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FINITE GROUPS ADMITTING A FIXED-POINT-FREE AUTOMORPHISM
OF ORDER r7st

PETER ROWLEY

1. INTRODUCTION

Here we present a proof of the following

Theorem. Lei G be a finite group admitting a jixed-point-free coprirne automorphism of
order rst , where ¥, s and t are distinct primes and rst is a non-Fermat number. Then G is
soluble.

(A non-Fermat number is a positive integer which is not divisible by an integer of the
form 2" + 1( m > 1) ; note that there are infinitely many non-Fermat numbers which are the
product of three distinct primes).

The above result appears in the author’s thesis [4]. The condition that rst be a non-Fermat
number was removed in subsequent work giving rise to the ‘four-headed’ hydra [5]-[8], and
as a consequence [4] remained unpublished. Unfortunately, the minutia and the proliferazion
of subcases in [5]-[8] somewhat obscures the direction of the proof. To have an account which
better illustrates the development of these ideas, and also to serve as a guide for those wishing
to traverse [5]-[8], is what prompted the present revised version of [4].

The proof of the above theorem proceeds by considering a counterexample G of minimal
order (let « denote the accompanying fixed-point-free automorphism) and endeavouring to
show that certain « -invariant Hall subgroups of G permute with one another. The inconclu-
sive information obtained in this direction, as evidenced by results in section 3, forces US to
widen our horizons in the shape of linking theorems presented in section 4. Armed with the
linking theorems we are able, in section 6, to show that G factorizes (in two possible ways) as
a product of two « -invariant soluble Hall subgroups. In the final section these factorizations
are analysed and shown to be untenable, which completes the proof of the theorem.

Now a few words on the role of the various intermediate results (for notation refer to
section 2). Lemma 4.1, the quintessential linking result, is used frequently. While Theorem
4.3's only purpose is to help in showing that at least two of L,, L, and L, permute (Lemma
6.2). The linking results Theorem 4.4 and Lemma 4.5 are used in conjunction with Theorem
5.1 to produce factorizations of G given in Theorem 6.3, and Theorem 4.4 is used again in
Lemma7.5.

Further discussion of ideas and strategies relevant to this work may be found in sections
land 2 of [5].
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2. NOTATION

We use 5] as our basis reference and results ( y.z) , Theorem y.x or Lemmay.x of 5] will,
for brevity, all be referred to by 1( y.z) . Below we review a little of the notation from [5].
For further relevant notation and concepts we refer the reader to [5] and for details conceming
the Thompson subgroup to [Chapter 8, 3].

For the remainder of this paper G denotes a counterexample of minimal order to the
theorem. Thus G admits a fixed-point-freecoprime automorphism, say «, of order rst where
rst is a non-Fermat number. $ all proper ainvariant subgroups of G are soluble and, by
1(2.1) (i), G possesses no non-trivial proper «-invariant normal subgroups. Hence, appealing
to [2], we see that (G, «) satisfies Hypothesis 111 of [section 2, 5].

We let p, cr, 7 denote (respectively), o, o™, o™ . Sometimeswe choose tO write p =
a,0=0yandT=a;. Let A= {1,2,3} D A andlet P bean «-invariant Sylow p-
subgroup of G. We say P isof type A if Pa‘?elfor i€ Aand P,= 1fori¢g A (where

P,, = Cp( ) . For i A (respectively {i,j} C A), L, (respectively L,;) denotes the

subgroup of G genemted by the o -invariant Sylow subgroups of type A \{ i} (respectively
A\{i, J}). Set Z =L, LyyLyy, %= LyLyLyyand £, = Ly Lyy Ly, . By 1(3.13)
%y, L;and L, are all nilpotent Hall subgroups of G. Thus we have:

Ly =1L, #1#L (if L, #1)
L20=1,L2ﬂ¢1#sz (if Ly # 1)
L3'=1,L3P#I#L3c (if Ly #1)
Lu,?‘ LLy = I= le,7 (ifL;, #1)
Ly, #1,Ly3 =1= Ly, (f Ly #1)
LzzpflemU:l:me (if Ly #£1)

We use L (instead of L in[5]) to denote the subgroup of G generated by the  -invariant
Sylow subgroups of type A . For H > G, H® denotes the normal closure of H in G.

In this work, since rst is a non-Fermat number, we scc that 1(5.3), 1(5.7) and 1(5.8) hold
without the condition excluding the prime 2. However, a word of caution: 1(5.5) differs from
the above in its reliance upon 1(2.23).

Suppose H isa proper a-invariant subgroup of G, and let X (respectively Y) be a-
invariant ) -(respectively u-) subgroups of /. Then (X, Y) < H aup (o where 7 is a set
of primes, denotes the unique o -invariant Hall = -subgroup of H). This observation, together
with those in 1(2.21), will be used without further mention.



Finite groups admitting a fixed-point-free automorphism of order rst 97

3. THE STRUCTURE OF CERTAIN MAXIMAL o -INVARIANT SUBGROUPS

By 1(2.22), if L and M are (respectively) « -invariant Hall ) - and u -subgroups of G which
do not permute, and A N g = ¢, then |.Z (X, u) | = 2 . The purpose of this section is to
analyse the structure of the subgroupsin _# ( X, ) for various choices of X and p.

Lemma3.1. Let A={i, |, K). If L,L;# L, L;, then A (m;,m;) = {L,.NLi(L,.),LJ.NLj(L}-)}
and either L,-“‘k SN (Ly)or th_‘k < NL)_( L;) . Moreover, [ N, ( L;), ;] <C,(L;)and

[NL).(L,') ;a,‘] < CLj(Li) .

Proof. By 1(2.22) A (m,, m)) = {L‘?Lj( L), L g’,ﬁ( L)) }. Applying 1(5.7) twice gives
P, (L) = N, (L) and gDL;( Ly= N, (L. Since L{aijak = (G,)
invariant {m, U m, } -subgroup, it isclear that either L, <N, (L) or L; < N(L).

The remainder of the lemma follows using 1(2.11).

isan a-

;U

Lemma 3.2. Let P be an a-invariant Sylow p-subgroup of G of type A , and let A =
and [N p( L‘.j), 0,0, < Cp( Ly;) . (Hence Z(P) = Z(P), o < Np(Ly;) ).

a,-a) -

Proof. From 1(3.13) (iii) 1 # Pak < Cp( L,.].).Thus .@Lij( P) = 1 by 1(5.3) whence
Pp( Ly;) = Np( Ly;) by 12.20). By 1(2.21) (iv) and (5.1) (b) we have Z(P) = Z( P),, <
Np( L‘-)-) ,and [ Np( L;‘;’), a,'a,'] < Cp( L,‘,‘) by 1(2.11).

Lemma 3.3. Suppose PL, # L; P where P is an «-invariant Sylow p-subgroup of type A ,
and set #(p,m)= {PY,XL,}. Then

(i) Neither P, < X and L, <Ynor P.<Xand L; <Y can hold.

(i) Either P, P, < Xor Li< Y.

Proof. (i) Suppose P, < X and Llr <Y halds. By 1(5.7) X = Np(L;) . Because
Y# 1,0(XL)=1 by 1(5.3) and 0, using 1(2.11) P, < X < F,. Since X normalizes
Y, 1(214) (i) implies L, = YC, ([X,7]). Clearly [X,7]#1 andso PL,# L, P forces
Cp([X, 11) < X', whence P = P, by 1(2.3) (v). But then Y < PY by 1(2.3) (xi) and then
(see 1(2.21) (v)) PL, = L; P, acontradiction. So F, < X and L; <'Y cannot hold, and a
similar argument rulesout P <Xand L; <Y. '

(i) This follows directly from (i).

Lemma 3.4. Suppose PL, # L, P where P is an a-invariant Sjlow p-subgroup of type A ,
and set 4 (p,m,) = {PY,XL,}.
(i) If, furthermore, L} <Y, then
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(a) #(p,m) = {PNL,<P)’L1};
(b) P, =1;
(c) either L, = L, or Z(L)) <N, (P);
(d) if Z(Ly) < Ny (P), then Z(Ly) = Z(L,)
(¢) P,,# 1# P, ;and
(f) P is not equal to P P or P,.
(ii) If, furthermore, P_, P, < X , then
(@) X= Np(L;)andY = N, (P);
(b) X = X,Cp(Ly) and [X,p] < Cp(Ly),
(c) if Cp(Ly)# 1, then # (p,m;) = {Np(L,)L,,P}and Z(P) = Z(P)p <X;
(d) if [X,pl# 1, then Np(X)* < X;
(e) if Pisstar-covered, thenP= P, ;
(f) is Cp(Ly)=1,then P*=P, > X, P, =1 and¥ < L, ;and

(9) #¥L,=Lj and X < P, then P = P,.

at’

Proof. (i) (8). By 1(2.21) (vi) and I(5.1)(d) X = 1, and then P ¢ PY by 1(2.20). Thus
A (p,m) = {PN, (P),L}.

(b) Since [L, , P, 1=1, clearly P, < X= 1.

(o) If Ll,# Ly , then we have, say L £L, . Hence0, (P,L,,)#1 by 1(4.5). Since
Ng(0, (P,Ly,)) > Z(P), L, and X = 1, this forces Z(P) <Y = N, (P), asre-
quired.

(d) Since Z(L,) < NLI(P),Z(LI)’ = Z(L,) byI(5.1) (®). Soif Z(L,)# Z(L,),,,
then, say Z(L,), £ Z(L,), which implies Z( L,) no, (P,L,)# 1, contradicting X = 1.
Therefore Z( L,) = Z(L,),,.

(e) Suppose Ppa =1.Then [P, Ll,] = 1 by (b) and 1(2.8). Hence Z( Ll)gNL’(P)
by the shape of .# (p, m;) . But then Z(L)) <Ly by (d) forces P, < X = 1. Therefore
P, #land, smilaly, P_#1.

(f) Clearly P# P, and P # P, since P,, = 1.While P= P, wouldimply Y PY,
by 1(2.3) (ix), contradicting PL, # L, P. SOP # P,.

@) If O,(XLy)=1,then L; AL, X and X < P, by 1(2.13). Hence Y centralizes
O,( PX),and O,(PX),. Now X #1,1(5.3) and I(211) yield Y <L, .FromX <P,
andY < L, weobtain[X, Y] =1 and thus P 4 PY by 1(2.20). Whils, if O (X L;)# 1,
then Y =1 by 1(5.3) whence L, < X L, by 1(2.20). These remarks establish (a), (c) and (f).
Part (b) follows from 1(2.13), and (b) and 1(2.3) (viii) yield (d).

() By (d) [X, pl # 1is not possible. Therefore P = P* = P, , as required.
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(9) Suppose P# P, and argue for a contradiction. Put T,=L, /¢(L,) . By 1(33) (vi)
q=1I;= I-Jll L, ., Because P, < Np( L) by (a), P, acts upon I, and Z; . Applying
1(2.3) ® to P,(L,/L,) gives, as P, <X < P, Ly = L, O (P,). From P# P, and
1(2.3) (v) Cp( P) £ X and thus C;, (P)) <Y < L; by (c) and (). Therefore, as
g, (P,) = Cy,(P,), wededuce I, = L, . Hence L, = L;_by [Theorem 5.14; 3] and by a
similar argument L, = L, . ‘Now [(2.3) (xi) gives [L, , X] = 1, a contradiction. Therefore
Ly=Ltand X < P, imrplythat P=P,.

Remark. Clealy there are results analagous to Lemmas 3.3 and 3.4 for L, and L, .
We now examine the behaviour between o -invariant Sylow subgroups of typc A .

Lemma 3.5. Let P and Q be cu-invariant Sylow p- and g-subgroups of G of type A which
do not permute, and let . ( p, q) = { PY, QX} . Then, with possible interchanging of p and
q and rearrangement of p, o and 7, one of the following occurs:
(i) P* < X, andfurthermore
(a) #(p,q9) = {P,Np(Q)Q}:
(b) Z(P) < Np(Q):

(c) Z(P) is contained in gne of P, Ppa or PpT 5

(d) (suppose. in (c), that Z(P)< P,;) Q,, = 1and Q. # 1#Q,,/
(e) Qisnotequal to Q,,Q,orQ,; or
(ii) P,< X and Q,, Q. <Y, and furthermore

(a) p = 2 §

(b) Y <Q,=Q"#Q (and so Q is not star-covered);

(c)Q,, =1 and Qm# I#Qm;

(d) for all non-trivial cu-invariant subgroups R of Pp Np(R) <X

(e) Z( P) < Xop s

N 1#4[(X,0] < Pp,l#[X,T] <P, and [X,p] < X,

(g) X = NP(Q) '

(h) Np(X)* <X (and so P is not star-covered); and

(i) either P is contained in a unique maximal cu-invariant subgroup of G or
JCP), =1

Proof. Clearly, up to relabelling, either P* < X or Ppg X and Q,, Q. < Y. We now
prove the statements in (i). S assume P* < X . By 1(2.21) (vi) and 1(5.1) (d) Y = 1, whence
Q < QX by 1(2.20). Hence (a) holds, Combining (8) with 1(3.14) gives (b).

We now prove (). If Z( P)p?‘-Z(P),,'(UT) , then Z(P) NO,( P,Q,) # 1 by (I(4.5). Hence,
as Q, 4 P,Q,, weobtain Q, <Y, contradicting (). Therefore Z( P), = Z( P);( and,

ar)
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similarly, Z(P), = Z(P) g (m) and Z(P), = Z(P)T"(M). We claim that at least two of
Z( P)pg, Z( P)pr and Z(P),, aretrivial. For suppose, say, that Z(P),, # 1 # Z( P)pT_ Then,

as G, and G, ae nilpotentand Y =1, Q,, =1=Q,, . Hence [P,, Q,1= 1 by 1(2.8)
which then yields Q,<Cu(Z(P))<Y ,a contradiction. S, without loss of generdity, we

may assume Z( P),, = 1= Z( P) - This then implies Z( pP),=1 and Z(P), = Z(P), ,
and 0 Z(P)* = Z(P),,. Since Z(P) < X by (b), I1(5.1) (e) gives Z(P) = Z(P)* =

Z(P),,,which proves (c).

Because Z(P) < P, and Y =1, clearly Q,, = 1.1, say, Q,, =1,then[FP;, Q,]1=1
by 1(2.8), which is a variance with Y = 1. Therefore Q , # 1and, likewise, @ # 1. Next
we consider (d). Since Q,, = 1 clealy Q,# Q# Q.. Suppose Q = Q, were to hold. Then,
by 1(2.3) (ix), Z(P) = [2(P), pl <[X,pl < O,(XQ) , which contradicts PQ# QP. So
we also have Q # @, , and this finishes (i).

