FINITE GROUPS ADMITTING A FIXED-POINT-FREE AUTOMORPHISM OF ORDER rst

PETER ROWLEY

1. INTRODUCTION

Here we present a proof of the following

Theorem. Lei G be a finite group admitting a jixed-point-fre coprirne automorphism of order $r s t$, where r, s and t are distinct primes and $r s t$ is a non-Fermat number. Then \mathbf{G} is soluble.
(A non-Fermat number is a positive integer which is not divisible by an integer of the form $2 ">1(m \geq 1)$; note that there are infinitely many non-Fermat numbers which are the product of three distinct primes).

The above result appears in the author's thesis [4]. The condition that $r s t$ be a non-Fermat number was removed in subsequent work giving rise to the 'four-headed' hydra [5]-[8], and as a consequence [4] remained unpublished. Unfortunately, the minutia and the proliferazion of subcases in [5]-[8] somewhat obscures the direction of the proof. To have an account which better illustrates the development of these ideas, and also to serve as a guide for those wishing to traverse [5]-[8], is what prompted the present revised version of [4].

The proof of the above theorem proceeds by considering a counterexample G of minimal order (let α denote the accompanying fixed-point-free automorphism) and endeavouring to show that certain α-invariant Hall subgroups of G permute with one another. The inconclusive information obtained in this direction, as evidenced by results in section 3 , forces us to widen our horizons in the shape of linking theorems presented in section 4. Armed with the linking theorems we are able, in section 6, to show that G factorizes (in two possible ways) as a product of two α-invariant soluble Hall subgroups. In the final section these factorizations are analysed and shown to be untenable, which completes the proof of the theorem.

Now a few words on the role of the various intermediate results (for notation refer to section 2). Lemma 4.1, the quintessential linking result, is used frequently. While Theorem 4.3's only purpose is to help in showing that at least two of L_{1}, L_{2} and L_{3} permute (Lemma 6.2). The linking results Theorem 4.4 and Lemma 4.5 are used in conjunction with Theorem 5.1 to produce factorizations of G given in Theorem 6.3, and Theorem 4.4 is used again in Lemma 7.5.

Further discussion of ideas and strategies relevant to this work may be found in sections 1 and 2 of [5].

2. NOTATION

We use [5] as our basis reference and results ($y . x$), Theorem y.x or Lemma y.x of [5] will, for brevity, all be referred to by $I(y \cdot x)$. Below we review a little of the notation from [5]. For further relevant notation and concepts we refer the reader to [5] and for details conceming the Thompson subgroup to [Chapter 8, 3].

For the remainder of this paper G denotes a counterexample of minimal order to the theorem. Thus G admits a fixed-point-freecoprime automorphism, say α, of order rst where rst is a non-Fermat number. So all proper a-invariant subgroups of G are soluble and, by $\mathrm{I}(2.1)$ (i), G possesses no non-trivial proper α-invariant normal subgroups. Hence, appealing to [2], we see that (G, α) satisfies Hypothesis III of [section 2, 5].

We let ρ, cr, τ denote (respectively), $\alpha^{s t}, \alpha^{r t}, \alpha^{r s}$. Sometimes we choose to write $\rho=$ $\alpha_{1}, \sigma=\alpha_{2}$ and $\tau=\alpha_{3}$. Let $\Lambda=\{1,2,3\} \supseteq$ A andlet P bean α-invariant Sylow p subgroup of G. We say P is of type A if $P_{\alpha_{i}} \neq 1$ for $i \in A$ and $P_{\alpha_{i}}=1$ for $i \notin \mathrm{~A}$ (where $\left.P_{\alpha_{i}}=C_{P}\left(\alpha_{i}\right)\right)$. For $i \in \Lambda$ (respectively $\{i, j\} \subseteq \Lambda$), L_{i} (respectively $L_{i j}$) denotes the subgroup of G genemted by the α-invariant Sylow subgroups of type $\Lambda \backslash\{i\}$ (respectively $\Lambda \backslash\{i, \mathrm{j}\})$. Set $\mathscr{C}_{1}=L, L_{12} L_{13}, \mathscr{B}_{2}=L_{2} L_{12} L_{23}$ and $\mathscr{B}_{3}=L_{3} L_{13} L_{23}$. By I(3.13) \mathscr{C}_{1}, L_{i} and $L_{i j}$ are all nilpotent Hall subgroups of G. Thus we have:

$$
\begin{array}{ll}
L_{1_{\rho}}=1, L_{1_{\sigma}} \neq 1 \neq L_{1_{\tau}} & \left(\text { if } L_{1} \neq 1\right) \\
L_{2_{\sigma}}=1, L_{2_{\rho}} \neq 1 \neq L_{2_{\tau}} & \left(\text { if } L_{2} \neq 1\right) \\
L_{3_{\tau}}=1, L_{3_{\rho}} \neq 1 \neq L_{3_{\sigma}} & \left(\text { if } L_{3} \neq 1\right) \\
L_{12_{\tau}} \neq 1, L_{12_{\rho}}=1=L_{12_{\sigma}} & \left(\text { if } L_{12} \neq 1\right) \\
L_{13_{\sigma}} \neq 1, L_{13_{\rho}}=1=L_{13_{\tau}} & \left(\text { if } L_{13} \neq 1\right) \\
L_{23_{\rho}} \neq 1, L_{23_{\sigma}}=1=L_{23_{\gamma}} & \left(\text { if } L_{23} \neq 1\right)
\end{array}
$$

We use L (instead of L_{0} in [5]) to denote the subgroup of G generated by the α-invariant Sylow subgroups of type Λ. For $H \geq \mathrm{G}, H^{G}$ denotes the normal closure of H in G .

In this work, since $r s t$ is a non-Fermat number, we see that $\mathrm{I}(5.3), \mathrm{I}(5.7)$ and $\mathrm{I}(5.8)$ hold without the condition excluding the prime 2 . However, a word of caution: $\mathrm{I}(5.5)$ differs from the above in its reliance upon $\mathrm{I}(2.23)$.

Suppose H is a proper α-invariant subgroup of G, and let X (respectively Y) be α invariant λ-(respectively μ^{-}) subgroups of H. Then $(\mathrm{X}, \mathrm{Y}) \leq H_{\lambda \cup \mu}\left(H_{\pi}\right.$, where π is a set of primes, denotes the unique α-invariant Hall π-subgroup of H). This observation, together with those in $\mathrm{I}(2.21)$, will be used without further mention.

3. THE STRUCTURE OF CERTAIN MAXIMAL α-INVARIANT SUBGROUPS

By I(2.22), if \mathbf{L} and M are (respectively) α-invariant Hall λ - and μ-subgroups of G which do not permute, and $\lambda \cap \mu=\phi$, then $|\mathscr{A}(\lambda, \mu)|=2$. The purpose of this section is to analyse the structure of the subgroups in $\mathscr{A}(\lambda, \mu)$ for various choices of λ and μ.

Lemma3.1. Let $\Lambda=\{i, j, k)$. If $L_{i} L_{j} \neq L_{j} L_{i}$, then $\mathscr{A}\left(\pi_{i}, \pi_{j}\right)=\left\{L_{i} N_{L_{j}}\left(L_{i}\right), L_{j} N_{L_{j}}\left(L_{j}\right)\right\}$ and either $L_{i_{\alpha_{k}}} \leq N_{L_{i}}\left(L_{j}\right)$ or $L_{j_{\alpha_{k}}} \leq N_{L_{j}}\left(L_{i}\right)$. Moreover, $\left[N_{L_{i}}\left(L_{j}\right), \alpha_{j}\right] \leq C_{L_{i}}\left(L_{j}\right)$ and $\left[N_{L_{j}}\left(L_{i}\right), \boldsymbol{\alpha}_{\boldsymbol{i}}\right] \leq C_{L_{j}}\left(L_{i}\right)$.

Proof. By I(2.22) $\mathscr{A}\left(\pi_{i}, \pi_{j}\right)=\left\{L_{i} \mathscr{P}_{L_{j}}\left(L_{i}\right), L_{j} \mathscr{P}_{L_{i}}\left(L_{j}\right)\right\}$. Applying I(5.7) twice gives $\mathscr{P}_{L_{i}}\left(L_{j}\right)=N_{L_{i}}\left(L_{j}\right)$ and $\mathscr{P}_{L_{j}}\left(L_{i}\right)=N_{L_{j}}\left(L_{i}\right)$. Since $L_{i_{\mu_{k}}} L_{j_{\alpha_{k}}}=\left(G_{\alpha_{k}}\right)_{\pi_{i} \cup \pi_{j}}$ is an $\alpha-$ invariant $\left\{\pi_{1} \cup \pi_{2}\right\}$-subgroup, it is clear that either $L_{i_{a_{k}}} \leq N_{L_{i}}\left(L_{j}\right)$ or $L_{j_{\alpha_{k}}} \leq N_{L_{j}}\left(L_{i}\right)$. The remainder of the lemma follows using I(2.11).

Lemma 3.2. Let P be an α-invariant Sylow p-subgroup of G of type Λ, and let $\Lambda=$ $\{i, j, k\}$. If $P L_{i j} \neq L_{i j} P$, then $\mathscr{A}\left(p, \pi_{i j}\right)=\left\{P, L_{i j} N_{P}\left(L_{i j}\right)\right\}$, and $1 \neq P_{\alpha_{k}} \leq C_{P}\left(L_{i j}\right)$ and $\left[N_{P}\left(L_{i j}\right), \alpha_{i} \alpha_{j}\right] \leq C_{P}\left(L_{i j}\right)$. (Hence $Z(P)=Z(P)_{\alpha_{i} \alpha_{j}} \leq N_{P}\left(L_{i j}\right)$.).

Proof. From $\mathrm{I}(3.13)$ (iii) $1 \neq P_{\alpha_{k}} \leq C_{P}\left(L_{i j}\right)$. Thus $\mathscr{P}_{L_{i j}}(P)=1$ by I(5.3) whence $\mathscr{P}_{P}\left(L_{i j}\right)=N_{P}\left(L_{i j}\right)$ by $\mathrm{I}(2.20)$. By $\mathrm{I}(2.21)$ (iv) and $\mathrm{I}(5.1)$ (b) we have $\mathrm{Z}(\mathrm{P})=Z(P)_{\alpha_{i} \alpha_{j}} \leq$ $N_{P}\left(L_{i j}\right)$, and $\left[N_{P}\left(L_{i j}\right), \alpha_{i} \alpha_{j}\right] \leq C_{P}\left(L_{i j}\right)$ by I(2.11).

Lemma 3.3. Suppose $\mathbf{P L}, \neq L_{1} \mathbf{P}$ where \mathbf{P} is an α-invariant Sylow p -subgroup of type Λ, and set $\mathscr{A}\left(p, \pi_{1}\right)=\left\{P Y, X L_{1}\right\}$. Then
(i) Neither $P_{\sigma} \leq X$ and $L_{1_{\tau}} \leq Y$ nor $P_{\tau} \leq X$ and $L_{1_{\sigma}} \leq Y$ can hold.
(ii) Either $P_{\sigma}, P_{\tau} \leq X$ or $L_{1}^{*} \leq Y$.

Proof. (i) Suppose $P_{\sigma} \leq \mathrm{X}$ and $\mathrm{L}_{1_{\tau}} \leq \mathrm{Y}$ holds. By I(5.7) $\mathrm{X}=N_{P}\left(L_{1}\right)$. Because $Y \neq 1,0_{p}\left(X L_{1}\right)=1$ by $\mathrm{I}(5.3)$ and so, using $\mathrm{I}(2.11) P_{\sigma} \leq X \leq P_{\rho}$. Since X normalizes $\mathrm{Y}, \mathrm{I}(2.14)$ (i) implies $L_{1}=Y C_{L_{1}}([X, \tau])$. Clearly $[X, \tau] \neq 1$ andso $P L_{1} \neq L_{1} P$ forces $C_{P}([\mathrm{X}, \tau]) \leq \mathrm{X}$, whence $\mathrm{P}=P_{\rho}$ by $\mathrm{I}(2.3)$ (v). But then $\mathrm{Y} \unlhd P Y$ by $\mathrm{I}(2.3)$ (xi) and then (see $\mathrm{I}(2.21)(\mathrm{v})) \mathbf{P L},=L_{1} \mathbf{P}$, a contradiction. So $P_{\sigma} \leq \mathrm{X}$ and $L_{1_{\tau}} \leq \mathrm{Y}$ cannot hold, and a similar argument rules out $P_{\boldsymbol{\tau}} \leq \mathbf{X}$ and $L_{1_{\boldsymbol{\tau}}} \leq \mathbf{Y}$.
(ii) This follows directly from (i).

Lemma 3.4. Suppose $P L, \neq L_{1} P$ where P is an α-invariant Sylow p-subgroup of type Λ, and set $\mathscr{A}\left(p, \pi_{1}\right)=\left\{P Y, X L_{1}\right\}$.
(i) If, furthermore, $L_{1}^{*} \leq Y$, then
(a) $\mathscr{M}\left(p, \pi_{1}\right)=\left\{P N_{L_{1}}(P), L_{1}\right\}$;
(b) $P_{\sigma \tau}=1$;
(c) either $L_{1_{\sigma}}=L_{1_{\tau}}$ or $Z\left(L_{1}\right) \leq N_{L_{1}}(P)$;
(d) if $Z\left(L_{1}\right) \leq N_{L_{1}}(P)$, then $Z\left(L_{1}\right)=Z\left(L_{1}\right)_{\sigma \tau}$;
(e) $P_{\rho \sigma} \neq 1 \neq P_{\rho \tau}$; and
(f) P is not equal to $P_{\rho} P_{\sigma}$ or P_{τ}.
(ii) If, furthermore, $P_{\sigma}, P_{\tau} \leq X$, then
(a) $X=N_{P}\left(L_{1}\right)$ and $Y=N_{L_{1}}(P)$;
(b) $X=X_{\rho} C_{P}\left(L_{1}\right)$ and $[X, \rho] \leq C_{P}\left(L_{1}\right)$;
(c) if $C_{P}\left(L_{1}\right) \neq 1$, then $\mathscr{M}\left(p, \pi_{1}\right)=\left\{N_{P}\left(L_{1}\right) L_{1}, P\right\}$ and $Z(P)=Z(P)_{\rho} \leq X$;
(d) if $[X, \rho] \neq 1$, then $N_{P}(X)^{*} \leq X$;
(e) if P is star-covered, then $P=P_{\rho}$;
(f) is $C_{P}\left(L_{1}\right)=1$, then $P^{*}=P_{\rho} \geq X, P_{\sigma \tau}=1$ and $Y \leq L_{1_{\sigma \sigma}}$; and
(g) if $L_{1}=L_{1}^{*}$ and $X \leq P_{\rho}$, then $P=P_{\rho}$.

Proof. (i) (a). By I(2.21) (vi) and $\mathrm{I}(5.1)$ (d) $\mathrm{X}=1$, and then $P \unlhd P Y$ by I(2.20). Thus $\mathscr{A}\left(p, \pi_{1}\right)=\left\{P N_{L_{1}}(P), L_{1}\right\}$.
(b) Since $\left[\mathrm{L}, P_{\sigma T}\right]=1$, clearly $P_{\sigma T} \leq X=1$.
(c) If $L_{1_{\sigma}} \neq L_{1_{r}}$, then we have, say $L_{1_{\sigma}} \not L_{1_{r}}$. Hence $0_{\pi_{1}}\left(P_{\sigma} L_{1 \sigma}\right) \neq 1$ by I(4.5). Since $N_{G}\left(0_{\pi_{1}}\left(P_{\sigma} L_{1 \sigma}\right)\right) \geq Z(P), L_{1_{\sigma}}$ and $\mathrm{X}=1$, this forces $Z(P) \leq Y=N_{L_{1}}(P)$, as required.
(d) Since $Z\left(L_{1}\right) \leq N_{L_{1}}(P), Z\left(L_{1}\right)^{*}=Z\left(L_{1}\right)$ by $\mathrm{I}(5.1)$ (e). So if $Z\left(L_{1}\right) \neq Z\left(L_{1}\right)_{\sigma \tau}$, then, say $Z\left(L_{1}\right)_{\sigma} \not Z Z\left(L_{1}\right)_{\tau}$ which implies $Z\left(L_{1}\right) \cap 0_{\pi_{1}}\left(P_{\sigma} L_{1 \sigma}\right) \neq 1$, contradicting $\mathrm{X}=1$. Therefore $Z(L)=,Z\left(L_{1}\right)_{\sigma \tau}$.
(e) Suppose $P_{\rho \sigma}=1$. Then $\left[P_{\sigma}, L_{1_{\sigma}}\right]=1$ by (b) and $\mathrm{I}(2.8)$. Hence $Z\left(L_{1}\right) \leq N_{L_{1}}(P)$ by the shape of $\mathscr{M}\left(p, \pi_{1}\right)$. But then $Z(L,) \leq L_{1_{\sigma r}}$ by (d) forces $P_{\sigma} \leq \mathrm{X}=1$. Therefore $P_{\rho \sigma} \neq 1$ and, similarly, $P_{\rho \tau} \neq 1$.
(f) Clearly $P \# P_{\sigma}$ and $P \neq P_{\tau}$ since $P_{\sigma \tau}=1$. While $P=P_{\rho}$ would imply $\mathrm{Y} \unlhd P Y$, by I(2.3) (ix), contradicting $P L \neq L_{1}$ P. So $P \neq P_{\rho}$.
(ii) If $O_{p}\left(X L_{1}\right)=1$, then $L_{1} \unlhd L_{1} X$ and $\mathrm{X} \leq P_{\rho}$ by $\mathrm{I}(2.13)$. Hence Y centralizes $O_{p}(P X)$, and $O_{p}(P X)$, Now $\mathrm{X} \neq 1, \mathrm{I}(5.3)$ and $\mathrm{I}(2.11)$ yield $\mathrm{Y} \leq L_{1_{\sigma r}}$. From $\mathrm{X} \leq P_{\rho}$ and $\mathrm{Y} \leq L_{1_{\sigma r}}$ we obtain $[X, \mathrm{Y}]=1$ and thus $P \unlhd P Y$ by $\mathrm{I}(2.20)$. Whilst, if $O_{p}\left(X L_{1}\right) \neq 1$, then $\mathrm{Y}=1$ by $\mathrm{I}(5.3)$ whence $L_{1} \unlhd \mathrm{X} L_{1}$ by $\mathrm{I}(2.20)$. These remarks establish (a), (c) and (f). Part (b) follows from $\mathrm{I}(2.13)$, and (b) and $\mathrm{I}(2.3)$ (viii) yield (d).
(e) By (d) $[\mathrm{X}, \mathrm{p}] \neq 1$ is not possible. Therefore $P=P^{*}=P_{\rho}$, as required.
(g) Suppose $P \neq P_{\rho}$ and argue for a contradiction. Put $\bar{L}_{1}=L_{1} / \phi\left(L_{1}\right)$. By I(3.3) (vi) $\mathrm{q}=\bar{L}_{1}^{*}=\bar{L}_{1} \bar{L}_{-}, \quad$ Because $P_{\sigma} \leq N_{P}\left(L_{1}\right)$ by (a), P_{σ} acts upon \bar{L}_{1} and $\bar{L}_{1_{\sigma}}$. Applying $\mathrm{I}(2.3)$ (x) to $P_{\sigma}\left(\bar{L}_{1} / \bar{L}_{1_{\sigma}}\right)$ gives, as $P_{\sigma} \leq \mathbf{X} \leq P_{\rho}, \bar{L}_{1}=\bar{L}_{1_{\sigma}} C_{\bar{L}_{1}}\left(P_{\sigma}\right)$. From $P \neq P_{\rho}$ and $\mathrm{I}(2.3)$ (v) $C_{P}\left(P_{\rho}\right) \not \leq \mathrm{X}$ and thus $C_{L_{1}}\left(P_{\sigma}\right) \leq \mathrm{Y} \leq L_{1_{\sigma \tau}}$ by (c) and (f). Therefore, as $C_{\bar{L}_{1}}\left(P_{\sigma}\right)=\overline{C_{L_{1}}\left(P_{\sigma}\right)}$, we deduce $\bar{L}_{1}=\bar{L}_{1_{\sigma}}$. Hence $L_{1}=L_{1_{\sigma}}$ by [Theorem 5.14; 3] and by a similar argument $L_{1}=L_{1_{\tau}}$. 'Now $\mathrm{I}(2.3)$ (xi) gives $[\mathrm{L}, \mathrm{X}]=1$, a contradiction. Therefore $L_{1}=L_{1}^{*}$ and $X \leq P_{\rho}$ implythat $\mathbf{P}=P_{\rho}$.

Remark. Clearly there are results analagous to Lemmas 3.3 and 3.4 for L_{2} and L_{3}.
We now examine the behaviour between α-invariant Sylow subgroups of typc Λ.
Lemma 3.5. Let P and Q be cu-invariant Sylow p - and q-subgroups of G of type Λ which do not permute, and let $\mathscr{M}(p, q)=\{P Y, Q X\}$. Then, with possible interchanging of p and q and rearrangement of p, σ and τ, one of the following occurs:
(i) $P^{*} \leq \mathbf{X}$, andfurthermore
(a) $\mathscr{N}(p, q)=\left\{P, N_{P}(Q) Q\right\}$;
(b) $Z(P) \leq N_{P}(Q)$;
(c) $\mathbf{Z}(\mathbf{P})$ is contained in one of $P_{\sigma \tau}, P_{\rho \sigma}$ or $P_{\rho \tau}$;
(d) (suppose. in (c), that $Z(P) \leq P_{\sigma \tau}$) $Q_{\sigma \tau}=1$ and $Q_{\rho \sigma} \neq 1 \neq Q_{p \tau}$;
(e) \mathbf{Q} is not equal to Q_{ρ}, Q_{σ} or Q_{τ}; or
(ii) $P_{\rho} \leq \mathbf{X}$ and $Q_{\sigma}, Q_{\tau} \leq \mathbf{Y}$, and furthermore
(a) $p=2$;
(b) $\mathbf{Y}<Q_{\rho}=Q^{*} \neq \mathbf{Q}$ (and so \mathbf{Q} is not star-covered);
(c) $Q_{\sigma \tau}=1$ and $Q_{\rho \sigma} \neq 1 \neq Q_{\rho \tau}$;
(d) for all non-trivial cu-invariant subgroups \mathbf{R} of $P_{\rho}, N_{P}(R) \leq \mathbf{X}$;
(e) $Z(P) \leq X_{\sigma \tau}$;
(f) $1 \neq[X, \sigma] \leq P_{\rho}, 1 \neq[X, \tau] \leq P_{\rho}$ and $[X, \rho] \leq X_{\sigma \tau}$;
(g) $X=N_{P}(Q)$;
(h) $N_{P}(X)^{*} \leq \mathbf{X}$ (and so \mathbf{P} is not star-covered); and
(i) either \mathbf{P} is contained in a unique maximal cu-invariant subgroup of \mathbf{G} or $J(P)_{\rho}=1$.

Proof. Clearly, up to relabelling, either $\mathbf{P}^{*} \leq \mathrm{X}$ or $P_{\rho} \leq \mathrm{X}$ and $Q_{\rho}, Q_{\tau} \leq \mathrm{Y}$. We now prove the statements in (i). So assume $\mathbf{P}^{*} \leq \mathrm{X} . \mathrm{By} \mathrm{I}(2.21)$ (vi) and $\mathrm{I}(5.1)$ (d) $\mathrm{Y}=1$, whence $\mathrm{Q} \unlhd \mathrm{QX}$ by $\mathrm{I}(2.20)$. Hence (a) holds, Combining (a) with $\mathrm{I}(3.14)$ gives (b).

We now prove (c). If $Z(P)_{\rho} \neq Z(P)_{\rho\{\sigma \tau\rangle}^{*}$, then $\mathrm{Z}(\mathrm{P}) \cap O_{p}\left(P_{\rho} Q_{\rho}\right) \neq 1$ by ($\mathrm{I}(4.5)$. Hence, as $Q_{\rho} \unlhd P_{\rho} Q_{\rho}$, we obtain $Q_{\rho} \leq \mathrm{Y}$, contradicting (a). Therefore $Z(P)_{\rho}=Z(P)_{\rho\langle\sigma \tau\rangle}^{*}$ and,
similarly, $\mathrm{Z}(\mathrm{P}),=Z(P)_{\sigma\langle\rho \tau\rangle}^{*}$ and $\mathrm{Z}(\mathrm{P}),=Z(P)_{\tau\langle\rho \sigma\rangle}^{*}$. We claim that at least two of $Z(P)_{\rho \sigma}, Z(P)_{\rho \tau}$ and $Z(\mathrm{P})$, , aretrivial. For suppose, say, that $Z(\mathrm{P}), \neq 1 \neq Z(P)_{\rho \tau}$. Then, as $G_{\rho \sigma}$ and $G_{\rho \tau}$ are nilpotent and $\mathrm{Y}=1, Q_{\rho \sigma}=1=Q_{\rho \tau}$. Hence $\left[P_{\rho}, Q_{\rho}\right]=1$ by $\mathrm{I}(2.8)$ which then yields $Q_{\rho} \leq C_{Q}(Z(P)$, , $\leq \mathrm{Y}$, a contradiction. So , without loss of generality, we may assume $Z(P)_{\rho \tau}=1=Z(P)_{\rho \sigma}$. This then implies $Z(P)_{\rho}=1$ and $Z(\mathrm{P}),=Z(P)$, and so $Z(P)^{*}=Z(P)$, . Since $Z(P) \leq X$ by (b), $\mathrm{I}(5.1)$ (e) gives $Z(P)=Z(P)^{*}=$ $Z(P)_{\sigma \tau}$, which proves (c).

Because $\mathrm{Z}(\mathrm{P}) \leq P_{\sigma \tau}$ and $\mathrm{Y}=1$, clearly $Q_{\sigma \tau}=1$. If, say, $Q_{\rho \sigma}=1$, then $\left[P_{\sigma}, Q_{\sigma}\right]=1$ by $\mathrm{I}(2.8)$, which is at variance with $\mathrm{Y}=1$. Therefore $Q_{\rho \sigma} \neq 1$ and, likewise, $Q_{\rho \tau} \neq 1$. Next we consider (d). Since $Q_{\sigma \tau}=1$ clearly $Q_{\sigma} \neq Q \neq \mathrm{Q}$, Suppose $\mathrm{Q}=Q_{\rho}$ were to hold. Then, by $\mathrm{I}(2.3)$ (ix), $\mathrm{Z}(\mathrm{P})=\left[Z(P), \mathrm{pl} \leq\left[X, \mathrm{pl} \leq O_{p}(X Q)\right.\right.$, which contradicts $P Q \neq \mathrm{QP}$. So we also have $\mathrm{Q} \neq Q_{\rho}$, and this finishes (i).

