T. If $s \in S$ and $t \in T$, denote t(sa) by t^s . Thus, if $s, s' \in S$ and $t \in T$ then $(t^s)^{s'} = t^{ss'}$. The semidirect product of S and T, in that order, with structure map α , consists of the set $S \times T$ equipped with the product

$$(s,t)(s',t') = (ss',t^{s'}t')$$

This product will be denoted by $S \times_{\alpha} T$.

In this note we determine which semidirect products of semigroups are E-inversive semigroups and E-dense semigroups, respectively. It turns out that the case in which S induces only automorphism on T allows a particularly simple description.

In [6], Preston has answered the analous question for regular semigroups and for inverse semigroups.

For the terminology and for the definitions of the algebraic theory of semigroups, we refer to [1].

2. E-INVERSIVE SEMIDIRECT PRODUCTS

Lemma 2.1. An element a of a semigroup S is E-inversive if and only if there exists $y \in S$ such that y = yay.

Proof. Let $x \in S$ and $ax \in E(S)$. Then, setting y = xax, we have yay = (xax)a(xax) = x(ax)(ax)(ax) = xax = y. The converse is clear.

^{*} Research supported by a grant from M.P.I. (Italy).

Consequently, we can say that S is E-inversive iff $W_S(a) = \{t \in S : yay = y \neq \emptyset \text{ for every } a \in S\}$.

Theorem 2.2. Let $U = S \times_{\alpha} T$ be a semidirect product of semigroups. Then U is E-inversive if and only if for all $s \in S$ and $t \in T$ there exists $x \in W_S(s)$ such that t^{xs} is an E-inversive element of T^{xs} .

Proof. Suppose first that U is E-inversive. Let $(s,t) \in U$ and $(x,y) \in W_U(s,t)$. Then $(x,y) = (x,y)(s,t)(x,y) = (xsx,y^{sx}t^xy)$, hence

$$(1) x = xsx,$$

$$y = y^{sx}t^xy.$$

Condition (1) gives that $x \in W_S(s)$. By (2)

$$(y^s)^{xs} = y^{sxs} = (y^{sx}t^xy)^{sxs} = y^{sxsxs}t^{xsxs}y^{sxs} = y^{sxs}t^{xs}y^{sxs} =$$

$$= (y^s)^{xs}t^{xs}(y^s)^{xs}.$$

Thus t^{xs} is an E-inversive element of T^{xs} .

Conversely, let $(s,t) \in U$ and $x \in W_S(s)$ such that t^{xs} is an E-inversive element of T^{xs} . Then there exists $v \in T$ such that $v^{xs} \in W_T(t^{xs})$. We set $y = v^x$. Then $(x,y)(s,t)(x,y) = (xsx,y^{sx}t^xy) = (x,y^{sx}t^xy)$ and $y^{sx}t^xy = (v^x)^{sx}t^xv^x = v^{xsx}t^xv^x = v^{xsx$

Hence U is E-inversive.

Corollary 2.3. If S and T are E-inversive semigroups then every semidirect product $S \times_{\alpha} T$ is E-inversive.

Example 2.4. Let $S = \{e, a\}$ be the semigroup with identity e and $a = a^2$. Let T be the multiplicative semigroup of positive integers. Let $\alpha : S \to End(T)$ defined by $t^e = t$ and $t^a = 1$ for every $t \in T$. Then S and $S \times_{\alpha} T$ are E-inversive but T is not E-inversive.

Corollary 2.5. Let S and T semigroups and let $\alpha: S \to Aut(T)$ be a homomorphism of S into the automorphism group of T. Then, $S \times_{\alpha} T$ is E-inversive if and only if S and T are E-inversive.

Proof. Let $s \in S$ and $t \in T$. Then, by Theorem 2.2 there exists $x \in W_S(s)$ such that t^{xs} is an E-inversive element of T^{xs} . Now, $xs \in E(S)$ and hence $(xs)\alpha$ is the identity of Aut(T), thus t is an E-inversive element of T.