Now we suppose P, < X and P, P, < Y. If p# 2, then, sinceY # 1, a double
application of 1(5.5) gives A & X < P, wich is not possible. Therefore p = 2, and we

have (ii) (a). Using I(5.5) again, as ¢# 2and X#1,yiddsY < Q,. Thus Q* = Q..
Next we prove that Q # Q, . Suppose that Q = Qp and argue for a contradiction. Because
Y #1,0,(QX) =1by I(5.3). Hence QX <G, by 1(2.3) (ix). Consequently, astM) <
Y, 1(5.1) (d) yields Q = Y C(X) , whence Q =Y. From this contradiction we deduce that
Q+# Q,- Clearly, by (i) (@ and X #1,Y < Q* and SO we have verified (b). Evidently (b)
implies (c).

Combining 1(2.14) (ii) and 1(4.5) we obtain

Q=0,(QX)Q° =0,(QX)Q, = Co(P)Q,.

Since Q# Q, by (ii) (b), Co(PY LY, from which (d) follows. From (d) we clearly have
(e).

Before proceeding further we show

(3.1) X - X,,P,[X,,,YI=1 ad F,=P,P

ot pr L Agrs po’ pr

Since O,( PY) NX centralizes 0,,( QX) NY > O,( QX),, O,( QX), , 1(2.14) () and 1(5.3)
yield that O,( PY) N X < P, . Hence O, (XY) < P, by 1(2.21) (i). From Y < Q, and
1(2.3) (ix) we obtain X = X P, and O (XY) = X,,. SO[X,,,Y]= 1 by 1(2.3) (xi).
Also we see that O,( (XY),) =1.Hence P, = P,, P, by 1(2.10) (iii), and 0 (3.1) holds.

If X < P, were to hold, then (d) and 1(2.3) (v) imply P = F, whence, since O ( PY) =
1Y <Q, by 1(2.3) (ix). But then Q, <Y < Q,, , acontradiction. Therefore [X, 0] # 1

and, similarly, [X, 7] # 1. The remainder of (f) follows from (3.1).
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Using (3.1) and 1(2.10) (ii) gives Q ¢ QX and then X = N,(Q) . Combining (d), (f) and
1(2.3) (viii) yields (h). Finally we prove (i). Suppose J( P),# 1. Then R= Z( J(P)) <X
by part (d). From (3.1) we see that R, = R, R,,, R, = R, R,, and R, = R R, . This

together with (h) and 1(2.6), 1(4.7) and 1(6.4), yields that P is contained in a unique maximal
o -invariant subgroup of G, S proving (i).

4. LINKING THEOREMS

In this section we use the results of the previous section to andyse configumtions involving
three or more -invariant nilpotent Hall subgroups.

Lemma 4.1. Let P be an a-invariant Sylow p-subgroup of G of type A and et 1,j € A
with 1 # j . Then ar least two of P, L; and L ; permute.

Proof. Suppose the lemma is false and, without loss of generdlity, thati=1andj=2.
Thus we are supposing

L,L,#L,L,, PL,#L,P and PL,#L,P.

The proof is broken up into cases depending on the form of . ( p, m) and % (p, m,) . Let
A (p, ) ={PY,, [} X} fork=1,2;by Lemma34Y, =N, (P) and X, = Np(L,) .

Case 1. P,, P, < Np(L;)and P,,, P, < Np(L)) .

First we consider the possibility Cp( L,) = 1 = Cp( L,) . Applying Lemma 3.4 (ii) (f)
to both [, X, and [, X, gives P, = P*= P,. Butthen1# P = Cp( ) contradicts o
acting fixed-point-freely upon G. Thus, a least one of Cp( L,) and Cp( L,) must be non-
trivial. Without loss of generality we may assume Cp(L,) # 1. Hence Z(P) = Z(P), <
Np(L,) by Lemma 3.4 (ii) (c). Therefore Z(P) < P, < Np(L,) and consequently,
by 1(5.1) (b), Z(P) = Z(P),. Thus Z(P), = 1 and Z(P) < Np(L,) N Np( L,).
Clearly Z(P) normalizes both N, (L,) and N;_(L,) . Since L, L, # L, L, , either L; <
NL,(Lz) or L, <Ni (L) by Lemma 3.1. Suppose (say) that L < NL,(Lz) holds.
Then, since Z(P), =1, 1(2.14) (i) applied to Z(P) normalizing L, and N} ( L,) gives
Ly =N, (Ly)Cp, (Z(P)). Now C, (Z(P)) <N, (P)<.L, by Lemma3.4 (i) (c)
and (f) and 0

Ly = Ny (L)C, (Z(P)) = N, (L)) Ly = Ny (L,).

This contradicts L, L, # L, L, , and 0 disposes of case 1.



102 Peter Rowley

Case 2. P,, P, < Np(L;) and L, L, < Ny (P).

Since Ly L, # L, L, , either L, <N, (Ly)or L, <N, (L) holds. Suppose for the
moment that L, <N, L) perte'lins. Then L, < NLZ( L) NN, (P)and 0 L,__ normal-
izes Np(L,) . Using T(2.14) (i) yields, since P, < Np(L,), that P = NP(Ll)CP(Lz,)-
Now, appealing to Lemma 3.4(i) (c) and (d), gives that either LZ, = sz =LjorZ(L,)=
Z(Lz)pr. In either case (using 1(3.6) (iii) for the former) we deduce that P = Np(L)
Cp( Ly) = Np(L,), which is not possible. Thus L, < N, (L)) is untenable and S0 we
have L; < N, (L,) . Inparticular, N, (L) # 1. From Lemma 3.4 (i) (c)and (d) applied to
P and L, wehave that either Z( L,) = Z( Lz)p, orL,= Ly, Suppose Z(L,) = Z( L2)pT
holds. Then 1(2.3)(x) applied to N, ( L,)Z(L) gives [Ny, (L), Z(L,))=1, and hence,
since NL,(Lz)# 1,2Z(L,) £ C, (N, (Ly)) < Ny_(Ly) . Therefore

Z(Ly) <N (Ly) anﬂ <N (L) NN (P),

and 0 Z( L,) normalizes Np( L) > P,. Hence P= Np(L,)Cp(Z(Ly)) = Np(Ly),
since Cp(Z(L,)) =1by Lemma3.4(i) (a). Thus Z(L,) = Z(L,),, cannot hold. Now
sz =L, yields, using 1(6.4), that N, (L) N, (L)L, whence, since N, ( L,)#1,
[(2.21) (v) impliesthat L, L, = L, L, . Thus Ly =1L, is also untenable, and this deals with
case 2.

Case3. Lj < N, (P) and L; < N, (P).

A double application of Lemma 3.4(i)(b) and (e) yields P,, =1, P #1# P, and P, =
1, P,; # 1# P,,. Clearly this situation is impossible.

As the possibility Ly,L, <Ny (P) and P,, P, < Np( L,) may be dealt with as in
case 2 we see that all the altematives for .# ( p, m;) and # (p, m,) , as given by Lemma 3.3,
yield a contradiction, as required.

The next result will be required in the proof of Theorem 4.3. Lemma 4.22 is a special case
of 1(5.10) (b), however we give a proof here.

Lemma 4.2. Suppose L;L;# L;L; and L;L;# L,L;where {i,j, k} = A If Jisanon-
trivial o -invariant subgroup of Ny, (Lyn Ny, (L;)and L, < ij (L;), then CL) J) £
NL).(Lk)'

Proof. Without loss of generality weseti=1,j=2,andk=3.Sowehave L, L,#L, L,
LyLy#LsLy, 3 < Ny (L) NNy (Ly) and L, < Np (Ly). Suppose Gy (J) <
N Ly ( L4), and argue for a contradiction.
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Since J normalizes L, and L, , J must normalize NL2 (L,) . Hence, as L, <N, (L),
J,=1and J normalizes L, , 1214 (i) gives

L, = CLZ(J)NLZ(Ll) = NLI(L3)NL2(L1)-

Since Ly Ly # Ly Ly, clearly N, ( L3) £ Ny (L)) . Therefore Ny ( L3) £ L, . Hence
0, (L Ny, (L)) # L by X(233). But then &, (L,)= Ny, ( Ly)= 1by 1(5.3), contrary to
J # 1. Then we conclude that C; (J) £ N;_( L), as desired.

Theorem4.3. Assume that L,L;# L.L; foralli,j € A with i# . Thenoneofthefollowing
holds:

()) Ly = Ly, Ly = Ly, Ly = Ls.

(i) Ly = Ly, Ly =Ly, Ly = L.

Proof. By Lemma 3.1 we have that ./%('n,.,'nj) = {L,-NLI,(L{),L].NL‘(LJ.)}.
First we establish

(4.1) {Ly,,L3,) £ Ng(Ly).

Supposing (L, , L3 ) < Ng( L) we seek a contradiction. Without loss of generality we
may assume that { Ng(Ly) },, 4, < Ly Ny (L) . So

Ly < No(Ly) NLs = Ny, (L)) Ny (Ly).
Applying Lemma4.2 withi=1,j=2,k=3and J = Ly, yields
(4.2) C, (L) £ N, (Ly).
From (4.2) we deduce that Z( L,), = 1 andthat Z(L;) < N, (L,) . Hence,as L, = 1,
o acts fixed-point-freely upon Z( L;) L, , and SO [ Z( L,),L,]-= 1 by 1(2.2) (i). But then
(L3, L,) < Cp(Z(Lsy)), contrary to L, Ly# Ly L, . This is the desired contradiction, and
% we have proved (4.1).

The arguments used to prove (4.1) aso yield

(4.3) (Ly,,Ly) & N(Ly) and (L, , Ly ) £ Ne(Ls).
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The form of % ( =, 7rj) together with (4.1) and (4.3) imply that one of the following must
hold:

(4 .4) L, <N, (Ly),L, <Ny (L) and Ly <Ny (Ly);
or
(4.5) Ly, <N, (Ly),Ly <N, (L) and Ly <N, (Ly).

Since the ensuing arguments apply equally to (4.4) and (4.5) we shall suppose, without
loss of generaly, that case (4.4) holds.

(4.6) If L= L, , thenl,= L.

Since Ly < Ny (L) (by (4.4)), Ly hormalizes L, = Ljand <0 L= L, C, ( Ly)

o

by 1(2.14) (ii). Supposing L, # L, we argue for a contradiction. Clearly we must have
Cp(Ls) £ Ly = Li. 1M Cy (L) < Ny, (L) , then 1(4.5) forces Oy (L3 Ny (L3)) #1.
Butthen N, (L, )=1by I(53) whereas 1 # L; < N, ( L;) . Thus we conclude that

(4.7) Gy, (L) £ Ny (Ly).

Hence Z(L,;) < Ny (L) and Z(L,), =1 by (4.7). Thus ¢ acts fixed-point-freely
upon Z(L3) Ny, (Ls) andso [Z(L3), Ny (L3)] = 1byl(2.2) (i). Since N;, (L;)#1 by
(4.4), thisimpliesthat Z( L;) <N, (Ly).

Therefore we have

(4 ~8) Z(L3) S NL,(LX) nNLS(Lz) and L1' S NL!(LZ)-

However (4.8) is a variance with Lemma 4.2 (t&king J = Z( L;), 1=2, j = land k = 3).
This is the desired contradiction, and 0 we have (4.6).

Clearly the arguments used in proving (4.6) will aso yield
(49 If 3= L, (respectively L] = L3p), then L, = L, (respectively L, = Ly).
We now show that

(4.10) 3 = B
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Assuming L, # L, we seek a contradiction. Thus, by (4.6), L} # L;_and conseguently, as
Ly <Ny (L), wehave Ny (L) £ L,_. Therefore, using 1(2.13) (i), we obtain

4.11) O, (L Ny, (L)) # 1.
[(5.3) and (4.11) imply

(4.12) N, (L)) =1.

Also from (4.11) we infer that

(4.13) Z(Ly) = Z(Ly), < Ny (Ly).

Lemma4.2, together with (4.13) and Lzﬂ gNLZ(L3)(lakingJ = Z(L,)),forces

(4.14) Z(Ly) £ Ny (Ly).
We now turn our attention to [, and prove that
(4.15) La, =Ny, (L))

Suppose (4.15) were false. Then | NL3 (L), c] #1. From 1(23) (x) and (4.13) we have
[Z2(L,), [NLJ(LI),U]] = 1, and then (4.14) dictates that

CLS([NLJ(LI):G]) < NLJ(L1)‘

In particular, Z(L3) < Ny (L) ,andso [Z(Ls),0] < [Ny, (L;),0]. Hence [Z(Ls3), 0]
# 1 would imply Z(L,) < Ny (L), contradicting (4.14). S0 Z(L3) = Z(L,), - By
considering Z( Ly) N, (Ly) 123)(x) yiedsthat [ Z( L,), Ny, (Ly)]=1.

Therefore, since N,J2 (L,) $1, we see that Z( L;) < N ( L,). Sowehave Z( Ly) <
N, (L) NN, ( L,) and L < NL1 ( L,) which is against Lemma 4.2. With this contra-
diction we have established (4.15).

If O,s(LlNLa(L,)) # 1, then CLJ(NLJ(LI)) < NLS(LI) and thence, by (4.15) and
123)(\V), Ly =1, = N ( L), which contradicts L, L;# L, L.. Hence O, ( LN, (L)) =
1,and © Ny, L) < L3p by 1(2.13)(i). Therefore L} = L3p and then L, = L3ﬂ by (4.9). We
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clam that O, (LyN, (L3)) = 1. For O, (L3N, (L)) #1gives Z(L,) < Ny (Ly),
and then L,L,#L,Ly, Ly = Ly and 1(2.3) (x) imply that Z( L,) = Z( L,),. Ap-
plying 1(2.3)(x) to Z( Ly) N, (L) yieds [Z( Ly), N, (Lp1=1. Since N, (L) #1
we then obtain Z( L,) < Ny (L) .But Ny (L) =1by (412) and 0 we see that
O,, (LN, (L3))#1 is untenable, 0 verifying the claim.

From O, (L3Ny,(L3)) =1, 1(2.13)(i) gives N, ( L3)< L, and 0 L3 = L, . By
49 L, = Lzr_ Now Z(L,) < Ny (L,) by (4.13),andso L, L, # L, L, and [(2.3)(x) give
Z(Ly) = Z(Ly),. Applying 1(2.13) (x) to Z(L,) Ny (L,) gives [Z(L,), Ny (L;]1=1
whence, as Ny (L))#1,Z(L,) < Ny (Ly). Butby (4.14) Z(L,) £ Ny (Ls). This is
the desired contradiction, and 0 we have verified (4.10).