Now we suppose $P_{\rho} \leq \mathrm{X}$ and $P_{\sigma}, P_{\tau} \leq \mathrm{Y}$. If $p \neq 2$, then, since $\mathrm{Y} \neq 1$, a double application of $\mathrm{I}(5.5)$ gives $P_{\rho} \leq \mathrm{X} \leq P_{\sigma \tau}$ wich is not possible. Therefore $\mathrm{p}=2$, and we have (ii) (a). Using $\mathrm{I}(5.5)$ again, as $q \neq 2$ and $X \neq 1$, yields $\mathrm{Y} \leq Q_{\rho}$. Thus $Q^{*}=\mathrm{Q}$,. Next we prove that $Q \neq Q_{\rho}$. Suppose that $Q=Q_{\rho}$ and argue for a contradiction. Because $\mathrm{Y} \neq 1, O_{p}(\mathrm{QX})=1$ by $\mathrm{I}(5.3)$. Hence $\mathrm{QX} \leq G_{\rho}$ by $\mathrm{I}(2.3)$ (ix). Consequently, as $Q_{\langle\sigma \tau\rangle}^{*} \leq$ $Y, \mathrm{I}(5.1)$ (d) yields $\mathrm{Q}=Y C_{Q}(X)$, whence $\mathrm{Q}=\mathrm{Y}$. From this contradiction we deduce that $\mathrm{Q} \neq Q_{\rho}$. Clearly, by (i) (a) and $\mathrm{X} \neq 1, \mathrm{Y}<Q^{*}$ and so we have verified (b). Evidently (b) implies (c).

Combining I(2.14) (ii) and $I(4.5)$ we obtain

$$
\mathbf{Q}=O_{q}(Q X) Q^{*}=O_{q}(Q X) Q_{\rho}=C_{Q}\left(P_{\rho}\right) Q_{\rho}
$$

Since $Q \neq Q_{\rho}$ by (ii) (b), $C_{Q}\left(P_{\rho}\right) \notin Y$, from which (d) follows. From (d) we clearly have (e).

Before proceeding further we show

$$
\begin{equation*}
X=X_{\sigma \tau} P_{\rho},\left[X_{\sigma \tau}, Y\right]=1 \quad \text { and } \quad P_{\rho}=P_{\rho \sigma} P_{\rho \tau} \tag{3.1}
\end{equation*}
$$

Since $O_{p}(P Y) \cap X$ centralizes $0,,(\mathrm{QX}) \cap Y \geq O_{q}(\mathrm{QX}), O_{q}(\mathrm{QX}),, \mathrm{I}(2.14)$ (i) and $\mathrm{I}(5.3)$ yield that $O_{p}(P Y) \cap X \leq P_{\sigma \tau}$. Hence $O_{p}(X Y) \leq P_{\sigma \tau}$ by $\mathrm{I}(2.21)$ (ii). From $\mathrm{Y} \leq Q_{\rho}$ and $\mathrm{I}(2.3)$ (ix) we obtain $\mathrm{X}=X_{\sigma \tau} P_{\rho}$ and $O_{p}(X Y)=\mathrm{X}$, ,. So $\left[X_{\sigma \tau}, Y\right]=1$ by I(2.3) (xi). Also we see that $O_{p}((\mathrm{XY}))=$,1 . Hence $P_{\rho}=P_{\rho \sigma} P_{\rho \tau}$ by $\mathrm{I}(2.10)$ (iii), and so (3.1) holds.

If $\mathrm{X} \leq P_{\sigma}$ were to hold, then (d) and $\mathrm{I}(2.3)(\mathrm{v})$ imply $P=P_{\sigma}$ whence, since $O_{q}(P Y)=$ $1, \mathrm{Y} \leq Q_{\sigma}$ by $\mathrm{I}(2.3)$ (ix). But then $Q_{\tau} \leq \mathrm{Y} \leq Q_{\rho \sigma}$, a contradiction. Therefore $[X, \sigma] \neq 1$ and, similarly, $[\mathrm{X}, \tau] \neq 1$. The remainder of (f) follows from (3.1).

Using (3.1) and $\mathrm{I}(2.10)$ (ii) gives $\mathrm{Q} \unlhd \mathrm{QX}$ and then $\mathrm{X}=N_{P}(\mathrm{Q})$. Combining (d), (f) and $\mathrm{I}(2.3)$ (viii) yields (h). Finally we prove (i). Suppose $J(P)_{\rho} \neq 1$. Then $R=Z(J(P)) \leq X$ by part (d). From (3.1) we see that $R_{\rho}=R_{\rho \sigma} R_{\rho \tau}, R_{\sigma}=R_{\rho \sigma} R_{\sigma \tau}$ and $R_{\tau}=R_{\rho \tau} R_{\sigma \tau}$. This together with (h) and $\mathrm{I}(2.6), \mathrm{I}(4.7)$ and $\mathrm{I}(6.4)$, yields that P is contained in a unique maximal α-invariant subgroup of G, so proving (i).

4. LINKING THEOREMS

In this section we use the results of the previous section to analyse configumtions involving three or more α-invariant nilpotent Hall subgroups.

Lemma 4.1. Let P be an α-invariant Sylow p-subgroup of G of type Λ and let $i, j \in \Lambda$ with $i \neq j$. Then at least two of P, L_{i} and L_{j} permute.

Proof. Suppose the lemma is false and, without loss of generality, that $i=1$ and $\mathrm{j}=2$. Thus we are supposing

$$
L_{1} L_{2} \neq L_{2} L_{1}, \quad P L_{1} \neq L_{1} P \text { and } \quad P L_{2} \neq L_{2} P .
$$

The proof is broken up into cases depending on the form of $\mathscr{M}\left(\mathrm{p}, \pi_{1}\right)$ and $\mathscr{A}\left(\mathrm{p}, \pi_{2}\right)$. Let $\mathscr{M}\left(p, \pi_{k}\right)=\left\{P Y_{k}, L_{k} X_{k}\right\}$ for $k=1,2$; by Lemma 3.4 $Y_{k}=N_{L_{k}}(P)$ and $X_{k}=N_{P}\left(L_{k}\right)$.

Case 1. $P_{\sigma}, P_{\tau} \leq N_{P}\left(L_{1}\right)$ and $P_{,,,}, P_{\tau} \leq N_{P}(L).$,
First we consider the possibility $C_{P}(L)=1=,C_{P}\left(L_{2}\right)$. Applying Lemma 3.4 (ii) (f) to both $L_{1} X_{1}$ and $L_{2} X_{2}$ gives $P_{\rho}=P^{*}=P_{\sigma}$. But then $1 \neq P_{T}=C_{P}(\alpha)$ contradicts α acting fixed-point-freely upon G. Thus, at least one of $C_{P}(L$,$) and C_{P}\left(L_{2}\right)$ must be nontrivial. Without loss of generality we may assume $C_{P}\left(L_{1}\right) \neq 1$. Hence $Z(\mathrm{P})=Z(P), \leq$ $N_{P}\left(L_{1}\right)$ by Lemma 3.4 (ii) (c). Therefore $\mathrm{Z}(\mathrm{P}) \leq P_{\rho} \leq N_{P}\left(L_{2}\right)$ and consequently, by $\mathrm{I}(5.1)(\mathrm{b}), Z(P)=Z(P)_{\sigma}$. Thus $\mathrm{Z}(\mathrm{P}),=1$ and $\mathrm{Z}(\mathrm{P}) \leq N_{P}\left(L_{1}\right) \cap N_{P}\left(L_{2}\right)$. Clearly $Z(\mathrm{P})$ normalizes both $N_{L_{1}}(L$,$) and N_{L_{2}}(L$,$) . Since L_{1} L_{2} \neq L_{2} L_{1}$, either $L_{1_{\tau}} \leq$ $N_{L_{1}}\left(L_{2}\right)$ or $L_{2_{\tau}} \leq N_{L_{2}}(L$,$) by Lemma 3.1. Suppose (say) that L_{1_{r}} \leq N_{L_{1}}\left(L_{2}\right)$ holds. Then, since $\mathrm{Z}(\mathrm{P}),=1, \mathrm{I}(2.14)$ (i) applied to $\mathrm{Z}(\mathrm{P})$ normalizing L_{1} and $N_{L_{1}}\left(L_{2}\right)$ gives $L_{1}=N_{L_{1}}\left(L_{2}\right) C_{L_{1}}(Z(P))$. Now $C_{L_{1}}(Z(P)) \leq N_{L_{1}}(P) \leq . L_{1_{\sigma r}}$ by Lemma 3.4 (ii) (c) and (f) and so

$$
L_{1}=N_{L_{1}}\left(L_{2}\right) C_{L_{1}}(Z(P))=N_{L_{1}}\left(L_{2}\right) L_{1_{o r}}=N_{L_{1}}\left(L_{2}\right)
$$

This contradicts $L, L_{2} \neq L_{2} L_{1}$, and so disposes of case 1 .

Case 2. $P_{\sigma}, P_{\tau} \leq N_{P}\left(L_{1}\right)$ and $L_{2_{\rho}}, L_{2_{\tau}} \leq N_{L_{2}}(P)$.
Since $L_{1} L_{2} \neq L_{2} L_{\text {, }}$, either $L_{1_{r}} \leq N_{L_{1}}\left(L_{2}\right)$ or $L_{2_{r}} \leq N_{L_{2}}(L$,$) holds. Suppose for the$ moment that $L_{>}<N_{L_{2}}\left(L_{,}\right)$pertains. Then $L_{2_{r}} \leq N_{L_{2}}\left(L_{,}\right) \cap N_{L_{2}}(P)$ and so $L_{2_{-}, ~}$ normalizes $N_{P}\left(L_{1}\right)$. Using T(2.14) (i) yields, since $P_{\sigma} \leq N_{P}\left(L_{1}\right)$, that $P=N_{P}\left(L_{1}\right) C_{P}\left(L_{2_{r}}\right)$. Now, appealing to Lemma 3.4(i) (c) and (d), gives that either $L_{2_{\mathrm{r}}}=L_{2_{\rho}}=L_{2}^{*}$ or $Z(L$, $)=$ $Z\left(L_{2}\right)_{\rho T}$. In either case (using I(3.6) (iii) for the former) we deduce that $P=N_{P}\left(L_{\text {, }}\right)$ $C_{P}\left(L_{2_{r}}\right)=N_{P}\left(L_{,}\right)$, which is not possible. Thus $L_{r}, \leq N_{L_{2}}\left(L_{,}\right)$is untenable and so we have $L_{1_{\tau}} \leq N_{L_{1}}\left(L_{\text {, }}\right)$. Inparticular, $N_{L_{1}}(L) \neq$,1 . From Lemma 3.4 (i) (c)and (d) applied to P and L_{2} wehave that either $Z\left(L_{2}\right)=Z\left(L_{2}\right)_{\rho^{\tau}}$ or $L_{\rho}{ }_{\rho}=L_{2_{r}}$. Suppose $Z(L)=,Z\left(L_{2}\right)_{\rho \tau}$ holds. Then $1(2.3)(\mathrm{x})$ applied to $N_{L_{1}}\left(L_{2}\right) Z\left(L_{,}\right)$gives $\left[N_{L_{1}}\left(L_{2}\right), Z\left(L_{2}\right)\right]=1$, and hence, since $N_{L_{1}}\left(L_{2}\right) \neq 1, Z\left(L_{2}\right) \leq C_{L_{2}}\left(N_{L_{1}}\left(L_{2}\right)\right) \leq N_{L_{2}}\left(L_{1}\right)$. Therefore

$$
Z\left(L_{2}\right) \leq N_{L_{2}}\left(L_{1}\right) \cap L_{2_{\text {gr }}} \leq N_{L_{2}}\left(L_{1}\right) \cap N_{L_{2}}(P),
$$

and so $Z(L$,$) normalizes N_{P}(L,) \geq P_{\sigma}$. Hence $P=N_{P}\left(L_{1}\right) C_{P}\left(Z\left(L_{2}\right)\right)=N_{P}\left(L_{1}\right)$, since $C_{P}\left(Z\left(L_{2}\right)\right)=1$ by Lemma 3.4(i) (a). Thus $Z\left(L_{2}\right)=Z\left(L_{2}\right)_{\rho \tau}$ cannot hold. Now $L_{2_{\rho}}=L_{2_{\tau}}$ yields, using I(6.4), that $N_{L_{1}}(L,) \unlhd N_{L_{1}}\left(L_{,}\right) L_{2}$ whence, since $N_{L_{1}}\left(L_{2}\right) \neq 1$, $\mathrm{I}(2.21)$ (v) implies that $L_{1} L_{2}=L_{2} L_{1}$. Thus $L_{2_{\rho}}=L_{2^{2}}$ is also untenable, and this deals with case 2.

Case3. $L_{1}^{*} \leq N_{L_{1}}(P)$ and $L_{2}^{*} \leq N_{L_{2}}(P)$.
A double application of Lemma 3.4(i)(b) and (e) yields $P_{\sigma \tau}=1, P_{\rho \sigma} \neq 1 \neq P_{\rho \tau}$ and $P_{\rho \tau}=$ $1, P_{\sigma \tau} \neq 1 \neq P_{\rho \sigma}$. Clearly this situation is impossible.

As the possibility $L_{1_{\sigma}}, L_{1_{\tau}} \leq N_{L_{1}}(P)$ and $P_{\rho}, P_{\tau} \leq N_{P}\left(L_{,}\right)$may be dealt with as in case 2 we see that all the altematives for $\mathscr{M}\left(p, \pi_{1}\right)$ and $\mathscr{M}\left(p, \pi_{2}\right)$, as given by Lemma 3.3, yield a contradiction, as required.

The next result will be required in the proof of Theorem 4.3. Lemma 4.22 is a special case of $\mathrm{I}(5.10)$ (b), however we give a proof here.

Lemma 4.2. Suppose $L_{i} L_{j} \neq L_{j} L_{i}$ and $L_{j} L_{k} \neq L_{k} L_{j}$ where $\{i, j, k\}=\Lambda$.If J is a nontrivial α-invariant subgroup of $N_{L_{k}}\left(L_{i}\right) \cap N_{L_{k}}\left(L_{j}\right)$ and $L_{j \alpha_{k}} \leq N_{L_{j}}\left(L_{i}\right)$, then $C_{L_{j}}(J) \nsubseteq$ $N_{L_{j}}\left(L_{k}\right)$.
Proof. Without loss of generality we set $i=1, \mathrm{j}=2$, and $k=3$. So we have $L, L_{2} \neq L_{2} L_{1}$, $L_{2} L_{3} \neq L_{3} L_{2}, \mathrm{~J} \leq N_{L_{3}}\left(L_{1}\right) \cap N_{L_{3}}\left(L_{2}\right)$ and $L_{2_{\tau}} \leq N_{L_{2}}\left(L_{1}\right)$. Suppose $C_{L_{2}}(J) \leq$ $N_{L_{2}}\left(L_{3}\right)$, and argue for a contradiction.

Since J normalizes L_{1} and L_{2}, J must normalize $N_{L_{2}}\left(L_{1}\right)$. Hence, as $L_{2_{\tau}} \leq N_{L_{2}}(L$,$) ,$ $J_{\tau}=1$ and J normalizes $L_{2}, I(2.14)$ (i) gives

$$
L_{2}=C_{L_{2}}(J) N_{L_{2}}\left(L_{1}\right)=N_{L_{2}}\left(L_{3}\right) N_{L_{2}}\left(L_{1}\right)
$$

Since $L_{1} L_{2} \neq L_{2} L_{1}$, clearly $N_{L_{2}}\left(L_{3}\right) \notin N_{L_{2}}(L$, $)$. Therefore $N_{L_{2}}\left(L_{3}\right) \notin L_{2_{\tau}}$. Hence $0,\left(L, N_{L_{2}}\left(L_{3}\right)\right) \neq 1$ by $\mathrm{X}(2.33)$. But then $\mathscr{P}_{L_{3}}\left(L_{2}\right)=N_{L_{3}}\left(L_{2}\right)=1$ by I(5.3), contrary to $J \neq 1$. Then we conclude that $C_{L_{2}}(J) \not \leq N_{L_{2}}(L$,$) , as desired.$

Theorem4.3. Assume that $L_{i} L_{j} \neq L_{j} L_{i}$ for all $i, j \in \Lambda$ with $i \neq j$. Thenoneofthefollowing holds:
(i) $L_{1_{\sigma}}=L_{1}, L_{2_{\tau}}=L_{2}, L_{3_{\rho}}=L_{3}$.
(ii) $L_{1_{\tau}}=L_{1}, L_{2_{\rho}}=L_{2}, L_{3_{\sigma}}=L$,.

Proof. By Lemma 3.1 we have that $\mathscr{A}\left(\pi_{i}, \pi_{j}\right)=\left\{L_{i} N_{L_{j}}\left(L_{i}\right), L_{j} N_{L_{i}}\left(L_{j}\right)\right\}$.
First we establish

$$
\begin{equation*}
\left\langle L_{2_{\tau}}, L_{3_{\sigma}}\right\rangle \not \leq N_{G}\left(L_{1}\right) \tag{4.1}
\end{equation*}
$$

Supposing $\left\langle L_{2_{\tau}}, L_{3_{\sigma}}\right\rangle \leq N_{G}(L$,$) we seek a contradiction. Without loss of generality we$ may assume that $\left\{N_{G}\left(L_{1}\right)\right\}_{\pi_{2}, \pi_{3}} \leq L_{2} N_{L_{3}}\left(L_{2}\right)$. So

$$
L_{3_{\sigma}} \leq N_{G}\left(L_{1}\right) \cap L_{3}=N_{L_{3}}\left(L_{1}\right) \leq N_{L_{3}}\left(L_{2}\right)
$$

Applying Lemma 4.2 with $\mathrm{i}=1, \mathrm{j}=2, k=3$ and $J=L_{3_{\mathrm{g}}}$ yields

$$
\begin{equation*}
C_{L_{2}}\left(L_{3_{\sigma}}\right) \nsubseteq N_{L_{2}}\left(L_{3}\right) \tag{4.2}
\end{equation*}
$$

From (4.2) we deduce that $Z\left(L_{3}\right)_{\sigma}=1$ and that $Z\left(L_{3}\right) \leq N_{L_{3}}\left(L_{2}\right)$. Hence, as $L_{2_{\sigma}}=1$, σ acts fixed-point-freely upon $Z\left(L_{3}\right) L_{2}$, and SO $\left[Z\left(L_{3}\right), L_{2}\right]=1$ by $\mathrm{I}(2.2)$ (i). But then $\left\langle L_{3}, L_{2}\right\rangle \leq C_{G}\left(Z\left(L_{3}\right)\right)$, contrary to $L_{2} L_{3} \neq L_{3} L_{2}$. This is the desired contradiction, and so we have proved (4.1).

The arguments used to prove (4.1) also yield

$$
\begin{equation*}
\left\langle L_{1_{r}}, L_{3_{\rho}}\right\rangle \not \leq N_{G}\left(L_{2}\right) \quad \text { and } \quad\left\langle L_{1_{\sigma}}, L_{2_{\rho}}\right\rangle \nsubseteq N_{G}\left(L_{3}\right) \tag{4.3}
\end{equation*}
$$

The form of $\mathscr{A}\left(\pi_{i}, \pi_{j}\right)$ together with (4.1) and (4.3) imply that one of the following must hold:

$$
\begin{equation*}
L_{1_{\tau}} \leq N_{L_{1}}\left(L_{2}\right), L_{2_{\sigma}} \leq N_{L_{2}}\left(L_{3}\right) \quad \text { and } \quad L_{3_{\sigma}} \leq N_{L_{3}}\left(L_{1}\right) ; \tag{4.4}
\end{equation*}
$$

or

$$
\begin{equation*}
L_{1_{\sigma}} \leq N_{L_{1}}\left(L_{3}\right), L_{2_{\tau}} \leq N_{L_{2}}\left(L_{1}\right) \quad \text { and } \quad L_{3_{\rho}} \leq N_{L_{3}}\left(L_{2}\right) \tag{4.5}
\end{equation*}
$$

Since the ensuing arguments apply equally to (4.4) and (4.5) we shall suppose, without loss of generaly, that case (4.4) holds.

$$
\begin{equation*}
\text { If } L_{1}^{*}=L_{1_{\sigma}}, \quad \text { then } L_{1}=L_{1_{\sigma}} \tag{4.6}
\end{equation*}
$$

Since $L_{3_{\sigma}} \leq N_{L_{3}}\left(\mathbf{L}\right.$, (by (4.4)), $L_{3_{\sigma}}$ normalizes $L_{1_{-\sigma}}=L_{1}^{*}$ and so $L_{1}=L_{1_{\sigma}} C_{L_{1}}\left(L_{3}\right)$ by I(2.14) (ii). Supposing $L_{1} \neq L_{1_{\sigma}}$ we argue for a contradiction. Clearly we must have $C_{L_{1}}\left(L_{3_{\sigma}}\right) \notin L_{1_{\sigma}}=L_{1}^{*}$. If $C_{L_{1}}\left(L_{3_{\sigma}}\right) \leq N_{L_{1}}\left(L_{3}\right)$, then $\mathrm{I}(4.5)$ forces $O_{\pi_{1}}\left(L_{3} N_{L_{1}}\left(L_{3}\right)\right) \neq 1$. But then $N_{L_{3}}(\mathrm{~L})=$,1 by $\mathrm{I}(5.3)$ whereas $1 \neq L_{3_{\sigma}} \leq N_{L_{3}}\left(L_{1}\right)$. Thus we conclude that

$$
\begin{equation*}
C_{L_{1}}\left(L_{3_{\sigma}}\right) \nsubseteq N_{L_{1}}\left(L_{3}\right) \tag{4.7}
\end{equation*}
$$

Hence $Z\left(L_{3}\right) \leq N_{L_{3}}\left(L_{1}\right)$ and $Z\left(L_{3}\right)_{\sigma}=1$ by (4.7). Thus σ acts fixed-point-freely upon $Z\left(L_{3}\right) N_{L_{2}}\left(L_{3}\right)$ andso $\left[Z\left(L_{3}\right), N_{L_{2}}\left(L_{3}\right)\right]=1$ by I(2.2) (i). Since $N_{L_{2}}\left(L_{3}\right) \neq 1$ by (4.4), this implies that $Z\left(L_{3}\right) \leq N_{L_{3}}\left(L_{2}\right)$.

Therefore we have

$$
\begin{equation*}
Z\left(L_{3}\right) \leq N_{L_{3}}\left(L_{1}\right) \cap N_{L_{3}}\left(L_{2}\right) \text { a } \mathbf{n d} L_{1_{\tau}} \leq N_{L_{1}}\left(L_{2}\right) \tag{4.8}
\end{equation*}
$$

However (4.8) is at variance with Lemma 4.2 (taking $J=Z\left(L_{3}\right), i=2, j=1$ and $k=3$). This is the desired contradiction, and so we have (4.6).

Clearly the arguments used in proving (4.6) will also yield
(4.9) If $L_{2}^{*}=L_{2_{\tau}}\left(\right.$ respectively $\left.L_{3}^{*}=L_{3_{\rho}}\right)$, then $L_{2}=L_{2_{\tau}}\left(\right.$ respectively $\left.L_{3}=L_{3_{\rho}}\right)$.

We now show that

$$
\begin{equation*}
L_{1}=L_{1_{\sigma}} \tag{4.10}
\end{equation*}
$$

Assuming $L_{1} \neq L_{1_{\sigma}}$ we seek a contradiction. Thus, by (4.6), $L_{1}^{*} \neq L_{1_{\sigma}}$ and consequently, as $L_{1_{\tau}} \leq N_{L_{1}}\left(L_{2}\right)$, we have $N_{L_{1}}\left(L_{2}\right) \not 又 L_{1_{\sigma}}$. Therefore, using I(2.13) (i), we obtain

$$
\begin{equation*}
O_{\pi_{1}}\left(L_{2} N_{L_{1}}\left(L_{2}\right)\right) \neq 1 \tag{4.11}
\end{equation*}
$$

I(5.3) and (4.11) imply

$$
\begin{equation*}
N_{L_{2}}\left(L_{1}\right)=1 \tag{4.12}
\end{equation*}
$$

Also from (4.11) we infer that

$$
\begin{equation*}
Z\left(L_{1}\right)=Z\left(L_{1}\right)_{\sigma} \leq N_{L_{1}}\left(L_{2}\right) \tag{4.13}
\end{equation*}
$$

Lemma4.2, together with (4.13) and $L_{2_{\rho}} \leq N_{L_{2}}\left(L_{3}\right)$ (taking $J=Z\left(L_{1}\right)$), forces

$$
\begin{equation*}
Z\left(L_{1}\right) \notin N_{L_{1}}\left(L_{3}\right) \tag{4.14}
\end{equation*}
$$

We now turn our attention to L_{3} and prove that

$$
\begin{equation*}
L_{3_{\sigma}}=N_{L_{3}}\left(L_{1}\right) \tag{4.15}
\end{equation*}
$$

Suppose (4.15) were false. Then $\left[N_{L_{3}}(L), \mathrm{cr},\right] \neq 1$. From I(2.3) (x) and (4.13) we have $\left[Z\left(L_{1}\right),\left[N_{L_{3}}\left(L_{1}\right), \sigma\right]\right]=1$, and then (4.14) dictates that

$$
C_{L_{3}}\left(\left[N_{L_{3}}\left(L_{1}\right), \sigma\right]\right) \leq N_{L_{3}}\left(L_{1}\right)
$$

In particular, $Z\left(L_{3}\right) \leq N_{L_{3}}\left(L_{1}\right)$, andso $\left[Z\left(L_{3}\right), \sigma\right] \leq\left[N_{L_{3}}\left(L_{1}\right), \sigma\right]$. Hence $\left[Z\left(L_{3}\right), \sigma\right]$ $\neq 1$ would imply $Z(L,) \leq N_{L_{1}}\left(L_{3}\right)$, contradicting (4.14). So $Z\left(L_{3}\right)=Z\left(L_{3}\right)_{\sigma}$. By considering $Z\left(L_{3}\right) N_{L_{2}}\left(L_{3}\right), 1(2.3)(x)$ yields that $\left[Z\left(L_{3}\right), N_{L_{2}}\left(L_{3}\right)\right]=1$.