The converse is immediate by Corollary 2.3.

3. E-DENSE SEMIDIRECT PRODUCTS

Lemma 3.1. Let S be a semigroup in which all idempotents commute. If $e \in E(S)$ and $e' \in W_S(e)$, then $e^i = ee' = e'e$. In particular, $e' \in E(S)$.

Proof. Since $e, ee', e'e \in E(S)$, we have ee' = ee'ee' = e'eee' = e'. Analogously e'e = e'.

Lemma 3.2. Let S be a E-dense semigroup and let $x, y \in S$. If $x' \in W_S(x) \cap W_S(y)$, then xx'x = yx'y.

Proof. Since x'y = x'xx'y = x'yx'x = x'x and, analogously yx' = xx', we have xx'x = yx'x = yx'y.

Let S be a semigroup. If $e, f \in E(S)$ we define $e \le f$ if e = ef = fe. We call semilattice a commutative semigroup in which every element is idempotent.

Proposition 3.3. Let $U = S \times_{\alpha} T$ be a semidirect product of semigroups and let E(S) be a semilattice.

Then E(U) is a semilattice if and only if

- (1) (i) if $e \in E(S), t \in T$ such that $t = t^e t$, then $t = t^e$;
 - (ii) if $e, f \in E(S), f \le e, t \in E(T^e)$, and $v \in E(T^f)$ then $t^f v = vt$.

Proof. Suppose that E(S) is a semilattice. Let $e \in E(S)$, $t \in T$ such that $t = t^e t$. Then $(e,t)(e,t) = (e,t^e t) = (t,e)$ and $(e,t^e) = (e,t^e t^e) = (e,t)(e,t^e) = (e,t^e t)(e,t^e) = (e,t^e)(e,t)(e,t^e)$. Hence, by Lemma 3.1 $(e,t^e) = (e,t^e)(e,t) = (e,t^e t) = (e,t)$. Thus $t = t^e$.

How we prove part (ii) of (1). Let $e, f \in E(S), f \le e, t \in E(T^e), v \in E(T^f)$ and $r \in T$ such that $v = r^f$. Evidently $(e, t), (f, v) \in E(U)$ and, since E(U) is semilattice, (e, t)(f, v) = (f, v)(e, t). Hence $t^f v = v^e t = (r^f)^e t = r^e f t = r^f t = v t$.

Conversely, suppose that (1) holds. Let $(e,t), (f,v) \in E(U)$. Then, by (i), $t=t^e$ and $v=v^f$. Thus

$$t^{f}v = t^{ef}v = t^{ef}v^{f} = (v^{f})^{ef}t^{ef} \qquad (by(i), since\ ef \le f)$$

$$= v^{ef}t^{ef} = (t^{ef})^{ef}v^{ef} \qquad (by(i), since\ ef \le ef)$$

$$= t^{ef}v^{ef} = (t^{e})^{ef}v^{ef} = v^{ef}t^{e} \qquad (by(i), since\ ef \le e)$$

$$= (v^{f})^{e}t^{e} = v^{e}t$$

Hence, by (2), $(e,t)(f,v) = (ef,t^fv) = (fe,v^et) = (f,v)(e,t)$.

F. Catino, M.M. Miccoli

Theorem 3.4. Let $U = S \times_{\alpha} T$ be a semidirect product of semigroups. Then U is E-dense if and only if S is E-dense, T is E-inversive and (1) holds.

Proof. Let U be E-dense semigroup. By Theorem 2.2, S is E-inversive. We show that the idempotents of S are pairwise commuting. Let $e, f \in E(S)$. Then, by Theorem 2.2, there exists $h \in E(T)$, hence $(e, h^e)(e, h^e) = (e, h^e h^e) = (e, h^e)$. Analogously $(f, h^f)(f, h^f) = (f, h^f)$. Therefore, since U is E-dense, we have $(f, h^f)(e, h^e) = (e, h^e)(f, h^f)$, hence ef = fe.