A similar argument will establish that L, = L, and L3 = L; S0 giving case (i) of the
theorem. We observe that (4.5) will give rise to case (ii), and 0 the proof of Theorem 4.3 is
complete.

Theorem 4.4. Let P and Q be (respectively) «-invariant Sylow p- and q -subgroups Of type
A,p#q,andleti,j € Ai#]. If PQ = QP,PL]. = LJ-P and QL; = L,Q, then at least
one of PL;= L,P and QL]. = L].Q holds.

Proof, Suppose the theorem is false, and, without loss of generality, that 1+ = 1 and j = 2.
o the following is assumed to hold:

(4.16) PQ=QP PL = L,P,QL, =L, QPL #L;P and QL # L,Q.
We derive a contradiction in the following series of statements.

(4.17) Ly <N, (P)and Lj < N, (Q) cannot both hold at the same time.

Suppose L} < N, (P) and Lj < N, (Q) hold. By Lemma 3.4 (i)(a) and (b)

A (p,m) = {PN, (P),L,},#(q,7) = {QN, (Q),L,} and P, = 1= Q. So
o and pr act (respectively) fixed-point-freely upon PL, and QL, . Conscquently, as

1 om = Llr,L;m) - LL and (PL,), and (QL,), are nilpotent, 1(3.7) gives

[P, L,]=1=1Q,, L;].
Because P_(Q, is soluble, without loss of generdity, we must have O ( P,Q,) # 1. Hence

QT:Ll S NG(Op(P'rQT))
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whence Q, < #(L,) = 1, which is not possible. This verifies (4.17).
Before proceeding further we investigate the interaction between L, and L, .

(4.18) L,L,#L,L,.

Suppose L, L, = L, L, holds. Because of (4.17) and Lemma 3.3 it may be assumed that
(say) Q,, Q, < Ng(L,) . Employing I(5.8) () with 7=p,L =L,, M =Qand N = L,
(notethat G# L,(L,Q) since P# 1) yields O, (L;L,) = 1 whence L, = L, byl(2.13)
(i). Consequently, by Lemma 3.3, we must have P, P. < Np( L,) . A further agpplication
of 168)(f) with 7= o, L = L,,M = P and N = L, gives 0,,(L,L,) = 1. Butthen
F( L,L,) =1, which contradicts a well-known property of soluble groups. Hence we must
have L, L, # L, L, .

Our next two assertions prepare the ground for our later work.

(4.19) If P (respectively Q) is not star covered, then Q,, Q, < Ny( Ly) (respectively
P,, P, < Np(Ly)).

Suppose L3 < N, (Q) were to hold. Then applying 1(5.8) () with 7= @, L= P, M = L,
and N = Q gives that Op( PQ) = 1. Hence P is star-covered by 1(4.4), contrary to the
hypothesis of (4.19). Thus L} £ N, (Q) and 0, by Lemma 3.3, Q,, Q, < N L,),as
required.

From Lemma 3.4(ii) (€) we have

(4.20) If P,, P, < Np(L,) (respectively Q,,Q, < No(Ly)) and P (respectively Q) is
star covered, then P = P (respectively Q = Q).

We have reached a stage in the proof where it is necessary to subdivide into the following
cases:

Case 1. Both P and Q are not star-covered;

Case 2. Both P and Q are star-covered; and

Case 3: P is not star-covered and Q is star-covered.

Case 1: Both P and Q are not star-covered.
A double application of (4.19) immediately gives

(4.21) P,,P. < Np(Ly) and Q,,Q, < Ng(Ly).

o' T
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Weassert that N,(L,) £ P,. For suppose N,(L,) < P, did hold. Then P* = P, by
(4.21). Since Q is assumed to not be star-covered, R= O, (PQ) N O,(QL) # 1 by I(47).
By considering C.( R) we infer that either Op( PQ) < Np(Ly)or O, (QL,) < Ny, (P).
The former possibility, using 1(4.7), implies that

P= P*0,(PQ)= P'Np(L;) = P,

contrary to P being not star-covered. Thus O,, (QL)<L NLx( P) holds, and s o, (QL,)L
Ly by Lemma 3.4(ii) (c) and (£).

Consequently L | = L by 1(4.4) and then Lemma 3.4(ii)(g) gives that P = P,, which
again contradicts P being not star-covered. Therefore N,( L) ¢ P, as asserted. Likewise
wemayestablishthat No(Ly) £ Q.. Thus [Np(L,),pl#1# [Ng(Ly),o0] andhence
Lemma 3.4(ii) (c) and (d) yield

(4.22) A (p,m) ={P,Np(L) L} and A(g,m)={Q,Ng(Ly)L,}

(4.23) Np(Np(L;))* < Np(Ly) and No(Ng(Ly))* < No(Ly).

Since L, L, # L, L, by (4.18) and our situation is symmetric with respect to P and Q,
we may suppose that L; < N, ( L,). In particular F = N, (L) # 1. Recalling that

Q, < Ng( L) (by @.21)), 1214) (i) and 1(213) (i) yield

(4.24) Q= NQ(LZ)OQ(QLI) = NQ(LZ)CQ(F).
We claim that
(4.25) Cq (F) isstar covered

For, if this were not the case, 1(4.5) impliesCo( F) N O,(PQ) #1. Since F#1, (4.22)
then yields O,( PQ) < N( L,) . But then (4.23) and 1(4.6) together force P= Np( L,), a
contradiction. Therefore (4.25) holds.

Put C = Cy(F) . From (4.24)
Nq(Nq(Lz)) = NQ(Lz)Nc(Nq(Lz))-
Combining (4.23) and (4.25) we obtain

No(No(Ly)) = Ne(Ng(Ly))® € No(Ng(Ly))* < Ny(Ly),
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which then implies that Ng(Ng(L,)) = Ng(L) . Hence Ny(Ly) = Q, contrary to
L, Q#Q L, . This contradiction disposes of case1.

Case 2. Both P and Q are star-covered.

Suppose, for the moment, that P,, P, < Np(L,)and Q,,Q, < Ny(L,) hold. Then
P =P, and Q = @Q, by (4.20). By 1(2.3)(ix) and 1(2.21)(v) &, (P)=1. Also, by 1(2.3)
(ix) and 1(2.13) (i)

(Q,p] QPQ and [Q,p] £ O (QLy).

Since, 1#Q, =Q,, <[Q, p] . we deduce that O, (Q L;) <%, (P)=1. Consequently,
by 1(4.4), L, = Ly, because pr acts fixed-point-freely upon QL, and L} wn = Ly, - Further.
Q=Q, and 1(2.3) (ix) gives L, =L,;.SoL;=L, __and therefore Np(L;) 4 Ly Np(L;)
by 1(6.4). Then PL, = L, P by 1(2.21)(v). So we see that P,,P. < Np(L)and Q,, Q, <
No(L,) cannot both hold.

In view of (4.17) and the symmetric conditions on P and Q we may assume, without loss
of generdlity, that P,, P, < Np( L) and L; < N, (Q) pertains. From Lemma 3.4 (i)

®) Q,,=land 0[Q, pl# 1. Since P = P, by (4.20) we may argue as in the previous
paragraph to obtain

(4.26) 0,(QL) = land L, = L.
By 1(2.10)(i) QL, has Fitting length & most two, and 0 (4.26) gives Q < QL, . Hence
(4.27) Ly < Ny (Ly).

Ouraimnowistoshowthat L, < N, (L;).
If [NL,(L1)»P]# 1,then,as P = P, gives [L,,p] < O, (PL,),we obtain

OP(PL2):L1 < Cc([NLz(L1),P])~

Hence O (PL,) < Np(L,) . But then 1(2.13) (i) forces P= O,(PL;) P, < Np(Ly), a
contradiction. Therefore Ny, (L) < Ly,, and 0 using (4.27) we have

(4.28) L, <N(L)=1L,.

Now O, (LN, (L) # 1 would imply, by 1(2.3) (x) and 1(2.21) (iv), that L,= LJP,
contrary to L, L, # L, L,. Hence 0, (LN, (L)) =1, and then L, = L, and 1(2.3)
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(ix) yield L, = NLz( L,) . Therefore L, =1L, and s an application of 1(6.4) to PL,
yields P 9 PL, . In particular, [ P,O, (PL,)] = 1. Now P= P and L; = L, imply
1# P, <[Np(Ly),7] < Cp(L,) and so

0,,(PL,),L, < Cg(F,),
which gives O, (PL) < N, (L) . Combining this with (4.27) and (4.5 gives
Ly = 0,,(PLy) L3 < Ny (Ly).

This is the desired contradiction which completes case 2.
We now move onto the final case, which, unfortunately, is somewhat lengthy.

Case 3. Pis not star-covered and Q is star-covered.

Since P is not star-covered, (4.19) implies that Q,, Q, < Ny( L,). Consequently Q =
Q, by (4.20), and 0 1(2.3) (ix) gives

(4.29) (g, M) = {Q,NQ(LZ)LZ},
Furthermore, we may deduce that

(i) O, (PL,)= 1.
(4.30) ?
(i) L, isdtar covered .
From Q = Q_ and 1(2.3) (ix) we have [P, cr] ¢ PQ. Now [ P,0] < O,(PL,) by

1(2.13)(i), and [P, o] # 1 since P is not star-covered. Then N.([ P, o]) and (4.29) imply
(4.30) (i). Part (ii) follows from (i) and 1(4.4).

Suppose [, < NLz (L) holds. Then L, being star-covered implies, by 1(2.3) (viii), that
[NL2 (L), p] # 1isimpossible. Consequently we obtain sz = L;= L, . Hence, recalling
that Q = @, , 1(23) (x) gives

Also, Q,, =1, and 0 pr acts fixed-point-freely on QL, . Because L, = L, ,1(3.7)
yields [Q,, L] = 1. But then
Ll ’ L2 S CG(QT) 4
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contradicting (4.18). Thus we conclude that
(4.3) Ly <Ny (Ly).
We next show that

(4.32) P =

T

Since Q, < No(Lp), Ly, = land,by (431), L; <Ny (Ly), Q = No(Ly)Co(Ly)
by 1(2.13)(i) and 1(2.24)(). Put I, = L,/é( L,) . From (4.30) (ii) I, = l'lsz-Z'. Clearly
-CZ, 41, L;_and hence, because Ly, =1,1(23) () yields Iy= EZ,CZ; (L)

IfC’Lz(L,,)# 1, then (4.29) forces Co(L; ) < No(L,),whence Q= NQ(LZ)CQ(LI,) =
Nqo( L), against QL, # L,Q. So CLz( Ll,) = 1. Hence C"E,(Ll,) = 1, and therefore
fz = fzr. By awell-known property of the Frattini subgroup, we obtain L, = Lz, ,as8
desired.

Since Q = Q,, 1#Q, < [Ng(Ly), 7] < Cy(L,) by (4.32) and 1(2.3)(%). So Z(Q) <

No(Ly) ,and, since QL, # L, Q, Z2(Q) < Q,. Recallingthat [Q,, L;1= 1 (as (QL,),,
1) we obtain

(4.33) [2(Q),L,1=1.

We claim that OP(PQ) = 1. Suppose this were false. Then Z(Q) n O (PQ) #1,
which, together with (4.33), gives O,( PQ) < #»( L,) . Because P is not star-covered,
0,(PQ) # Land 0, by Lemma 3.4(i)(a), LT £ N}, (P). ThusO,(PQ), P,, P, <Np(L,).
If Np(L) < P, holds, then, by 1(4.5), P = O,( PQ)P* = P, contrary to P not being star-
covered. Whilst [ Np( L,), p]# 1implies, by Lemma 3.4(ii) (d), that Np( Np( (L))" <
Np(L,), and then 1(4.6) gives the untenable P = N( L,) . This establishes the claim.
Using 1(2.6) we now deduce that

(4.34) Q = No(J(P))Co(Z(P)).

If the Fitting length of P L, were at most two, then (4.30) (i) would give P < PL; . Then
Z(P) q PL, and J(P) ¢ PL, , and hence (4.34) forces QL, = L,Q, a contradiction.
Thus we conclude, using 1(2.10) (i), that
(4.35) P_#1.

oT
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We ghall show that (4.35) gives rise to a contradiction. Qne observation we shal use is
that

(4.36) Z(J(P)) £ P,

Suppose Z( J(P)) < P, were to hold. Then we may apply 1(2.3) (x) to both Z( J( P))
NQ(J(P)) and Z(J(P))NLZ(J(P)). Since Z(P) < Z(J(P)) and OP(PQ) =1=

O,, (PL,) , 1(26) yields
Q=Co(2(P)Q, and L, = G, (Z(P)L,

Recall, from (4.29), that Q, < Ng( L,) , and hence Cy(Z( P)) £ No( L,) - Therefore
G, (Z(P)) < QZ’LZ( Q) = 1 by (4.29), which then gives L, = sz. Hence, using (4.32),
L, = sz. Combining 1(6.4) and 1(2.21)(v) gives L,Q = QL, , a contradiction. Thus we
have established that Z( J(P)) £ P,.

From (4.35) and 1(3.13)(iii) 1 # P,. < Cp( L,) and 0

(4.37) -/%(P, ’"1) = {P3NP(L1)L1}
by Lemma 3.4(ii)(c). We assert that
(4.38) L] = Lluaé )}

First we verify that L} = Ly . Supposing Li # L, we seek a contradiction. S
14 [Ny, (Ly),0] < Cp (Ly) by(4.31)and1(2.13)(i). Hence Z(L,) < Ny, (L,) . Because
LyL,#L, Lyand, by (4.32), L, = Ly, 1(2.3) (x) and 1(2.13)(i) force Z( L,) < Ll,,~ But
then [Z(L,), Np(L;)] = 1 by 1(6.4), which, as Np( L,) # 1, yields Z(L,) g.@Ll(P),
against (4.37). ® we have proved that L} = L, .

Observe that P,,# 1. For P, = 1 would imply, as Q = Q,, that pr acts fixed-
point-freely upon PQ. Recalling that O,( PQ) = 1, 1(2.10) (i) gives P ¢ PQ. Since
0,,(PLy) = 1 by (430) (i) 1(26) implies L, = N (J(P))Cy, (Z(P)), whence QL, =
L, Q, which is not possible.