Therefore, since $N_{L_{2}}(L) \$$,1 , we see that $Z\left(L_{3}\right) \leq N_{L_{3}}\left(L_{2}\right)$. So we have $Z\left(L_{3}\right) \leq$ $N_{L_{3}}\left(L_{2}\right) \cap N_{L_{3}}(L$,$) and L_{1_{r}} \leq N_{L_{1}}\left(L_{2}\right)$ which is against Lemma 4.2. With this contradiction we have established (4.15).

If $O_{\pi_{3}}\left(L_{1} N_{L_{3}}\left(L_{1}\right)\right) \neq 1$, then $C_{L_{3}}\left(N_{L_{3}}\left(L_{1}\right)\right) \leq N_{L_{3}}\left(L_{1}\right)$ and thence, by (4.15) and $1(2.3)(\mathrm{v}), L_{3}=L_{3_{\sigma}}=N_{L_{3}}\left(L\right.$,), which contradicts $L, L_{3} \neq L_{3} L$,. Hence $O_{\pi_{3}}\left(L_{1} N_{L_{3}}\left(L_{1}\right)\right)=$ 1, and so $N_{L_{3}}(L,) \leq L_{3_{\rho}}$ by $1(2.13)$ (i). Therefore $L_{3}^{*}=L_{3_{\rho}}$ and then $L_{3}=L_{3_{p}}$ by (4.9). We
claim that $O_{\pi_{2}}\left(L_{3} N_{L_{2}}\left(L_{3}\right)\right)=1$. For $O_{\pi_{2}}\left(L_{3} N_{L_{2}}\left(L_{3}\right)\right) \neq 1$ gives $Z\left(L_{2}\right) \leq N_{L_{2}}\left(L_{3}\right)$, and then $L_{3} L_{2} \neq L_{2} L_{3}, L_{3}=L_{3_{\rho}}$ and $\mathrm{I}(2.3)$ (x) imply that $Z\left(L_{2}\right)=Z\left(L_{2}\right)_{\rho}$. Applying $1(2.3)(\mathrm{x})$ to $Z\left(L_{2}\right) N_{L_{1}}\left(L_{,}\right)$yields $\left[Z\left(L_{2}\right), N_{L_{1}}\left(L_{2}\right)\right]=1$. Since $N_{L_{1}}(L) \neq$, we then obtain $Z\left(L_{2}\right) \leq N_{L_{2}}(L$, $)$. But $N_{L_{2}}(L)=$,1 by (4.12) and so we see that $O_{\pi_{2}}\left(L, N_{L_{2}}\left(L_{3}\right)\right) \neq 1$ is untenable, so verifying the claim.

From $O_{\pi_{2}}\left(L_{3} N_{L_{2}}\left(L_{3}\right)\right)=1,1(2.13)$ (i) gives $N_{L_{2}}\left(L_{3}\right) \leq L_{2_{\tau}}$ and so $L_{2}^{*}=L_{2_{\tau}}$. By (4.9) $L_{2}=L_{2_{r}}$. Now $Z\left(L_{1}\right) \leq N_{L_{1}}\left(L_{2}\right)$ by (4.13), and so $L_{1} L_{2} \neq L_{2} L_{1}$ and I(2.3)(x) give $Z\left(L_{1}\right)=Z\left(L_{1}\right)_{T}$. Applying I(2.13) (x) to $Z\left(L_{1}\right) N_{L_{3}}\left(L_{1}\right)$ gives $\left[Z\left(L_{1}\right), N_{L_{3}}\left(L_{1}\right]=1\right.$ whence, as $N_{L_{3}}\left(L_{1}\right) \neq 1, Z\left(L_{1}\right) \leq N_{L_{1}}\left(L_{3}\right)$. But by (4.14) $Z\left(L_{1}\right) \notin N_{L_{1}}\left(L_{3}\right)$. This is the desired contradiction, and so we have verified (4.10).

A similar argument will establish that $L_{2}={\underset{\tau}{2}}_{2}^{2}$ and $L_{3}=L_{3_{\rho}}$ so giving case (i) of the theorem. We observe that (4.5) will give rise to case (ii), and so the proof of Theorem 4.3 is complete.

Theorem 4.4. Let P and Q be (respectively) α-invariant Sylow p - and q-subgroups of type $\Lambda, p \neq q$, and let $i, j \in \Lambda, i \neq j$. If $P Q=Q P, P L_{j}=L_{j} P$ and $Q L_{i}=L_{i} Q$, then at least one of $P L_{i}=L_{i} P$ and $Q L_{j}=L_{j} Q$ holds.

Proof. Suppose the theorem is false, and, without loss of generality, that $i=1$ and $\mathrm{j}=2$. So the following is assumed to hold:

$$
\begin{equation*}
P Q=Q P, P L,=L_{2} P, Q L_{1}=L, Q, P L, \neq L_{1} P \text { and } Q L, \neq L_{2} Q . \tag{4.16}
\end{equation*}
$$

We derive a contradiction in the following series of statements.

$$
\begin{equation*}
L_{1}^{*} \leq N_{L_{1}}(P) \text { and } L_{2}^{*} \leq N_{L_{2}}(\mathrm{Q}) \text { cannot both hold at the same time. } \tag{4.17}
\end{equation*}
$$

Suppose $L_{1}^{*} \leq N_{L_{1}}(P)$ and $L_{2}^{*} \leq N_{L_{2}}(Q)$ hold. By Lemma 3.4 (i)(a) and (b) $\mathscr{A}\left(p, \pi_{1}\right)=\left\{P N_{L_{1}}(P), L_{1}\right\}, \mathscr{M}\left(q, \pi_{2}\right)=\left\{Q N_{L_{2}}(Q), L_{2}\right\}$ and $P_{\sigma \tau}=1=Q_{\rho \tau}$. So $\sigma \tau$ and $\rho \tau$ act (respectively) fixed-point-freely upon $P L_{2}$ and $Q L_{1}$. Conscquently, as $L_{1\langle\rho \tau\rangle}^{*}=L_{1_{r}}, L_{2\langle\sigma \tau\rangle}^{*}=L_{2_{\tau}}$ and $(P L$,$) , and (Q L$,$) , are nilpotent, \mathrm{I}(3.7)$ gives

$$
\left[P_{\tau}, L_{2}\right]=1=\left[Q_{T}, L_{1}\right] .
$$

Because $P_{\tau} Q_{\tau}$ is soluble, without loss of generality, we must have $O_{p}\left(P_{\tau} Q_{\tau}\right) \neq 1$. Hence

$$
Q_{T}, L_{1} \leq N_{G}\left(O_{p}\left(P_{\tau} Q_{\tau}\right)\right)
$$

whence $Q_{\tau} \leq \mathscr{P}_{Q}(\mathrm{~L})=$,1 , which is not possible. This verifies (4.17).
Before proceeding further we investigate the interaction between L_{1} and L_{2}.

$$
\begin{equation*}
L_{1} L_{2} \neq L_{2} L_{1} . \tag{4.1.1}
\end{equation*}
$$

Suppose $L_{1} L_{2}=L_{2} L_{1}$ holds. Because of (4.17) and Lemma 3.3 it may be assumed that (say) $\mathrm{Q},, Q_{\tau} \leq N_{Q}\left(L_{2}\right)$. Employing $\mathrm{I}(5.8)$ (f) with $7=p, L=L, M=\mathrm{Q}$ and $N=L_{2}$ (notethat $G \neq L_{2}\left(L_{1} Q\right)$ since $P \neq 1$) yields $O_{\pi_{1}}\left(L_{1} L_{2}\right)=1$, whence $L_{1}=L_{1_{\sigma}}$ byl(2.13) (i). Consequently, by Lemma 3.3, we must have $P_{\sigma}, P_{\tau} \leq N_{P}\left(L_{,}\right)$. A further application of $1(5.8)$ (f) with $7=\sigma, L=L_{2}, M=P$ and $N=L_{1}$ gives $O_{\pi_{2}}\left(L_{1} L_{2}\right)=1$. Buthen $F\left(L_{1} L_{,}\right)=1$, which contradicts a well-known property of soluble groups. Hence we must have $L_{1} L_{2} \neq L_{2} L_{1}$.

Our next two assertions prepare the ground for our later work.
(4.19) If P (respectively Q) is not star covered, then $Q_{\rho}, Q_{T} \leq N_{Q}\left(L_{2}\right)$ (respectively $\left.P_{\sigma}, P_{\tau} \leq N_{P}\left(L_{1}\right)\right)$.

Suppose $L_{2}^{*} \leq N_{L_{2}}$ (Q) were to hold. Then applying I(5.8) (f) with $7=\alpha, L=P, M=L_{2}$ and $N=\mathrm{Q}$ gives that $O_{p}(P Q)=1$. Hence P is star-covered by $\mathrm{I}(4.4)$, contrary to the hypothesis of (4.19). Thus $L_{2}^{*} \not \subset N_{L_{2}}(Q)$ and so, by Lemma 3.3, $\mathrm{Q},, Q_{\tau} \leq N_{Q}(L$,$) , as$ required.

From Lemma 3.4(ii) (e) we have
(4.20) If $P_{\sigma}, P_{\tau} \leq N_{P}(L$,$\left.) (respectively Q_{\rho}, Q_{\tau} \leq N_{Q}\left(L_{2}\right)\right)$ and P (respectively Q) is star covered, then $P=P_{\rho}$ (respectively $\mathrm{Q}=\mathrm{Q}$).

We have reached a stage in the proof where it is necessary to subdivide into the following cases:

Case 1: Both P and Q are not star-covered;
Case 2: Both P and Q are star-covered; and
Case 3: P is not star-covered and Q is star-covered.

Case 1: Both P and Q are not star-covered.
A double application of (4.19) immediately gives

$$
\begin{equation*}
P_{\sigma}, P_{\tau} \leq N_{P}\left(L_{1}\right) \text { and } Q_{\rho}, Q_{\tau} \leq N_{Q}\left(L_{2}\right) . \tag{4.21}
\end{equation*}
$$

Weassert that $N_{P}\left(L_{1}\right) \not \leq P_{\rho}$. For suppose $N_{P}\left(L_{1}\right) \leq P_{\rho}$ did hold. Then $P^{*}=P_{\rho}$ by (4.21). Since Q is assumed to not be star-covered, $R=O_{q}(P Q) \cap O_{q}(Q L) \neq$,1 by $\mathrm{I}(4.7)$. By considering $C_{G}(R)$ we infer that either $O_{p}(P Q) \leq N_{P}\left(L_{1}\right)$ or $O_{\pi_{1}}(Q L,) \leq N_{L_{1}}(P)$. The former possibility, using I(4.7), implies that

$$
P=P^{*} O_{p}(P Q)=P^{*} N_{P}\left(L_{1}\right)=P_{\rho}
$$

contrary to P being not star-covered. Thus $O_{\pi_{1}}\left(\mathrm{QL}_{1}\right) \leq N_{L_{1}}(P)$ holds, and so $O_{\pi_{1}}\left(\mathrm{Q} L_{1}\right) \leq$ $L_{1_{\sigma t}}$ by Lemma 3.4(ii) (c) and (f).

Consequently $L_{1}=L_{1}^{*}$ by $\mathrm{I}(4.4)$ and then Lemma 3.4(ii)(g) gives that $P=P_{\rho}$, which again contradicts P being not star-covered. Therefore $N_{P}(L,) \notin P_{\rho}$ as asserted. Likewise wemayestablishthat $N_{Q}\left(L_{2}\right) \notin \mathrm{Q}$,. Thus $\left[N_{P}\left(L_{1}\right), \rho\right] \neq 1 \neq\left[N_{Q}\left(L_{2}\right), \sigma\right]$ andhence Lemma 3.4(ii) (c) and (d) yield

$$
\begin{equation*}
\mathscr{A}\left(p, \pi_{1}\right)=\left\{P, N_{P}\left(L_{1}\right) L_{1}\right\} \quad \text { and } \quad \mathscr{M}\left(q, \pi_{2}\right)=\left\{Q, N_{Q}\left(L_{2}\right) L_{2}\right\} \tag{4.22}
\end{equation*}
$$

$$
\begin{equation*}
N_{P}\left(N_{P}\left(L_{1}\right)\right)^{*} \leq N_{P}\left(L_{1}\right) \text { and } N_{Q}\left(N_{Q}\left(L_{2}\right)\right)^{*} \leq N_{Q}\left(L_{2}\right) \tag{4.23}
\end{equation*}
$$

Since $L_{1} L_{2} \neq L_{2} L_{1}$ by (4.18) and our situation is symmetric with respect to P and Q , we may suppose that $L_{1_{\tau}} \leq N_{L_{1}}\left(L_{2}\right)$. In particular $F=N_{L_{1}}\left(L_{2}\right) \neq 1$. Recalling that $Q_{\rho} \leq N_{Q}(L$, (by (4.21)), I(2.14) (i) and I(2.13) (i) yield

$$
\begin{equation*}
\mathbf{Q}=N_{Q}\left(L_{2}\right) O_{q}\left(Q L_{1}\right)=N_{Q}\left(L_{2}\right) C_{Q}(F) . \tag{4.24}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
C_{Q}(F) \text { is star covered } \tag{4.25}
\end{equation*}
$$

For, if this were not the case, $\mathrm{I}(4.5)$ implies $C_{Q}(F) \cap O_{q}(P Q) \neq 1$. Since $F \neq 1,(4.22)$ then yields $O_{p}(P Q) \leq N_{p}(L$,$) . But then (4.23) and \mathrm{I}(4.6)$ together force $P=N_{P}\left(L_{1}\right)$, a contradiction. Therefore (4.25) holds.

Put $\mathrm{C}=C_{Q}(F)$. From (4.24)

$$
N_{Q}\left(N_{Q}\left(L_{2}\right)\right)=N_{Q}\left(L_{2}\right) N_{C}\left(N_{Q}\left(L_{2}\right)\right)
$$

Combining (4.23) and (4.25) we obtain

$$
N_{C}\left(N_{Q}\left(L_{2}\right)\right)=N_{C}\left(N_{Q}\left(L_{2}\right)\right)^{*} \leq N_{Q}\left(N_{Q}\left(L_{2}\right)\right)^{*} \leq N_{Q}\left(L_{2}\right),
$$

which then implies that $N_{Q}\left(N_{Q}\left(L_{2}\right)\right)=N_{Q}(\mathbf{L}$,$) . Hence N_{Q}\left(L_{2}\right)=\mathbf{Q}$, contrary to $L_{2} \mathrm{Q} \neq \mathrm{Q} L_{2}$. This contradiction disposes of case 1 .

Case 2. Both P and Q are star-covered.

Suppose, for the moment, that $P_{\sigma}, P_{\tau} \leq N_{P}\left(L_{1}\right)$ and $Q_{\rho}, Q_{\tau} \leq N_{Q}\left(L_{2}\right)$ hold. Then $\mathbf{P}=P_{\rho}$ and $\mathrm{Q}=Q_{\sigma}$ by (4.20). By I(2.3)(ix) and $1(2.21)(\mathrm{v}) \mathscr{P}_{L_{1}}(\mathbf{P})=1$. Also, by I(2.3) (ix) and I(2.13) (i)

$$
[Q, \rho] \unlhd P Q \text { and }[Q, \rho] \leq O_{q}\left(Q L_{1}\right) .
$$

Since, $1 \neq Q_{\tau}=Q_{\sigma \tau} \leq[Q, \rho]$, we deduce that $O_{\pi_{1}}\left(\mathrm{Q} L_{1}\right) \leq \mathscr{P}_{L_{1}}(\mathrm{P})=1$. Consequently, by $\mathrm{I}(4.4), L_{1}=L_{1_{\tau}}$ because $\rho \tau$ acts fixed-point-freely upon $\mathbf{Q L}$, and $L_{1\langle\rho \tau\rangle}^{*}=L_{1_{r}}$. Further. $\mathrm{Q}=Q_{\sigma}$ and $\mathrm{I}(2.3)$ (ix) gives $L_{1}=L_{\mathrm{d}}$. So $L_{1}=L_{1 \quad \text { - }}$ and therefore $N_{P}\left(L_{1}\right) \unlhd L_{1} N_{P}\left(L_{1}\right)$ by $\mathrm{I}(6.4)$. Then $\mathrm{PL},=L_{1} P$ by $\mathrm{I}(2.21)(\mathrm{v})$. So we see that $P_{\sigma}, P_{\tau} \leq N_{P}(\mathrm{~L}$,$) and \mathrm{Q},, Q_{\tau} \leq$ $N_{Q}(\mathrm{~L}$,$) cannot both hold.$

In view of (4.17) and the symmetric conditions on P and Q we may assume, without loss of generality, that $P_{\sigma}, P_{\tau} \leq N_{P}(\mathbf{L}$,$) and L_{2}^{*} \leq N_{L_{2}}(Q)$ pertains. From Lemma 3.4 (i) (b) $Q_{\rho \tau}=1$ and so $[Q, \rho] \neq 1$. Since $P=P_{\rho}$ by (4.20) we may argue as in the previous paragraph to obtain

$$
\begin{equation*}
O_{\pi_{1}}\left(Q L_{1}\right)=1 \text { and } L_{1}=L_{1_{r}} . \tag{4.2.2}
\end{equation*}
$$

By $\mathrm{I}(2.10)$ (i) QL , has Fitting length at most two, and so (4.26) gives $\mathrm{Q} \unlhd \mathrm{QL}$, . Hence

$$
\begin{equation*}
L_{2}^{*} \leq N_{L_{2}}\left(L_{1}\right) \tag{4.27}
\end{equation*}
$$

Ouraimnowistoshowthat $L_{2} \leq N_{L_{2}}\left(L_{1}\right)$.
If $\left[N_{L_{2}}\left(L_{1}\right), \rho\right] \neq 1$, then, as $P=P_{\rho}$ gives $\left[L_{2}, \rho\right] \leq O_{\pi_{2}}\left(P L_{2}\right)$, we obtain

$$
O_{p}\left(P L_{2}\right), L_{1} \leq C_{G}\left(\left[N_{L_{2}}\left(L_{1}\right), \rho\right]\right) .
$$

Hence $O_{p}\left(P L_{2}\right) \leq N_{P}\left(L_{1}\right)$. But then $\mathrm{I}(2.13)$ (i) forces $P=O_{p}\left(P L_{2}\right) P_{\sigma} \leq N_{P}\left(L_{1}\right)$, a contradiction. Therefore $N_{L_{2}}(\mathrm{~L},) \leq L_{2_{\rho}}$, and so using (4.27) we have

$$
\begin{equation*}
L_{2_{r}} \leq N_{L_{2}}\left(L_{1}\right)=L_{2_{0}} . \tag{4.28}
\end{equation*}
$$

Now $O_{\pi_{2}}\left(L_{1} N_{L_{2}}(\mathbf{L}),\right) \neq 1$ would imply, by $\mathrm{I}(2.3)$ (x) and $\mathrm{I}(2.21)$ (iv), that $L_{2}=L_{-2}$, contrary to $L_{1} L_{2} \neq L_{2} L_{1}$. Hence $O_{\pi_{2}}\left(L_{1} N_{L_{2}}\left(L_{1}\right)\right)=1$, and then $L_{1}=L_{1_{r}}$ and $\mathrm{I}(2.3)$
(ix) yield $L_{2_{r}}=N_{L_{2}}\left(L_{1}\right)$. Therefore $L_{L_{2}}=L_{2_{p}}$, and so an application of I(6.4) to $P L_{2}$ yields $P \unlhd P L_{2}$. In particular, $\left[P, O_{\pi_{2}}\left(P L_{2}\right)\right]=1$. Now $P=P_{\rho}$ and $L_{1}=L_{1_{\tau}}$ imply $1 \neq P_{\sigma} \leq\left[N_{P}\left(L_{1}\right), \tau\right] \leq C_{P}\left(L_{1}\right)$ and so

$$
O_{\pi_{2}}\left(P L_{2}\right), L_{1} \leq C_{G}\left(P_{\sigma}\right),
$$

which gives $O_{\pi_{2}}\left(P L_{,}\right) \leq N_{L_{2}}\left(L_{n}\right)$. Combining this with (4.27) and $\mathrm{I}(4.5)$ gives

$$
L_{2}=O_{\pi_{2}}\left(P L_{2}\right) L_{2}^{*} \leq N_{L_{2}}\left(L_{1}\right)
$$

This is the desired contradiction which completes case 2.
We now move onto the final case, which, unfortunately, is somewhat lengthy.

Case 3. P is not star-covered and Q is star-covered.

Since P is not star-covered, (4.19) implies that $Q_{\rho}, Q_{T} \leq N_{Q}\left(L_{2}\right)$. Consequently $\mathrm{Q}=$ Q_{σ} by (4.20), and so I(2.3) (ix) gives

$$
\begin{equation*}
\mathscr{H}\left(q, \pi_{2}\right)=\left\{Q, N_{Q}\left(L_{2}\right) L_{2}\right\} \tag{4.29}
\end{equation*}
$$

Furthermore, we may deduce that
(i) $O_{\pi_{2}}\left(P L_{2}\right)=1$.
(ii) L_{2} is star covered.

From $\mathrm{Q}=Q_{\sigma}$ and $\mathrm{I}(2.3)$ (ix) we have $[\mathrm{P}$, cr $] \unlhd P Q$. Now $[P, \sigma] \leq O_{p}\left(P L_{2}\right)$ by $1(2.13)(\mathrm{i})$, and $[\mathrm{P}, \sigma] \neq 1$ since P is not star-covered. Then $N_{G}([P, \sigma])$ and (4.29) imply (4.30) (i). Part (ii) follows from (i) and $\mathrm{I}(4.4)$.

Suppose $L_{2_{\tau}} \leq N_{L_{2}}(L$,$) holds. Then L_{2}$ being star-covered implies, by I(2.3) (viii), that [$\left.N_{L_{2}}(L),, \rho\right] \neq 1$ is impossible. Consequently we obtain $L_{2_{\rho}}=L_{2}^{*}=L_{2}$. Hence, recalling that $\mathrm{Q}=Q_{\sigma}, \mathrm{I}(2.3)(\mathrm{x})$ gives

$$
Q_{\tau} \leq\left[N_{Q}\left(L_{2}\right), \rho\right] \leq C_{Q}\left(L_{2}\right)
$$

Also, $Q_{\rho \tau}=1$, and so $\rho \tau$ acts fixed-point-freely on $Q L$, Because $L_{1\langle\rho \tau\rangle}^{*}=L_{1_{\tau}}, \mathrm{I}(3.7)$ yields $\left[\mathrm{Q},, L_{1}\right]=1$. But then

$$
L_{1}, L_{2} \leq C_{G}\left(Q_{T}\right)
$$

contradicting (4.18). Thus we conclude that

$$
\begin{equation*}
L_{1_{\tau}} \leq N_{L_{1}}\left(L_{2}\right) \tag{4.31}
\end{equation*}
$$

We next show that

$$
\begin{equation*}
L_{2}=L_{2} \tag{4.32}
\end{equation*}
$$

Since $Q_{\rho} \leq N_{Q}\left(L_{2}\right), L_{1_{\rho}}=1$ and, by (4.31), $L_{1_{\tau}} \leq N_{L_{1}}\left(L_{2}\right), \mathrm{Q}=N_{Q}\left(L_{2}\right) C_{Q}\left(L_{1_{\tau}}\right)$ by $1(2.13)$ (i) and $1(2.14)(\mathrm{i})$. Put $\bar{L}_{2}=L_{2} / \phi\left(L_{2}\right)$. From (4.30) (ii) $\bar{L}_{2}=\bar{L}_{2_{\rho}} \bar{L}_{2_{\tau}}$. Clearly -CZ, $\unlhd \bar{L}_{2} L_{1_{\tau}}$ and hence, because $L_{1_{\rho}}=1, \mathrm{I}(2.3)$ (x) yields $\bar{L}_{2}=\bar{L}_{2_{\tau}} C_{\bar{L}_{2}}\left(L_{1_{\tau}}\right)$.

If $C_{L_{2}}\left(L_{1_{\tau}}\right) \neq 1$, then (4.29) forces $C_{Q}\left(L_{1_{\tau}}\right) \leq N_{Q}\left(L_{2}\right)$, whence $Q=N_{Q}\left(L_{2}\right) C_{Q}\left(L_{1_{\tau}}\right)=$ $N_{Q}\left(L_{2}\right)$, against $Q L_{2} \neq L_{2} Q$. So $C_{L_{2}}\left(L_{1_{\tau}}\right)=1$. Hence $C_{\bar{L}_{2}}\left(L_{1_{\tau}}\right)=1$, and therefore $\bar{L}_{2}=\bar{L}_{2_{\tau}}$. By a well-known property of the Frattini subgroup, we obtain $L_{2}=L_{2_{\tau}}$, as desired.

