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ON SOME RELATIONS BETWEEN LINEAR
AND HOLOMORPHIC MAPPINGS ON BANACH SPACES

LUIZA A. MORAES

Abstract. Three aspects of the theory of holomorphic mappings between Banach spaces are
presented in connection with the theory of continuous linear operators: (1) the behavious of
H(E,F) versus the approximation property on E ; (2) extension theorems for holomorphic
mappings (holomorphic Hahn-Banach theorems); (3) holomorphic mappings and quotients.

1. INTRODUCTION

Our purpose in this survey is to examine some relations between the space L( E, F') of allcon-
tinuous linear operators from E into F' and the space H( E, F') of all holomorphic mappings
from F into F'. We will try to be reasonably clear even for people who are not specialists in
infinite dimensional holomorphy. No completeness is claimed. Although most of the defini-
tions and results which appear here are true for more general settings, we will be concerned
with Banach spaces. We cover only a few extensions of the linear theory to the holomorphic
case. For instance, we omit the holomorphic classification of locally convex spaces, which
has had a big development in the last ten years. The results of this theory concerning Banach
spaces can be found in a nice self-contained survey by Barroso, Matos and Nachbnin [9].

2. NOTATIONS AND DEFINITIONS

Let E,F,G,... be Banch spaces over KK,Bg be the closed unit ball of E and
idp | E — E be the identity mapping. For every mapping f : E — F and A C
E ||fllg = sup{||f(z)]| : = € A}. Forn = 1,2,...,L("E, F) is the space of all
continuous n-linear mappings from E into F'. The space °(*E, F') of all continuous n-
homogeneous polynomials from E into F is defined by #’("E,F) = {A: z € E
A(z,...,z) € F| A € L("E,F)}. If n = 0,L(°E,F) = #(°E,E) is the space
of all constant mappings from E into F and can be identified with F' in a natural fash-
ion. If n= 1, L('E, F) coincides with Z2( E, F) and is denoted by L(E, F). The space
P("E, F) normed by P — ||P|| := sup{||[P(z)|| : [|z]| < 1} is denoted by (" E, F)g.

In particular, (L(E, F),|| ||) stands for (' E, F)q. 1tis well known that P("E, F)gisa

Banach space forall n € IN. Let U be an open subset of £. Amapping f : U — F 1§
called GG -holomorphic (Gateaux-holomorphic) on U if for every a € U and b € E and for
all p € F' thefunction A € {A € C :a+Ab € U} — po f(a+ Ab) € C is analytic in
theopenset {A € € : a+ Ab € U}. Amapping f : U — F is holomorphic on U if it is
( -holomorphic and continuous on U . The spaces of all holomorphic mappings from U into
F is denoted by H(U, F). It is well known that f € H(U, F) if and only if there exists
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a power series E P (y—z) with P, € #%("E, F) for each n € N, which converges
n=0

uniformly to f(y) in a neighbourhood of z. Such a series is necessarily unique and for each
n, P_ is called the n** Taylor series coefficient of f at z and is denoted by (1/n!) d" f(z) .

The compact open topology on H(U, F), denoted by %, , is the locally convex topology
generated by the seminorms f +— ||f||x where K ranges over the compact subset of U. A
seminorm p on H(U, F) is said to be ported by the compact subsets K of U if, for every
open set V,K C V C U, there exists c(V) > 0 such that p(f) < c(V)]|f]|, for all
f € H(U,F). The &, topology on H(U, F) is the locally convex topology generated by
all seminorms ported by compact subsets of U . The symbol H,(U, F') denotes the space of
all f € H(U, F) such that f is bounded on bounded sets, with the topology ., of uniform
convergence on bounded sets. As usual, the dual E' of E endowed with the strong topology
is denoted by E. By definition E" := (Ej)s. The symbol E_, stands for the dual of E
endowed with the topology of uniform convergence on all absolutely convex compact sets in
E.

For further notations and basic results we refer to [16].

3. THE APPROXIMATION PROPERTY
Grothendieck states in [18] the following

Definition 1. A Banach space E has the approximation property (a.p.) if for each compact
subset K of E and each € > 0 thereexistsaT € E' @ E such that ||Tx — z|| < € for all
z € K.

The study of spaces having this Grothendieck’s approximation property was started and
developed in [18], chap. I, §5 and plays a very important role in functional analysis. Most of
the locally convex spaces occuring in analysis do have the a.p.