Now suppose L, = L. Then 1(2.3)(x), 1(2.13)(i) and (4.37) give [L, , P,]= 1. Now
[L., P,1=1byI(313) (iii)and ©0 L,, L, < Cy( P,,) - Since P, #1, we obtain the
untenable L, L, = L, L, . Therefore L, # Ly, and we have (4.38).
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Since P, < Np(L;) , (4.38) and 1(2.14) (ii) imply that L, = G, (P,)L . Further,
G, ( P,) # 1 by (4.38). Therefore the shape of .#(p, ) gives Z(P) < Np(L,) and
Z(P),= 1. Now[L,, P,]< L, and, since [Z(P), P,1=1, Z(P) normdizes[L,, P,].
Applyingl(2.3) (x) to Z(P) [ L, ,UPU]wededuce that [Z(P), [L;, P,]]= 1. Then theshape
of A (p,m,) forces [L;,P,]= 1.

If J(P),#1 then P < Cp(L,)Yyieds Z(J(P)) < Np(L,). ByI(2.13) (i) and (4.36)

1# [Z(J(P)),p] < Cp(Ly).

Then, using 1(2.3) (viii), we infer that P, < Np( L,) , and hence P* < Np(l;) . Employing
1(5.8)(f) (withL =Q, M = PN =L, and v = ) Yyidlds 0,(QLy) = 1. However, by
(4.33), [Z(Q), L,1 =1, and 0 we see that J(P), = 1. Consequently (since Q = Q,),

J(P) <[P,01< O,(PQ) NO,(PL,)

Then, by [Lemma 8.22(ii); 31, J(O,(PQ)) = J(P) = J( O,(PL,)) and hence Q, L, <
Ng( J(P)), acontradiction! This is the long sought contradiction and finishes the work on
case3.

The proof of Theorem 4.4 is complete.

The next linking result is of a similar nature to Theorem 4.4 though its proof iS much
shorter.

Lemma 4.5. Let P and Q be (respectively) « -invariant Sylow p- and q -subgroups of type
A whichpermute, p# ¢, and set A ={i, j, k}. If PLy = LyP and QL; = L,Q, then ar
least one of PL; = L;P and QLj; = L, Q must hold.

Proof, Suppose the lemma is false and argue fora contradiction. Without loss of generality
weassume i = |,/ =2 and k= 3. So we have

PQ = QP’PLB = L23P:QL1 = LIQ’

(4.39)
PL,#1,P and QLp#LyuQ

From Lemma 3.2, Z(Q) < Q,, and 0 [Z(Q) , L,]1 =1 by 1(3.13) (iii). Also note that
Ly = L23p # Ly, by 1(28) and 1(6.1).

Now suppose Q is not star-covered. Then O ( PQ) # 1 by 1(4.4). Hence, by 1(5.8) (f),
L} £ N, (P) andso P,, P, < Np(L,) . Moreover O(PQ)NZ(Q)#1 and [2(Q), L,] =
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1yied O,( PQ) < Np(L;) whence P = P, by Lemma 3.4(ii) (d) and 1(4.6). There-

fore #(p,m) = {P,Np(L)L,}, [Q,p] S PQ by 1(23) (ix), and P = 1. Since
1#4[Q,p] < Oq(Q[q),W@Obmm O,,l(QLx) Sng(P) = 1.Thus

(4.40) L, is star covered.

Clearly PL,, admits o7 fixed-point-freely and so [P, L,;]1= 1 by [(2.8). If L, L, =
Ly Ly, then L3y # Ly, 1(4.4) and Ng( 0., (L, L,)) > P, L, yields a contradiction to
(4.39). Thus Ly Ly3 # Lys L, .

Since P,, =1, P,, P, < Np(L,) and, by (4.4), L, = Lj it follows (see Lemma 3.4(ii)

? o) T

(9)) that for at least one of P and P_, say P,,C, (P,)#1and C’L1 (P) <& Ly . Clearly
Ce(P)) > Ly, CLl(PU) and hence Oﬂ,(LZZ‘}‘@Ll(I’B))# 1 by I(2.13) (i) and CLI(PU) £
L, _.Hence Z(L;) < Ll,, as Ly L, # Ly Ly . Butthen [NP(L]),Z(LI)] = 1 byl(2.3)
(xi) whence Z( L)) < 9"}” (P) contrary to the shape of . (p, m,) .

Hence we conclude that Q must be star-covered. Then by Lemma 3.2 and 1(2.3) (viii) ei-
ther Ng(Lys) £ Qo 0r No(Lyy) £ Q,. Suppose No(Lys) £ Q. Henceas Cp(Ly)#1,
Q=Q, by 1(221) (iv) and 1(23) (v). D[P, o] A PQ. If [P, 0] # 1, then N,([ P, o) >
Q, 0,,, (PL,,) implies 1 # O, (PL) < &, (Q) , which contradicts Lemma 3.2. Thus
P= P, andso 1# P, = P_. Hence P,, P, < N,(L,) by Lemma3.4 (i) (b). But then
P < Np(L) , a contradiction.

This completes the proof of Lemma 4.5.

We close this section with two results, the first of which will be used in Lemmas 6.1 and
7.4 whilgt the second is specifically designed for one application in Theorem 7.6.

Lemma 4.6. Let P be an a-invariant Sylow p-subgroup of type A , p € n(G) , for which
PL,#L,PandPL, # Ly P. Then
(i) P,,P. < Np(L,) and P,, P, < Np(Ly);
(i) Z(P) = Z(P),; < Np(Ly) N Np(Ls):
(iii) P is not star-covered; and
(iv) either Ng(Z( J(P))) = PCgi( Z(J( P))) or JP) is contained in at least one
of Np(L,) and Np(Ls).

Proof, (|) From Lemma 41, L2 L3 = L3 L2 . SuppOSe that Pp’ Pa j(_ NP(L3) .Then L;S
N,.(P) and by Lemma 34 (i),

Po=1,P,#1#P, and #(p,m) = {L, N, (P)P}.
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Since PpT# 1, we must have P, P, < Np(L,) by Lemma 34 (i i) (b). From P, = 1 wesee

that [Np(L,),0]# 1 whence CP(LZ)# 1 and Z(P) < Np(L,) . Theshape of 4 (p, ;)
forces 0, (L,L;) =1, which then, by 1(2.13)(i), gives L, = LZY.Hence Z(P) < P, by
1(2.3)(x). But then [Z(P) , N, (P)]= 1 which gives the untenable Z(P) < #p(L,) = 1.
Thus we conclude that P, P, < Np( L3) and, likewise, that P, P. < Np(L,).

(ii) Because Pp% 1, one of [ Np( L), oland [ Np( L3),7] must be non-trivial. Hence
wehave,say, Cp(L,)#1 andso Z(P) = Z(P), < Np(L,). Butthen Z(P) < P, £

Np( L), 0 proving (ii).

(ili) Since P# P,, , P cannot be star-covered by Lemma 3.4 (i) (€).

(iv) Put R=Z(J(P).If, say, R,# R,,R,, , then O,( R, L, )#1 by 1(4.5). Since
Ly £ .@LJ( P) by (i) and Lemma 3.3i), this implies that JP) < Np(L3). So either
J(P) is contained in at least one of Np( L,)and Np(Ls) or

(4.41) R,=R,R,.R,=R,R, ad R =R,R

pT? prtlor:

If (4.42) pertains, then applying 1(6.4) toRN(R),, yields Ng( R) = PCg( R) . This proves
(iv).
Lemma 4.7. Suppose P is an a-invariant Sylow p-subgroup of G of type A which is not

star-covered, and let A =i, j, k). Also suppose

(i) P permutes with L; and L, but not with L ;
(ii) L;L;# L;L;;and
(iii) Z(J(P)) £ Np(Ly).
Then P, #1.
(]

Proof, Without loss of generality, wetake i =1, j = 2 and k = 3. Sowe have PL, =L, P,
PLy=L,P, PLy#LyP and L L, # L, L, . Recall that Pp(L,) = NP(L3)
First we show that either L, = L, or L, =L, holds. Since[P,;, L,1= 1, (iii) implies

J(P), = 1. Applyingl(4.5) to J(P)NLI(J(P)) and J(P)NLZ(J(P)) yidds
Ly :CLI(D)Ll,, and L, = GLz(D)Lzﬂ

where D = O,( PL)n O,( PL,)N Z(P) . From 1(4.7) D+# 1 and 0 either C;, (D) <
N, (Ly) or C; (D) < Ny, (L) holds.

Assume, say, that CLl (D)< NLl (Ly) . Note that thisimplies O, (PL)< Ny, (Ly).
If [N}, (Ly),0]#1, then Cp, (Ly) # 1 whence Ny (L;) =1 by I5.7), and 90 L; <
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N, ( L,) . Therefore, by 1(2.3) (viii), Ny, ( Ny, (Ly)* < NLI(LZ) . But then Ny (L) =
L, by 1(4.6) which contradicts (ii). Thus we must have C;, (D) <N, (Ly) < L, . Con-
sequently

L, = CLI(D)LI‘, = le
If Cp, (D)< Ny, (L), then we would obtain L, = Lz,-

Without loss of generality we may assume that L | = Ly As aconsequence, A (), m,) =
{L, . L, N, ( L,)}. Moreover, because P is not star-covered and [P, o] g PL, , we have
0,,(PLy) < N, (L) = 1 Also since, L, =1, we have [ P,po] < O,(PLy) and
therefore J(P) < O,(PL,). Thus J(P) = J(O,(PL,)) dPL; .

Now, if P, =1, then PL, would have Fitting length a most two which gives P { PL, .

But then L, , L, < Ng(J(P)), contradicting (ii). Hence we have P, # 1, which established
the lemma.

5. SOLUBILITY OF L
The purpose of this section is to demonstrate that

Theorem 5.1. L is a soluble Hall subgroup of G.

Suppose Theorem 5.1. is fase, Then PQ # QP where P and Q are cr-invariant Sylow
subgroups of G of type A . By Lemma 3.5 we may suppose our notation chosen so that

Z(P) = Z(P),, < Np(Q) and Q. =1,

where, if P* £ N,(Q), we have P, < N,(Q) and Q,, Q, < $(P). If possible we
chose P and Q so that p#2.

In the following series of lemmas we deduce an appropriate contradiction. Our am is to
produce a factorization of G which then forces G to contain a non-trivial proper cr-invariant
normal subgroup. Lemmas 5.2 to 5.7 serve as preparation for the task of constructing the
factorization.

Let A (respectively B) denote the subgroup of G generated by the «-invariant Sylow
subgroups of type A which permute with P (respectively, do not permute with P). Note
thaat P< Aand Q < B.

(5.1) Let H be a soluble o -invariant subgroup of G .

@) If P < H, then O,(H) £ Np(Q)

(ii) Suppose P, < Np(Q),Q;,Q, < P(P) and Q < H. Then O (H) £
Pu(P) .
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From Lemma 3.5 either P* < Np( Q) or Np( Np( @Q))* < Np(Q) . Hence by either
[(4.5) or 1(4.6) Op( H) £ Np(Q), so proving (i). Smilar consderations also yield (5.1) (ii).

Clearly we dso have that
(5.2) P is not star-covered.

(5.3) Suppose P* < Np(Q) and let N be an q-invariant Hall {p, ¢}'-subgroup of G
which permutes with both P and Q. If G# (PN)Q, then (i) P = Np(Q) Cp(N); and
(i) No('N,) = 1 for all non-trivial o -invariant subgroups N, of N .

Using 1(58)(e)(i) and (ii) and Lemma 3.5(i)(a) immediately yields (5.3).

Lemma5.2. (i) L, = L3 = 1,

(ii) PL, = L, P with [Z(P), L;]1= 1.

(iii) If p = 2, then the set of «-invariant Sylow w -subgroups of type A with w # 2
generate a soluble Hall subgroup of G.

(iv) A and B are soluble Hall subgroups of G.

(v) L,3 B is a soluble Hall subgroup of G.

(Vi) If Ly #1, then PLyy # Lyy P and Np(Q) = Np( Lys) .

Proof. Since Z(P) < P,, and [.#,, P,] =1, P must permute with &, and we have
(ii). We now prove that L;; = 1. Suppose L, # 1. Then Ly, # L, by 1(2.8) and 1(6.1).
Now [L,, , Q] = 1 and s, since O, (PLyy) # 1 by 1(4.5), Lemma 3.5(i)(a) implies
that P* ¢ Np(Q).So P, < Np(Q) and Q,,Q, < P,(P). Suppose L1,Q# QLy;.
Then (g, m,) = {Q, Li;Ng(Ly)} with No(Lyp) = Cg(Lyp)(Ng(Lyy),, - Because
OP(PLH) # 1 we obtain, using Lemma 3.5(ii)(b), CQ(LIZ) < .@Q(P) < Q,, whence
No(L.) < Q.. But then Q = Q, by 1(2.3)(v), contrary to Lemma 3.5(ii) (b). Therefore
L,Q = QL,;,. SO L,, permutes with both P and Q and hence, since L, # L3}, , using
1(4.7) gives either O,(PL;,) < Np(Q) or O,(QLy,) < Fo(P), contradicting (5.1).
Therefore we conclude that L, = 1. A similar argument shows that L,; =1, and we have
proved (i).

(iii) This follows from the choice of (P, Q) .

(iv) If p= 2, then (iii) implies (iv). SO we may suppose p# 2. Let U and V be,
respectively, a-invariant Sylow u - and v -subgroups of G which do not permute with P .

Because Z(P) < F,,, neither U* < N,(P) nor V* < N,(P) is possible by 1(2.3)
(xi) and Lemma 3.5(i) (a). While P* < Np(V) and P* < Np(V) yields, using Lemma 3.5
(i) (d), U,, = V,, = 1.But then Lemma 35 (i) (c), (d) and (ii) (c) () imply that UV # VU
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is impossible. Since p# 2, by Lemma 3.5 (ii) (a), without loss of generdity it only remains
to consider the Stuation

P*< Np(U),v =2, and Va‘_ < NV(P),Pa’_,Pak S.@P(V) where {i’]., k} = A.

Because P, # 1, by Lemma 3.5(ii)(c) we may suppose
V, < Ny(P) and P,P, <Fp(V).

Therefore Z(V) <V, by Lemma 3.5(ii) (e). Hence U* < N,(V) is not possible. If V* <

Ny (U) were to hold, then Z(V) < Voo and the shape of % (u, v) forces U, = 1. But
Upa# 1 by Lemma 3.4(i) (d) (applied to P and U). S U* £ N,(V) and V* £ N,(U).
Now P* < Np(U) implies U, = 1 and therefore, as v = 2, Lemma 3.5 (ii) (c) shows that

V, <N, (U) and U,U, <Py(V),

and thus Z(V) < V,, by Lemma 3.5(ii)(e). But then Z(V) <V, NV, which is not
possible. Therefore we conclude that B is a soluble Hall subgroup of G.