Since $Q=Q_{\sigma}, 1 \neq Q_{\rho} \leq\left[N_{Q}\left(L_{2}\right), \tau\right] \leq C_{Q}\left(L_{2}\right)$ by (4.32) and $\mathrm{I}(2.3)(\mathrm{x})$. So $Z(Q) \leq$ $N_{Q}\left(L_{2}\right)$, and, since $Q L_{2} \neq L_{2} Q, Z(Q) \leq Q$, . Recallingthat $\left[Q_{\tau}, L_{1}\right]=1\left(\operatorname{as}\left(Q L_{1}\right)_{\rho \tau}=\right.$ 1) we obtain

$$
\begin{equation*}
\left[Z(Q), L_{1}\right]=1 \tag{4.33}
\end{equation*}
$$

We claim that $O_{p}(P Q)=1$. Suppose this were false. Then $\mathrm{Z}(\mathrm{Q}) \cap O_{q}(P Q) \neq 1$, which, together with (4.33), gives $O_{p}(\mathrm{PQ}) \leq \mathscr{P}_{P}(\mathbf{L}$,$) . Because \mathbf{P}$ is not star-covered, $O_{p}(P Q) \neq 1$ and so, by Lemma 3.4(i)(a), $L_{1}^{*} \not \leq N_{L_{1}}(P)$. Thus $O_{p}(P Q), P_{\sigma}, P_{\tau} \leq N_{P}\left(L_{1}\right)$. If $N_{P}(\mathrm{~L},) \leq P_{\rho}$ holds, then, by $\mathrm{I}(4.5), P=O_{p}(P Q) P^{*}=P_{\rho}$, contrary to P not being starcovered. Whilst $\left[N_{P}(\mathbf{L}),, \rho\right] \neq 1$ implies, by Lemma 3.4(ii) (d), that $N_{P}\left(N_{P}\left(\left(L_{1}\right)\right)^{*} \leq\right.$ $N_{P}(\mathbf{L}$,$) , and then \mathrm{I}(4.6)$ gives the untenable $P=N_{P}(\mathbf{L}$,$) . This establishes the claim.$ Using I(2.6) we now deduce that

$$
\begin{equation*}
\mathrm{Q}=N_{Q}(J(P)) C_{Q}(Z(P)) \tag{4.34}
\end{equation*}
$$

If the Fitting length of $P L_{2}$ were at most two, then (4.30) (i) would give $P \unlhd P L_{2}$. Then $\mathrm{Z}(\mathrm{P}) \unlhd P L_{2}$ and $\mathbf{J}(\mathbf{P}) \unlhd P L_{2}$, and hence (4.34) forces $Q L_{2}=L_{2} Q$, a contradiction. Thus we conclude, using $I(2.10)$ (i), that

$$
\begin{equation*}
P_{\sigma \tau} \neq 1 \tag{4.35}
\end{equation*}
$$

We shall show that (4.35) gives rise to a contradiction. One observation we shall use is that

$$
\begin{equation*}
Z(J(P)) \nsubseteq P_{\rho} \tag{4.36}
\end{equation*}
$$

Suppose $Z(J(\mathrm{P})) \leq P_{\rho}$ were to hold. Then we may apply $\mathrm{I}(2.3)(\mathrm{x})$ to both $Z(J(\mathrm{P}))$ $N_{Q}(J(P))$ and $Z(J(P)) N_{L_{2}}(J(P))$. Since $Z(P) \leq Z(J(P))$ and $O_{p}(P Q)=1=$ $O_{\pi_{2}}\left(P L_{2}\right), \mathrm{I}(2.6)$ yields

$$
\mathrm{Q}=C_{Q}(Z(P)) Q_{\rho} \text { and } L_{2}=C_{L_{2}}(Z(P)) L_{2_{\rho}}
$$

Recall, from (4.29), that $Q_{\rho} \leq N_{Q}\left(L_{2}\right)$, and hence $C_{Q}(Z(\mathbf{P})) \not \leq N_{Q}\left(L_{2}\right)$. Therefore $C_{L_{2}}(Z(\mathbf{P})) \leq \mathscr{P}_{L_{2}}(\mathrm{Q})=1$ by (4.29), which then gives $L_{2}=L_{2_{\rho}}$. Hence, using (4.32), $L_{2}=L_{2_{\rho \tau^{\prime}}}$ Combining I(6.4) and $1(2.21)(v)$ gives $L_{2} Q=Q L_{2}$, a contradiction. Thus we have established that $Z(\mathrm{~J}(\mathrm{P})) \notin P_{\rho}$.

From (4.35) and $\mathrm{I}(3.13)(\mathrm{iii}) 1 \neq P_{\sigma \tau} \leq C_{P}(\mathrm{~L}$,$) and so$

$$
\begin{equation*}
\mathscr{M}\left(p, \pi_{1}\right)=\left\{P, N_{P}\left(L_{1}\right) L_{1}\right\} \tag{4.37}
\end{equation*}
$$

by Lemma 3.4(ii)(c). We assert that

$$
\begin{equation*}
L_{1}^{*}=L_{1_{\sigma}} \neq L_{1} \tag{4.38}
\end{equation*}
$$

First we verify that $L_{1}^{*}=L_{1_{\sigma}}$. Supposing $L_{1}^{*} \neq L_{1_{0}}$ we seek a contradiction. So $1 \neq\left[N_{L_{1}}\left(L_{2}\right), \sigma\right] \leq C_{L_{1}}\left(L_{2}\right)$ by (4.31) and I(2.13)(i). Hence $Z\left(L_{1}\right) \leq N_{L_{1}}\left(L_{2}\right)$. Because $L_{1} L_{2} \neq L_{2} L_{1}$ and, by (4.32), $L_{2}=L_{2_{r}}, \mathrm{I}(2.3)$ (x) and $1(2.13)$ (i) force $Z(\mathrm{~L} \boldsymbol{I}) \leq L_{1_{\sigma \tau}}$. But then $\left[Z\left(L_{1}\right), N_{P}\left(L_{1}\right)\right]=1$ by $\mathrm{I}(6.4)$, which, as $N_{P}(\mathbf{L}) \neq$,1 , yields $Z\left(L_{1}\right) \leq \mathscr{P}_{L_{1}}(P)$, against (4.37). So we have proved that $L_{1}^{*}=\mathrm{L}_{\mathrm{I}_{\sigma}}$.

Observe that $P_{\rho \tau} \neq 1$. For $P_{\rho \tau}=1$ would imply, as $\mathrm{Q}=\mathrm{Q}$, that $\rho \tau$ acts fixed-point-freely upon $\mathbf{P Q}$. Recalling that $O_{p}(\mathbf{P Q})=1, \mathrm{I}(2.10)$ (i) gives $P \unlhd \mathbf{P Q}$. Since $O_{\pi_{2}}\left(P L_{2}\right)=1$ by (4.30) (i) I(2.6) implies $L_{2}=N_{L_{2}}(J(P)) C_{L_{2}}(Z(P))$, whence $Q L_{2}=$ $L_{2} \mathrm{Q}$, which is not possible.

Now suppose $L_{1}=L_{1_{\sigma}}$. Then $1(2.3)(\mathrm{x}), 1(2.13)(\mathrm{i})$ and (4.37) give $\left[L_{1}, P_{\tau}\right]=1$. Now $\left[\mathrm{L},, P_{p \tau}\right]=1$ by I(3.13) (iii) and so $L_{1}, L_{2} \leq C_{G}\left(P_{\rho \tau}\right)$. Since $P_{\rho \tau} \neq 1$, we obtain the untenable $L_{1} L_{2}=L_{2} \mathrm{~L}$, Therefore $L_{1} \neq L_{1_{\sigma}}$, and we have (4.38).

Since $P_{\sigma} \leq N_{P}\left(L_{1}\right)$, (4.38) and I(2.14) (ii) imply that $L_{1}=C_{L_{1}}\left(P_{\sigma}\right) L_{i_{\sigma}}$. Further, $C_{L_{1}}\left(P_{\sigma}\right) \neq 1$ by (4.38). Therefore the shape of $\mathscr{M}\left(p, \pi_{1}\right)$ gives $\mathrm{Z}(\mathrm{P}) \leq N_{P}\left(L_{1}\right)$ and $Z(P)_{\sigma}=1$. Now $\left[L_{1}, P_{\sigma}\right] \leq L_{1_{\sigma}}$ and, since $\left[\mathrm{Z}(\mathrm{P}), P_{\sigma}\right]=1, Z(P)$ normalizes $\left[L_{1}, P_{\sigma}\right]$. Applying (2.3) (x) to $\mathrm{Z}(\mathrm{P})\left[L_{1}, P_{\sigma}\right]$ wededuce that $\left[\mathrm{Z}(\mathrm{P}),\left[L_{1}, P_{\sigma}\right]\right]=1$. Then theshape of $\mathscr{A}\left(p, \pi_{1}\right)$ forces $\left[L_{1}, P_{\sigma}\right]=1$.

If $J(P)_{\sigma} \neq 1$, then $P_{\sigma} \leq C_{P}\left(L_{1}\right)$ yields $Z(J(P)) \leq N_{P}\left(L_{1}\right)$. By $\mathrm{I}(2.13)$ (i) and (4.36)

$$
1 \neq[Z(J(P)), \rho] \leq C_{P}\left(L_{1}\right) .
$$

Then, using I(2.3) (viii), we infer that $P_{\rho} \leq N_{P}(\mathrm{~L}$,$) , and hence P^{*} \leq N_{P}\left(l_{1}\right)$. Employing 1(5.8)(f) (with $\mathrm{L}=\mathrm{Q}, M=P, N=\mathrm{L}$, and $\gamma=\alpha$) yields $O_{p}\left(Q L_{1}\right)=1$. However, by (4.33), $\left[\mathrm{Z}(\mathrm{Q}), L_{1}\right]=1$, and so we see that $\mathrm{J}(\mathrm{P}),=1$. Consequently (since $\mathrm{Q}=\mathrm{Q}$,),

$$
J(P) \leq[P, \sigma] \leq O_{p}(P Q) \cap O_{p}\left(P L_{2}\right)
$$

Then, by [Lemma 8.22(ii); 31, $J\left(O_{p}(P Q)\right)=\mathbf{J}(\mathbf{P})=J\left(O_{p}\left(P L_{2}\right)\right)$ and hence $Q, L_{2} \leq$ $N_{G}(J(\mathrm{P}))$, a contradiction! This is the long sought contradiction and finishes the work on case 3.

The proof of Theorem 4.4 is complete.
The next linking result is of a similar nature to Theorem 4.4 though its proof is much shorter.

Lemma 4.5. Let P and Q be (respectively) α-invariant Sylow p - and q -subgroups of type Λ whichpermute, $p \neq q$, and set $\Lambda=\{\mathbf{i}, \mathbf{j}, \mathbf{k}\}$. If $P L_{j k}=L_{j k} P$ and $Q L_{i}=L_{i} Q$, then at least one of $P L_{i}=L_{i} P$ and $Q L_{j k}=L_{j k} Q$ must hold.

Proof. Suppose the lemma is false and argue fora contradiction. Without loss of generality we assume $i=1, j=2$ and $k=3$. So we have

$$
\begin{align*}
& P Q=Q P, P L_{23}=L_{23} P, Q \mathrm{Q},=L_{1} Q, \tag{4.39}\\
& P L_{1} \neq L_{1} P \quad \text { and } \quad Q L_{23} \neq L_{23} Q
\end{align*}
$$

From Lemma 3.2, $\mathrm{Z}(\mathrm{Q}) \leq Q_{\sigma \tau}$ and so $[\mathrm{Z}(\mathrm{Q}), \mathbf{L}]=$,1 by $\mathrm{I}(3.13)$ (iii). Also note that $L_{23}^{*}=L_{23_{\rho}} \neq L_{23}$ by I(2.8) and $\mathrm{I}(6.1)$.

Now suppose Q is not star-covered. Then $O_{q}(\mathrm{PQ}) \neq 1$ by $\mathrm{I}(4.4)$. Hence, by $\mathrm{I}(5.8)$ (f$)$, $L_{1}^{*} \notin N_{L_{1}}(P)$ and so $P_{\sigma}, P_{\tau} \leq N_{P}\left(L_{1}\right)$. Moreover $O_{q}(P Q) \cap Z(Q) \neq 1$ and $\left[Z(Q), L_{1}\right]=$

1 yield $O_{p}(\mathrm{PQ}) \leq N_{P}\left(L_{1}\right)$ whence $P=P_{\rho}$ by Lemma 3.4(ii) (d) and $\mathrm{I}(4.6)$. Therefore $\mathscr{M}\left(p, \pi_{1}\right)=\left\{P, N_{P}\left(L_{1}\right) L_{1}\right\},[Q, p] \unlhd P Q$ by $\mathrm{I}(2.3)$ (ix), and $P_{\sigma \tau}=1$. Since $1 \neq[Q, \rho] \leq O_{q}\left(Q L_{1}\right)$, we obtain $O_{\pi_{1}}\left(Q L_{1}\right) \leq \mathscr{P}_{L_{1}}(P)=1$.Thus

L_{1} is star covered.

Clearly $P L$, admits $\sigma \tau$ fixed-point-freely and so $\left[\mathrm{P}, L_{23}\right]=1$ by I(2.8). If $L_{1} L_{23}=$ $L_{23} L_{1}$, then $L_{23}^{*} \neq L_{23}, \mathrm{I}(4.4)$ and $N_{G}\left(O_{\pi_{23}}(L, L),\right) \geq P, L_{1}$ yields a contradiction to (4.39). Thus $L_{1} L_{23} \neq L_{23} L$, .

Since $P_{\sigma \tau}=1, P_{\sigma}, P_{\tau} \leq N_{P}(L$,$) and, by (4.4), L_{1}=L_{1}^{*}$ it follows (see Lemma 3.4(ii) (g)) that for at least one of P_{σ} and P_{τ}, say $P_{\sigma}, C_{L_{1}}\left(P_{\sigma}\right) \neq 1$ and $C_{L_{1}}\left(P_{\sigma}\right) \notin L_{1_{\sigma \tau}}$. Clearly $C_{G}\left(P_{\sigma}\right) \geq L_{23}, C_{L_{1}}\left(P_{\sigma}\right)$ and hence $O_{\pi_{1}}\left(L_{23} \mathscr{P}_{L_{1}}\left(L_{23}\right)\right) \neq 1$ by I(2.13) (i) and $C_{L_{1}}\left(P_{\sigma}\right) \&$ $L_{1_{\sigma \tau}}$. Hence $Z\left(L_{1}\right) \leq L_{1_{\sigma r}}$ as $L_{1} L_{23} \neq L_{23} L_{1}$. Butthen $\left[N_{p}\left(L_{1}\right), Z\left(L_{1}\right)\right]=1 \operatorname{byI}(2.3)$ (xi) whence $Z(L,) \leq \mathscr{P}_{L_{1}}(P)$ contrary to the shape of $\mathscr{A}\left(p, \pi_{1}\right)$.

Hence we conclude that Q must be star-covered. Then by Lemma 3.2 and $\mathrm{I}(2.3)$ (viii) either $N_{Q}\left(L_{23}\right) \leq Q_{\sigma}$ or $N_{Q}\left(L_{23}\right) \leq \mathrm{Q}$. Suppose $N_{Q}\left(L_{23}\right) \leq Q_{\sigma}$. Hence as $C_{Q}\left(L_{23}\right) \neq 1$, $\mathrm{Q}=Q_{\sigma}$ by $\mathrm{I}(2.21)$ (iv) and $\mathrm{I}(2.3)$ (v). So $[\mathrm{P}, \sigma] \unlhd P Q$. If $[P, \sigma] \neq 1$, then $N_{G}([P, \sigma]) \geq$ $\mathrm{Q}, O_{\pi_{23}}(P L,$,$) implies 1 \neq O_{\pi_{23}}(P L,) \leq \mathscr{P}_{L_{23}}(\mathrm{Q})$, which contradicts Lemma 3.2. Thus $P=P_{\sigma}$ andso $1 \neq P_{\tau}=P_{\sigma \tau}$. Hence $P_{\sigma}, P_{\tau} \leq N_{P}(L$,) by Lemma 3.4 (i) (b). But then $P \leq N_{P}(L),$, a contradiction.

This completes the proof of Lemma 4.5.

We close this section with two results, the first of which will be used in Lemmas 6.1 and 7.4 whilst the second is specifically designed for one application in Theorem 7.6.

Lemma 4.6. Let P be an α-invariant Sylow p-subgroup of type $\Lambda, p \in \pi(G)$, for which $P L_{2} \neq L_{2} P$ and $P L, \neq L_{3} P$. Then
(i) $P_{p}, P_{\tau} \leq N_{P}\left(L_{2}\right)$ and $P_{\rho}, P_{\sigma} \leq N_{P}\left(L_{3}\right)$;
(ii) $Z(P)=Z(P)_{\sigma \tau} \leq N_{P}\left(L_{2}\right) \cap N_{P}\left(L_{3}\right)$;
(iii) P is not star-covered; and
(iv) either $N_{G}(Z(J(P)))=P C_{G}(Z(J(P)))$ or $J(P)$ is contained in at least one of $N_{P}\left(L_{2}\right)$ and $N_{P}\left(L_{3}\right)$.

Proof. (i) From Lemma 4.1, $L_{2} L_{3}=L_{3} L_{2}$. Suppose that $P_{p}, P_{\sigma} \not \leq N_{P}\left(L_{3}\right)$. Then $L_{3}^{*} \leq$ $\mathrm{N}, .,(\mathrm{P})$ and by Lemma 3.4 (i),

$$
P_{\rho \sigma}=1, P_{\sigma \tau} \neq 1 \neq P_{\rho \tau} \quad \text { and } \mathscr{M}\left(p, \pi_{3}\right)=\left\{L_{3}, N_{L_{3}}(P) P\right\}
$$

Since $P_{\rho \tau} \neq 1$, we must have $P_{\rho}, P_{\tau} \leq N_{P}\left(L_{2}\right)$ by Lemma 3.4 (i) (b). From $P_{\rho \sigma}=1$ we see that $\left[N_{P}\left(L_{2}\right), \sigma\right] \neq 1$ whence $C_{P}\left(L_{2}\right) \neq 1$ and $Z(P) \leq N_{P}\left(L_{2}\right)$. The shape of $\mathscr{M}\left(p, \pi_{3}\right)$ forces $0,\left(L_{2} L_{3}\right)=1$, which then, by $1(2.13)(\mathrm{i})$, gives $L_{2}=L_{2_{r}}$. Hence $\mathrm{Z}(\mathrm{P}) \leq P_{\tau}$ by $1(2.3)(\mathrm{x})$. But then $\left[\mathrm{Z}(\mathrm{P}), N_{L_{3}}(\mathrm{P})\right]=1$ which gives the untenable $\mathrm{Z}(\mathrm{P}) \leq \mathscr{P}_{P}\left(L_{3}\right)=1$. Thus we conclude that $P_{\rho}, P_{\sigma} \leq N_{P}\left(L_{3}\right)$ and, likewise, that $P_{\rho}, P_{\tau} \leq N_{P}\left(L_{2}\right)$.
(ii) Because $P_{\rho} \neq 1$, one of [$N_{P}(\mathrm{~L}),, \sigma$] and $\left[N_{P}\left(L_{3}\right), \tau\right]$ must be non-trivial. Hence wehave, say, $C_{P}\left(L_{2}\right) \neq 1$ and so $Z(P)=Z(P)_{\sigma} \leq N_{P}\left(L_{2}\right)$. But then $\mathbf{Z}(\mathbf{P}) \leq P_{\sigma} \leq$ $N_{P}\left(L_{3}\right)$, so proving (ii).
(iii) Since $P \neq P_{\sigma \tau}, \mathbf{P}$ cannot be star-covered by Lemma 3.4 (ii) (e).
(iv) Put $\mathbf{R}=Z(J(\mathbf{P}))$. If, say, $R_{\rho} \neq R_{\rho \sigma} R_{\rho \tau}$, then $O_{p}\left(R_{\rho} L_{3_{\rho}}\right) \neq 1$ by I(4.5). Since $L_{3_{\rho}} \not \mathscr{P}_{L_{3}}(\mathbf{P})$ by (i) and Lemma 3.3(ii), this implies that $\mathrm{J}(\mathrm{P}) \leq N_{P}\left(L_{3}\right)$. So either $\mathrm{J}(\mathrm{P})$ is contained in at least one of $N_{P}\left(L_{2}\right)$ and $N_{P}\left(L_{3}\right)$ or

$$
\begin{equation*}
R_{\rho}=R_{\rho \sigma} R_{\rho \tau}, R_{\sigma}=R_{\rho \sigma} R_{\sigma \tau} \quad \text { and } \quad R_{\tau}=R_{\rho \tau} R_{\sigma \tau} . \tag{4.41}
\end{equation*}
$$

If (4.41) pertains, then applying $\mathrm{I}(6.4)$ to $R N_{G}(R)_{p}$, yields $N_{G}(R)=P C_{G}(R)$. This proves (iv).

Lemma 4.7. Suppose P is an α-invariant Sylow p-subgroup of G of type Λ which is not star-covered, and let $\Lambda=\{, j, j, k)$. Also suppose
(i) P permutes with L_{i} and L_{j} but not with L_{k};
(ii) $L_{i} L_{j} \neq L_{j} L_{i}$;and
(iii) $Z(J(P)) \not \leq N_{P}\left(L_{k}\right)$.

Then $P_{\alpha_{i} \alpha_{j}} \neq 1$.
Proof. Without loss of generality, we take $i=1, \mathrm{j}=2$ and $\mathbf{k}=\mathbf{3}$. So we have $P L_{1}=L_{1} \mathbf{P}$, $P L_{2}=L_{2} P, P L_{3} \neq L_{3} P$ and $L_{1} L_{2} \neq L_{2} L_{1}$. Recall that $\mathscr{P}_{P}\left(L_{3}\right)=N_{P}\left(L_{3}\right)$.

First we show that either $L_{1}=L_{s_{\sigma}}$ or $L_{2}=L_{\nu_{\rho}}$ holds. Since $\left[P_{\rho \sigma}, L_{3}\right]=1$, (iii) implies $\mathbf{J}(\mathbf{P}),=1$. ApplyingI(4.5) to $J(P) N_{L_{1}}(J(P))$ and $J(P) N_{L_{2}}(J(P))$ yields

$$
L_{1}=C_{L_{1}}(D) L_{1_{\sigma}} \text { and } L_{2}=C_{L_{2}}(D) L_{2_{\rho}}
$$

where $D=O_{p}(\mathbf{P L},) \cap O_{p}\left(P L_{2}\right) \cap \mathrm{Z}(\mathrm{P})$. From I(4.7) $D \neq 1$ and so either $C_{L_{1}}(D) \leq$ $N_{L_{1}}\left(L_{2}\right)$ or $C_{L_{2}}(D) \leq N_{L_{2}}\left(L_{1}\right)$ holds.

Assume, say, that $C_{L_{1}}(D) \leq N_{L_{1}}\left(L_{2}\right)$. Note that this implies $O_{\pi_{1}}(\mathrm{PL},) \leq N_{L_{1}}\left(L_{2}\right)$. If $\left[N_{L_{1}}\left(L_{2}\right), \sigma\right] \neq 1$, then $C_{L_{1}}\left(L_{2}\right) \neq 1$ whence $N_{L_{2}}\left(L_{1}\right)=1$ by $\mathrm{I}(5.7)$, and so $L_{1_{r}} \leq$
$N_{L_{1}}\left(L_{2}\right)$. Therefore, by I(2.3) (viii), $N_{L_{1}}\left(N_{L_{1}}\left(L_{2}\right)\right) * \leq N_{L_{1}}\left(L_{2}\right)$. But then $N_{L_{1}}\left(L_{2}\right)=$ L_{1} by $\mathrm{I}(4.6)$ which contradicts (ii). Thus we must have $C_{L_{1}}(D) \leq N_{L_{1}}\left(L_{2}\right) \leq L_{1_{\sigma}}$. Consequently

$$
L_{1}=C_{L_{1}}(D) L_{1_{\sigma}}=L_{1_{\sigma}}
$$

If $C_{L_{2}}(D) \leq N_{L_{2}}\left(L_{1}\right)$, then we would obtain $L_{2}=L_{2_{\rho}}$.
Without loss of generality we may assume that $L_{1}=L_{1_{\sigma}}$. As a consequence, $\mathscr{M}\left(\pi_{1}, \pi_{2}\right)=$ $\left\{\mathrm{L}, L_{2} N_{L_{1}}\left(L_{2}\right)\right\}$. Moreover, because P is not star-covered and $[\mathrm{P}, \sigma] \unlhd P L$, we have $O_{\pi_{2}}\left(P L_{2}\right) \leq N_{L_{2}}\left(L_{1}\right)=1$. Also since, $L_{-k}=1$, we have $[P, p \sigma] \leq O_{p}\left(P L_{1}\right)$ and therefore $\mathrm{J}(\mathrm{P}) \leq O_{p}\left(P L_{1}\right)$. Thus $\mathrm{J}(\mathrm{P})=J\left(O_{p}\left(P L_{1}\right)\right) \unlhd P L_{1}$.

Now, if $P_{\rho \sigma}=1$, then $P L$, would have Fitting length at most two which gives $P \unlhd P L$, But then $L_{1}, L_{2} \leq N_{G}(J(P))$, contradicting (ii). Hence we have $P_{\rho \sigma} \neq 1$, which established the lemma.

5. SOLUBILITY OF L

The purpose of this section is to demonstrate that
Theorem 5.1. L is a soluble Hall subgroup of G.
Suppose Theorem 5.1. is false, Then $P Q \neq Q P$ where P and Q are cr-invariant Sylow subgroups of G of type Λ. By Lemma 3.5 we may suppose our notation chosen so that

$$
Z(P)=Z(P)_{\sigma \tau} \leq N_{P}(Q) \text { and } \quad Q_{\sigma \tau}=1,
$$

where, if $P^{*} \nsubseteq N,(Q)$, we have $P_{\rho} \leq N,(Q)$ and $Q_{\sigma}, Q_{\tau} \leq \mathscr{P}_{Q}(P)$. If possible we chose P and Q so that $p \neq 2$.

In the following series of lemmas we deduce an appropriate contradiction. Our aim is to produce a factorization of G which then forces G to contain a non-trivial proper cr-invariant normal subgroup. Lemmas 5.2 to 5.7 serve as preparation for the task of constructing the factorization.

Let A (respectively B) denote the subgroup of G generated by the α-invariant Sylow subgroups of type Λ which permute with P (respectively, do not permute with P). Note thaat $P \leq A$ and $Q \leq B$.
(5.1) Let H be a soluble α-invariant subgroup of G .
(i) If $P \leq H$, then $O_{p}(H) \nsubseteq N_{P}(Q)$
(ii) Suppose $P_{\rho} \leq N_{P}(Q), Q_{\sigma}, Q_{\tau} \leq \mathscr{P}_{Q}(P)$ and $\mathbf{Q} \leq H$. Then $O_{q}(H) \not \mathbb{L}$ $\mathscr{P}_{Q}(P)$.

From Lemma 3.5 either $P^{*} \leq N_{P}(Q)$ or $N_{P}\left(N_{P}(Q)\right)^{*} \leq N_{P}(Q)$. Hence by either $\mathrm{I}(4.5)$ or $\mathrm{I}(4.6) O_{\mathrm{p}}(H) \nsubseteq N_{P}(Q)$, so proving (i). Similar considerations also yield (5.1) (ii).