The first example of a (Banach) space failing to have the a.p. is due to P. Enfio (cf. [17])
and 1involves a quite difficult construction. We recall the following results concerning the a.p.
in linear functional analysis on Banach spaces, whose proofs can be found in [18]:

Theorem 2. For a Banach space E, the following are equivalent:
(a) E has the approximation property.
(b) E'® F isdensein (L(E, F),9,) forall Banach spaces F.
(c) E., has the approximation property.
(d) F'Q® E isdensein (L(F,E),9,) for all Banach spaces F'.

The a.p. is a basic tool in functional analysis. It is well known that (C( E),.%,) has the
a.p., since there are continuous partitions of unity. This does not occur with (H(E),.%,) .
Aron and Schottenloher prove in [7] that ( H(E),9,) has the a.p. if and only if E has the
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a. p. (This is the holomorphic analogue of the equivalence between (a) and (¢) in Theorem
2). They establish also in [8] an exact analogy between the question of approximation of
the identity of E by elements of E' ® E, uniformly on compact sets, and the question of
approximation of the identity of F by elements of H( E) ® E, uniformly on compact sets.
More precisely, the following Theorem 3, due to Aron and Schottenloher (cf. [8]), gives the
holomorphic analogue of Theorem 2:

Theorem 3. For a Banach space E, the following are equivalent:

(a) For each compact subset K of E and each € > () there exists a (finite rank) holo-
morphic mapping g € H(E) ® E such that ||g(z) — z|| < e forall z € K .

(b) H(E) ® F isdensein (H(E, F),%,) ,for all Banach spaces F'.

(c) (H(E),%,) has the approximation property.

(d) E has the approximation property.

(e) H(V) ® E isdensein (H(V, E),%,), for all Banach spaces F and non empty
open subsets V C F'.

The proof of Theorem 3 uses the isomorphism ( H( E),9,)eF = (H(E, F),%,) which
was proved, independently, by Aron [1] and Schottenloher [29].

Definition 4. A mapping f from E into F is compact if for each x € E, there is a neigh-
bourhood V of = such that f(V) is relatively compact in F.

We denote by & ,(E,F) the vector space of all compact mappings from E into F.
The intersections of & ,(E, F) with L(E, F),9(*E,F) and H(E, F) will be denoted
respectively by L, (E, F),#("E,F) and H,(E, F).

The following equivalence are well known in the linear functional analysis and can be
found, for instance, in [18]:

(1) A Banach space E has the a.p. if and only if F' ® E is a dense subspace of
(Lx(F,E),||||) forevery Banach space F'.

(2) If E is a Banach space, E’ has the a.p. if and only if E' ® F' is a dense subspace of
(Lx(E, F),||||) forevery Banach space F.

In the holomorphic case, Aron and Schottenloher prove in [8] the following:

Theorem S. For a Banach space E, the following results hold:

(a) E has the ap. if and only if H(F) ® E is dense in (Hy(E, F),%_) for every
Banach space F.

(b) (H(E),Z) has the approximation property if and only if H(E) ® F is dense in
(Hi(E, F),%) for every Banach space F'.

In order to prove Theorem 5, Aron and Schottenloher establish a topological isomorphism
between (Hy(E, F),%) and (H(E),%_)eF.
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4. THE HAHN-BANACH THEOREM

Given a closed subspace E of a Banach space G the initial conjecture was: is every element
of H(E) the restriction to E of an element of H(G)? This conjecture is contained in a
more general question of Dineen in [15] and concerns an attempt to find a holomorphic Hahn-
Banach extension theorem. In this paragraph we will see that it is not possible to set a general
Hahn-Banach theorem in the case of closed subspaces of Banach spaces (even in the case
E C G = E") butitis reasonable to look for suitable rich classes of holomorphic mappings
on E where such extension theorems are true.

Dineed proves in [14] the following very useful result:

00
Proposition 6. If E is a Banach space and (p,), .y C E' then 2 v, € H(E) if and only
n=1

if p,.(z) = 0 as n— oo forevery z € E (i.e. p, — 0 inthe o( E', E) -topology).

In 1975 the following theorem was proved independently by B. Josefson [20] and A. Nis-
senzweig [27]:

Theorem 7. If E is an infinite Banach space, then there exists a sequence (p,),eny C E'
such that ||p,]||= 1 forall ne N and o, (z) — 0 as n— oo foreveryz € E.