Now let U and V denote « -invariant Sylow subgroups of G which permute with P.
Suppose UV # VU. If V* £ Ny (U) and U* < N,(V) pertains, then, as P is not star-
covered, 1(4.7) force either O,( PU) < #,( V) or O,( PV) < #,( U) which is not possi-
ble by Lemma 3.5(ii)(b) (h). So we must have, say, V* < N, (U) . But then, as Op( PU) #1,
this gituation contradicts 1(5.8) (f) (with L = P, M = V and N = U). Thus UV = VU must
hold whence A is a soluble Hall subgroup of G .

(v)  Let V bean q-invariant Sylow subgroup of B. Since V,_ = 11(2.8) yields
Py( L)Ly P(Ly) and 0 Ly V= VL, , which proves (v).

(vi) This is straightforward and 0 is omitted.

Lemma 53. Suppose that P* £ N,,(Q) and that PL; = L;P where 1 = 2 or 3. Then
(i) [Z(O,(PL)),L;] =1, and
(i) QL; = L;Q.
Proof. Without loss of generality we teke 1 =2, and set Z = Z( O,( PL)) .
(i) Now [P, 0] < OP( PL,) and from Lemma 3.5(i) () 1 # [Np(Q) ,d < P, and

hence O, ( PLz)p# 1. Therefore Z < Np(Q) by Lemma 3.5(i) (d). Because of (5.1) and
Lemma 3.5(ii) (d), we must have Z, = 1, and hence, by Lemma 3.5 (i) (f),

Z <INp(Q),p) < Pyr
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This immediately yields (i).

(ii) Suppose QL, # L, Q . Because Q. # 1 by Lemma 3.5 (ii) (c) we sce that Cp(L,) # 1
andso Q,,Q, < Ng(L,) musthold. From part (i) we have [Z,L,] = 1 and Z < Np(Q) .
Thus

Z < Np(Q) N Np(Ly).

Consequently, as Q* = @ i by Lemma 3.5 (ii) (b), 1(2.14) (ii) gives Q = No(L;)Cqo( 2) .
Using Lemma 3.5(ii)(b) we then obtain

Q = NQ(Lz)CQ(Z) = NQ(Lz)Qp = NQ(Lz),

contrary to QL, # L, Q . This proves (ii).
Lemma5.4. If PL,=L,Pwherei=2o0r 3, then, L,= L,L,.

Proof. The case when P* £ N,(Q) is easily resolved by Lemmas 5.2 (ii) and 5.3 (i) since
Z(P) N Z( O,( PL)) # 1. S for the remainder of the lemma’s proof we may assume P* <
Np(Q) - Without loss of generality we take i = 2 .

Since Cy(Z(P)) = 1l and Z(P) £ P,., we observe that

(5.4) Qr # Q, and Z(Q) £ Q.
From the shape of #(p, ¢) and [L,, Q,] = 1 we have 0,,(PL) =1 and 0
(55) L, is star-covered.

From [L,,Q,] = 1 and (5.3) we deduce that QL, # L, Q. Moreover, using (5.4), we
note

(5.6) No(No(L,))* < No(Ly) and 2(Q),Q,,Q, < Ny(L,).
We now suppose L, L, # L, L, , and seek a contradiction beginning with
(5.7) Ly <Ny (Ly).

If (5.7) isfase, then L, < N, (Ly) holds, which, by (5.5), implies that L, = sz.
Hence, by 1(2.3)(x) and QL, # L, Q, Z(Q) < Q , » contrary to (5.4). This proves (5.7).

We claim that QL, = L, Q. For suppose QL, # L, Q. Then (5.4) immediately gives
L} < N, (Q). S0 Ly < Ny (Q) N Ny (Ly) by (5.7). Since Q, < Ng(Ly) by (56),
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1(214) (i) yields Q = No( Ly) Cg( L,) . But from Lemma 3.4 (i) (), (c) and (d) we have
Co(Ly) =1, which contradicts QL, # L, Q. Therefore QL, = L, Q, as claimed. Again
using Q,, L < Ng( L) and 1(2.14) (i) we obtain

0,(QLy) = (OQLy) N Ng(Ly))Co(Ly),

which, appealing to (5.3), thenyields O (QL;) < Ny(L,) . However, (5.6) and 1(4.6) then
imply NQ( L,) = Q, acontradiction. This completes the proof of the lemma

The next result is required in the proof of Lemma 5.6.

Lemma 5.5. Suppose PL; = L,P where i€ A, and lei W be gn cu-invariant Sylow w -
subgroup of A . If LW #WL; thenW<G, .

Proof. Without loss of generality we may assume { = 2. Since PW = WP and P is not
star-covered, 1(5.8)(f) rules out the possibility Ly <Ny (W) . So Wp, W, < Ny(L).
From Lemma 3.3 we have sz £ ?Lz ( W) . Now, because P is not star-covered, 1(3.3) (vii)

and 1(44) imply that [ O,(PL) , pl #1, and thus O,,( PW) < Ny, ( L,) by 1(5.8) (c). Then
Lemma 3.4 (ii) (d), 1(4.6) and 1(4.5) yield W = W, s0 proving the lemma.

Lemma 5.6.If L,P = PL;wherei€ A, then L, A is a soluble Hall subgroup of G.

Proof. Suppose the lemma s false and argue for a contradiction. Thus L;Ww # W L, for
some cu-invariant Sylow w-subgroup of A, and hence W < G, by Lemma 5.5. Clearly
A (75, w) = {W,L;Ny,(L;) }. Observe that W < G, and Lemma 3.5 (i) (€), (i))(b) and
(h) imply that QW = WQ. We now divide our proof into two cases: i = 1 and 1# 1.

Cael ;= 1

Since W < G,, WQ admits o7 fixed-point-freely. If P* < N,(Q), then (5.3) (ii)
clearly gives O, ( WQ) = 1. Hence W = W_W,_by 1(2.10) (ii). Consequently, as W# 1,
1(2.10) (i) and 1(6.1) yield the contradiction G'# O*(G) . Now we consider the possibility
P* £ Np(Q).

Because L; W# WL, , Lemma 3.5(i) (i) shows that J( P), = 1. From W = W, 1(2.3)
(i) gives [P, p] < O,(PW) . Hence

J(P) < [P,p) < O,(PW) NO,(PL,).

A well-known property of the Thompson subgroup yields J(O,( PW)) = J(P) =
J(O,( PL,)) and consequently L; , W < Ng(J(P)), a contradiction. This settles case
1.
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Case 2. i# 1.

Without loss of generality we shall suppose 1 = 2. Suppose to begin with that P* <
Np(Q) . Then, because [L, , Q] = 1, (5.3) implies that L, Q # QL, . Since, using Lemma
350 (d), 1 £Q,, < Cu( Ly) , by Lemma 3.4 we have Q,,Q, < Ng(L,), and
No(No(L))* < Ng(Ly).

Since 1 # Ny, (L,)< W, , at least one of [ Ny, ( L,),pland [ Ny (L), 7] must be non-
trivial. Suppose V = [ Ny,( L,), p1# 1. Because V normalizes O,( QW) and O,( QW) N
Ng(Ly) and Q, < No(L,) , 1(2.14) (i) gives

0,(QW) = (0,(QW) N Ng(L2))Co,gu (V).

However, since W permutes with both P and Q, (5.3) (ii) gives C,( V) = 1 and hence
0,( QW) < No( L,) . But thisis not possible since No( Ng( L,))* < Ng(L)).

It only remains to consider the situation when P* £ N,(Q) . Appealing to Lemma 5.3
(i) gives L, Q= QL, . By Lemma3.5(ii) (b) Q* = Q,# Qand 0, as W =W,

14 [Q,0] AQW.

Since [Q, a < Oq( QL,) , we obtain
(5.8) 0,,(QLy) <Py (W) =1

Since p = 2 by Lemma 3.5 (ii) (a), WLy# 1L, W, (5.8) and Glauberman's ZJ-theorem
yied O,(WQ) # 1. If [0, ( WQ), pl #1, then either Q,< Po( P)or O, ( PW)<
Pp( Q) by I(58) (c). But Q* < Po(P) and Lemma 3.5¢ii) (h) show tha neither of these
can occur. Therefore

(5.9) 14 0, (WQ) <W,.

Also from (5.8), since (QL,),, = 1, we have L, = L, by I(45). Hence, using 1(2.3) (x),
W, < [Nw(Ly),07] < Cy(L,),

and then N4( O, (WQ)) > W, L, by (5.9) contrary to WL, # L, W. This completes case

2 and also the proof of the lemma.

Lemma 5.7. Suppose PL,# L;P wherei= 2 or 3. Then
(i) Lt £ N, (P) and Z(P) < Np(L,); and
(ii) L;Bisasoluble Hall subgroup of G.
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(i) From Lemma 3.4(i)(b), (i) (€) and (g) Z(P) < Np(B) . If Ly, # 1, then by Lemma
52(vi) PL, # Ly; P and it is easy to see that Np(Q) = Np(L,) . Hence, using Lemma
5.7(i) and the definition of K , we have Z(P) < Np(K).

We now analyse the factorization obtained in Lemma 5.8 beginning with

Lemma 5.9. If U is an cr-invariant Sylow u-subgroup of B, then either
(i) P* < Np(U) ; or
(i) P,<Pp(U) and U,,U, < Fy(P).

Proof. Suppose P* £ Np(U) . From Z(P) < P,, and I(2.3) (xi) [Z(P), N,(P)] = 1,
and 0 U* £ N,(P) by Lemma 3.5(i)(a).

Therefore, by Lemma 3.5, either

(a) Uui < Py (P) and P‘,j, Puk < Pp(U) ; or

®) P, < Pp(V) and U, ,U,, < Py(P)
(where {i, j, k} = A).

If (b) holds, then Z(P) < P, and Lemma 3.5 (ii) (€) imply o; = p and {a]., .} =
{0, 7} . So to complete the proof of the lemma we must show (@) cannot occur.

Assume (8) holds. Then v = 2 by Lemma 3.5 (ii) (a) and hence, by our original choice
of notation, P* < Np(Q) . Also, by Lemma 3.5 (ii) (C), o;# p since P,,# 1. Without loss
of generality we may suppose

U, <Py(P) and P,,P,<Pp(U).

p-o

From Lemma 3.5(ii) we have

(51) (i) Py(P) = Ny(P)
() P*= P, > $p(U)
(iii) [Ny(P),pl,[Ny(P),0] < U,

and Ny(R) < N,(P) for all non-trivial «-invariant subgroups R of U, .

Suppose O,(QU), = 1. Then [[Q,7],0,(QU)] =1 by I(2.11), and hence, using
123) ), No( [ Q, 71) > P,, O,(QU) . Since [Q, 7] # 1 by Lemma 3.5() (e), either
P, < #p(U) or 0,(QU) £ Fy(P) mud hold. But both alternatives are impossible,
and 0 0,(QU),# 1 must hold. Then, by (5.11) (iii), Z( 0,(QU)) < N,(P). Because
0,(QU) £ Ny(P),(5.11) (iii) implies Z(0,(QU)) < U,,,whence [Q, Z(0,(QU))] =
1 by 1(2.3) (xi). Consequently Z( O,( QU)) normalizes both Np(Q) and P. Employing
1(2.14) (ii) yields

P = Np(Q)Cp(0,(QU)) = Np(Q)Fp(V).
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But #p(U) < P, < Np(Q) by (5.11)(ii) impliesP = N,(Q) , a contradiction. Therefore
(8 cannot hold, and 0 we have prove the lemma.

Lemma 5.10. Let U be a non-trivial a-invariant Sylow u -subgroup of B , then P*<
Np(U).

Proof. Suppose the lemma s false. Then P,<#p(U)=Np(U) andU_, U, < @u(P) by
Lemma 5.9. So p = 2 by Lemma 3.5(ii) (a). By (5.1) O,(H) £ N,,(V). If O,(H),# 1,
then Lemma 3.5 (i) (d) implies Z( O, ( H)) < Np(U) , whence Z( O, ( H)), = 1. Hence
Z(0, (H) < P,, by Lemma 3.5(ii)(f). Using I(2.3) (xi) we conclude that

Z(P) N Z(0,(H)) < Z(H).

But then, by Lemma 5.8 (i), (Z(P) n Z( 0, (H))) ¢ is anon-trivial proper cr-invariant
normal subgroup of G . Therefore

(5.12) O,(H),=1.

Let A denote the a-invariat Hall 2”-subgroup of A. Then (5.12) and 1(2.14) (ii) imply
(5.13) A=Cy(0,(H)A,

In order to make use of (5.13) we must modify the factorization G = HK . First we prove

(514) (K,A,,Z( P)) is aproper cr-invariant subgroup of G.

Let K denote the q-invariant Hall mh, -subgroup of B . Let W be an cr-invariant Sylow
w -subgroup of A. We now show that W, < P4( K) , and clearly only need to examine the
case W ¢ #4( K) . By Lemma 5.2(iii) one of the following holds

(a) K= L;B,j#1 and WL;#L,W
() K=L,L,B,j#1#kand LW#WL,LW=WL,
© K=L,L,B,j#1# k ad L;w¢# WL, LW#WL,.

Suppose () holds. Then applying 1(2.26) with M = L;, L = BW and H = W (note that
G# L;(BW)) gives that the Sylow w-subgroup of #y,p( L;)is #y,( L;) . In particular
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Py( L;) permutes with B, and hence Py ( L;) < P4( K) . For case (b), but in 1(2.26)
taking L, = L,BW , we als0 obtain Py ( L;) < P3( K). In case (c) the same arguments
yield Ny ( L)) NNy (L) = Py (L;L) < P K) .

Since Q is not star-covered, if L,W# WL;, then 1(5.8) (f) shows L} £ NL,.(W)-
Hence, for j # 1, W, < #y(L;) = Ny (L,). Therefore, by the above, we have that
W, < Pi(K) , as required.

Because W was an arbitrary «-invariant Sylow subgroup of 4 it follows that Zp <
Pi(K).By (44 O(P5(K)) # 1and 0, as [ Ly, Q= 1 K < Ng( O ( KP3(K))) .

Let F denote the cu-invariant Hall 2'-subgroup of Ng( Oq( 1?9"‘;1( I?))) .Then K, Zp <F.
As G contains no non-trivia proper a-invariant normal subgroups O, y( F) = 1. Hence,
by [Theorem 1; 1], there is a non-trivia characteristic subgroup C of K such that C< F.
Appedling to Lemma 5.8(ii) we have

(K,A,,Z(P)) < Ng(C)#G,

which proves (5.14).
If K = Ly; B, then Lemma 5.2(iii), O ( BA) # 1 and [Theorem 1; 1] yield that

M= (K,A,Z(P))#G.