Clearly we also have that
(5.2) P is not star-covered.
(5.3) Suppose $P^{*} \leq N_{P}(Q)$ and let N be an α-invariant Hall $\{p, q\}^{\prime}$-subgroup of G which permutes with both \mathbf{P} and Q . If $G \neq(P N) Q$, then (i) $P=N_{P}(Q) C_{P}(N)$; and (ii) $N_{Q}(\mathrm{~N})=$,1 for all non-trivial α-invariant subgroups N_{1} of N .

Using 1(58)(e)(i) and (ii) and Lemma 3.5(i)(a) immediately yields (5.3).
Lemma 5.2. (i) $L_{12}=L_{13}=1$,
(ii) $\mathbf{P L}$, $=L_{1} P$ with $\left[\mathbf{Z}(\mathbf{P}), L_{1}\right]=1$.
(iii) If $\mathbf{p}=\mathbf{2}$, then the set of α-invariant Sylow w-subgroups of type $\Lambda \mathbf{w i t h} \mathbf{w} \neq \mathbf{2}$
generate a soluble Hall subgroup of G.
(iv) A and B are soluble H all subgroups of G.
(v) $L_{23} \mathrm{~B}$ is a soluble H all subgroup of G .
(vi) If $L_{23} \neq 1$, then $P L_{23} \neq L_{23} P$ and $N_{P}(Q)=N_{P}\left(L_{23}\right)$.

Proof. Since $\mathrm{Z}(\mathrm{P}) \leq P_{\sigma \tau}$ and $\left[\mathscr{C}_{1}, P_{\sigma \tau}\right]=1, P$ must permute with \mathscr{C}_{1} and we have (ii). We now prove that $L_{12}=1$. Suppose $L_{12} \neq 1$. Then $L_{12} \neq L_{12}^{*}$ by $\mathrm{I}(2.8)$ and $\mathrm{I}(6.1)$. Now $[\mathrm{L},,, \mathrm{Q}]=$,1 and so, since $O_{\pi_{12}}\left(P L_{12}\right) \neq 1$ by $\mathrm{I}(4.5)$, Lemma $3.5(\mathrm{i})($ a $)$ implies that $P^{*} \notin N_{P}(Q)$. So $P_{\rho} \leq N_{P}(Q)$ and $Q_{\sigma}, Q_{\tau} \leq \mathscr{P}_{Q}(P)$. Suppose $L_{12} Q \neq Q L_{12}$. Then $\mathscr{M}\left(q, \pi_{12}\right)=\left\{Q, L_{12} N_{Q}\left(L_{12}\right)\right\}$ with $N_{Q}\left(L_{12}\right)=C_{Q}\left(L_{12}\right)\left(N_{Q}\left(L_{12}\right)_{\rho \sigma}\right.$. Because $O_{p}\left(P L_{12}\right) \neq 1$ we obtain, using Lemma $3.5(\mathrm{ii})(\mathrm{b}), C_{Q}\left(L_{12}\right) \leq \mathscr{P}_{Q}(P) \leq \mathbf{Q}$, whence $N_{Q}\left(\mathbf{L}, \ldots \leq \mathrm{Q}\right.$. But then $\mathrm{Q}=Q_{\rho}$ by $1(2.3)(\mathrm{v})$, contrary to Lemma 3.5 (ii) (b). Therefore $L_{12} Q=Q L_{12}$. So L_{12} permutes with both P and Q and hence, since $L_{12} \neq L_{12}^{*}$, using $\mathrm{I}(4.7)$ gives either $O_{p}\left(P L_{12}\right) \leq N_{P}(Q)$ or $O_{q}\left(Q L_{12}\right) \leq \mathscr{P}_{Q}(P)$, contradicting (5.1). Therefore we conclude that $\mathbf{L}_{12}=1$. A similar argument shows that $L_{13}=1$, and we have proved (i).
(iii) This follows from the choice of (\mathbf{P}, \mathbf{Q}).
(iv) If $p=2$, then (iii) implies (iv). So we may suppose $p \neq 2$. Let U and \mathbf{V} be, respectively, α-invariant Sylow $u \cdot$ and v-subgroups of G which do not permute with P.

Because $\mathbf{Z}(\mathrm{P}) \leq P_{\sigma \tau}$, neither $U^{*} \leq \mathrm{N},(\mathrm{P})$ nor $V^{*} \leq \mathrm{N},(\mathrm{P})$ is possible by $\mathrm{I}(2.3)$ (xi) and Lemma $3.5(\mathrm{i})$ (a). While $P^{*} \leq N_{P}(V)$ and $P^{*} \leq N_{P}(V)$ yields, using Lemma 3.5 (i) (d), $U_{\sigma \tau}=V_{\sigma \tau}=1$. But then Lemma 3.5 (i) (c), (d) and (ii) (c) (e) imply that $\mathbf{U V} \neq V U$
is impossible. Since $p \neq 2$, by Lemma 3.5 (ii) (a), without loss of generality it only remains to consider the situation

$$
P^{*} \leq N_{P}(U), v=2, \text { and } V_{\alpha_{i}} \leq N_{V}(P), P_{\alpha_{j}}, P_{\alpha_{k}} \leq \mathscr{P}_{P}(V) \text { where }\{i, j, k\}=\Lambda .
$$

Because $P_{\sigma \tau} \neq 1$, by Lemma $3.5(\mathrm{ii})(\mathrm{c})$ we may suppose

$$
V_{\tau} \leq N_{V}(P) \quad \text { and } \quad P_{\rho}, P_{\tau} \leq \mathscr{P}_{P}(V) .
$$

Therefore $\mathrm{Z}(\mathrm{V}) \leq V_{\rho \sigma}$ by Lemma 3.5 (ii) (e). Hence $U^{*} \leq \mathrm{N},(\mathrm{V})$ is not possible. If $\mathbf{V}^{*} \leq$ $N_{V}(U)$ were to hold, then $\mathrm{Z}(\mathrm{V}) \leq V_{\rho \sigma}$ and the shape of $\mathscr{M}(u, v)$ forces $U_{\rho \sigma}=1$. But $U_{\rho \sigma} \neq 1$ by Lemma 3.4(i) (d) (applied to \mathbf{P} and U). So $U^{*} \nsubseteq \mathrm{~N},(\mathrm{~V})$ and $V^{*} \nsubseteq \mathbf{N}$,(U). Now $\mathbf{P}^{*} \leq N_{P}(U)$ implies $U_{\sigma \tau}=1$ and therefore, as $v=2$, Lemma 3.5 (ii) (c) shows that

$$
V_{\sigma} \leq N_{V}(U) \quad \text { and } \quad U_{\sigma}, U_{\tau} \leq \mathscr{P}_{U}(V)
$$

and thus $\mathrm{Z}(\mathrm{V}) \leq V_{\sigma \tau}$ by Lemma 3.5 (ii)(e). But then $\mathrm{Z}(\mathrm{V}) \leq V_{\sigma \tau} \cap V_{\rho \sigma}$, which is not possible. Therefore we conclude that B is a soluble Hall subgroup of G.

Now let U and \mathbf{V} denote α-invariant Sylow subgroups of G which permute with \mathbf{P}. Suppose $U V \neq \mathrm{VU}$. If $V^{*} \nsubseteq N_{V}(U)$ and $U^{*} \leq \mathrm{N},(\mathrm{V})$ pertains, then, as \mathbf{P} is not starcovered, $\mathrm{I}(4.7)$ force either $O_{u}(\mathrm{PU}) \leq \mathscr{P}_{U}(\mathbf{V})$ or $O_{v}(\mathrm{PV}) \leq \mathscr{P}_{V}(U)$ which is not possible by Lemma $3.5(\mathrm{ii})(\mathrm{b})(\mathrm{h})$. So we must have, say, $\mathrm{V}^{*} \leq N_{V}(U)$. But then, as $O_{p}(\mathrm{PU}) \neq 1$, this situation contradicts $\mathrm{I}(5.8)$ (f) (with $\mathbf{L}=\mathbf{P}, M=\mathbf{V}$ and $\mathrm{N}=\mathrm{U}$). Thus $\mathbf{U V}=\mathbf{V U}$ must hold whence \mathbf{A} is a soluble Hall subgroup of G.
(v) Let \mathbf{V} be an α-invariant Sylow subgroup of B. Since $V_{\sigma \tau}=1 \mathrm{I}(2.8)$ yields $\mathscr{P}_{V}(\mathbf{L},) \unlhd L_{23} \mathscr{P}\left(L_{23}\right)$ and so $L_{23} \mathbf{V}=\mathbf{V L}{ }_{\prime \prime}$, which proves (v).
(vi) This is straightforward and so is omitted.

Lemma 53. Suppose that $\mathbf{P}^{*} \not \mathbb{N},(\mathbf{Q})$ and that $P L_{i}=L_{i} P \mathbf{w}$ here $i=\mathbf{2}$ or 3 . Then
(i) $\left[Z\left(O_{p}\left(P L_{i}\right)\right), L_{i}\right]=1$, and
(ii) $Q L_{i}=L_{i} Q$.

Proof. Without loss of generality we take $i=2$, and set $Z=Z\left(O_{p}(\mathrm{PL}),\right)$.
(i) Now $[P, \sigma] \leq O_{p}(\mathrm{PL}$,$) and from Lemma 3.5(ii) (f) 1 \neq\left[N_{P}(Q)\right.$, al $\leq P_{\rho}$ and hence $O_{p}\left(P L_{2}\right)_{\rho} \neq 1$. Therefore $Z \leq N_{P}(Q)$ by Lemma 3.5 (ii) (d). Because of (5.1) and Lemma 3.5(ii) (d), we must have $Z_{\rho}=1$, and hence, by Lemma 3.5 (ii) (f),

$$
Z \leq\left[N_{P}(Q), \rho\right] \leq P_{\sigma \tau}
$$

This immediately yields (i).
(ii) Suppose $\mathrm{QL}, \neq L_{2} \mathrm{Q}$. Because $Q_{\rho \tau} \neq 1$ by Lemma 3.5 (ii) (c) we see that $C_{Q}(L) \neq$, and so $Q_{\rho}, Q_{\tau} \leq N_{Q}\left(L_{2}\right)$ must hold. From part (i) we have $\left[Z, L_{2}\right]=1$ and $Z \leq N_{P}(Q)$. Thus

$$
Z \leq N_{P}(Q) \cap N_{P}\left(L_{2}\right)
$$

Consequently, as $\mathrm{Q}^{*}=Q_{\rho}$ by Lemma 3.5 (ii) (b), $\mathrm{I}(2.14)$ (ii) gives $\mathrm{Q}=N_{Q}\left(L_{2}\right) C_{Q}(Z)$. Using Lemma 3.5(ii)(b) we then obtain

$$
\mathrm{Q}=N_{Q}\left(L_{2}\right) C_{Q}(Z)=N_{Q}\left(L_{2}\right) Q_{\rho}=N_{Q}\left(L_{2}\right)
$$

contrary to $Q L_{2} \neq L_{2} \mathrm{Q}$. This proves (ii).
Lemma 5.4. If $P L,=L_{i} P$ where $i=2$ or 3 , then $L_{1} L_{i}=L_{i} L_{1}$.
Proof. The case when $P^{*} \not \leq N_{P}(Q)$ is easily resolved by Lemmas 5.2 (ii) and 5.3 (i) since $\mathrm{Z}(\mathrm{P}) \cap Z\left(O_{p}(P L),\right) \neq 1$. So for the remainder of the lemma's proof we may assume $P^{*} \leq$ $N_{P}(Q)$. Without loss of generality we take $i=2$.

Since $C_{Q}(Z(P))=1$ and $\mathrm{Z}(\mathrm{P}) \leq P_{\sigma \tau}$, we observe that

$$
\begin{equation*}
Q^{*} \neq Q_{\rho} \text { and } Z(Q) \not 又 Q_{\rho} \tag{5.4}
\end{equation*}
$$

From the shape of $\mathscr{A}(p, q)$ and $[\mathrm{L},, Q]=$,1 we have $O_{\pi_{2}}(P L)=$,1 , and so
(5.5) L_{2} is star-covered.

From $\left[L_{2}, \mathrm{Q},\right]=1$ and (5.3) we deduce that $\mathrm{QL}, \neq L_{2} Q$. Moreover, using (5.4), we note

$$
\begin{equation*}
N_{Q}\left(N_{Q}\left(L_{2}\right)\right)^{*} \leq N_{Q}\left(L_{2}\right) \text { and } Z(Q), Q_{\rho}, Q_{\tau} \leq N_{Q}\left(L_{2}\right) \tag{5.6}
\end{equation*}
$$

We now suppose $L_{1} L_{2} \neq L_{2} L$, and seek a contradiction beginning with

$$
\begin{equation*}
L_{1_{\tau}} \leq N_{L_{1}}\left(L_{2}\right) \tag{5.7}
\end{equation*}
$$

If (5.7) is false, then $L_{2_{\tau}} \leq N_{L_{2}}\left(L_{1}\right)$ holds, which, by (5.5), implies that $L_{2}=L_{2_{\beta}}$. Hence, by $1(2.3)$ (x) and $Q L, \neq L_{2} Q, Z(Q) \leq Q_{\rho}$, contrary to (5.4). This proves (5.7).

We claim that $Q L,=L_{1} Q$. For suppose $Q L, \neq L_{1} Q$. Then (5.4) immediately gives $L_{1}^{*} \leq N_{L_{1}}(Q)$. So $L_{1_{\tau}} \leq N_{L_{1}}(Q) \cap N_{L_{1}}\left(L_{2}\right)$ by (5.7). Since $Q_{\rho} \leq N_{Q}\left(L_{2}\right)$ by (5.6),

I(2.14) (i) yields $\mathrm{Q}=N_{Q}\left(L_{2}\right) C_{Q}\left(L_{1}\right)$. But from Lemma 3.4 (i) (a), (c) and (d) we have $C_{Q}\left(L_{1_{\tau}}\right)=1$, which contradicts $Q L_{2} \neq L_{2} Q$. Therefore $Q L_{1}=L_{1} Q$, as claimed. Again using $Q_{\rho}, L_{1_{\tau}} \leq N_{G}\left(L_{2}\right)$ and $\mathrm{I}(2.14)$ (i) we obtain

$$
O_{q}\left(Q L_{1}\right)=\left(O_{q}\left(Q L_{1}\right) \cap N_{Q}\left(L_{2}\right)\right) C_{Q}\left(L_{1_{\tau}}\right),
$$

which, appealing to (5.3), then yields $O_{q}\left(Q L_{1}\right) \leq N_{Q}\left(L_{2}\right)$. However, (5.6) and $\mathrm{I}(4.6)$ then imply $N_{Q}\left(L_{2}\right)=\mathrm{Q}$, a contradiction. This completes the proof of the lemma.

The next result is required in the proof of Lemma 5.6.
Lemma 5.5. Suppose $P L_{i}=L_{i} P$ where $i \in \Lambda$, and lei \mathbf{W} be an cu-invariant Sylow wsubgroup of \mathbf{A}. If $L_{i} W \neq W L_{i}$, then $\mathrm{W} \leq G_{\alpha_{i}}$.

Proof. Without loss of generality we may assume $i=2$. Since $\mathbf{P W}=\mathbf{W} \mathbf{P}$ and \mathbf{P} is not star-covered, $1(5.8)(\mathrm{f})$ rules out the possibility $L_{2}^{*} \leq N_{L_{2}}(\mathbf{W})$. So $W_{\rho}, W_{\tau} \leq N_{W}(\mathbf{L}$) . From Lemma 3.3 we have $L_{2_{p}} \not \mathscr{P}_{L_{2}}(\mathrm{~W})$. Now, because \mathbf{P} is not star-covered, $\mathrm{I}(3.3)$ (vii) and $\mathrm{I}(4.4)$ imply that $\left[O_{p}(\mathrm{PL}), p,\right] \neq 1$, and thus $O_{w}(\mathrm{PW}) \leq N_{W}\left(L_{2}\right)$ by $\mathrm{I}(5.8)$ (c). Then Lemma 3.4 (ii) (d), $\mathrm{I}(4.6)$ and $\mathrm{I}(4.5)$ yield $\mathrm{W}=W_{\sigma}$, so proving the lemma.

Lemma 5.6. If $L_{i} P=P L_{i}$ where $i \in \Lambda$, then $L_{i} A$ is a soluble H all subgroup of G .
Proof. Suppose the lemma is false and argue for a contradiction. Thus $L_{i} W \neq W L_{i}$ for some cu-invariant Sylow w-subgroup of \mathbf{A}, and hence $\mathbf{W} \leq G_{\alpha_{\boldsymbol{i}}}$ by Lemma 5.5. Clearly $\mathscr{M}\left(\pi_{i}, w\right)=\left\{W, L_{\mathbf{i}} N_{W}\left(L_{i}\right)\right\}$. Observe that $\mathbf{W} \leq G_{\alpha_{\mathbf{i}}}$ and Lemma 3.5 (i) (e), (ii)(b) and (h) imply that $\mathbf{Q W}=\mathbf{W Q}$. We now divide our proof into two cases: $i=1$ and $i \neq 1$.

Case 1. $i=1$.

Since $\mathbf{W} \leq G, \mathbf{W} \mathbf{Q}$ admits $\sigma \tau$ fixed-point-freely. If $\left.P^{*} \leq \mathbf{N}, \mathbf{Q}\right)$, then (5.3) (ii) clearly gives $O_{w}(\mathbf{W} \mathbf{Q})=1$. Hence $\mathbf{W}=W_{\sigma} W_{\tau}$ by $\mathrm{I}(2.10)$ (ii). Consequently, as $W \neq 1$, $\mathrm{I}(2.10)$ (ii) and $\mathrm{I}(6.1)$ yield the contradiction $G \neq O^{w}(G)$. Now we consider the possibility $P^{*} \nsubseteq N_{P}(Q)$.

Because $L_{1} W \neq \mathrm{WL}$, Lemma 3.5(ii) (i) shows that $J(P)_{\rho}=1$. From $\mathbf{W}=W_{\rho}, \mathrm{I}(2.3)$ (i) gives $[P, p] \leq O_{p}(P W)$. Hence

$$
J(P) \leq[P, p] \leq O_{p}(P W) \cap O_{p}\left(P L_{1}\right)
$$

A well-known property of the Thompson subgroup yields $J\left(O_{p}(\mathbf{P W})\right)=\mathbf{J}(\mathbf{P})=$ $J\left(O_{p}\left(P L_{1}\right)\right)$ and consequently $L_{1}, \mathbf{W} \leq N_{G}(J(\mathbf{P}))$, a contradiction. This settles case 1.

Case 2. $i \neq 1$.

Without loss of generality we shall suppose $i=2$. Suppose to begin with that $P^{*} \leq$ $N_{P}(Q)$. Then, because $\left[L_{2}, \mathrm{Q},\right]=1$, (5.3) implies that $L_{2} Q \neq Q L$. Since, using Lemma 3.5 (i) (d), $1 \neq Q_{\rho \tau} \leq C_{Q}\left(L_{2}\right)$, by Lemma 3.4 we have $Q_{\rho}, Q_{\tau} \leq N_{Q}\left(L_{2}\right)$, and $N_{Q}\left(N_{Q}\left(L_{2}\right)\right)^{*} \leq N_{Q}\left(L_{2}\right)$ 。

Since $1 \neq N_{W}\left(L_{2}\right) \leq W_{\sigma}$, at least one of [$\left.N_{W}\left(L_{2}\right), \rho\right]$ and $\left[N_{W}\left(L_{L}\right), \tau\right]$ must be nontrivial. Suppose $V=\left[N_{W}\left(L_{2}\right), \rho\right] \neq 1$. Because V normalizes $O_{q}(\mathrm{QW})$ and $O_{q}(\mathrm{QW}) \cap$ $N_{Q}\left(L_{2}\right)$ and $Q_{\rho} \leq N_{Q}\left(L_{2}\right), 1(2.14)$ (i) gives

$$
O_{q}(Q W)=\left(O_{q}(Q W) \cap N_{Q}\left(L_{2}\right)\right) C_{O_{q}(Q W)}(V) .
$$

However, since W permutes with both P and Q , (5.3) (ii) gives $C_{Q}(V)=1$ and hence $O_{q}(Q W) \leq N_{Q}\left(L_{2}\right)$. But this is not possible since $N_{Q}\left(N_{Q}\left(L_{2}\right)\right)^{*} \leq N_{Q}(L$,$) .$

It only remains to consider the situation when $P^{*} \not N_{P}(Q)$. Appealing to Lemma 5.3 (ii) gives $L_{2} Q=Q L$, By Lemma 3.5 (ii) (b) $\mathrm{Q}^{*}=Q_{\rho} \neq \mathrm{Q}$ and so, as $W=W_{\sigma}$,

$$
1 \neq[Q, \sigma] \unlhd Q W .
$$

Since $\left[\mathrm{Q}\right.$, al $\leq O_{q}(Q L$,$) , we obtain$

$$
\begin{equation*}
O_{\boldsymbol{\pi}_{2}}\left(Q L_{2}\right) \leq \mathscr{P}_{L_{2}}(W)=1 \tag{5.8}
\end{equation*}
$$

Since $p=2$ by Lemma 3.5 (ii) (a), $W L_{2} \neq L_{2} W$, (5.8) and Glauberman's ZJ-theorem yield $O_{w}(W Q) \neq 1$. If $\left[O_{w}(W Q), \mathrm{pl} \neq 1\right.$, then either $Q_{p} \leq \mathscr{P}_{Q}(P)$ or $O_{p}(P W) \leq$ $\mathscr{P}_{P}(\mathrm{Q})$ by $\mathrm{I}(5.8)$ (c). But $Q^{*} \leq \mathscr{P}_{Q}(P)$ and Lemma $3.5(\mathrm{ii})$ (h) show that neither of these can occur. Therefore

$$
\begin{equation*}
1 \neq O_{w}(W Q) \leq W_{\rho} \tag{5.9}
\end{equation*}
$$

Also from (5.8), since $\left(Q L_{2}\right)_{\sigma \tau}=1$, we have $L_{2}=L_{2_{\tau}}$ by $\mathrm{I}(4.5)$. Hence, using $\mathrm{I}(2.3)(\mathrm{x})$,

$$
W_{\rho} \leq\left[N_{W}\left(L_{2}\right), \sigma \tau\right] \leq C_{W}\left(L_{2}\right),
$$

and then $N_{G}\left(O_{w}(\mathrm{WQ})\right) \geq W, L_{2}$ by (5.9) contrary to $W L_{2} \neq L_{2} W$. This completes case 2 and also the proof of the lemma.

Lemma 5.7. Suppose $P L_{i} \neq L_{i} P$ where $i=2$ or 3. Then
(i) $L_{i}^{*} \nsubseteq N_{L_{i}}(P)$ and $Z(P) \leq N_{P}\left(L_{i}\right)$; and
(ii) $L_{i} B$ is a soluble Hall subgroup of G.
(ii) From Lemma 3.4(i)(b), (ii) (e) and (g) $\mathrm{Z}(\mathrm{P}) \leq N_{P}(B)$. If $L_{23} \neq 1$, then by Lemma 5.2 (vi) $\boldsymbol{P L}, \neq L_{23} \boldsymbol{P}$ and it is easy to see that $N_{P}(Q)=N_{P}(\boldsymbol{L}$,$) . Hence, using Lemma$ 5.7(i) and the definition of K, we have $\mathrm{Z}(\mathrm{P}) \leq N_{P}(K)$.

We now analyse the factorization obtained in Lemma 5.8 beginning with
Lemma 5.9. If U is an cr-invariant Sylow u-subgroup of B, then either
(i) $P^{*} \leq N_{P}(U)$; or
(ii) $P_{\rho} \leq \mathscr{P}_{P}(U)$ and $U_{\sigma}, U_{\tau} \leq \mathscr{P}_{U}(P)$.

Proof. Suppose $P^{*} \notin N_{P}(U)$. From $\boldsymbol{Z}(\boldsymbol{P}) \leq P_{\sigma \tau}$ and $\mathrm{I}(2.3)$ (xi) $[\boldsymbol{Z}(\boldsymbol{P}), N,(\boldsymbol{P})]=1$, and so $U^{*} \notin \mathrm{~N},(\mathrm{P})$ by Lemma 3.5(i)(a).

Therefore, by Lemma 3.5, either
(a) $U_{\alpha_{i}} \leq \mathscr{P}_{U}(P)$ and $P_{\alpha_{j}}, P_{\alpha_{k}} \leq \mathscr{P}_{P}(U)$; or
(b) $P_{\alpha_{i}} \leq \mathscr{P}_{P}(U)$ and $U_{\alpha_{j}}, U_{\alpha_{k}} \leq \mathscr{P}_{U}(P)$
(where $\{\mathrm{i}, \mathrm{j}, k\}=\Lambda$).
If (b) holds, then $\mathrm{Z}(\mathrm{P}) \leq P_{\sigma \tau}$ and Lemma 3.5 (ii) (e) imply $\alpha_{i}=\rho$ and $\left\{\alpha_{j}, \alpha_{k}\right\}=$ $\{0, \tau\}$. So to complete the proof of the lemma we must show (a) cannot occur.

