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LOCALLY s-REGULAR MANIFOLDS
AND SYMMETRIES

R.A. MARINOSCI, L. VANHECKE

Abstract. We study properties of a field of special local diffeomorphisms on a Riemannian
manifold and derive some new characterizations of locally s -regular manifolds and, as a
special case, of locally 3-symmelric spaces.

1. INTRODUCTION

As well-known, the local geodesic symmetries on a Riemannian locally symmetric space are
local isometries. Locally s-regular manifolds and, in particular, Riemannian k -symmelfric
spaces are natural generalizations of locally symmetric spaces (see for example [1], {5]). For
this class of manifolds the local geodesic symmetries are replaced by a special field of local
isometries.

It is also possible to characterize other classes of Riemannian manifolds by special prop-
erties of the local geodesic symmetries. We refer to [9] for a survey. In this paper we continue
the study of Riemannian mantfolds ( M, g) which are equipped with a field of special local
diffeomorphisms s_, m € M, defined on a sufficiently small neighborhood of m by

S, = €Tp,, 0S5, © e:::p;l
where S is a (1,1)-tensor field on M such that § preserves g and I — § is invertible. (See
(6], [7] for previous work.) In particular we concentrate on local diffeomorphisms s, which
preserve the (0,2)-tensor A given by A(X,Y) = ¢(X,SY) for all tangent vector fields
X,Y . This is similar to the study of s,, which preserve the Kihler form on an almost Hermi-
tian manifold, that is, which are symplectic with respect to Q(X,Y) = g(X,JY). In this
way we obtain new characterizations of locally s-regular manifolds and, as a special case, of
locally 3-symmetric spaces (see [2] for more details).

2. PRELIMINARIES

Let (M, g) be an n-dimensional smooth Riemannian manifold with Levi Civita connection
V and Riemannian curvature tensor i defined by

R(X,Y) = Vixy — [V, Vyl
for all vector fields X,Y on M. A (1,1)-tensor field S is called a symmetry tensor field if

I — § is non-singular and g is S-invanant, thatis g(SX,S8Y) = ¢g(X,Y) forall X,Y . In
particular, if VS and V23S are S-invariant, then we say that S is regular.
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Next, for any symmetry tensor field S on M we define on a sufficiently small neighbor-
hood U,_, of m a local symmefry s_ by

— -1
S,, = exp,, oS, oexp_ .

s, 15 a local diffeomorphism on U_ . We denote by s the map m + s_ so defined on M
and we note that foreach m € M

S| T M =S,

Finally, we recall from [1], [S] that ( M, g) together with s is called a Riemannian locally
s -regular manifold it each s_ 1s also a local isometry which preserves S, that 1s

s,.oS5=8os,.,

for each m € M. Then s is called a Jocal regular s-structure on ( M, g) . Moreover, if
an =1dentity for all m € M, where k(> 2) 1s the smallest integer with this property, then
the s-structure 1s said to be of order k and (M, g) 1s called a Riemannian k-symmetric
space. Note that for k = 2 (or S = —I) we obtain the locally symmetric spaces and for
k = 3 we have a Jocally 3-symmetric space. Such a manifold is an almost Hermitian manifold
(M, g,J) where the canonical almost complex structure J is defined by

V3
2
(I, denotes the identity on T, M ). We refer to [1], [5], [2] for more details about all these

manifolds and for a lot of nice examples.
To finish this section we give two lemmas, contained in [1], which will be needed later.

S, = -*%Im+ I

m

Lemma 1. Let S be a regular symmetry tensor field. Then R and VR are S -invariant if
and only if (M, q) is alocally s-regular manifold with symmetry tensor field S.

Lemma 2. If S is a regular symmetry tensor field on (M, g) and the tensor fields P and
V Pare S-invariant, then V2P is S-invariant and hence all covariant derivatives are S -

invariant.

3. NEW CHARACTERIZATIONS OF LOCALLY s-REGULAR MANIFOLDS

Let ( M, g) be a Riemannian manifold equipped with a symmetry tensor field S. We do not
suppose that S is regular. Define the (0,2)-tensor ficld A by

A(X,Y) = g(X,SY)

for all vector fields X,Y on M. Now, we concentrate on A-preserving local diffeomor-
phisms s_. and prove the following results.
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Theorem 1. (M, g,s) is a locally s-regular manifold if and only if K and VR are S-
invariant and each s, preserves A.

Theorem 2. Let sf,;= identity for all m € M where k(> 2) isodd. Then (M,q,s) isa
locally s-regular manifold if and only if R is S -invariant and each s preserves A.

Theorem 3. Theorem 2 remains true when « R is S-invariant» is replaced by «V*S is S-
invariant».

Proof of the theorems. First, let (M, g,s) be a locally s-regular manifold. Then, from the
definition and Lemma 1 it follows that V*S, R and VR are S-invariant. Moreover, since
each s, preserves g and 5, A 1s also preserved.