A nice proof of Theorem 7 can be find in [11] Cap. XII, p. 219.

This deep result is interesting for many fields of functional analysis. Concerning holomor-
phic mappings, Dineen proves (cf. [14], Proposition 5 and [20] Corollary 2) the following
consequence of Theorem 7 and Proposition 6:

Corollay 8. If E is an infinite dimensional Banach space then there exists f € H(E) such
that 7,(0) :=sup{|A|: A € C and ||f||,5 < o0} =1.

Corollary 8 shows thatif E is an infinite dimensional Banach space there exists a function
f € H( E) whichis not bounded on the bounded subsets of E. Sets A C E suchthat || f|]| , <
oo for all f € H(FE) arise naturally in problems of analytic continuation, construction of
envelope of holomorphy and in problems concerning topologies on H(U) . Such sets are
called bounding sets. More exactly we have

Definition 9. Let U be an open subset of a Banach space E. A subset A of U is said to be
bounding for U if ||f||, < oo for every f € H(U).

Schottenloher has written a nice survey article on bounding sets (see [28]). We refer also
to Dineen [16] §4.2 and for recent results to [30] and [31].

It 15 clear that every relatively compact subset of E' is bounding. The first example of a
non-relatively compact bounding subset of a Banach space is due to Dineen. He shows in
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o0
[12] that if u, := (8,,),, foreach n € N and A = | J{u,}, then 4 is a closed bounded

n=]
non-compact subsetof £ which is a bounding subset of £_ . His proof motivated Josefson to

undertake a deep analysis of the geometry of £__ . He states in [21], Theorem 1 & Corollaries
1 and 4, the following:

Theorem 10. (a)If A isa bounded subset of £__ then the following conditions are equivalent:
(i) A is a bounding subset of £__,

(ii) every sequence (), C L., which converges pointwise to zero converges uni-
formly to zero on A,

(iii) there is no sequence (a ), in A which is equivalent to the unit vector basis in £, ,

(iv) there is no continuous linear mapping T : £, — £__ with continuous inverse T-1:
T(£,) — £, ,suchthat T(B) C Convex Hull of A where B is the unit ball of £, .

(b) The convex hull of a bounding subset of £__ is bounding.

(c) Every bounded subset of ¢, is a bounding subsetof £__ .

From Theorem 10 (c) we infer that a general holomorphic Hahn-Banach theorem is not
possible in the case of Banach spaces. More precisely, if E' is a closed subspace of a Banach
space (G, it may happen that there exists a holomorphic function on E which can not be
extended to a holomorphic function on G, even in the case G = E" O E. Indeed, for
E =c, and G = £_, Theorem 10 (c) and Corollary 8 imply that there exists f € H(c,)
which can not be the restriction to ¢, of an elementof H(£_).

The holomorphic Hahn-Banach theorem in the case of Banach spaces was studied first
by Aron and Berner in [3] and Aron in [2]. The main result in [3] states that given a pair
of Banach spaces £ C G, the existence of extensions for various types of holomorphic
mappings is equivalent to the existence of a continuous extension mapping from E’ to G,
which is equivalent to the existence of a continuous linear mapping S : G — E" such that
S| g = tdg (cf. [3], Theorem 1.1). As a consequence of Theorem 1.1 of [3], Aron and Berner
show that a holomorphic function f : ¢, — € can be extended to a holomorphic function
g £ — @ ifandonlyif f is bounded on every bounded subset of ¢, (cf. [3], Proposition
1.1). Therefore, it is reasonable to look for suitable "rich" classes of holomorphic mappings
on E where an extension theorem is true.

Let .?}(“E) be the span of {p™ : 2 € E — (p(x))" | ¢ € E'}. The closure of
.@f(“E) in .?(“E)ﬁ is denoted by &°_(*E) . For details, we refer to Gupta [19]. By def-
inition #° (" E, F) is the closure of #("E) ® F in #("E, F)g. Now, if U is an open
subset of E let H (U, F) = {f € H(U,F) : d"f(z) € *.(*"E,F) forall n € N and

z € U}. Finally, we set H (E,F) := H(E,F) N H,(E, F). Aron and Berner prove in
[3] the following
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Proposition 11. Let E and F be Banach spaces. If U C E is open and non empty and
f € H(U,F) then there exists an open set W C E" and f € H (W, F) suchthat U C W
and f|, = f. Furthermore, there is a strict morphism T : H (E,F) — H_(E", F) such
that T;/E = f forall f € H,(E,F).