Assume (a) holds. Then $u=2$ by Lemma 3.5 (ii) (a) and hence, by our origina1 choice of notation, $P^{*} \leq N_{P}(Q)$. Also, by Lemma 3.5 (ii) (c), $\alpha_{i} \neq \rho$ since $P_{o \tau} \neq 1$. Without loss of generality we may suppose

$$
U_{\tau} \leq \mathscr{P}_{U}(P) \quad \text { and } \quad P_{\rho}, P_{\sigma} \leq \mathscr{P}_{P}(U) .
$$

From Lemma 3.5(ii) we have
(i) $\mathscr{P}_{U}(P)=N_{U}(P)$
(ii) $P^{*}=P_{\tau}>\mathscr{P}_{P}(U)$
(iii) $\left[N_{U}(P), \rho\right],\left[N_{U}(P), \sigma\right] \leq U_{T}$,
and $N_{U}(R) \leq \mathrm{N},(\mathrm{P})$ for all non-trivial α-invariant subgroups R of U_{τ}.
Suppose $O_{u}(Q U)_{\tau}=1$. Then $\left[[Q, \tau], O_{u}(Q U)\right]=1$ by $\mathrm{I}(2.11)$, and hence, using $\mathrm{I}(2.3)(\mathrm{v}), N_{G}([\mathrm{Q}, \tau]) \geq P_{\tau}, O_{u}(Q U)$. Since $[Q, \tau] \neq 1$ by Lemma $3.5(\mathrm{i})(\mathrm{e})$, either $P_{\tau} \leq \mathscr{P}_{P}(U)$ or $O_{\Psi}(Q U) \leq \mathscr{P}_{U}(P)$ must hold. But both alternatives are impossible, and so $O_{u}(Q U)_{\tau} \neq 1$ must hold. Then, by (5.11) (iii), $Z\left(O_{u}(Q U)\right) \leq N,(P)$. Because $O_{u}(Q U) \nsubseteq N_{U}(P),(5.11)$ (iii) implies $Z\left(O_{u}(Q U)\right) \leq U_{\rho \sigma}$, whence $\left[Q, Z\left(O_{u}(Q U)\right)\right]=$ 1 by I(2.3) (xi). Consequently $Z\left(O_{u}(\mathrm{QU})\right)$ normalizes both $N_{P}(Q)$ and \boldsymbol{P}. Employing I(2.14) (ii) yields

$$
P=N_{P}(Q) C_{P}\left(O_{u}(Q U)\right)=N_{P}(Q) \mathscr{P}_{P}(U) .
$$

But $\mathscr{P}_{P}(U)<P_{\tau} \leq N_{P}(Q)$ by (5.11)(ii) implies $\mathbf{P}=N_{P}(Q)$, a contradiction. Therefore (a) cannot hold, and so we have prove the lemma.

Lemma 5.10. Let U be a non-trivial α-invariant Sylow u -subgroup of \mathbf{B}, then $P^{*} \leq$ $N_{P}(U)$.

Proof. Suppose the lemma is false. Then $P_{\rho} \leq \mathscr{P}_{P}(\mathbf{U})=N_{P}(U)$ and $U_{\sigma}, U_{\tau} \leq @ u(P)$ by Lemma 5.9. So p $=2$ by Lemma 3.5(ii) (a). By (5.1) O ,(H) $\nsubseteq \mathrm{N},,(\mathrm{U})$. If $O_{2}(H)_{\rho} \neq 1$, then Lemma 3.5 (ii) (d) implies $Z\left(O_{2}(\mathrm{H})\right) \leq N_{P}(U)$, whence $Z(0,(H))_{\rho}=1$. Hence $Z(0,(\mathrm{H})) \leq P_{\sigma \tau}$ by Lemma 3.5(ii)(f). Using $\mathrm{I}(2.3)$ (xi) we conclude that

$$
Z(P) \cap Z\left(O_{2}(H)\right) \leq Z(H) .
$$

But then, by Lemma 5.8 (ii), $(\mathrm{Z}(\mathrm{P}) \cap Z(0,(\mathrm{H})))^{\boldsymbol{G}}$ is a non-trivial proper cr-invariant normal subgroup of G. Therefore

$$
\begin{equation*}
O_{2}(H)_{\rho}=1 \tag{5.12}
\end{equation*}
$$

Let \tilde{A} denote the α-invariat Hall 2^{\prime}-subgroup of \mathbf{A}. Then (5.12) and $\mathrm{I}(2.14)$ (ii) imply

$$
\begin{equation*}
\tilde{A}=C_{\tilde{A}}\left(O_{2}(H)\right) \tilde{A}_{p} \tag{5.13}
\end{equation*}
$$

In order to make use of (5.13) we must modify the factorization $G=H K$. First we prove
(5.14) $\left\langle K, \bar{A}_{\rho}, Z(\mathrm{P})\right)$ is a proper cr-invariant subgroup of G .

Let \widetilde{K} denote the α-invariant Hall π_{23}^{\prime}-subgroup of \mathbf{B}. Let W be an cr-invariant Sylow w-subgroup of \tilde{A}. We now show that $W_{\rho} \leq \mathscr{P}_{\tilde{A}}(\tilde{K})$, and clearly only need to examine the case $W \notin \mathscr{P}_{\tilde{A}}(\tilde{K})$. By Lemma 5.2 (iii) one of the following holds

$$
\begin{aligned}
& \text { (a) } \tilde{K}=L_{j} B, j \neq 1 \text { and } W L_{j} \neq L_{j} W \\
& \text { (b) } \tilde{K}=L_{j} L_{k} B, j \neq 1 \neq k \text { a n d } L_{j} W \neq W L_{j}, L_{k} W=W L_{k} \\
& \text { (c) } \tilde{K}=L_{j} L_{k} B, j \neq 1 \neq \mathbf{k} \text { and } L_{j} W \neq W L_{j}, L_{k} W \neq W L_{k} .
\end{aligned}
$$

Suppose (a) holds. Then applying $\mathrm{I}(2.26)$ with $M=L_{j}, \mathbf{L}=\mathbf{B W}$ and $\mathbf{H}=\mathbf{W}$ (note that $G \neq L_{j}($ BW $)$) gives that the Sylow w-subgroup of $\mathscr{P}_{W B}\left(L_{j}\right)$ is $\mathscr{P}_{W}\left(L_{j}\right)$. In particular
$\mathscr{P}_{W}\left(L_{j}\right)$ permutes with B, and hence $\mathscr{P}_{W}\left(L_{j}\right) \leq \mathscr{P}_{\tilde{A}}(\tilde{K})$. For case (b), but in $\mathrm{I}(2.26)$ taking $L=L_{k} B W$, we also obtain $\mathscr{P}_{W}\left(L_{j}\right) \leq \mathscr{P}_{\tilde{A}}(\widetilde{K})$. In case (c) the same arguments yield $N_{W}\left(L_{j}\right) \cap N_{W}\left(L_{k}\right)=\mathscr{P}_{W}\left(L_{j} L_{k}\right) \leq \mathscr{P}_{\tilde{A}}(\tilde{K})$.

Since Q is not star-covered, if $L_{j} W \neq W L_{j}$, then $\mathrm{I}(5.8)$ (f) shows $L_{j}^{*} \notin N_{L_{j}}(W)$. Hence, for $j \neq 1, W_{\rho} \leq \mathscr{P}_{W}\left(L_{j}\right)=N_{W}\left(L_{j}\right)$. Therefore, by the above, we have that $W_{\rho} \leq \mathscr{P}_{\tilde{A}}(\widetilde{K})$, as required.

Because W was an arbitrary α-invariant Sylow subgroup of \tilde{A} it follows that $\tilde{A}_{\rho} \leq$ $\mathscr{P}_{\tilde{A}}(\tilde{K})$. $\operatorname{By~I}(4.4) O_{q}\left(\widetilde{\mathscr{P}}_{\tilde{A}}(\tilde{K})\right) \neq 1$ and $s 0$, as $\left[L_{23}, \mathrm{Ql}=1, K \leq N_{G}\left(O_{q}\left(\widetilde{K} \mathscr{P}_{\tilde{A}}(\widetilde{K})\right)\right)\right.$. Let F denote the cu-invariant Hall 2 '-subgroup of $N_{G}\left(O_{q}\left(\widetilde{K} \mathscr{P}_{\tilde{A}}(\widetilde{K})\right)\right)$. Then $K, \tilde{A}_{\rho} \leq F$. As G contains no non-trivial proper α-invariant normal subgroups $O_{\pi(K)^{\prime}}(F)=1$. Hence, by [Theorem $1 ; 1$], there is a non-trivial characteristic subgroup C of K such that $C \unlhd F$. Appealing to Lemma 5.8(ii) we have

$$
\left\langle K, \tilde{A}_{\rho}, Z(P)\right\rangle \leq N_{G}(C) \neq G
$$

which proves (5.14).
If $K=L_{23} B$, then Lemma 5.2 (iii), $O_{q}(B A) \neq 1$ and [Theorem $1 ; 1$] yield that

$$
M=\langle K, \tilde{A}, Z(P)\rangle \neq G
$$

Set $D=\mathrm{Z}(\mathrm{P}) \cap Z\left(O_{2}\left(P L_{2}\right)\right) \cap Z\left(O_{2}\left(P L_{3}\right)\right)$. Note that $D \neq 1$. Employing Lemma 5.2(i), (ii) and 5.3(i) gives

$$
G=H K=C_{G}(D) M
$$

and then $D^{G} \leq M \neq \mathrm{G}$, a contradiction. So we may suppose $K \neq L_{23} B$ and so $H=$ $L_{1} L_{j} A(j \neq 1)$ or $L_{1} A$. In the former case set $E=\mathrm{Z}(\mathrm{P}) \cap O_{2}\left(P L_{j}\right) \cap O_{2}(A)$ and in the latter $E=\mathrm{Z}(\mathrm{P}) \cap O_{2}(A)$. Observe that $E \neq 1$. By Lemmas 5.2(ii) and 5.3(i) and (5.13) $H=C_{H}(E) \tilde{A}_{\rho}$. Therefore

$$
G=H K=C_{G}(E)\left\langle K, \tilde{A}_{\rho}\right\rangle
$$

whence, using (5.14),

$$
E^{G} \leq\left\langle K, \tilde{A}_{\rho} Z(P)\right\rangle \neq G
$$

a contradiction which completes the proof of Lemma 5.10.

Lemma 5.11. Suppose that $P L_{i} \neq L_{i} P$ (where $i=2$ or 3) and that $Z(J(P)) \leq N,(Q)$. Then $Z(J(P)) \leq N_{P}\left(L_{i}\right)$.

Proof. Suppose the lemma is false, and assume $i=3$. Put $R=Z(J(P))$. By Lemma 5.10, $P^{*} \leq N_{P}(Q)$ and by Lemma $5.7(\mathrm{i}), P_{p}, P_{\sigma} \leq N_{P}\left(L_{3}\right)$. Of course we also have $L_{3} Q=Q L_{3}$.

If $R_{\sigma} \neq R_{\sigma_{(\sigma r)}}^{*}$, then $F=O_{p}\left(P_{\sigma} L_{3 \sigma}\right) \cap R \neq 1 \operatorname{byI}(4.5)$ whence, as $L_{3_{\sigma}} \unlhd P_{\sigma} L_{3_{\sigma}}, C_{G}(F) \geq$ $L_{3_{\sigma}}, R$. Then $R \leq N_{P}\left(L_{3}\right)$ by Lemma 3.3(i). Therefore $R_{\sigma}=R_{\sigma_{(\rho-1)}}^{*}$ and, similarly, $R_{\rho}=$ $R_{\rho_{(\sigma \tau)}}^{*} . \operatorname{As} P_{\sigma \rho} \leq C_{P}\left(L_{3}\right), R_{\rho \sigma}=1$ and consequently $R^{*}=R, \quad$ So $[Q,[R, \tau]]=1$ by $\mathrm{I}(2.8)$. By $\mathrm{I}(2.13)$ and Lemma 3.5(i) (c) $O_{q}\left(Q L_{3}\right) \neq 1$. Thus $[R, \tau] \leq N_{P}\left(L_{3}\right)$. Since $R \not \leq$ $N_{P}\left(L_{3}\right)$ by supposition, $[R, \tau]=1$. From $R \leq P_{\tau}$ we conclude that $\left[R, N_{L_{3}}(P)\right]=1$, whence $N_{L_{3}}(P)=1$. Thus $\mathscr{P}_{L_{3}}(P)=1$ by Lemma 3.4(ii)(a). Consequently as $N_{P}(Q) \not 又$ $N_{P}\left(L_{3}\right), N_{L_{3}}\left(Q_{1}\right)=1$ for all non-trivial characteristic subgroups Q_{1} of Q . In particular $L_{3} \unlhd L_{3} Q$ by $\mathrm{I}(2.6) . \mathrm{So}\left[[\mathrm{Q}, \tau], L_{3}\right]=1$. Since $[\mathrm{Q}, \tau] \neq 1$, we then obtain, using $\mathrm{I}(2.3)$ (viii),

$$
R \leq P_{\tau} \leq N_{P}\left(L_{3}\right)
$$

a contradiction. This completes the proof of the lemma.

Conclusion of the proof of Theorem 5.1

Set $D=Z(P) \cap O_{p}(\mathrm{H})$. Since P is not star-covered, $D \neq 1$. If $Z(J(P)),=Z(J(P))_{\rho_{(\sigma T)}}^{*}$, $Z(J(P))_{\sigma}=Z(J(P))_{\sigma_{(\rho \tau)}}^{*}$ and $Z(J(P))_{\tau}=Z(J(P))_{\tau_{(\rho \sigma)}}^{*}$ holds, then $N_{H}(Z(J(P)))=$ $C_{H}(Z(J(P))) P$ by I(6.4). Hence $H \leq C_{G}(D)$ by $\mathrm{I}(2.6)$, and then Lemma 5.6 (ii) implies that $D^{G} \neq \mathrm{G}$, a contradiction.

Therefore we must have, say $Z(J(P))_{\rho} \neq Z(J(P))_{\rho_{\langle\sigma T\rangle}}^{*}$. Let U be a non-trivial α invariant Sylow subgroup of B. $\mathrm{By} \mathrm{I}(4.5) Z(J(P)) \cap O_{p}\left(P_{\rho} U_{\rho}\right) \neq 1$ and hence, using Lemmas 5.10 and 3.5(i)(a) we obtain $Z(J(P)) \leq N_{P}(U)$. Thus $Z(J(P)) \leq N_{P}(B)$. Appealing to Lemmas $5.2(\mathrm{vi})$ and 5.11 then yields $Z(J(P)) \leq N_{P}(K)$. By $\mathrm{I}(2.6), D^{H} \leq$ $Z(J(P))$. But then $D^{G} \leq N_{G}(\mathrm{~K}) \neq G$, which is the final contradiction. Thus we have proved Theorem 5.1.

6. FACTORIZATIONS FOR G

We now assemble the result of the two previous sections so as to obtain global information about G.
6.1. Let P be an α-invariant Sylow p-subgroup of G of type Λ. Then either
(i) P permutes with at least two of L_{1}, L_{2} and L_{3}; or
(ii) with a possible re-ordering of $1,2,3, G=(L L),\left(L_{2} L_{3} L_{23}\right)$ with $L L$, and $L_{2} L_{3} L_{23}$ soluble Hall subgroups.

Proof. Suppose $P L, \neq L_{2} P$ and $P L, \neq L_{3} P$. Then $L_{2} L_{3}=L_{3} L_{2}$ by Lemma 4.1. From Lemma 4.6 we have
(i) $P_{\rho}, \dot{P}_{\tau} \leq N_{P}\left(L_{2}\right)$ and $P_{\rho}, P_{\sigma} \leq N_{P}\left(L_{3}\right)$;
(ii) $\mathrm{Z}(\mathrm{P}) \leq P_{\sigma \tau}$; and
(iii) P is not star-covered.

From (6.1)(ii) and $P L, \neq L_{2} P, P L, \neq L_{3} P$ we note that

$$
\begin{equation*}
L_{1} P=P L, \quad \text { and } L_{12}=L_{13}=1 \tag{6.2}
\end{equation*}
$$

Now let W be an α-invariant Sylow \boldsymbol{w}-subgroup of L and suppose $L_{1} W \neq W L$, By Theorem 5.1 $P W=W P$. Combining (6.1)(iii), $\mathrm{I}(4.4)$ and $\mathrm{I}(5.8)(\mathrm{f})$ we deduce that W_{σ}, $W_{\tau} \leq N_{W}\left(L_{1}\right)$. From $\left[L_{1}, Z(P)\right]=1$ and $O_{p}(P W) \neq 1$ we obtain $O_{w}(P W) \leq N_{W}\left(L_{1}\right)$. By Lemma 3.4(ii)(d) and $\mathrm{I}(4.6), N_{W}(L,) \leq W_{\rho}$, and thus $W=W_{\rho}$. Then Lemma 3.4 shows that W must permute with both L_{2} and L_{3}. A further consequence of $W=W_{\rho}$, using $\mathrm{I}(2.3)$ (ix) and (6.1) (i), is

$$
\begin{equation*}
P=P_{p} O_{p}(P W)=N_{P}\left(L_{i}\right) O_{p}(P W) \quad(i=2,3) . \tag{6.3}
\end{equation*}
$$

By $\mathrm{I}(2.10)$ (ii) and $\mathrm{I}(6.1) W \neq W_{\sigma} W_{\tau}$ and so, as $W L, L_{3}$ admits $\sigma \tau$ fixed-point-freely, $O_{w}\left(W L, L_{3}\right) \neq 1$ by (l(2.10) (iii). Soat least one of $\left[O_{w}\left(W L_{2} L_{3}\right), \sigma\right]$ and $\left[O_{w}\left(W L_{2} L_{3}\right), \tau\right]$ is non-trivial. Suppose $\left[O_{w}\left(W L, L_{3}\right), \sigma\right] \neq 1$. Then $\left[O_{w}(W L),, \sigma\right] \neq 1$. Since $W_{\sigma} \leq$ $N_{W}\left(L_{3}\right)$, an application of $\mathrm{I}(5.8)$ (c) gives either $O_{p}(P W) \leq N_{P}\left(L_{3}\right)$ or $L_{3_{\sigma}} \leq \mathscr{P}_{L_{3}}(P)$. The former possibility together with (6.3) contradicts $P L, \neq L_{3} P$ whilst the latter is untenable by (6.1) (i) and Lemma 3.3(i). Thus there is no α-invariant Sylow subgroup W of L for which $W L, \neq L_{1} W$ and so, by Theorem 5.1, $L L$, is a soluble subgroup of G. Since we also have $\mathrm{G}=\left(L L_{1}\right)\left(L_{2} L_{3} L_{\text {, }}\right)$, the lemma is proved.

Lemma 6.2. At least two of L_{1}, L_{2} and L_{3} permute.
Proof. We suppose the lemma is false and deduce a contradiction. As $\mathscr{L}_{\boldsymbol{i}}$ is nilpotent for all $i \in \Lambda$, we have $L_{12}=L_{13}=L_{23}=1$. Theorem 4.3 is available and so we may assume that

$$
L_{1}=L_{1_{r}}, L_{2}=L_{2_{\phi}} \quad \text { and } L_{3}=L_{3_{\sigma}} .
$$

By I(2.3) (ix) we have

$$
\begin{align*}
& \mathscr{M}\left(\pi_{1}, \pi_{2}\right)=\left\{L_{1} N_{L_{2}}\left(L_{1}\right), L_{2}\right\}, \mathscr{M}\left(\pi_{1}, \pi_{3}\right)=\left\{L_{1}, L_{3} N_{L_{1}}\left(L_{3}\right)\right\} \text { and } \\
& \mathscr{M}\left(\pi_{2}, \pi_{3}\right)=\left\{L_{2} N_{L_{3}}\left(L_{2}\right), L_{3}\right\} . \tag{6.4}
\end{align*}
$$

Let T denote the a-invariant Sylow 2-subgroup of G. By I(2.24) T is not contained in G_{ρ}, G_{σ} nor G_{τ}. Therefore $2 \notin \pi_{1} \cup \pi_{2} \cup \pi_{3}$, and so T must be of type Λ. By Lemma 4.1 T must permute with at least two of L_{1}, L_{2} and L_{3}. Therefore there are, essentially, two cases to examine:

Case 1. T permutes with L_{2} and L_{3} but does not permute with L; and
Case 2. T permutes with L_{1}, L_{2} and L_{3}.
Case 1. As $L_{1}=L_{1}$ and $T L, \neq L_{1} T$, it follows that $T_{\sigma}, T_{\tau} \leq N_{T}\left(L_{1}\right)$ and, furthermore, that $\left[T_{\sigma}, L_{1}\right]=1$ because $\left[N_{T}\left(L_{1}\right), \rho \tau\right] \leq C_{T}(L$,$) by 1(2.3)(x)$ and $\mathrm{I}(2.11)$. Since [$T_{\rho \sigma}, L_{3}$] = 1 and $L_{1} L_{3} \neq L_{3} L_{1}$, this implies $T_{\rho \sigma}=1$, and so $T L$, admits $\rho \sigma$ fixed-point-freely. Hence $L_{2}=N_{L_{2}}(T) O_{\pi_{2}}\left(T L_{2}\right)$ by $\mathrm{I}(2.10)$ (i). Now $[T, \sigma] \leq O_{2}\left(T L_{2}\right)$, $[T, \sigma] \unlhd \mathrm{TL}$, and $\left[T, 01 \neq 1\right.$, SO $O_{\pi_{2}}\left(T L_{2}\right) \leq \mathscr{P}_{L_{2}}\left(L_{3}\right)=1$ by (6.4). Thus $L_{2}=$ $N_{L_{2}}(T)$.

Since $C_{T}\left(L_{1}\right) \neq 1$ and $T \not \leq \mathbf{G},\left[N_{T}\left(L_{1}\right), \tau\right] \neq 1$, and because $[T, \tau] \leq 0,(T L$,$) ,$ wemayinferthat $O_{\pi_{3}}\left(T L_{3}\right) \leq \mathscr{P}_{L_{3}}\left(L_{1}\right)=1$, by (6.4). So $L_{3}=N_{L_{3}}(J(T)) C_{L_{3}}(Z(T))$ by $\mathrm{I}(2.6)$. Now a further appeal to (6.4) gives $L_{3} \leq N_{L_{3}}\left(L_{2}\right)$, which disposes of case 1 .

Case 2. As $1 \neq[\mathrm{T}, \rho] \leq 0,(T L$,$) and [T, \rho] \leq T L$, we conclude using (6.4) that $O_{\pi_{1}}(T L)=$,1 . Likewise, for i $\in \Lambda$, we obtain $O_{\pi_{i}}(T L)=$,1 and hence $L_{i}=N_{L_{i}}(J(T))$ $C_{L_{i}}(Z(T))$ by $\mathrm{I}(2.6)$. We claim that for each $\mathrm{i} \in \Lambda N_{L_{i}}(J(T)) \neq 1 \neq C_{L_{i}}(Z(T))$. For suppose, say, that $C_{L_{1}}(\mathrm{Z}(\mathrm{T}))=1$. Then $L_{1}=N_{L_{1}}(\mathrm{~J}(\mathrm{~T}))$. The shape of $\mathscr{\mathscr { C }}\left(\pi_{1}, \pi_{3}\right)$ gives $N_{L_{3}}(\mathrm{~J}(\mathrm{~T}))=1$, whence $L_{3}=C_{L_{3}}(Z(T))$. Now the shape of $\mathscr{A}\left(\pi_{2}, \pi_{3}\right)$ implies $C_{L_{2}}(Z(T))=1$. Therefore $L_{2}=N_{L_{2}}(J(\mathrm{~T}))$ and so $L_{1} L_{2}=L_{2} L$, a contradiction. Hence $C_{L_{i}}(Z(\mathrm{~T})) \neq 1$, and a similar argument shows $N_{L_{i}}(J(\mathrm{~T})) \neq 1$, as claimed.

From $N_{I .}(J(T)) \neq 1 \neq C_{L_{:}}(Z(T))$ for $\mathrm{i}=1,2$, (6.4) dictates that $L_{2}=N_{L_{2}}(J(T))$ $C_{L_{2}}(Z(T)) \leq N_{L_{2}}(L$,$) . This finishes case 2$ and the proof of the lemma.

Theorem 6.3. With a possible re-ordering of $1,2,3$, either
(i) $G=\left(L L, L_{3} L\right.$,) L, with $L L_{2} L_{3} L_{23}$ a soluble Hall subgroup; or
(ii) $G=\left(L L_{1}\right)\left(L_{2} L_{3} L\right.$,, with $L L$, and $L_{2} L_{3} L_{23}$ both soluble Hall subgroups.

Proof. Reca11 that L is a soluble Hall subgroup by Theorem 5.1 and that, if $L_{i j} \neq 1(\mathrm{i}, \mathrm{j} \in$ $\Lambda, i \neq j)$, then $L_{i j}^{*} \neq L_{i j}$.

We break the proof into two parts depending on whether or not all of L_{12}, L_{13} and L_{23} are trivial. First suppose that, say, $L_{23} \neq 1$. Clearly then $\mathscr{B}_{2} \mathscr{B}_{3}=\mathscr{L}_{3} \mathscr{L}_{2}$. Suppose P
is an cu-invariant Sylow subgroup of L which permutes with L_{23}. Since \mathscr{C}_{2} and \mathscr{L}_{3} are nilpotent and $O_{\pi_{23}}\left(P L_{23}\right) \neq 1$, it follows that P permutes with \mathscr{L}_{2} and \mathscr{L}_{3}. On the other hand, if Q is an cr-invariant Sylow subgroup of L which does not permute with L_{23}, then $\mathrm{Z}(\mathrm{Q}) \leq Q_{\sigma \tau}$ by Lemma 3.2 and hence $Q \mathscr{C}_{1}=\mathscr{L}_{1} \mathrm{Q}$. Let L^{+}(respectively L^{-}) denote the group generated by those cr-invariant Sylow subgroups of L which permute (respectively do not permute) with L_{23}. Then $G=\left(\mathscr{C}_{2} \mathscr{L}_{3} L^{+}\right)\left(L^{-} \mathscr{L}_{1}\right)$ with $\mathscr{L}_{2} \mathscr{L}_{3} L^{+}$and $L-\mathscr{L}_{1}$ soluble Hall subgroups of G. Since G contains no non-trivial proper α-invariant normal subgroups, $L_{12}=L_{13}=1$ whence $G=\left(L_{2} L_{3} L_{23} L^{+}\right)\left(L^{-} L_{1}\right)$. Iftheconclusionof the theorem were false there would exist an cr-invariant Sylow subgroup P of L^{+}such that $P L, \neq L_{1} P$ and an α-invariant Sylow subgroup Q of L^{-}such that $\mathrm{QZ}, \neq L_{23} \mathrm{Q}$. However $P L_{23}=L_{23} P$ and $Q L,=L, Q$, a configuration which is impossible by Lemma 4.5.

Now we consider the case $L_{12}=L_{13}=L_{23}=1$. By Lemma 6.2 we may assume that $L_{2} L_{3}=L_{3} L_{2}$. In view of Lemma 6.1, we may suppose for each α-invariant Sy low subgroup P of L that P permutes with at least two of L_{1}, L_{2} and L_{3}. Therefore $\mathrm{G}=\left(L, L_{3} L^{\prime}\right)(L-L$,$) where L^{+}$(respectively $\left.L^{-}\right)$are the subgroups of-L generated by those α-invariant Sylow subgroups of L which permute with L_{2} and L_{3}, (respectively L_{1}). Again, if the theorem does not hold then it is possible to select α-invariant Sylow subgroups P and Q of (respectively) L^{+}and L^{-}such that $P L, \neq L_{1} P$ and, say, $Q L_{2} \neq L_{2} Q$. Since $P L_{2}=L_{2} P$ and $Q L,=L_{1} \mathrm{Q}$, Theorem 4.4 denies the credibility of this situation. Therefore, in this case also, either $G=\left(L_{2} L_{3} L\right) L_{1}$ orG $=\left(L_{2} L_{3}\right)\left(L L_{1}\right)$.