Set D = Z(P) N Z2(0,(PL,))N Z(0,(PLy)) . Note that D # 1. Employing Lemma
5.2(i), (ii) and 5.3(i) gives
G= HK = C,(D)M,

and then DG < M # G, a contradiction. So we may suppose K # LyBandsoH=
LyL;A(j# 1) or LiA. Inthe former case set E = Z(P) N 0,(PL;) N O,(4) and in
the latter E =Z(P) N O, (A) . Observe that E# 1. By Lemmas 5.2(ii) and 5.3(i) and (5.13)
H = Cy( E) 4,. Therefore

G= HK = Cx(E)(K,A,),

whence, using (5.14),
E° <(K,A,Z(P))#G,

a contradiction which completes the proof of Lemma 5.10.
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Lemma 5.11. Suppose that PL;# L;P (where § = 2 or 3)andthat Z(J(P)) < N,(Q).
Then Z(J(P)) < NP(L,.).

Proof. Suppose the lemma is false, and assume i = 3. Put R = Z( J( P)) . By Lemma
5.10, P* < Np(Q) and by Lemma 5.7(i), P,, P, < Np( L3). Of course we also have
L;Q=QL;.

If R # R . -then F= O P_L,,)NR# 1 byl(4.5) whence, as Ly A4 P,Ly,, Co(F) 2>
L3,’ R. Then R< Np(L;) by Lemma 3.3(i). Therefore R, = R;(m and, similarly, R,=
R;(,,, +As P < Cp(L,), R,, = 1 and consequently R*= R, . So[Q,[R,7]]1=1by
1(2.8). By 1(213) and Lemma 3.5(1) (¢) O,(QL3)# 1. Thus [R, 71< Np(L,) - Since R «
Np( Lj) by supposition, [R, 7] = 1. From R < P, we conclude that [ R, N (P)]=1,
whence Ny, (P) = 1. Thus ?La (P) = 1 by Lemma 3.4(ii)(a). Consequently as Np(Q) £
Np(Ly), NL,( Q) = 1 for all non-trivia characteristic subgroups Q, of Q . In particular
Ly <d Ly Q by 1(26). [[Q, 7], L3] = 1. Since [Q, 7] # 1, we then obtain, using 1(2.3)
(viii),

R <P, < Np(L3),
a contradiction. This completes the proof of the lemma.

Conclusion of the proof of Theorem 5.1
Set D= Z( PYNO,( H) . Since P is not star-covered, D# 1. If Z(J(P)),= Z(J(F)),

Py’
zZ(J(P)), = Z(J(P));‘(m and Z(J(P)), = Z(J(P)):(M) holds, then N, (Z(J(P))) =
Cyx( Z(J(P)) P by 1(6.4). Hence H < C,( D) by 1(2.6), and then Lemma 5.6(ii) implies
that D% # G, a contradiction.

Therefore we must have, say Z( J( P)),# Z( J( P));(”, . Let U be anon-trivid «-
invariant Sylow subgroup of B. By 1(4.5) Z(J(P)) n O(PU)#1 and hence, using
Lemmas 5.10 and 3.5(i)(a) we obtain Z( J( P)) < Np(U) . Thus Z(J(P)) < Np(B).
Appealing to Lemmas 5.2(vi) and 5.11 then yields Z( J( P)) < Np(K) . By 1(2.6), D <
Z(J(P)) . Butthen D€ < N(K) # G, which isthe final contradiction. Thus we have
proved Theorem 5.1.

6. FACTORIZATIONS FOR G
We now assemble the result of the two previous sections 0 as to obtain global information
about G.
6.1. Let P be an o -invariant Sylow p-subgroup of G of type A . Then either

(i) P permutes with g least two of L, , L, and L, ; or

(ii) with a possible re-ordering of 1,2,3, G = (LL,) (L, L; L,3) with LL, and
L, Ly Ly, soluble Hall subgroups.
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Proof. Suppose PL, # L, P and PL, # L, P. Then L, L, = L, L, by Lemma4.1. From
Lemma 4.6 we have

6.1) (i) P, P, <Np(Lp)and P, P, < Np(Ls);
(i) z(P) < P, ; and
(iii) P is not star-covered.

From (6.1)(ii) and PL, # L, P, PL, # L, P we note that
(6.2) L,P=PL, and L, = L = 1.

Now let ¥ be an a -invariant Sylow w -subgroup of L and suppose L, W# WL, . By
Theorem 5.1 PW = WP. Combining (6.1)(ii), |(4.4) and 1(5.8)(f) we deduce that W,
W, < Ny(L;).From [L;,Z(P)] = 1 and O,(PW)# 1 weobtain O,(PW) < Ny, (L;).
By Lemma 3.4(ii)(d) and 1(4.6), Ny, (L,) < W,, and thus W = W,. Then Lemma 3.4
shows that W must permute with both L, and L; . A further consequence of W = W,
using I(2.3)(ix) and (6.1) (i), is

(6.3) P= P,O,(PW) = Np(L)O,(PW) (i=2,3).

By 1(2.10)(ii) and 1(6.1) W# W, W, and 0, as WL, L, admits o7 fixed-point-freely,

O, (WL, L,)# 1by (1(2.10) (iii). Soat leastoneof [ O,,( WL, L3) ,c]and [O,( WL, L3) ,7]

is non-trivial. Suppose [ 0,( WL, L;), o] # 1. Then [ O,( WL,), o] # 1. Since W, <
Ny, ( L), an application of 1(5.8) (c) gives either O,( PW) < Np( Ly) or Ly < & (P) .
The former possibility together with (6.3) contradicts PL, # L, P whilst the latter is unten-
able by (6.1) (i) and Lemma 3.3(i). Thus there iS N0 «-invariant Sylow subgroup W of L
for which WL, # L; W and so, by Theorem 5.1, LL, is a soluble subgroup of G. Since we
also have G = (LL;)( L, Ly L)) , the lemma is proved.

Lemma 6.2. At least two of L,, L, and L, permute.

Proof. We suppose the lemma is false and deduce a contradiction. As %; is nilpotent for all
i€ A,wehave L, = L3 = Ly, = 1. Theorem 4.3 is available and s0 we may assume that

L1: Llr‘L?.: LZ‘, and L3 = L3,.
By 1(2.3) (ix) we have

S(my,my) = {LINLI(LI),LZ},ﬁ(ﬂl,wﬁ ={L,,L3N;, (L3)} and

6.4
(64 M (my,m3) = {1, Ny (Ly), Ly ).
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Let T denote the a-invariant Sylow 2-subgroup of G. By 1(2.24) T is not contained in
G,, G nor G . Therefore 2 ¢ m U my U my,and 0 T must be of type A . By Lemma
4.1 T must permute with at least two of L,, L, and Ly . Therefore there are, essentially, two
cases to examine:

Case 1. T permutes with L, and L, but does not permute with L, ; and
Case 2. T permutes with L, L, and L.

Casel. AsL;= Lyand TL, # LT, it follows that T,,T, < Np(L,) and, further-

o' T

more, that [T, L;]1= 1 because [ Np( L,), p7]1< Cr(L,) by 1(2.3)(x) and 1(2.11). Since
(Tpo, L3l =1and Ly Ly # LsL,, this implics T,, = 1, and O TL, admits po fixed-
point-freely. Hence L, = N, (T)O, (TL,) by 1(2.10) (i). Now [T,0] < O,(TL,),
[T, a1 A TL, and [T, 01 #1, 20 0, (TLy) < P, (Ly) = 1 by (6.4). Thus L, =
N, (T).

Since Cp(Ly)#1and TL G,, [ Np(Ly), 7] # 1, and because [T, 71< 0, (TL,),
wemayinferthat O, (TL;) < (1)) = 1, by (6.4). S Ly =N, (J(T))C,, (Z(T))

by 1(2.6). Now a further appea to (6.4) gives L; < NL3 ( L,), which disposes of case 1.

Case 2. As1 #[T, p1<0, (TL,) and [T, p] < TL, , we conclude using (6.4) that
Ovn (TL) = 1. Likewise, for i € A, we obtain O, ( TL,) = 1 and hence L; = N, (J(T))
C(Z(T)) by 1(2.6). We claim that for eachi € A N, (J(T) #1#C(Z(T)). For
suppose, say, that Cy, (Z(M) =1 Then L, = N, (JT)) . The shape of (7, n3)
gives Ny, (J(T)) = 1, whence L, = C,,(Z(T)).Now the shape of Z (,, ;) implies
CLZ(Z(T)) = 1. Therefore L, = NL2 (J(T)) and 0 L, L, = L, L, , acontradiction.
Hence C;, (Z(T)) #1, and asimilar argument shows N, (J(T)) # 1, as claimed.

From N, (J(T))# 1#C; (4(T))fori =1,2, (6.4) dictates that L,= N;_(J(T))
C,, (Z(M) < N, (L) . This finishes case 2 and the proof of the lemma.

Theorem 6.3. With a possible re-orderingof1,2,3 , either
(i) G=(LL, L3 L,) L, with LL, Ly L,3 a soluble Hall subgroup, or
(ii) G= (LL,)( L, Ly L,) with LL, and L, L, L, both soluble Hall subgroups.

Proof. Recall that L is a soluble Hall subgroup by Theorem 5.1 and that, if L,; #1(i,] €

A, i#j),then L # L;;.
We break the proof into two parts depending on whcther or not all of [, , Ly and Lo,
are trivial. First suppose that, say, L, #1 . Clearly thcn %, £, = %, %, . Suppose P
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is an cu-invariant Sylow subgroup of L which permutes with L,; . Since %, and %, are
nilpotent and O, (PL,;) # 1, it follows that P permutes with #, and %, . On the other
hand, if Q is an cr-invariant Sylow subgroup of L which does not permute with L, , then
Z(Q) £ Q,, by Lemma 3.2 and hence Q¥ = £, Q. Let L* (respectively L~) denote
the group generated by those cr-invariant Sylow subgroups of L which permute (respectively
do not permute) with L,, . Then G = (&£,%,L*)(L~%)) with &, Z,L* and L~ %,
soluble Hall subgroups of G. Since G contains no non-trivial proper «-invariant normal
subgroups, Ly, = L3 = 1 whence G = (LyLyLyL*)(L™Ly). Iftheconclusionof
the theorem were false there would exist an cr-invariant Sylow subgroup P of L[* such that
PL,# L, P andan o -invariant Sylow subgroup Q of L= such that QZ, # L,; Q . However
PL,, =L, P and QL, = L, Q, a configuration which is impossible by Lemma 4.5.

Now we consider the case Ly, = Lj3 = Ly = 1. By Lemma 6.2 we may assume
that L,L; = L3L,. Inview of Lemma 6.1, we may suppose for each a-invariant Sy-
low subgroup P of L that P permutes with at least two of L, , L, and Ly . Therefore
G = (L, Ly L) (L-L,) where L* (respectively L~ ) are the subgroups of-L generated by
those o-invariant Sylow subgroups of L which permute with L, and L, , (respectively L, ).
Again, if the theorem does not hold then it is possible to select o -invariant Sylow subgroups
P and Q of (respectively) L* and L~ suchthat PL, # L, P and, say, QL, # L,Q . Since
PL, = L,P and QL, = L, Q, Theorem 4.4 denies the credibility of this situation. There-
fore, in this case also, either G = (L, L;L)L; orG= (L,L;)(LL,).

7. MORE ON FACTORIZATIONS

In this, the final section, we examine the possible factorizations of G as predicted by Theorem
6.3. We begin with a hypothesis.

Hypothesis 7.1. (i) G = K&, where i € A
(i) K is an a-invariant soluble subgroup of G with n( K) N #; = ¢.

Theorem 7.2. Hypothesis 7.1 does not hold.

Proof. We show that Hypothesis 7.1 leads to a contradiction. Without loss of generality we
teke i = 1. Clearly we must have %, # 1. Put K = N, ( .%,) . Because G contains no
non-trivial proper o - invariant normal subgroups and G = K%', , &, cannot normalize any
non-rivia o -invariant subgroups stet of K. Thus, if H is a proper q-invariant subgroup of
G containing &, then H < Ng(£,) by 1(213).  we have shown that

7.1 (i) Ng(<£,) isthe unique maximal « -invariant subgroup of G containing %, ;

(i) Ny(Z,)=KZ withk <K, .
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Since [K,,, %] =1 by I(3.13)(iii), (7.1)(i) implies

or’

(7.2) o7 acts fixed-point-freely upon K .
(73)  Let p € m(K) and let P be the a-invariant Sylow p-subgroupof K . Then P £ K .

For suppose P < K. Then we must have O, (K)=1 3 P=PP by (72) and
1(2.10) (iii). Since P = P, by (7.1)Gii) and P € Syl,G, 1(6.1) and 1(6.4) combine to yield a

contradiction. Thus P £ K, as asserted.
We now come to the heart of the proof of the theorem, namely that of showing

(7.4 K, K. <K.

First we note some easy reductions. Since [K_, L,] = [K,, L;;]1= 1, if we have
Ly, #14# L3, then (7.1)() yields (7.4). S, without loss of generdlity, we may assume L, =
1.If L; =1, then &, = Lyand 0 [F,, K,] = 1, whichimplies K, = 1 by (7.1) (ii).
Then K is nilpotent by 1(2.2) (i), whence, by 1(2.5), G is soluble, a contradiction. Therefore,
in proving (7.4), we may suppose £’y = Ly L with L; # 1 .

Before proceeding further it is convenient to rule out a particular Situation.

(7.5) Ly #1Ly,
Suppose L; = L were to hold. Then by 1(6.4).

(7.6) Every proper a -invariant subgroup of G has a norma p-complement for each p € , .

Hence =, = {2} by Thompson's normal p-complement theorem. From 1(2.1)(v) we see

that L, normalizes K . Hence

(Cr(Lp)BE = (CpLy)) K <K,

and hence Cx (Ly3) = 1 by (7.1)(i). Now L3 # Twould yield 1# K_< Cg(Ly3) and 0
we deduce that Ly; = 1. Thus %, = L, and clearly, K = 1.

Foreach p € n(K) , by (7.3), PL, # L, P where P is the ainvariant Sylow p-subgroup
of K. It then follows easily that if at least one of P, and P, is non-trivial, then L} <
NL, (P) .Hence L} < Nj, (LL, Ly) . Because LL, Ly #1and LL, Ly <K by [(2.8) and
(7.2), (7.6) then yields that L} < Ny, (K) . From (7.2) G, = Ly and thus we have verified
all the hypotheses of 1(6.2) with v = or. As a consequence G has a normal 2-complement,
which is impossible. Therefore L; # L; holds
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(1.7) If L #1, then (7.4) holds.
We begin by establishing

(7.8) () L, does not permute with any (non-trivial) ainvariant Sylow p-subgroups
of K of type A ; and
(i) L, L;#L;L,fori=1,2 (provided L, # 1).