Now we prove that T is E-inversive. Let $t \in T$. We choose $e \in E(S)$ and $(x,y) \in U$ such that (x,y) = (x,y)(e,t)(x,y). Then (3) $x \in W_S(e)$, (4) $y = y^{ex}t^xy$.

It follows, by Lemma 3.1, that (5) $y^e = (y^{ex}t^xy) = y^xt^xy^e$. By Lemma 3.1, $(x,y)(x,t^x)(x,y) = (xx,y^xt^x)(x,y) = (x,y^xt^x)(x,y) = (x,y^xt^x)(x,y$

Now, by Lemma 3.2, $(e,t)(x,y)(e,t) = (x,t^x)(x,y)(x,t^x)$, hence, by Lemma 3.1, (6) $t^xy^et = t^xy^xt^x$. Then

$$y^{e}ty^{e} = (y^{x}t^{x}y^{e})^{e}ty^{e}$$
 by (5)

$$= y^{x}t^{x}y^{e}ty^{e}$$
 By Lemma 3.1

$$= y^{x}t^{x}y^{x}t^{x}y^{e}$$
 by (6)

$$= y^{e}$$
 by (5).

Thus T is E-inversive.

By Prop. 3.3 the condition (1) holds.

Conversely, since S ant T are E-inversive semigroups, from Corollary 2.3, U is E-inversive.

By Prop. 3.3, since SE-dense and (1) holds, it follow that U is E-dense.

Example 3.5. Let $S = \{e, a\}$ be the semigroup with identity e and $a = a^2$. Let T be a semigroup with 0 and with two idempotent elements which do not commute. Let $\alpha : S \to End(T)$ defined by $t^e = t^a = 0$ for all $t \in T$. Then $S \times_a T$ is E-dense but T is not E-dense.

Example 3.6. Let $S = \{e, a\}$ be the semigroup with identity e and $a = a^2$. Let T be a E-dense semigroup with identity 1. Let $\alpha : S \to End(T)$ defined by $t^a = t^e = 1$ for all $t \in T$. Then S, T are E-dense, but $S \times_{\alpha} T$ is not E-dense.

Corollary 3.7. Let S and T be semigroups and $\alpha: S \to Aut(T)$ be a homomorphism of S into the automorphism group of T. Then $S \times_{\alpha} T$ is E-dense if and only if S and T are E-dense.

Proof. If $S \times_{\alpha} T$ is E-dense, by Theorem 3.4, S is E-dense and T is E-inversive. Moreover, since $S\alpha \subseteq Aut(T)$, $T^e = T$ for all $e \in E(S)$. Thus, by (1) (ii) T is E-dense.

Conversely, let S,T be E-dense. Then, by Corollary 2.3, $S \times_{\alpha} T$ is E-inversive. Moreover, if $(s,t),(r,v) \in E(S \times_{\alpha} T)$ then $r,s \in E(S),t,v \in E(T)$ and $(s,t)(r,v) = (sr,t^rv) = (sr,tv) = (rs,vt) = (rs,v^st) = (r,v)(s,t)$.

REFERENCES

- [1] A.H. CLIFFORD, G.B. PRESTON, The algebraic theory of semigroups, Math. Surveys 7, vol. I (American Mathematical Society), 1961.
- [2] P.M. EDWARDS, Eventually regular semigroups, Bull. Austral. Math. Soc. 28 (1983) 23-38.
- [3] T.E. HALL, W.D. MUNN, The hypercore of a semigroup, Proc. Edinburgh Math. Soc. 28 (1985) 107-112.
- [4] P. MARGOLIS, J. PIN, Inverse semigroups and extensions of groups by semilattice, J. Algebra 110 (1987) 277-298.
- [5] H. MITSCH, Subdirect products of E-inversive semigroups, (preprint).
- [6] G.B. Preston, Semidirect products of semigroups, Proc. Roy. Soc. Edinburgh. Sect. A102 (1986) 91-102.
- [7] G. THIERRIN, Sur les demigroupes inversés, C.R. Acad. Sci. Paris Sér. I Math. 234 (1952) 1336-1338.