7. MORE ON FACTORIZATIONS

In this, the final section, we examine the possible factorizations of G as predicted by Theorem 6.3. We begin with a hypothesis.

Hypothesis 7.1. (i) $\mathrm{G}=K \mathscr{O}_{\text {i }}$ where $i \in \Lambda$
(i) K is an α-invariant soluble subgroup of G with $\pi(K) \cap \hat{\pi}_{i}=\phi$.

Theorem 7.2. Hypothesis 7.1 does not hold.
Proof. We show that Hypothesis 7.1 leads to a contradiction. Without loss of generality we take $i=1$. Clearly we must have $\mathscr{C}_{1} \neq 1$. Put $\widetilde{K}=N_{K}\left(\mathscr{C}_{1}\right)$. Because G contains no non-trivial proper $\alpha \cdot$ invariant normal subgroups and $G=K \mathscr{L}_{1}, \mathscr{B}_{1}$ cannot normalize any non-trivial $\boldsymbol{\alpha}$-invariant subgroups stet of K. Thus, if H is a proper $\boldsymbol{\alpha}$-invariant subgroup of G containing \mathscr{L}_{1} then $H \leq N_{G}\left(\mathscr{B}_{1}\right)$ by $\mathrm{I}(2.13)$. So we have shown that
(7.1) (i) $N_{G}\left(\mathscr{L}_{1}\right)$ is the unique maximal α-invariant subgroup of G containing \mathscr{L}_{1};
(ii) $O_{\hat{\pi}_{1}^{\prime}}\left(N_{G}\left(\mathscr{C}_{1}\right)\right)=1$;and
(iii) $N_{G}\left(\mathscr{L}_{1}\right)=\tilde{K} \mathscr{C}_{1}$ with $\tilde{K} \leq K_{\rho}$.

Since $\left[K_{\sigma \tau}, \mathscr{L}_{1}\right]=1$ by $\mathrm{I}(3.13)(\mathrm{iii})$, (7.1)(ii) implies
(7.2) $\quad \sigma \tau$ acts fixed-point-freely upon K.
(7.3) Let $p \in \pi(\mathrm{~K})$ and let P be the α-invariant Sylow p-subgroupof K. Then $P \not \subset \tilde{K}$.

For suppose $P \leq \tilde{K}$. Then we must have $O_{p}(K)=1$. So $P=P_{\sigma} P_{\tau}$ by (7.2) and $\mathrm{I}(2.10)$ (iii). Since $P=P_{\rho}$ by (7.1)(iii) and $P \in S y l_{p} G, \mathrm{I}(6.1)$ and $\mathrm{I}(6.4)$ combine to yield a contradiction. Thus $P \nsubseteq \widetilde{K}$, as asserted.

We now come to the heart of the proof of the theorem, namely that of showing

$$
\begin{equation*}
K_{\sigma}, K_{\tau} \leq \tilde{K} \tag{7.4}
\end{equation*}
$$

First we note some easy reductions. Since $\left[K_{\sigma}, L,\right]=\left[K_{\tau}, L_{12}\right]=1$, if we have $L_{12} \neq 1 \neq L_{13}$, then (7.1)(i) yields (7.4). So, without loss of generality, we may assume $L_{12}=$ 1. If $L_{1}=1$, then $\mathscr{C}_{1}=L_{13}$ and so $\left[\mathscr{C}_{1}, K,\right]=1$, which implies $K_{\sigma}=1$ by (7.1) (ii). Then K is nilpotent by $\mathrm{I}(2.2)$ (i), whence, by $\mathrm{I}(2.5), \mathrm{G}$ is soluble, a contradiction. Therefore, in proving (7.4), we may suppose $\mathscr{L}_{1}=L_{1} L_{13}$ with $L_{1} \neq 1$.

Before proceeding further it is convenient to rule out a particular situation.

$$
\begin{equation*}
L_{1_{\sigma}} \neq L_{1_{\boldsymbol{\tau}}} \tag{7.5}
\end{equation*}
$$

Suppose $L_{1_{\sigma}}=L_{1_{\tau}}$ were to hold. Then by I(6.4).
(7.6) Every proper α-invariant subgroup of G has a normal p-complement for each $p \in \pi_{1}$.

Hence $\pi_{1}=\{2\}$ by Thompson's normal p-complement theorem. From $I(2.1)(v)$ we see that L_{1} normalizes \widetilde{K}. Hence

$$
\left(C_{\tilde{K}}\left(L_{13}\right)\right)^{\mathscr{L}_{1} \tilde{K}}=\left(C_{\tilde{K}}\left(L_{13}\right)\right)^{L_{1} \tilde{K}} \leq \tilde{K}
$$

and hence $C_{\bar{K}}\left(L_{13}\right)=1$ by (7.1)(ii). Now $L_{13} \neq 1$ would yield $1 \neq K_{\sigma} \leq C_{\bar{K}}\left(L_{13}\right)$ and so we deduce that $L_{13}=1$. Thus $\mathscr{B}_{1}=L_{1}$ and clearly, $\tilde{K}=1$.

Foreach $p \in \pi(K)$, by (7.3), $P L, \neq L_{1} P$ where P is the a-invariant Sylow p-subgroup of K. It then follows easily that if at least one of P_{σ} and P_{τ} is non-trivial, then $L_{1}^{*} \leq$ $N_{L_{1}}(P)$. Hence $L_{1}^{*} \leq N_{L_{1}}\left(L L_{2} L_{3}\right)$. Because $L L, L_{3} \neq 1$ and $L L_{2} L_{3} \unlhd K$ by I(2.8) and (7.2), (7.6) then yields that $L_{1}^{*} \leq N_{L_{1}}(K)$. From (7.2) $G_{\sigma \tau}=L_{1_{\sigma \tau}}$ and thus we have verified all the hypotheses of $\mathrm{I}(6.2)$ with $\gamma=$ or. As a consequence G has a normal 2-complement, which is impossible. Therefore $L_{1_{\sigma}} \neq L_{1_{\tau}}$ holds.
(7.7) If $L \neq 1$, then (7.4) holds.

We begin by establishing
(7.8) (i) L_{1} does not permute with any (non-trivial) a-invariant Sylow p-subgroups of K of type Λ; and
(ii) $L_{1} L_{i} \neq L_{i} L_{1}$ for $\boldsymbol{i}=1,2\left(\operatorname{provided} L_{1} \neq 1\right)$.

If $L_{13}=1$, then (7.8) follows immediately from (7.3). So while proving (7.8) we may suppose $L_{13} \neq 1$. Let P be a (non-trivial) $\boldsymbol{\alpha}$-invariant Sylow p-subgroup of K of type $\boldsymbol{\Lambda}$. Suppose $\mathrm{PL}_{\prime \prime}=L_{13} P$ weretohold. $\mathrm{ByI}(2.8)$ and $\mathrm{I}(6.1), L_{13} \not \leq G_{\sigma}$ andso $O_{\pi_{13}}\left(P L_{13}\right) \neq 1$ by $\mathrm{I}(4.5)$. Consequently $\mathbf{P} \leq \tilde{K}$ by (7.1) (i), contrary to (7.3). Hence $\mathrm{PL}_{\boldsymbol{\prime}} \neq L_{13} \mathbf{P}$. From Lemma 3.2 $\mathscr{A}\left(p, \pi_{13}\right)=\left\{L_{13} N_{P}\left(L_{13}\right), \mathbf{P}\right\}$ with $C_{P}\left(L_{13}\right) \neq 1$. Clearly $N_{P}\left(L_{13}\right) \leq \widetilde{K} \leq$ K_{ρ}. Thus $\mathbf{P}=P_{\rho}$ by $\mathrm{I}(2.3)$ (v). Now, if it were the case that $\mathrm{PL},=\mathrm{L}, \mathrm{P}$, then $\mathrm{I}(2.3)(\mathrm{ix})$ would yield $L_{1} \unlhd L_{1} P$ whence $\mathbf{P} \leq \widetilde{K}$, against (7.3). Hence $\mathbf{P L}, \neq L_{1} \mathbf{P}$ holds and we have proved (7.8) (i).

We now prove (ii). Since $L_{13} \neq 1$, (7.3) forces $L_{3}=1$. Thus we only need show $L_{1} L_{2} \neq L_{2} L_{1}$. Supppose $L_{1} L_{2}=L_{2} L_{1}$ were to hold. Then (7.3) implies $O_{\pi_{1}}\left(L_{1} L,\right)=1$ and so $L_{1}=L_{1_{\sigma}}$ by $1(2.13)($ (i). Since $L \neq 1$ by hypothesis we may choose \mathbf{P} to bea (nontrivial) $\boldsymbol{\alpha}$-invariant Sylow p-subgroup of \mathbf{K} of type Λ. By part (i), $L_{1} \mathbf{P} \# \mathbf{P L}$, . Consulting Lemma 3.3 and using $\mathrm{I}(2.3)$ (x) yields first $C_{P}\left(L_{1}\right) \neq 1$, and then $Z(P) \leq P_{\sigma}$. However [L_{13}, P_{σ}] = 1 and consequently $\mathrm{PL}_{\prime \prime}=L_{13} \mathrm{P}, \mathrm{S}_{0} P_{\mathscr{L}_{1}}=\mathscr{L}_{1} \mathrm{P}$, contrary to (7.3). From this contradiction we deduce that $L_{1} L_{2} \neq L_{2} L_{1}$. The proof of (7.8) is complete.

$$
\begin{equation*}
Z\left(L_{1}\right) \neq Z\left(L_{1}\right)_{\sigma \tau} \tag{7.9}
\end{equation*}
$$

Suppose $Z(\mathrm{~L})=,Z\left(L_{1}\right)_{\sigma \tau}$ were to hold and let P be an α-invariant Sylow p-subgroup of $L, p \in \pi(L)$. By $\mathrm{I}(2.3)$ (xi) $\left[N_{P}\left(L_{1}\right), Z(\mathrm{~L}),\right]=1$. From (7.8) (i) $\mathrm{PL}, \neq L_{1} P$ and So, by Lemma 3.3, either $L_{1}^{*} \leq N_{L_{1}}(\mathbf{P})$ or $P_{\sigma}, P_{\tau} \leq N_{P}(\mathbf{L})$. Consequently $Z\left(L_{1}\right) \leq$ $N_{L_{1}}(\mathrm{P})$; this is clear in the first case and in the latter case follows from $\left[N_{P}(\mathrm{~L}), Z(\mathrm{~L})\right]=$ $1 \neq N_{P}\left(L_{1}\right)$. Therefore $Z\left(L_{1}\right) \leq N_{G}(L)$. A similar argument shows that $Z\left(L_{1}\right) \leq$ $N_{G}\left(L_{2} L_{3}\right)$ and so

$$
Z\left(L_{1}\right) \leq N_{G}\left(L L_{2} L_{3}\right)
$$

Recalling that $1 \neq \mathrm{LL}, L_{3} \unlhd \mathbf{K}$ we see that $(\mathbf{K}, Z(\mathrm{~L})$,$) is a proper \alpha$-invariant subgroup ofG.Now

$$
1 \neq Z\left(L_{1}\right)^{G}=Z\left(L_{1}\right)^{K} \leq\left\langle K, Z\left(L_{1}\right)\right\rangle
$$

a contradiction. Thus we must have $Z\left(\mathrm{~L}_{1}\right) \neq Z\left(L_{1}\right)_{\sigma \tau}$.
(7.10) Let $P \in \pi(L)$ and let P be the α-invariant Sylow p-subgroup of L. Then $P_{\sigma}, P_{\tau} \leq$ $N_{P}\left(L_{1}\right) \leq \widetilde{K}$.

We only need show that $P_{\sigma}, P_{\tau} \leq N_{P}\left(L_{1}\right)$, since $N_{P}\left(L_{1}\right) \leq \tilde{K}$. If $P_{\sigma}, P_{\tau} \not 又 N_{P}\left(L_{1}\right)$, then by Lemma 3.4(i) (c) and (d) either $Z(L)=,Z\left(L_{1}\right)_{\sigma \tau}$ or $L_{1_{\sigma}}=L_{1_{\tau}}$. By (7.5) and (7.9) neither of these possibilities can occur. Thus $P_{\sigma}, P_{\tau} \leq N_{P}(L)$.

$$
\begin{equation*}
L_{2_{\tau}} \leq K \tag{7.11}
\end{equation*}
$$

Suppose (7.11) is false. Then $L_{2} \neq 1$ and so $L_{1} L_{2} \neq L_{2} L_{1}$. Since $N_{K}\left(L_{1}\right) \leq \widetilde{K}, L_{2_{\tau}} \nsubseteq$ $N_{L_{2}}\left(L_{1}\right)$ and so $L_{1_{\tau}} \leq N_{L_{1}}\left(L_{2}\right)$. Let P be some fixed α-invariant Sylow p-subgroup of $L, p \in \pi(L)$. By (7.8)(i) and (7.10) $P L, \neq L_{1} P$ with $P_{\sigma}, P_{\tau} \leq N_{P}(L$,$) . Hence$

$$
\begin{equation*}
\mathscr{P}_{L_{1}}(P)=N_{L_{1}}(P) \leq L_{1_{\sigma r}} . \tag{7.12}
\end{equation*}
$$

by Lemma 3:4(ii)(c) and (f).
It is claimed that
(i) $C_{L_{1}}\left(L_{2}\right)=1$; and
(ii) $L_{1}^{*}=L_{1_{0}}$.

Clearly (i) implies (ii) by I(2.1 1), so we only need prove (i).
Suppose $C_{L_{1}}(L) \neq$,1 and argue for a contradiction. Hence $Z(L,) \leq N_{L_{1}}(L$,$) and then$ $Z\left(L_{1}\right) \leq L_{1_{\sigma}}$. Using $\mathrm{I}(2.3)(\mathrm{x})$ we then obtain

$$
\left[\left[N_{P}\left(L_{1}\right), \sigma\right], Z\left(L_{1}\right)\right]=1
$$

Because $P_{\sigma}, P_{\tau} \leq N_{P}\left(L_{1}\right) \leq \tilde{K} \leq K_{\rho}$, we have [$\left.N_{P}\left(L_{1}\right), \sigma\right] \neq 1$. Therefore, either

$$
\begin{aligned}
& Z\left(L_{1}\right) \leq \mathscr{P}_{L_{1}}(P) \leq L_{1_{\text {or }}} \text { or } \\
& C_{P}\left(\left[N_{P}\left(L_{1}\right), \sigma\right]\right) \leq N_{P}\left(L_{1}\right) \leq P_{\rho} .
\end{aligned}
$$

By (7.9) only the latter can hold. Then $P=P_{\rho}$ by $1(2.3)(v)$, whence $\mathscr{P}_{L_{1}}(P)=1$.
If $O_{\pi_{2}}\left(P L_{2}\right) \neq 1$, then since $N_{G}\left(O_{\pi_{2}}\left(P L_{2}\right)\right) \geq P, C_{L_{1}}\left(L_{2}\right)$, we obtain

$$
1 \neq C_{L_{1}}\left(L_{2}\right) \leq \mathscr{P}_{L_{1}}(P)=1
$$

Hence $0,(\mathbf{P L})=$,1 . Since $\mathbf{P}=P_{\rho}, \mathrm{I}(2.3)$ (ix) forces $L_{2}=L_{2_{\rho}}$. But then $N_{L_{1}}\left(L_{2}\right) \unlhd$ $L_{2} N_{L_{1}}(\mathrm{~L}$,$) and N_{L_{1}}\left(L_{2}\right) \neq 1$ imply $L_{1} L_{2}=L_{2} \mathrm{~L}$, . This contradicts (7.8)(ii) and so verifies (7.13).

$$
\begin{equation*}
L_{1} \neq L_{1_{\sigma}} \tag{7.14}
\end{equation*}
$$

Suppose $L_{1}=L_{1_{\sigma}}$ were to hold. Then $P_{\sigma}, P_{\tau} \leq N_{P}(\mathrm{~L},) \leq P_{\rho}$ yields, using $1(2.3)(\mathrm{x})$, $\mathrm{Z}(\mathrm{P}) \leq P_{\sigma}$. But $\left[P_{\sigma}, L_{13}\right]=1$ then implies that $P L_{13}=L_{13} \mathrm{P}$. From $\mathrm{P}=P_{\rho}$ we see that $L_{13} \unlhd L_{13} \mathbf{P}$. Since $\mathbf{P} \nsubseteq \widetilde{K}$ by (7.3), we conclude that $L_{13}=1$. Hence $\mathscr{L}_{1}=L_{1} \leq G_{\sigma}$. Now $\mathrm{I}(2.3)$ (ix) gives $[G, \sigma] \leq K \neq \mathrm{G}$. But G does not have any non-trivial proper α invariant normal subgroups and therefore $L_{1} \neq L_{1_{\sigma}}$.

Since $P_{\sigma} \leq N_{P}(\mathbf{L})$,

$$
L_{1}=L_{1_{\sigma}} C_{L_{1}}\left(P_{\sigma}\right)
$$

by (7.13) and $\mathrm{I}(2.14)$ (ii). Because $\mathscr{P}_{L_{1}}(P) \leq L_{1_{\sigma \pi}}$ and $L_{1} \neq L_{1_{\sigma}}$ by (7.14), we see that $C_{L_{1}}\left(P_{\sigma}\right) \notin \mathscr{P}_{L_{1}}(P)$. Consequently

$$
\begin{equation*}
Z(P)_{\sigma}=1 \text { and } \mathbf{Z}(\mathbf{P}) \leq N_{P}\left(L_{1}\right) \leq \tilde{K} . \tag{7.15}
\end{equation*}
$$

Because $K_{\sigma \tau}=1$ and $L_{2(\sigma \tau)}^{*}=L_{2_{\tau}},\left[P_{\tau}, L_{2}\right]=1$,andso $P_{\tau} \leq C_{G}\left(L_{2}\right)$. Hence,since $P_{\tau} \leq N_{P}\left(L_{1}\right)$,

$$
\left[N_{L_{1}}\left(L_{2}\right), P_{\tau}\right] \leq C_{G}\left(L_{2}\right) \cap L_{1}=C_{L_{1}}\left(L_{2}\right)
$$

Thus [$N_{L_{1}}(\mathrm{~L}),, P_{\tau}$] $=1$ by (7.13)(i). If $\mathrm{Z}(\mathrm{P}), \neq 1$, then

$$
L_{1_{r}} \leq N_{L_{1}}\left(L_{2}\right) \leq \mathscr{P}_{L_{1}}(P)
$$

However, we already have $P_{\sigma}, P_{\tau} \leq N_{P}\left(\mathrm{~L}_{\boldsymbol{\prime}}\right)$ and so $L_{1_{\tau}} \not \mathscr{P}_{L_{1}}(\mathrm{P})$ by Lemma 3.3(i). Therefore $\mathrm{Z}(\mathrm{P}),=1$ and hence, appealing to (7.15), $Z(P)_{\langle\sigma \tau\rangle}^{*}=1 . \operatorname{By} \mathrm{I}(2.8)$ and $\mathrm{I}(2.9)$, since $K_{\sigma \tau}=1$, we see that

$$
Z(P) \leq O_{p}(K) \text { and }\left[Z(P), N_{K}(P)\right]=1
$$

Hence, since \mathbf{K} has Fitting length at most two, $Z(P) \leq Z(K)$. Consequently, by (7.15), we have

$$
1 \neq Z(P)^{G}=Z(P)^{\mathscr{B}_{1}} \leq N_{G}\left(\mathscr{C}_{1}\right) \neq G
$$

which is not possible. With this contradiction we have established (7.11).

By a similar argument (and noting that $L_{3} \neq 1$ implies $L_{13}=1$) to the one used to prove (7.11) we also obtain

$$
\begin{equation*}
L_{3_{\sigma}} \leq \tilde{K} \tag{7.16}
\end{equation*}
$$

Combining (7.10), (7.11) and (7.16) yields (7.7).

$$
\begin{equation*}
\text { If } L=1, \quad \text { then (7.4) holds. } \tag{7.17}
\end{equation*}
$$

By $\mathrm{I}(2.5) K$ is not nilpotent, and so $L_{2} \neq 1 \neq L_{3}$. Because $L_{13} \neq 1$ implies $L_{3}=1$ by (7.3), we also have $\mathscr{C}_{1}=L_{1}$. In order to show (7.4) holds, because of the symmetry of the arguments, we must show that the two possibilities

$$
\begin{aligned}
& L_{1_{\sigma}} \leq N_{L_{1}}\left(L_{3}\right), \quad L_{1_{\tau}} \leq N_{L_{1}}\left(L_{2}\right) \quad \text { and } \\
& L_{1_{\sigma}} \leq N_{L_{1}}\left(L_{3}\right), \quad L_{2_{\tau}} \leq N_{L_{2}}\left(L_{1}\right)
\end{aligned}
$$

cannot occur.

Case 1. $L_{1_{\sigma}} \leq N_{L_{1}}\left(L_{3}\right), L_{1_{\tau}} \leq N_{L_{1}}\left(L_{2}\right)$.

By (7.5) $L_{1_{\sigma}} \neq L_{1_{\tau}}$ and so we may assume that, say, $L_{1_{\tau}} \not \leq L_{1_{\sigma}}$. Then $C_{L_{1}}\left(L_{2}\right) \neq 1$ by $\mathrm{I}(2.13)$. Hence $Z\left(L_{1}\right) \leq N_{L_{1}}\left(L_{2}\right)$ and so $Z(L)=,Z\left(L_{1}\right)_{\sigma}$. But then $Z\left(L_{1}\right) \leq$ $L_{1_{\sigma}} \leq N_{L_{1}}\left(L_{3}\right)$. Therefore $Z\left(L_{1}\right) \leq N_{G}\left(L_{2} L_{3}\right)$. Since $1 \neq L_{2} L_{3} \unlhd K,\left\langle Z\left(L_{1}\right), K\right\rangle \neq G$, and so $Z\left(L_{1}\right)^{G}$ is a non-trivial proper α-invariant normal subgroup of G . Consequently $L_{1_{\sigma}} \leq N_{L_{1}}\left(L_{3}\right), L_{1_{\tau}} \leq N_{L_{1}}\left(L_{2}\right)$ cannot hold.

Case 2. $L_{1_{\sigma}} \leq N_{L_{1}}\left(L_{3}\right), L_{2_{\tau}} \leq N_{L_{2}}\left(L_{1}\right)$.
Suppose for the moment that $L_{1_{\sigma}} \leq L_{1_{\tau}}$. So $L_{1}^{*}=L_{1_{\tau}}$ and by $\mathrm{I}(2.3)(\mathrm{ix}), L_{1} \neq L_{1_{\boldsymbol{r}}}$. By I(2.14) (ii)

$$
L_{1}=L_{1_{r}} C_{L_{1}}\left(L_{2_{r}}\right)
$$

Clearly $C_{L_{1}}\left(L_{2_{\tau}}\right) \notin L_{1_{\sigma}}$. S 0 if $C_{L_{1}}\left(L_{2_{\tau}}\right) \leq N_{L_{1}}\left(L_{2}\right), \mathrm{I}(5.6)$ forces the contradiction.

$$
1 \neq L_{2_{\mathrm{r}}} \leq N_{L_{2}}\left(L_{1}\right)=1
$$

Thus $C_{L_{1}}\left(L_{2_{r}}\right) \not \leq N_{L_{2}}\left(L_{2}\right)$ and consequently $Z\left(L_{2}\right)_{\tau}=1$ and $Z\left(L_{2}\right) \leq N_{L_{2}}\left(L_{1}\right)$. Since $K_{\sigma \tau}=1$ and $Z\left(L_{2}\right)_{\langle\sigma \tau\rangle}^{*}=Z\left(L_{2}\right)_{\tau}=1, \mathrm{I}(2.8)$ and $\mathrm{I}(2.9)$ yield $Z\left(L_{2}\right) \unlhd K$. Hence

$$
Z\left(L_{2}\right)^{G}=Z\left(L_{2}\right)^{L_{1}} \leq N_{G}\left(L_{1}\right),
$$

an untenable situation from which we conclude $L_{1_{\sigma}} \nsubseteq L_{1_{\tau}}$.
From $L_{1_{\sigma}} \nsubseteq L_{1_{r}}$, we deduce $C_{L_{1}}\left(L_{3}\right) \neq 1$ whence $Z\left(L_{1}\right) \leq N_{L_{1}}\left(L_{3}\right)$ with $Z\left(L_{1}\right) \leq$ $L_{1_{r}}$. We now aim to show that $L_{3}=L_{3_{\sigma}}$. Suppose $L_{3} \neq L_{3_{\sigma}}$. Then $1 \neq\left[L_{3}, \sigma\right] \leq 0,\left(L_{2} L_{3}\right)$. Because $L_{1_{\sigma}} \leq N_{L_{1}}\left(L_{3}\right)$, I(2.3) (viii) gives

$$
O_{\pi_{2}}\left(L_{2} L_{3}\right), L_{1_{\sigma}} \leq N_{G}\left(\left[L_{3}, \sigma\right]\right)
$$

Hence either $O_{\pi_{2}}\left(L_{2} L_{3}\right) \leq N_{L_{2}}\left(L_{1}\right)$ or $L_{1_{\sigma}} \leq N_{L_{1}}\left(L_{2}\right)$. The former possibility implies, using $1(2.13)(\mathrm{i}$), that

$$
L_{2}=O_{\pi_{2}}\left(L_{2} L_{3}\right) L_{2_{r}} \leq N_{L_{2}}\left(L_{1}\right),
$$

contradicting $L_{1} L_{2} \neq L_{2} \mathbf{L}$, . Thus we have $L_{1_{\sigma}} \leq N_{L_{1}}(\mathbf{L}$,$) , and so L_{1_{\sigma}} \leq N_{L_{1}}\left(L_{2} L_{3}\right)$. Because $\mathrm{K}, L_{1_{\sigma}} \leq N_{G^{2}}\left(L_{2} L_{3}\right) \neq \mathrm{G}$ we conclude that $Z(\mathrm{~L},)_{1},=1$. But then σ acts fixed-point-freely upon $Z\left(L_{1}\right) N_{L_{2}}\left(L_{1}\right)$, whence $\left[Z\left(L_{1}\right), N_{L_{2}}\left(L_{1}\right)\right]=1$. Because $N_{L_{2}}\left(L_{1}\right) \neq 1$, thisyields $Z\left(L_{1}\right) \leq N_{L_{1}}\left(L_{2}\right)$. Hence $Z\left(L_{1}\right) \leq N_{L_{1}}\left(L_{2} L_{3}\right)$, and then G contains a nontrivial proper α-invariant normal subgroup. Therefore we must have $L_{3}=L_{3_{g}}$. Recalling that $Z(\mathrm{~L})=,Z(\mathrm{~L}),, \leq N_{L_{1}}\left(L_{3}\right)$, this gives $Z(\mathrm{~L})=,Z\left(L_{1}\right)_{\sigma \tau}$, which is not possible by (7.9).