If Lj; = 1, then (7.8) follows immediately from (7.3). ® while proving (7.8) we may

suppose L3 # 1. Let P be a (non-trivial) «-invariant Sylow p-subgroup of K of type A .
Suppose PL, = L3 P weretohold. ByI(2.8)and1(6.1), Ly; £ G, andso O, (PLy3)# 1

by 1(4.5). Consequently P < K by (7.1) (i), contrary to (7.3). Hence PL, # L,; P. From

Lemma3.2 4 (p,m3) = {L3Np(Ly3), P} with Cp(Ly3) # 1. Clearly Np(Lys) < K <
K,. Thus P = P, by 1(23) (v). Now, if it were the case that PL, = L, P, then I(2.3)(ix)
would yield L; 9 L, P whence P < K, against (7.3). Hence PL, # L, P holds and we
have proved (7.8) (i).

We now prove (ii). Since L; # 1, (7.3) forces L, = 1. Thus we only need show
LyL,#L,L, Supppose L; L, = L, L, were to hold. Then (7.3) implies O,(L,L)=1
andso L, = Ll, by 1(2.13)(i). Since L# 1 by hypothesis we may choose P to bea (non-
trivial) « -invariant Sylow p-subgroup of K of type A . By part (i), L, P# PL, . Consulting
Lemma 3.3 and using 1(2.3) (x) yields first Cp(L,) # 1, and then Z(P) < P,. However
(L3, P,]=1and consequently PL, = L3 P. So P#, =%, P, contrary to (7.3). From
this contradiction we deduce that L, L, # L, L, . The proof of (7.8) is complete.

(7.9 Z(Ll)#Z(Ll)cr

Suppose Z( L,) = Z( L,),, were to hold and let P be an a-invariant Sylow p-subgroup
of L,p € m(L). By 1(2.3) (xi) [Np(L,),Z(L,)] = 1. From (7.8) (i) PL, # L, P and
0, by Lemma 3.3, either L} < N, (P) or P, P, < Np(L,) . Consequently Z(L,) <
Ny, (P) ; thisis clear in the first case and in the latter case follows from [ Np(L,), Z(L)] =
1 4 Np(L;). Therefore Z(L;) < Ng(L) . A similar argument shows that Z(L,) <
Ng( L, Ly) and 0

Z(L;) < Ng(LL,Ly).

Recalling that 1 # LL, Ly g K we see that (K, Z( L)) is a proper c-invariant subgroup

of G.Now
14 Z(LI)G = Z(L1)K <(K,Z(L,)),

a contradiction. Thus we must have Z( L,) # Z( L,),,.

We are moving closer to verifying (7.7).



132 Peter Rowley

(7.10) Let P € n(L) and let P be the a-invariant Sylow p-subgroup of L. Then P,, P, <
Np(Ly) < K.

We only need show that P,, P, < Np(L,), since Np(L,) < K.If P,, P, £ Np(L,),
then by Lemma 3.4(i) (c) and (d) either Z( L,) = Z( L,),, or L, = L, . By (7.5) and (7.9)
neither of these possibilities can occur. Thus P, P, < Np( L)) .

(7.11) L, <K.

Suppose (7.11) is false. Then L, # 1 andso L,L,# L, L, . Since Ng(L;) < I~(,L2r £
N, (Ly) and L < N (L,).LetP be some fixed o -invariant Sylow p-subgroup of
L,p € n(L) . By (7.8)(i) and (7.10) PL, # L, P with P,, P, < Np(L,) . Hence

(7.12) gDL,(P) =N, (P)< L, .

by Lemma 34(ii)(c) and (f).
It is clamed that

(7.13) (i) Cp(Ly) = 1; and
(i) Li=1L,.

Clearly (i) implies (ii) by 1(2.1 1), s0 we only need prove (i).
Suppose C’L, (L,) # 1 and argue for a contradiction. Hence Z( L,) < N, (L) and then
Z(Ly) £ L. Using 1(2.3)(x) we then obtain
[[NP(LI);U])Z(LI)] = ]

Because P, P, < Np(L;) < K< K,,wehave [Np(L;),0]# 1. Therefore, either

Z(L) <P, (P) <Ly or

Cp([Np(Ll);U]) < Np(Lx) < Pp~

By (7.9) only the latter can hold. Then P = P, by 1(2.3)(v), whence .@Ll (P) =1
If O,Z(PLZ)# 1, then since NG(O,,Z(PLZ)) > P, C; (L,), we obtain

1#C, (L) <Py (P) = 1.



Finite groups admitting a fixed-point-free automorphism of order rst 133

Hence O, (PL,) = 1. Since P = P, 1(2.3)(ix) forces L, = L, . But then N} ( L,) 4
L,N, (L) and N, (L,)# 1imply L, L, = L, L, . This contradicts (7.8)(ii) and so veri-
fies (7.13).

(7.14) Li#L,

Suppose L, = Ll, were 10 hold. Then P, P, < Np( L,) < B, yields, using 1(2.3)(x),
Z(P) < P,. But[P,, Ly3} = 1 then implies that PL,3 = Ly; P. From P = P, we see that

L3 QL;;P. SinceP ¢ K by (7.3), we conclude that L3 = 1. Hence &, = L, < G, .
Now [(2.3) (ix) gives [G, 0] < K# G. But G does not have any non-trivial proper a-
invariant normal subgroups and therefore L, # L1,~

Since P, < Np(L,),
Ly - LGy (P,)

by (7.13) and 1(2.14)(ii). Because &, (P) < Ly and Ly # L, by (7.14), we see that
Cy,(P,) £ %, (P). Consequently

(7.15) Z(P),= 1 and Z(P) < Np(L,) < K.

Because K, = 1and L3,y = L, ,[P,,L,]1 = l,andso P, < Cg(L;). Hencesince

P, < Np(Ly) s
[NLl(LZ):P-r] S CG(Lz) ﬂLl = CLl(LZ)‘

Thus[ Ny, (L), P =1by (7.13)(). If Z(P) # 1, then
L, < Ny (Ly) <P, (P).

However, we already have P,, P, < Np(L,) and 0 L, £ %, (P) by Lemma 3.3(i).
Therefore Z(P), = 1 and hente, appealing to (7.15), Z( P)(’”) =1. By 1(2.8) and 1(2.9),
since K, = 1, we se¢ that

Z(P) < O,(K) and [Z(P),Ng(P)] =1
Hence, since K has Fitting length at most two, Z(P) < Z(K) . Consequently, by (7.15),

we have
1#Z(P)C = 2(P)®1 < Ny(Z,)#G,
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which is not possible. With this contradiction we have established (7.11).

By a similar argument (and noting that L3 # 1 implies Ly; = 1) to the one used to prove
(7.11) we also obtain

(7.16) L, < k.
Combining (7.10), (7.11) and (7.16) yields (7.7).
(7.17) If L= 1, then (7.4) holds.
By 1(2.5) K isnot nilpotent, and O L, # 1 # L, . Because L3 # 1 implies L, = 1 by

(7.3), we also have &, = L, . In order to show (7.4) holds, because of the symmetry of the
arguments, we must show that the two possibilities

Ly, <Ny (Ly), Ly, <N, (L) and
Ly <Ny (Ly), L, <Ny (L)
cannot oceur.

Case 1. le S NLI(L3)’L1, S NLI(LZ)'

By (7.5) L, # L, and SO we may assume that, say, Ly £Ly,.ThenCp (L) # 1
by 1(2.13). Hence Z(L,) < N, (L) ad 0 Z( L) = Z(L,),. But then Z(L,) <
Ly, < Ny, (Ly) . Therefore Z(L;) < Ng(LyLs) . Since 1# L, Ly A K, (Z(Ly), K)# G,
and 0 Z( L)€ isa non-trivial proper ¢ -invariant normal subgroup of G . Consequently
Ly < Ny (Ly),L; < Np (Ly) cannot hold.

Case2. Ly < Ny (Ly),Ly <N (Ly).
Suppose for the moment that L, < L, . So Ly = L, and by I(2.3)(ix), Ly # L, . By

1(2.14) (ii)
I - EYCH (9]

Clearly Cy, (Ly) £ Ly, . Soif Cp (L) < NL, (Ly) , 1(5.6) forces the contradiction.

1#L, <N, (L) =1
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Thus CL,(Lz,) £ NL,(Lz) and consequently Z(L,), = 1 and Z(L,) < NL,(Ll) . Since
K, - 1and Z(Lz)(ﬂ) = Z(L,), =1,1(28) and (29) yield Z( L,) < K . Hence

Z(L,)% = Z(Ly)" < Ng(Ly),

an untenable situation from which we conclude Ly £ L, .

From L, £ L, , wededuce Gy, (L3) # 1 whence Z(L;) < Ny, (L3) with Z(L,) <
L, . We now aim to show that Ly = Ly . Suppose Ly # L3 . Then 1 # [ L3, 0]1<0, (L, L3).
Because I,_< N, ( L) . 1(23) (vii) gives

O,,(LyL3), Ly < Ng([Ls,0)).

Hence either O,, ( L, L3) < Ny, (L) or Ly < Ny, ( L,) . The former possibility implies,
using 1(2.13)(i), that
L2 = O,,rz(I/2L3)L2r S NLZ(LI)’

contradicting L; L, # L, L, . Thuswe have L, <N, (L) ,and 0 L; <N, (L,L,) .
Because K, L; < Np(L;L3) # G we conclude that Z(L,), = 1. But then o acts fixed-
point-freely upon Z(LI)NLz(Llj »whence [Z(L,), N, _(L;)] = 1. Because N (L1)#1,
thisyields Z(L,) < N, (Ly). Hence Z(L,) < Ny, (L, Ls), and then G contains a non-
trivial proper «-invariant normal subgroup. Therefore we must have L, = Ly . Recalling
that Z( L) = Z(L), < Ny ( L,), thisgives Z( L)) = Z( L,),,, which is not possible by
(7.9).

This completes the analysis of Case 2 and the proof of (7.17).

Combining (7.7) and (7.17) establishes (7.4).

Using (7.4) we readily complete the proof of Theorem 7.2. Let P be an arbitrary o-
invariant Sylow p-subgroup of K . Since K has Fitting length a most two, K = Ng( P) 0,
(K) by a Frattini argument. Set M = O,,(K) . From 1(2.14) (i), I(3.8) and (7.4)

oT?

[P, M] = [Py, M] < K < Ne(2)).
Now [P, M14 K and thus, as G contains no non-trivial proper «-invariant normal sub-
groups, [P, M] = 1. Hence P 4 K and < we deduce that K is nilpotent. By 1(2.5) this is
not possible and Theorem 7.2 is established.

We now investigate another kind of factorization.
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Hypothesis 7.3. G = (LL,) (L, L3 Ly ) with LL, and L, L4 Ly; soluble Hall subgroups
of G.

Let L* (respectively L—) be the subgroup of L generated by the cu-invariant Sylow
subgroups of L which permute with both L, and L (rcspectivcly do not permute with both
L, and Ly). Clealy L = L* L~ and L* N L~ = 1. Before considering Theorem 7.6, the
last major result of this paper, we prove two preliminary lemmas,

Lemma 7.4. Assume Hypothesis 7.3 holds, and let P be a (non-trivial) cu-invariant Sylow
p-subgroup of L~ . Then P permutes with one of L, and L, .

Proof. Suppose PL,# L, P and PL, # L, P, and arguc for a contradiction. So, by Lemma
4.6, P,,P, < Np( Ly)and F,, P, < Np(Ls) , and, appealing to 1(4.5),

prrT

1# R= 0,(LL;) NZ(P) < Np(LyLs).

If Ng(Z(P)))= PC4(Z(J(P))),then,as Z(P) < Z(J(P)), R< Z(LL,). Now
L, Ly# 1 by Theorcm 7.2 and 0 (R, L, Ly L) < Ng( L, L,) # G. Then R€ is a non-
trivial proper a-invariant normal subgroup of G. Consequently, from Lemma 4.6(iv), we
have J(P) contained in at least onc of Np(L,) and Np(L,) .

Set § = R, Using 1(2.6) we see that § < Z(J(P))). If J(P) < Np( L) N
Np( Ly), then clearly § < N( L, Ly) # G. sowehave G = Ng( S) Ng( L, L3) which
implies that S€ is a non-trivia proper « -invariant normal subgroup of G . 9 to complete
the proof of the lemma we have, without loss of gcnerality, to dispose of the case when

(7.18) J(P) < Np(L,) and J(P) £ Np(L3).

Suppose (7.18) holds. If L,; # 1, then it is straightforward to show that PLy, # L,y P
and (hence) Np( L,) = Np(L,) = Np(Lj),which contradicts (7.18). Therefore L, = 1.
Since J(P) < Np( L;) ,

J(P) = Cypy(Ly)J(P),

by (1.(2.13) (i). Because P, < Np( L3) and J(P) £ Np( Ly), Cp( L) £ Np( Ly). Thus
O,,( Ly Ly)=1. Then I(213) gives

(719) Lz = LZ, and L3 g L2 L3 .

Since Cp( J(P)) <JP) < Np( L) and P is not star-covred by Lemma 4.6(iii), 1(2.3)(v)
implies[ Np( L,), 7] # 1. S, udng (7.19), we have

(7.20) 1#{NP(L2),T] < Cp(L,).
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Clearly, from (7.19), Np( L) < Np(L,) . Hence, by 1(2.11), and (7.20),
[Np(L3),7] € Cp(Ls) N Cp(Ly) < Cp(L,Ly).

Because G = (LL ;) (L, Ly ) and G contains no non-trivial proper « -invariant norma sub-
groups, we deduce that [ Np( L,), 7] = 1. Consequently

From Lemma 4.6 Z(P) < Z( PL,) N Ng( L, L3) and sO we observe that L# P. Let
Q be an a-invariant Sylow g-subgroup of L where g € n(L) \{p} ; the existence of Q
provides some useful leverage. First we prove

(7.22) (i) QL, #L,Q with Q, Q- < NQ(LZ);
(i) Q=Q,; and
(i) QLs = LsQ.

Suppose Q L, = L,Q. Then applying I(5.8) ) with L =Q, M = P and N = L,
yields, since P* < Np(l,) . that O, (QL,) = 1. However L, = L, and L, == 1, then
force Q = Q,,, which is not possible. Therefore QL, # L, Q , and because L, = L, we
must have Q ), Q, < No(L,) . This proves (i).

From (7.21) and 1(4.5), [P, 7] < O,( LL)) . Hence, (7.20) forces O,( LL) < Ny( L,) -
Consequently Q = @Q, by 1(4.6) and Lemma 3.4(ii)(d), and we have (ii). Part (iii) follows
from (ii), using Lemmas 3.3 and 3.4(i)(f).