To prove the converse results we will use a normal coordinate system {z',i=1,...,n}
Y . .
centered at m where {ei = B—_‘(m) 1S an orthonormal basis of 7, M . Let
T

d 0
Aij =4 (8$" 35cf)

and let p = exp_(ru) where u € T, M is a unit vector. Then we have the following power
series expansion (see for example [3])

A{j(p) = A:’j( m) + r( VHA);j(m)

ﬁ

1 1
+ —r? {(vﬁu,q)ij -3 Y Ry — T Y Rujuhy f (m)
t t

b |

o

1
(l) + ETE {(viuu‘q)ij T Z Ruiut(vuA)tj - E Rujut(vuA)it
t t

1 1
— E E (vuR)uiut‘Atj - 5 Z (vuR)ujutAit} (m)
t t
+ 0(r).
Note that A is automatically S -invariant.

Now we express that s, is A-preserving. First we note that z* o s, = Sj(m)z’ and
hence we see that s preserves A if and only if

(2) A,;(exp,ru) = Sf(m)S](m)A,(exp, 7S, u)
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for all u € T, M and all sufficiently small r.
So, from (1) and (2) we get as first necessary condition

(3) (vuA)::y = (vSuA)SISy

for all u,z,y € T,, M. This means that VA is S-invariant or equivalently, that VS is S-
Invariant.
To obtain the next condition we note that the coefficient of »* /2 may be written as

1 1
2
(4) (?uuﬂ)i' o gRueiuSej o gRuS'leiue

J
and so the next condition yields

1

1
(?ﬁu‘q)i‘y - gRquSy - g'RuS“l

Uy =

(3) | |

— 2 — _
- (VSuSuA)SISy - 3 RSHSISUSEH 3 RSu:SuSF‘

Now we replace z by Sz in (5) to get

“ (VeuS)gzy — :ql'_RuSIu.S’y - %Ru:ruy =
= (véuSuA)SQ xSy ~ %RS’uS:ISuSIu - %RSuSISuSy'
Next, put
(7) Tuzvy = Buzvy — Bsuszsusy:
Then (6) becomes
® (ViA)sey = (Vs g5, = 3 (Tusay + Tusiasy)

Now we prove that V2 A, or equivalently, V? S is S -invariant. The converse also holds

if s* =id. for k oddand k > 2.
First, let R be S-invariant. Then, from (7) we get T' = 0 and (8) becomes

(9) (viuA)S:ry = (vguSuA)SEISy
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or equivalently,

( 1{}) (vtzm’A):y = (véuSu)S:rSy‘
Then linearization of (10) yields

( 11) (viu‘q):ry + (VEHA)IF = (vguSuA)S:Sy + (V?g'HSHA)SISF'

By using the Ricci identity, we get
(12) (V2,A),, = (V2,A),, — A(R,z,y) — A(z, R,,Y)

= (vﬁuA):cy - - R

vuzSy vuyS-lz-

Finally, using (12) and the S -invariance of R, (11) becomes
(viu’q):y = (vguSuA)SISW

which means that V* A is S-invariant.
Conversely, suppose that V2 A (or equivalently, V2 S) is S-invariant. Then (8) gives

Tu:l:uy = = uSzuSy
and so
(13) Tozuy = (ml)"TuStmsky.
If s* = id. for k odd, (13) yields
(14) Tyzuy = 0

and since T satisfies the same identities as a Riemann curvature tensor, (14) implies T'= 0,
which means that R is S-invariant.

Now, we note that when R, V.S and V2 S are S-invariant, Lemma 2 and (1), (2) yield as
next condition

(15) vuRu:::uSy + vuRuS"Iuy = vSuRSuSISuSQU T VSHRSHISHSII

and hence

(16) vuRuS:uSy + VuRquy = vSuRSuSE::SuSIF + VSHRSHSISHSF'
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Next, put

T = vuR:r;yxw o ?SURSISyS‘sz‘

uIyzw

Then (16) may be written as

(17) T =T

UUTUY uuSzuSy

which 1implies

_ B o=
Tuumuy =(—1) TuuS*IuS"y'

So, if s*¥ =id. for k odd, we get

I =0.

UUTUY

Since T satisfies the same identities as the covariant derivative of a Riemannian curvature
tensor, we obtain T = 0 (see for example [4], [8]) and this means that VR is S -invariant.
The proof of the three theorems follows now easily from the results above and Lemma 1.

4. LOCALLY 3-SYMMETRIC SPACES

We first recall that an almost Hermitian manifold ( M, g, J) belongs to the class 4 # , if
and only if

(18) Ryvaw = Byxsvaw * Bixvizw + Rixvziw

for all tangent vector fields X,Y, Z, W .
As a corollary of Theorem 2 we get the following characterization of locally 3-symmetric

spaces.

Theorem 4. Let (M, g, J) be an almost Hermitian manifold and define the symmetry tensor
field S by

1. V3
S—"EI'F"Z_J

Then (M, g,s) is a locally 3-symmetric space if and only if each s, is A-preserving and
(M,g,J) € AH,.

Proof. We have only to note that R is S -invariant if and only if the identity (18) holds (see
for example [2]).
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