Aron and Berner’s general approach is to extend to the whole space G the -

homogeneous polynomial df(y) defined on E, and then use local Taylor representations
to extend the holomorphic function locally. It is necessary to show that the local extensions
are «coherent on the overlaps». This can be done if there is a linear and continuous mapping
extending the elements of & ("E, F) to elements of ("G, F).

Moraes defines in [22] the space s?’f.(“E“) asthespanof {p" .z € E' — (p(z))" | pE

E'} and #_.(*E",F) as the closure of .f?-"f.(“E") ® F in .?-"("*E“,F)ﬁ. In particular,
#_.("E") is the closure of .@f.(“E") in .?(“E“)ﬂ. Finally, if W is an open subset E", let

H. (W,F):={f€e HW,F) : &"f(z) € £.(*"E,F) forallne N and z € W} and
H.(E",F):= H.(E",F)NH(E",F). In [22] Moraes proves that for every n € N
there exists an isomorphism onto T, : #° ("E,F) — $#_.("E" ,F) suchthat T, P)/E = P
for every P € ¥ ("E, F). Using the same techniques as Aron and Berner [3], Lemma,
Moraes improves in [23] Proposition 2.2 of [3] by proving the

Proposition 12. Let E and F be Banach spaces. If U C E is open and non empty and
f € H (U, F), then there exists an open set W C E" and a unique f € H,.(W, F) such
that U C W and f/U = f. Furthermore, there is an isomorphism T, : H (E,F) —
H.,(E",F) suchthat (Tf)|.= f forall f € H,(E,F).

Consider now the spaces #° ("E,F) = {P € #’("E,F) : P/B is o( E, E') conti-
nuous for every B C E bounded} and ¥ ("E,F) = {P € #(*E,F) : P/B is
o( E, E') -uniformly continuous for every B C E bounded}. Aron, Hervés and Valdivia
prove in [4] that & ("E,F) = ¥, ("E,F) if E and F are Banach spaces (cf. Theorem

2.9 of [4]). If we define P(zx) := E :'.r.:,,z1 forall z = (z,) € £,, it is easy to see that

n=1
P e PPp)\ P, (%L).

Aron and Prolla prove in [6] that E’ has the Grothendieck approximation property if and
only if for all Banach spaces F and m € N,& (™E,F) = (™ E, F) (cf. Proposition
2.9 of [6]). Moraes defines in [22] the space . ("E") := {P € #("E") : P/B® is
o( E", E') -uniformly continuous for every B C E bounded}. It is clear that in the case
of Banach spaces, P € #°,. ,(*E") ifandonly if P € ’("E") and P/X is o(E", E’) -
uniformly continuous for every X C E" bounded. In [22], Moraes proves that forevery n €



On some relations between linear and holomorphic mappings on Banach spaces 159

N there exists an isomorphismonto T, : # ("E) — #,.,("E") suchthat (T,P)/E = P
for every P € 2, ("E). If we define H  (E) := {f € H(E) : d&"f(z) € #,.("E)
forall n € N} and HY*(E) = {f € H(E) : f/B is o( E, E') -uniformly continuous
for every B C E bounded }, the Cauchy inequalities imply H¥*(E) C H,,(E). Analo-
gously Moraes defines in [23] and [24] the spaces H, . (E") := {f € H(E") : d"f(z) €
L..("E") foral n € N} and H¥*(E") := {f € H(E") : f/X is o(E",E') -
uniformly continuous forevery X C E"bounded }. Itis easy to see that H**(E) C H,(E)
and HY*(E") ¢ HY(E") C H,(E"). Using this fact and Lemma 3 of [24] we get

HY“(E") = H,.,(E"). Analogously, H**(E) = H,,(E). By Proposition 8 of [23] and
Lemma 3 of [24] we get:

Proposition 13. If E is a Banach space, there exists a continuous isomorphism
T:(HY(E),%,) — (HYY(E"),9;) suchthat (Tf)/E = f forall f € H*(E).