From Q = &, , we have @, <[Q, 7]. Hence L, = L, and (7.22) (i) imply that
Q, < Co(Ly) . Since [Q,7] £ O,(QLs3) , we have

Q, < 0,(QLy) N Co(ln).

Hence
Ng(Q,) 2 0, (QLy), L,.

Note that Ny ( Q) = Ly would imply that Q¢ was a non-trivia proper o-invariant normal
subgroup of G .So

(7.23) N, (Q)#Ls.
By (7.22)(ii) Q = @, and 0

[L3, 0] < O,,(QL3) < NL3(Qp)~'
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Hence Ly = Ny (Q,)Ls, . Now L, normalizes L, by (7.19) and clearly normalizes
Ny, (Q) and since L, = 1 using 1(2.3) (x) we deduce that

Ly= Np (Q)Cp,(Ly).

In particular, C;, ( L,) # 1 by (7.23).
Now Ng(Lj) > CL,(Lz)sNP(Lz) and so, because of (7.18) Np(L,) £ Np(Lj3) ,we
have
Cp, (L) L&, (P) =N, (P)

with CL,( L,)normaizing Np( Ly ) . Since P* < Np( L,) by (7.21), 1(2.14)(ii) gives

P = Np(Ly)Cp(Cp,(L3))-
But Cy,,(L;) # 1 impliesthat Cp(Cy, (L)) < Np(L,) , contradicting PL, # L, P.Thus
we have shown that (7.18) is untenable and o the proof of the lemma is complete.

Lemma 7.5. Assume Hypothesis 7.3 holds. Then one of L-L, and L-L, is a soluble Hall
subgroup of G .

Proof. If the lemma were false, then there would exist o -invariant Sylow p - and g -subgroups
P and Q of L~ (with p# ¢) such that

PL,#L,P and QL,#L,Q.

Then, by Lemma 7.4, PL, = LyPand QL, = L, Q. Such aconfiguration, since PQ = QP
by Hypothesis 7.3, is not possible by Theorem 4.4. This proves the lemma.

Theorem 7.6. Hypothesis 7.3 does not hold.

Proof, We suppose Hypothesis 7.3 pertains and seek a contradiction. For Theorem 7.2 we
deduce

(7.24) L,#1#L; and L#1.

Lemma 7.5 yields, without loss of generdlity, that L-L, is a soluble Hal subgroup of G and
therefore LL, is a soluble Hall subgroup of G. Consequently, appealing to Theorem 7.2
again, we have

(7.25) LyL,#L,L,.

From the definition of L~ we aso note that
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(7.26) PLy # Ly P for all (non-trivid) cu-invariant Sylow p-subgroups of L~ .
(7.27) If P isan cr-invariant Sylow p-subgroup of L , then P is star-covered.

Suppose P is not star-covered. Then O,(LLy) # 1 and, of course, D = Z(P)N
O,(LL) # 1 with, by 12.6), D*!1 < Z(J(P)) . First we consider the case when P < L*.
If P permutes with Ly, , then O, ( LL,)¢ would be a non-trivid proper cu-invariant nor-
mal subgroup of G. SO PL,; # Ly P and, by Lemma 3.2, P5( L) = Np(L,) with
[Ly, P= 1. If Z(J(P)),# 1, then D1 < Z(J(P)) < Ng(Ly). Since G =
(LLy)(LyL3Ly) = Ng( DXl1)Ng(L,,) , this is not possible. Whereas z( J(P)), = 1
yields, using 1(2.6), LL, = C;;, (D) L,. Then, since Z(P) ,G, < Ng(L,) , we ob-
tain G = Ng( Ly3)Cg( D) with D < Ng(L,) , again an impossible situation. Thus we
conclude that P < L~. Since P permutes with L, and L, but not L, and, by (7.25),
L, Ly # Ly L, , Lemma 4.7 implies that Np( L3) # 1. Hence P, P, < Np( L3) by Lemma
3.4 (i)(@) and then O, (L, L,) =1 by 1(5.8)(f). SO L3 < L, L5 L,; . Then, because G =

( LLy)Ng( Ls), Z(J(P)) £ Ng( Ly) . Therefore P, # 1 by Lemma 4.7. Recalling that
[P, LyL] =1, On, (L, Ly) = Limplies that Ng( L;) contains a non-trivia cr-invariant
normal w( L, Ly L) -subgroup. Such a configuration cannot occur and so we have shown

that P must be star-covered.

(7.28) (i) 1f Lyy#1,then PL,;# L,y P for each non-trivial o -invariant Sylow sub-
group P of L—.
(iiy For each «-invariant Sylow subgroup P-of L*, PLy3 = Ly P.
(i) Let Pbeasin (i), and suppose PL, = Ly P . By 1(2.8) and 1(6.1) L33 # Lys and
hence O, (PLy)# 1 by I(4.5). But then PL, = Ly P, contradicting (7.26). Therefore

PLy#LyP.

(ii) Suppose PL, # Ly P. By (7.27) P is star-covered, and SO Np( L) < P, or P,
by Lemma 3.2 and I(2.3)(viii). Hence P = P, or P, by I(2.3) (v). But then one of L, < PL,
and L, 4 PL, must hold, which forces PL, = L,, P, a contradiction. This proves (ii).

(7.29) L™ #1

For L~ = 1impliesthat L = L* whence, using (7.28)(ii), LL, L+ L, is asoluble Hall
subgroup and G = L; (LL, LsL,) . Theorem 7.2 rules out this situation, and 0 L~ # 1.
We now explore the consequences of (7.26).

(7.30) Let p bea(non-trivial) cu-invariant Sylow p-subgroup of L—. Then P,F, <
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Suppose (7.30) were false and argue for a contradiction. Then L3 < N, ( P) by (7.26)
and Lemma 3.3. If Z(P) < P, were to hold, then I(2.3) (xi) yields Z(P) < &p( Ly) = L.
So Z(P) £ F,, and hence Lemma 3.2 implies PL,, = L,; P. Therefore Ly; = 1 by
(7.28)(i).

Now let Q be an arbitrary non-trivial e-invariant Sylow subgroup of L~ (s0 Q Ly # L3 Q)
and suppose Q,, Q, < Ng( L3) . Since Q is star-covered by (7.27), Lemma 3.4 (ii)(e)
implies Q = Q,. Thus . (g, m) = {Q, NQ( L,) Ly}. From Lemma 3.4(i)(c) and (d) either
Z(L3) = Z(L3),, or L3P = Ly . Then [ Z( Ly), No( L3)] = 1 by 1(6.4) which contradicts
the shape of .# (g, m,)) . Thus Q,Q, < No(L;) cannothold and so L3 < Ny (Q).

Because L;< N, (P), P, =1 by Lemma3.4(i)(b) and O [ P,, L,] = 1 by I(3.6)(ii).
The shape of % (p, 7,) then dictates that O, ( L, L;) = 1. Hence

(7.31) Ly= L.

Since 0, (L, L3) =1, clearly L3p # L, by 1(6.4) and therefore, using Lemma 3.4(i)(c) and
(d) we obtain- Z( L) = Z( L3)Wg N,,,(Q) for each cu-invariant Sylow subgroup Q of
L~ . Hence

(7.32) Z(L3) = Z(L3),s < N, (L7).

We now demonstrate that L3 < L, Ly L* . By 1(2.13) this will follows if we could show that
J = Oy(LyLsL*) = 1. Because O, (L,L,) =1 we have J < L*, and hence JC =
JIID < L. Thus J = 1.

It Z(L;) <Ny, (L), then, together with (7.32), we would have Z(L,) < Ng( L, L).
Since

G= (L1L)(L2L3) = (LxL—)(L2L3L+) = (LIL-)NG(Z(LQ)
this-yields that Z( Ly ) G isa non-trivial proper a-invariant normal subgroup of G. Therefore
Z(L3) £ N (Ly) .

Now we show that Z( Ly) £ N, (L) leads to a contradiction. Suppose L; L, #L,L,.
By (7.32) Ly { Ny (L,),andso L, < Ny (L3).But Z(L,) = Z(L3)po,NL1(L3)7é1
and (2.3) (xi) force Z(L3) <N, (L,). Consequently Ly Ly=Ly L, . Since [Py, L;]1=1
(because P,, = 1) and ./ (p,m3) = {Ly, N, (P) P}, O, (L1 Ly) = 1 whence L, = L, .
However L, = L, by (7.31) and 90 L, L, = L,L,, against (7.25). Thisis the desired
contradiction that establishes (7.30).

Combining (7.27), (7.30) and Lemma 3.4(ii)(e) gives
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(7.33) (i) L~ <G,.
() A (p,m;)={P, Ny, (P) L4} for each cr-invariant Sylow p-subgroup P
of L.
In deducing the final contradiction we shall need the following observation

(7.34) Ly #L3# L.

Let P be anon-trivial a-invariant Sylow p-subgroup of L=. From (7.30) and (7.33)
P=P,P,P, < Ny(Ly)and P, =1 S( PL),= 1= (PL,), and therefore
[P, L] =1=[F,,L,].

Suppose L; = Ly, holds. Then [ P,, L] = 1 by 1(23)(x). Recalling that [P, L,]1= 1
by Lemma 3.2, we then have that P, centralizes L, L3 L3 , which is not possible. Now
we consider the possibility L, = I{; . Then [P, L] =1 This implies PL, = L, P.

For PL, # Ly P implies Z(P) < P,,, Which contradicts PL, # L, P. Hence L,, =1 by
(7.28) (i) and 0 P, centralizes L, Ly Ly3 = L, Ly , which is not possible. This proves (7.34).

(7.35) A contradiction.

Let P be afixed (non-trivial) e-invariant Sylow p-subgroup of L~ . Since P = P, by
(7.33)(1), I2.3) (ix) and 1(2.13) imply

Ng([Ly,7]) 2 P,0, (L, Ly).

If [Ly, 7141, then (7.33)(ii) forces O, (L, L;) = 1. But then L; = L ,against (7.34).
Therefore

(736) Lz = L2'.

Clearly (PL,),, = 1and 0, since P,, P, < Np( L3), IG.8)(f) (With L = Ly, M =
P,N = L,) gives O, (L,L3) =1 We may now argue as earlier to obtain L, L,;

Ly Ly Ly LY . Hence
(7.37) Ly QL,LyLy LY.

If Ly Ly= Ly L3 | then, as Lj # Ly, by (7.34). O, (L3 L) # 1 whence Ly Lys = Ly L .
Therefore using (7.33) (i) and (7.36)

G= (L1L3L23L+)(L_L2) = (LyL3 Ly L")G,.
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This cannot happen since L, Ly Ly, L* is a soluble subgroup, and so we infer that
LyLy# Ly Ly . Hence either Ly <N, (Ls)or Ly < Ny (L)

Suppose Ly, <Ny, ( L,) holds. Then, by (7.30),

(L7Ly),, (L7 L), < Ng(Ly).
Now L-L, admits po fixed-point-freely and so, since
G= (LyL3 Ly L*)(L7™Ly) = Ng(Ly)(L™Ly)
by (7.37), the argument used a the conclusion of the proof of Theorem 7.2 will prove that
LTL, is nilpotent. Since [P,, L,] = 1 because (PLy),, = 1), we obtain L,, L, <
Ce( B, , which contradicts (7.25). S L; £ Ny, (L)

It only remains to consider the case Ly, <Ny (L)) If Cp (L) # 1, then (7.33) (i)
forces O, (PL,) = 1. Therefore, as (PLy),, = 1, [} = Lj(,sy = Ly . Hence Z( L;) <
Ly by 1(2.3)(x) and I(5.1)(b). But then [ Z( L), Np( L3)] = 1 by 1(2.3)(xi) which is
contrary to the form of .#(p,m). Thus C (L) =1, and Ny (L)) <Ly 3
by (7.34), L} = L3p #Ls. Since P, < Np(Ly), Ly = L3PCL3(PP) by 1(2.14)(i). Since,
C.,(P,) # 1, using (7.33)(ii) we deduce that Z(P) < Np( L;) and Z(P), = 1. Because
(PLl)pU= |,.wehave L, = NLl(Z(P))O,,l(PLI) andso,as Z(P),= 1, [Z(P),L,] =
1. Therefore Z(P) < Np(Ly) N Np(Ls) and s0 Z(P) normalizes Ny (Ly)(> Ls ).
Since Ly # Ny, (L;), T(2.14) (i) and % (p, m) dive Z(P) < F,.

Now K = L-L, admits po fixed-point-freely and 0 K = Ng( P) O, ( K) . Combining
Z(P) < P, and 1(2.3) (xi) gives [Z(P), Nx( P)]= 1. By (7.30) Plyy < Np( L) # P,
thence Op( K) # 1. Therefore

14D = Z(P) NO,(K) < Ng(Ly) N Z(K)
Consequently, using (7.37),
G = (LL))(LyL3Ly) = KNg(Ly) = Ce(D)Ng(Lsy),

which is not possible.
This verifies (7.35) and completes the proof of Theorem 7.6.

Taken together Theorem 6.3, 7.2 and 7.6 show that G cannot exist, S proving the main
theorem of this paper.



Finite groups admitting a fixed-point-free automorphism of order rst 143

REFERENCES

[11Z. ArRAD, G. GLAUBERMAN, A characteristic subgroup of odd order , Pecific J. Math. 56 (1975). pp. 305-319.

[2] W. FEIT, J.G. THOMPSON, Solvability of groups of odd order, Pacific J. Math. 13 (1963), pp. 775-1029.

[3] D. GORENSTEN, Finite groups. Harper and Row, 1968.

[4] PJ. RowLev, Finitt groups which admit a fixed-point-free automorphism of order rs¢, PhD. Thesis, Unive-
sity of Warwick, 1975.

[51P.J. ROWLEY, Solubiiity of finite groups admitting a fixed-point-free aufomorphism of order rst [ , Padfic J
Math. 93 (1981), pp. 201-235.

[6] P.J. RowLEY, Solubility of finite groups admitting a fixed-point-free aufomorphism of order rst IT, ) Algebra
83 (1983). pp. 293-348.

[71P.J. RowLEY, Solubility of finite groups admitting a fixed-point-free automorphism of order rst Ill , 152el
Journal of Mathematics 51 (1985), pp. 125-150.

[8] P.J. RowLEY, Solubility of finite groups admitting a fixed-point-free automorphism of oder rst IV, Mathema-
tische Zeitschrift 186 (1984). pp. 435-464.

Received November 24.1988.
Peter Rowley

UMIST

P.O. Box 88

Manchester M60 1QD
England