Remark 14. [t is clear that in Proposition 13 we may substitute E" by any Banach space
G such that E C G and there exists S : G — E" linear continuous with S|E = idg. In
particular we know that E is an £ __ -space in the sense of Lindenstrauss and Pelczynski if
and only if for every G which contains E as a subspace there exists S : G — E" linear,
continuous such that S/E = idg (¢f. [25], example 2(c)). The spaces cy,£2_,L_(p) and
C(K) are examples of such spaces.

3. HOLOMORPHIC FUNCTIONS AND QUOTIENTS

Let F' be a subspace of the Banach space E. In this paragraph we are concerned with the
generalization, to the nonlinear setting of holomorphic functions on E, of the following basic
identities relating the quotient space with the whole space:

(1) }3}"/1?‘-L ~ F
and
(2) (E/F) = F+.

Let HY(F) and H i-( F') denote, respectively, the space of all elements of H(E) such that
f/F = 0 and the space of all elements of H,(E) suchthat f/F=0.

As a consequence of Theorem 1.1 of [3], Moraes states the isomorphism H,(E) /H j(F) =
H,(F) 1n the case when F' is a closed subspace of E such that there exists a continuous
linear mapping § : E — F" with S/F = 1dp (cf. Proposition 1 of [25]). This result and
the following proposition are holomorphic versions of (1) due to Moraes:
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Proposition 15. Let E be a Banach space and suppose that F is a closed subspace of E
such that there exists a continuous linear mapping § : E — F" with §/F = id,. We
consider on H( E) the topology of uniform convergence on the bounding subsets of E. Then

the following are equivalent:
(1) every bounded subset of F is a bounding subset for E.

(2) H(E)/H*(F) = H(F).
(3) H(E)/H*(F) isaFréchet space.

The proof of Proposition 15 uses Theorem 1.1 of [3] and Baire’s theorem and can be found
in [25]. As a consequence of Proposition 15 and Theorem 10 (c) we get H(£,)/H*(cy) =

H,(cy) & H,(£,)/Hi (c,) . More generally this remains true if we substitute £__ with any
Banach space E which contains £ as a subspace (since ¢, is an £ -space).

Now let w : E — E/F denote the canonical quotient mapping. If U is an open subset
of E, we say that a holomorphic mapping f : U — € factors through the open set w(U) if
there exists a holomorphic mapping g : w(U) — € such that f = g o w. Aron, Moraes and
Ryan prove in [5] the following

Proposition 16. Let U be a balanced non-empty subset of E, and let f € H(U). The
following are equivalent:
(1) f factors through w(U)

(2) d f(z) € F* forevery z € U.

Some properties of a holomorphic function carry over to its quotient. For ¢ € H( E/F)
let f:=gow € H(E). Itiseasytosecthat g € H(E/F) if (andonly if) f € H,(E).
In [5], Theorem 2.6 it is proved that g € H (E/F) if f € H, , (F); in particular, if
Pe#, ("E) and P = Qom forsome A € #("E/F) ,then Q € ¥, ,("E/F) . The space
H,  (E) is contained in the space H . (FE) of all holomorphic functions on E which are
weakly sequentially continuous, and this inclusion is, in general, strict. The space H . .(E)
can behave badly under factorization. Indeed, if # is the quotient mapping of £, onto £, , and

we define Q(z) = E 22 forall z = (z,), € £,,itis easy to see that Q ¢ &, .(*4,)
n=1
unless Qom € £, (%4,).
Topological questions are considered in paragraph 3 of [5]. The main result of this paper
states:

Theorem 17. Let U be a non-empty open subset of E.

(i) The mapping f +— f o w is an isomorphism of (H(w(U)),Z,) onto a closed
subspace of (H(U),%,) .

(ii) If U is balanced, the mapping f — f o« is anisomorphism of (H(n(U)), %)
onto a closed subspace of (H(U),Z,) .
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Here we have the following open problem:

Problem. IfUisabalanced open subsetof E, is f +— fomanisomorphismof (H(w(U)),%%)
onto a closed subspace of (H(U),%) ? (see [16] for the definition of F) .

By a theorem of Dineen [13] we infer that ( H(U),.7) is bornological if U is a balanced
subset of £, and, since every separable Banach space 1s 1somorphic to a quotient of £, , a
positive answer to this problem would imply (via Theorem 3.4 and Corollary 3.5 of [5]) a

positive answer to the conjecture that & is a bornological topology for balanced domains in
separable Banach spaces [10].
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