This completes the analysis of Case 2 and the proof of (7.17).
Combining (7.7) and (7.17) establishes (7.4).
Using (7.4) we readily complete the proof of Theorem 7.2. Let P be an arbitrary α invariant Sylow p -subgroup of K. Since K has Fitting length at most two, $K=N_{K}(\mathrm{P}) 0$, (K) by a Frattini argument. Set $\mathbf{M}=O_{p^{\prime}}(K)$. From I(2.14) (ii), I(3.8) and (7.4)

$$
[P, M]=\left[P_{(\sigma \tau)}^{*}, M\right] \leq \tilde{K} \leq N_{G}\left(\mathscr{B}_{1}\right)
$$

Now $[\mathrm{P}, M] \unlhd K$ and thus, as G contains no non-trivial proper α-invariant normal subgroups, $[P, M]=1$. Hence $\mathbf{P} \unlhd K$ and so we deduce that K is nilpotent. By $\mathrm{I}(2.5)$ this is not possible and Theorem 7.2 is established.

We now investigate another kind of factorization.

Hypothesis 7.3. $\mathbf{G}=(L L),\left(L, L_{3} L_{23}\right)$ with $L L$, and $L_{2} L_{3} L_{23}$ soluble Hall subgroups of G.

Let L^{+}(respectively L^{-}) be the subgroup of L generated by the cu-invariant Sylow subgroups of L which permute with both L_{2} and L_{3} (rcspectivcly do not permute with both L_{2} and L_{3}). Clearly $L=L^{+} L^{-}$and $L^{+} \cap L^{-}=1$. Before considering Theorem 7.6, the last major result of this paper, we prove two preliminary lemmas.

Lemma 7.4. Assume Hypothesis 7.3 holds, and let P be a (non-trivial) cu-invariant Sylow p-subgroup of L^{-}. Then P permutes with one of L_{2} and L_{3}.
Proof. Suppose $P L, \neq L_{2} P$ and $P L, \neq L_{3} P$, and arguc for a contradiction. So, by Lemma 4.6, $P_{\rho}, P_{\tau} \leq N_{P}\left(L_{2}\right)$ and $P_{\rho}, P_{\sigma} \leq N_{P}\left(L_{3}\right)$, and, appealing to $\mathrm{I}(4.5)$,

$$
1 \neq R=O_{p}\left(L L_{1}\right) \cap Z(P) \leq N_{P}\left(L_{2} L_{3}\right)
$$

If $\left.N_{G}(Z(P))\right)=P C_{G}(Z(J(P)))$, then, as $Z(P) \leq Z(J(P)), R \leq Z\left(L L_{1}\right)$. Now $L_{2} L_{3} \neq 1$ by Theorem 7.2 and so $\left(R, L_{2} L_{3} L_{\text {, }}\right) \leq N_{G}\left(L_{2} L\right.$, $) \neq G$. Then R^{G} is a nontrivial proper a-invariant normal subgroup of G. Consequently, from Lemma 4.6(iv), we have $\mathrm{J}(\mathrm{P})$ contained in at least one of $N_{P}(L$,$) and N_{P}(L$,$) .$

Set $S=R^{L L_{1}}$. Using $\mathrm{I}(2.6)$ we see that $S \leq Z(J(P))$). If $J(P) \leq N_{P}\left(L_{2}\right) \cap$ $N_{P}\left(L_{3}\right)$, then clearly $S \leq N_{G}\left(L_{2} L_{3}\right) \neq \mathrm{G}$. So we have $\mathrm{G}=N_{G}(\mathrm{~S}) N_{G}\left(L_{2} L_{3}\right)$ which implies that S^{G} is a non-trivial proper $\boldsymbol{\alpha}$-invariant normal subgroup of G. So to complete the proof of the lemma we have, without loss of generality, to dispose of the case when

$$
\begin{equation*}
J(P) \leq N_{P}\left(L_{2}\right) \text { and } J(P) \notin N_{P}\left(L_{3}\right) \tag{7.18}
\end{equation*}
$$

Suppose (7.18) holds. If $L_{23} \neq 1$, then it is straightforward to show that $P L_{23} \neq L_{23} P$ and (hence) $N_{P}\left(L_{2}\right)=N_{P}(L$, , $)=N_{P}\left(L_{3}\right)$, which contradicts (7.18). Therefore $L_{23}=1$.

Since $\mathrm{J}(\mathrm{P}) \leq N_{P}\left(L_{2}\right)$,

$$
J(P)=C_{J(P)}\left(L_{2}\right) J(P)_{\sigma}
$$

by (I.(2.13) (i). Because $P_{\sigma} \leq N_{P}\left(L_{3}\right)$ and $\mathrm{J}(\mathrm{P}) \notin N_{P}\left(L_{3}\right), C_{P}(L,) \nsubseteq N_{P}\left(L_{3}\right)$. Thus $O_{\pi_{2}}\left(L_{2} L_{3}\right)=1$. Then $\mathrm{I}(2.13)$ gives

$$
\begin{equation*}
L_{2}=L_{2_{\tau}} \quad \text { and } \quad L_{3} \unlhd L_{2} L_{3} . \tag{7.19}
\end{equation*}
$$

Since $C_{P}(J(\mathrm{P})) \leq \mathrm{J}(\mathrm{P}) \leq N_{P}\left(L_{,}\right)$and P is not star-covred by Lemma 4.6(iii), 1(2.3)(v) implies $\left[N_{P}\left(L_{2}\right), \tau\right] \neq 1$. So, using (7.19), we have

$$
\begin{equation*}
1 \neq\left[N_{P}\left(L_{2}\right), \tau\right] \leq C_{P}\left(L_{2}\right) \tag{7.20}
\end{equation*}
$$

Clearly, from (7.19), $N_{P}\left(L_{3}\right) \leq N_{P}(\mathrm{~L})$. Hence, by $\mathrm{I}(2.11)$, and (7.20),

$$
\left[N_{P}\left(L_{3}\right), \tau\right] \leq C_{P}\left(L_{3}\right) \cap C_{P}\left(L_{2}\right) \leq C_{P}\left(L_{2} L_{3}\right)
$$

Because $\mathrm{G}=\left(L L_{1}\right)\left(L, L_{3}\right)$ and G contains no non-trivial proper α-invariant normal subgroups, we deduce that [$\left.N_{P}\left(L_{3}\right), \tau\right]=1$. Consequently

$$
\begin{equation*}
P^{*}=P_{\tau} \leq N_{P}\left(L_{2}\right) . \tag{7.21}
\end{equation*}
$$

From Lemma 4.6 $\mathrm{Z}(\mathrm{P}) \leq Z(P L,) \cap N_{G}\left(L_{2} L_{3}\right)$ and so we observe that $L \neq P$. Let Q be an a-invariant Sylow q-subgroup of L where $q \in n(L) \backslash\{p\}$; the existence of Q provides some useful leverage. First we prove

$$
\begin{align*}
& \text { (i) } Q L_{2} \neq L_{2} Q \text { with } Q_{\rho}, Q_{\tau} \leq N_{Q}\left(L_{2}\right) \text {; } \tag{7.22}\\
& \text { (ii) } \mathrm{Q}=\mathrm{Q}, ; \text { and } \\
& \text { (iii) } Q L_{3}=L_{3} Q \text {. }
\end{align*}
$$

Suppose $\mathrm{Q} L_{2}=L_{2} Q$. Then applying $\mathrm{I}(5.8)(\mathrm{f})$ with $L=Q, M=P$ and $N=L_{2}$ yields, since $P^{*} \leq N_{P}\left(l_{2}\right)$, that $O_{q}\left(Q L_{2}\right)=1$. However $L_{2}=L_{2_{\tau}}$ and $L_{2}=1$, then force $\mathrm{Q}=Q_{\sigma \tau}$, which is not possible. Therefore $Q L_{2} \neq L_{2} \mathrm{Q}$, and because $L_{2}=L_{2_{\tau}}$ we must have $Q_{\rho}, Q_{\tau} \leq N_{Q}\left(L_{2}\right)$. This proves (i).

From (7.21) and $\mathrm{I}(4.5),[\mathrm{P}, \tau] \leq O_{p}(L L$,$) . Hence, (7.20) forces O_{p}(L L,) \leq N_{Q}(L$,$) .$ Consequently $\mathrm{Q}=Q_{\sigma}$ by $\mathrm{I}(4.6)$ and Lemma 3.4 (ii)(d), and we have (ii). Part (iii) follows from (ii), using Lemmas 3.3 and 3.4(i)(f).

From $\mathrm{Q}=Q_{\sigma}$, we have $Q_{\rho} \leq[Q, \tau]$. Hence $L_{2}=L_{2_{\tau}}$ and (7.22) (i) imply that $Q_{\rho} \leq C_{Q}\left(L_{2}\right)$. Since $[Q, \tau] \leq O_{q}\left(Q L_{3}\right)$, we have

$$
Q_{\rho} \leq O_{q}\left(Q L_{3}\right) \cap C_{Q}\left(L_{2}\right) .
$$

Hence

$$
N_{G}\left(Q_{\rho}\right) \geq O_{\pi_{3}}\left(Q L_{3}\right), L_{2}
$$

Note that $N_{L_{3}}(\mathrm{Q})=,L_{3}$ would imply that Q_{ρ}^{G} was a non-trivial proper α-invariant normal subgroup of G.So

$$
\begin{equation*}
N_{L_{3}}\left(Q_{p}\right) \neq L_{3} . \tag{7.23}
\end{equation*}
$$

By (7.22)(ii) $\mathrm{Q}=Q_{\sigma}$ and so

$$
\left[L_{3}, \sigma\right] \leq O_{\pi_{3}}\left(Q L_{3}\right) \leq N_{L_{3}}\left(Q_{\rho}\right) .
$$

Hence $L_{3}=N_{L_{3}}\left(Q_{\rho}\right) L_{3_{\sigma}}$. Now L_{2} normalizes L_{3} by (7.19) and clearly normalizes $N_{L_{3}}\left(\mathrm{Q}\right.$,) and since $L_{2_{\sigma}}=1$ using I(2.3) (x) we deduce that

$$
L_{3}=N_{L_{3}}\left(Q_{\rho}\right) C_{L_{3}}\left(L_{2}\right)
$$

In particular, $C_{L_{3}}\left(L_{2}\right) \neq 1$ by (7.23).
Now $N_{G}\left(L_{2}\right) \geq C_{L_{3}}\left(L_{2}\right), N_{P}\left(L_{2}\right)$ and so, because of (7.18) $N_{P}\left(L_{2}\right) \notin N_{P}\left(L_{3}\right)$, we have

$$
C_{L_{3}}\left(L_{2}\right) \leq \mathscr{P}_{L_{3}}(P)=N_{L_{3}}(P)
$$

with $C_{L_{3}}\left(L_{2}\right)$ normalizing $N_{P}\left(L_{2}\right)$. Since $P^{*} \leq N_{P}\left(L_{2}\right)$ by (7.21), I(2.14)(ii) gives

$$
P=N_{P}\left(L_{2}\right) C_{P}\left(C_{L_{3}}\left(L_{2}\right)\right)
$$

But $C_{L_{3}}\left(L_{2}\right) \neq 1$ impliesthat $C_{P}\left(C_{L_{3}}\left(L_{2}\right)\right) \leq N_{P}\left(L_{2}\right)$, contradicting $P L_{2} \neq L_{2} P$. Thus we have shown that (7.18) is untenable and so the proof of the lemma is complete.

Lemma 7.5. Assume H ypothesis 7.3 holds. Then one of $L-L$, and $L-L$, is a soluble Hall subgroup of \mathbf{G}.

Proof. If the lemma were false, then there would exist α-invariant Sylow p and \boldsymbol{q}-subgroups P and Q of $L^{-}($with $p \neq q)$ such that

$$
P L_{2} \neq L_{2} P \quad \text { and } \quad Q L_{3} \neq L_{3} Q .
$$

Then, by Lemma 7.4, $\mathbf{P L},=L_{3} P$ and $Q L_{2}=L_{2} \mathbf{Q}$. Such aconfiguration, since $\mathbf{P Q}=\mathbf{Q} \mathbf{P}$ by Hypothesis 7.3, is not possible by Theorem 4.4. This proves the lemma.

Theorem 7.6. Hypothesis 7.3 does not hold.
Proof. We suppose Hypothesis 7.3 pertains and seek a contradiction. For Theorem 7.2 we deduce

$$
\begin{equation*}
L_{2} \neq 1 \neq L_{3} \quad \text { and } \quad L \neq 1 \tag{7.24}
\end{equation*}
$$

Lemma 7.5 yields, without loss of generality, that L-L, is a soluble Hall subgroup of G and therefore $L L_{2}$ is a soluble Hall subgroup of G. Consequently, appealing to Theorem 7.2 again, we have

$$
\begin{equation*}
L_{1} L_{2} \neq L_{2} L_{1} . \tag{7.25}
\end{equation*}
$$

From the definition of L^{-}we also note that
(7.26) $P L_{3} \neq L_{3} \mathbf{P}$ for all (non-trivial) cu-invariant Sylow p-subgroups of L^{-}.
(7.27) If \mathbf{P} is an cr-invariant Sylow p -subgroup of \mathbf{L}, then \mathbf{P} is star-covered.

Suppose P is not star-covered. Then $O_{p}\left(L L_{1}\right) \neq 1$ and, of course, $D=Z(P) \cap$ $O_{p}(\mathrm{LL}) \neq$,1 , with, by $\mathrm{I}(2.6), D^{L L_{1}} \leq Z(J(\mathrm{P}))$. First we consider the case when $P \leq L^{+}$. If P permutes with L_{23}, then $O_{p}\left(L L_{1}\right)^{G}$ would be a non-trivial proper cu-invariant normal subgroup of G. So $P L_{23} \neq L_{23} P$ and, by Lemma 3.2, $\mathscr{P}_{P}\left(L_{23}\right)=N_{P}(\mathrm{~L}$,$) with$ $\left[L_{23}, P_{\rho}\right]=1$. If $Z(J(P))_{\rho} \neq 1$, then $D^{L L_{1}} \leq Z(J(P)) \leq N_{G}\left(L_{23}\right)$. Since $G=$ $\left(L L_{1}\right)\left(L_{2} L_{3} L_{23}\right)=N_{G}\left(D^{L L_{1}}\right) N_{G}(\mathbf{L}, 1)$, this is not possible. Whereas $Z(\mathrm{~J}(\mathbf{P})),=1$ yields, using $\mathrm{I}(2.6), \mathbf{L L},=C_{L L_{1}}(D) \mathbf{L}$, Then, since $\mathbf{Z}(\mathbf{P}), G_{\rho} \leq N_{G}(\mathbf{L}$,$) , we ob-$ tain $\mathrm{G}=N_{G}\left(L_{23}\right) C_{G}(D)$ with $D \leq N_{G}(\mathbf{L}$,$) , again an impossible situation. Thus we$ conclude that $P \leq L^{-}$. Since P permutes with L_{1} and L_{2} but not L_{3} and, by (7.25), $\mathrm{L}, L_{2} \neq L_{2} \mathrm{~L}$, , Lemma 4.7 implies that $N_{P}\left(L_{3}\right) \neq 1$. Hence $P_{\rho}, P_{\sigma} \leq N_{P}\left(L_{3}\right)$ by Lemma 3.4 (i)(a) and then $0,(\mathbf{L}, \mathbf{L})=$,1 by $\mathrm{I}(5.8)(\mathrm{f})$. So $L_{3} \unlhd L_{2} L_{3} L_{23}$. Then, because $\mathrm{G}=$ ($\left.L L_{1}\right) N_{G}\left(L_{3}\right), Z(J(\mathbf{P})) \leq N_{G}\left(L_{3}\right)$. Therefore $P_{\rho \sigma} \neq 1$ by Lemma 4.7. Recalling that [$\left.P_{\rho \sigma}, L_{3} \mathrm{~L},\right]=1, O_{\pi_{2}}\left(\mathbf{L}, L_{3}\right)=1$ implies that $N_{G}\left(L_{3}\right)$ contains a non-trivial cr-invariant norma1 $\pi\left(L_{2} L_{3} L,\right)^{\prime}$-subgroup. Such a configuration cannot occur and so we have shown that P must be star-covered.
(i) If $L_{23} \neq 1$, then $P L_{23} \neq L_{23} P$ for each non-trivial α-invariant Sylow subgroup P of L^{-}.
(ii) For each α-invariant Sylow subgroup P-of $L^{+}, P L_{23}=L_{23} P$.
(i) Let P be as in (i), and suppose PL, $=L_{23} P$. By $\mathrm{I}(2.8)$ and $\mathrm{I}(6.1) L_{23}^{*} \neq L_{23}$ and hence $O_{\boldsymbol{\pi}_{23}}\left(P L_{23}\right) \neq 1$ by $\mathrm{I}(4.5)$. But then $\mathbf{P L},=L_{3} P$, contradicting (7.26). Therefore $P L_{23} \neq L_{23} P$.
(ii) Suppose $\mathbf{P L}, \neq L_{23} \mathbf{P}$. By (7.27) P is star-covered, and so $N_{P}\left(L_{23}\right) \leq P_{\sigma}$ or P_{τ} by Lemma 3.2 and $\mathrm{I}(2.3)$ (viii). Hence $P=P_{\sigma}$ or P_{τ} by $\mathrm{I}(2.3)$ (v). But then one of $L_{3} \unlhd \mathrm{PL}$, and $L_{2} \unlhd P L_{2}$ must hold, which forces PL, $=L_{23} P$, a contradiction. This proves (ii).

$$
\begin{equation*}
L^{-} \neq 1 \tag{7.29}
\end{equation*}
$$

For $L^{-}=1$ implies that $\mathbf{L}=L^{+}$whence, using (7.28)(ii), $L L_{2} L_{3} L_{23}$ is a soluble Hall subgroup and $\mathrm{G}=L_{1}\left(L L_{2} L_{3} L_{1}\right)$. Theorem 7.2 rules out this situation, and so $L^{-} \neq 1$.

We now explore the consequences of (7.26).
(7.30) Let P be a (non-trivial) cu-invariant Sylow p-subgroup of L^{-}. Then $P_{\rho}, P_{\sigma} \leq$ $N_{P}\left(L_{3}\right)$,

Suppose (7.30) were false and argue for a contradiction. Then $L_{3}^{*} \leq N_{L_{3}}$ (P) by (7.26) and Lemma 3.3. If $\mathrm{Z}(\mathrm{P}) \leq P_{\sigma \tau}$ were to hold, then $\mathrm{I}(2.3)$ (xi) yields $\mathrm{Z}(\mathrm{P}) \leq \mathscr{P}_{P}\left(L_{3}\right)=1$. So $\mathrm{Z}(\mathrm{P}) \not \leq P_{\sigma \tau}$ and hence Lemma 3.2 implies PL, , $=L_{23} \mathbf{P}$. Therefore $L_{23}=1$ by (7.28)(i).

Now let Q be an arbitrary non-trivial α-invariant Sylow subgroup of $L^{-}\left(\right.$so $\left.\mathbf{Q} L_{3} \neq L_{3} \mathbf{Q}\right)$ and suppose $\mathrm{Q},, Q_{\sigma} \leq N_{Q}\left(L_{3}\right)$. Since Q is star-covered by (7.27), Lemma 3.4 (ii)(e) implies $\mathrm{Q}=\mathrm{Q}$.. Thus $\mathscr{A}\left(\mathrm{g}, \pi_{3}\right)=\left\{\mathrm{Q}, N_{Q}\left(L_{3}\right) L_{3}\right\}$. From Lemma 3.4(i)(c) and (d) either $Z\left(L_{3}\right)=Z\left(L_{3}\right)_{\rho \sigma}$ or $L_{3_{\rho}}=L_{3_{\sigma}}$. Then $\left[Z\left(L_{3}\right), N_{Q}\left(L_{3}\right)\right]=1$ by I(6.4) which contradicts the shape of $\left.\mathscr{A}\left(q, \pi_{3}\right)\right)$. Thus $Q_{\rho}, Q_{\sigma} \leq N_{Q}\left(L_{3}\right)$ cannot hold and so $L_{3}^{*} \leq N_{L_{3}}(Q)$.

Because $L_{3}^{*} \leq N_{L_{3}}(\mathrm{P}), P_{\rho \sigma}=1$ by Lemma 3.4(i)(b) and So $\left[P_{\rho}, L_{2}\right]=1$ by I(3.6)(ii). The shape of $\mathscr{A}\left(\mathrm{p}, \pi_{3}\right)$ then dictates that $O_{\pi_{2}}\left(L_{2} L_{3}\right)=1$. Hence

$$
\begin{equation*}
L_{2}=L_{2_{r}} \tag{7.31}
\end{equation*}
$$

Since $0,\left(\mathrm{~L}, L_{3}\right)=1$, clearly $L_{3_{\rho}} \neq L_{3_{\sigma}}$ by $\mathrm{I}(6.4)$ and therefore, using Lemma 3.4(i)(c) and (d) we obtain $Z\left(L_{3}\right)=Z\left(L_{3}\right)_{\rho \sigma} \leq N_{L_{3}}$ (Q) for each cu-invariant Sylow subgroup Q of L^{-}. Hence

$$
\begin{equation*}
Z\left(L_{3}\right)=Z\left(L_{3}\right)_{\rho \sigma} \leq N_{L_{3}}\left(L^{-}\right) \tag{7.32}
\end{equation*}
$$

We now demonstrate that $L_{3} \unlhd L_{2} L_{3} L^{+}$. By I(2.13) this will follows if we could show that $\mathrm{J}=O_{\pi_{3}^{\prime}}\left(L_{2} L_{3} L^{+}\right)=1$. Because $O_{\pi_{2}}\left(L_{2} L_{3}\right)=1$ we have $\mathrm{J} \leq L^{+}$, and hence $J^{G}=$ $J^{\left(L_{1} L^{-}\right)} \leq L$; L. Thus $J=1$.

If $Z\left(L_{3}\right) \leq N_{L_{3}}(\mathbf{L}$,$) , then, together with (7.32), we would have Z(\mathrm{~L}) \leq N_{G}\left(L_{1} \mathrm{~L}\right)$. Since

$$
\mathbf{G}=\left(L_{1} L\right)\left(L_{2} L_{3}\right)=\left(L_{1} L^{-}\right)\left(L_{2} L_{3} L^{+}\right)=\left(L_{1} L^{-}\right) N_{G}\left(Z\left(L_{3}\right)\right)
$$

this-yields that $Z\left(L_{3}\right)^{G}$ is a non-trivial proper α-invariant normal subgroup of G. Therefore $Z\left(L_{3}\right) \notin N_{L_{3}}\left(L_{1}\right)$.

Now we show that $Z\left(L_{3}\right) \notin N_{L_{3}}(\mathrm{~L}$,$) leads to a contradiction. Suppose L_{1} L_{3} \neq L_{3} L_{1}$, By (7.32) $L_{3_{\sigma}} \not \leq N_{L_{3}}\left(L_{1}\right)$, and so $L_{1_{\sigma}} \leq N_{L_{1}}\left(L_{3}\right)$. But $Z\left(L_{3}\right)=Z\left(L_{3}\right)_{\rho \sigma}, N_{L_{1}}\left(L_{3}\right) \neq 1$ and $\mathrm{I}(2.3)$ (xi) force $Z\left(L_{3}\right) \leq N_{L_{3}}(\mathbf{L})$. Consequently $L_{1} L_{3}=L_{3} L_{1}$. Since $\left[P_{\sigma}, L_{1}\right]=1$ (because $P_{\rho \sigma}=1$) and $\mathscr{A}\left(p, \pi_{3}\right)=\left\{L_{3}, N_{L_{3}}(P) P\right\}, O_{\pi_{1}}\left(L_{1} L_{3}\right)=1$ whence $L_{1}=L_{1_{r}}$. However $L_{2}=L_{2_{\tau}}$ by (7.31) and so $L_{1} L_{2}=L_{2} L_{1}$, against (7.25). This is the desired contradiction that establishes (7.30).
(i) $L^{-} \leq G_{\tau}$.
(ii) $\mathscr{A}\left(p, \pi_{3}\right)=\left\{P, N_{L_{3}}(P) L_{3}\right\}$ for each cr-invariant Sylow p-subgroup P of L^{-}.

In deducing the final contradiction we shall need the following observation

$$
\begin{equation*}
L_{3_{\rho}} \neq L_{3} \neq L_{3_{\sigma}} . \tag{7.34}
\end{equation*}
$$

Let P be a non-trivial α-invariant Sylow p-subgroup of L^{-}. From (7.30) and (7.33) $P=P_{\tau}, P_{\rho}, P_{\sigma} \leq N_{P}\left(L_{3}\right)$ and $P_{\rho \sigma}=1$. So $\left(P L_{1}\right)_{\rho \sigma}=1=(P L$,$) , and therefore$ $\left[P_{p}, L_{2}\right]=1=\left[P_{\sigma}, L_{1}\right]$.

Suppose $L_{3}=L_{3_{\sigma}}$ holds. Then $\left[P_{\rho}, L_{3}\right]=1$ by $1(2.3)(\mathrm{x})$. Recalling that $\left[P_{\rho}, L_{23}\right]=1$ by Lemma 3.2, we then have that P_{ρ} centralizes $L_{2} L_{3} L_{23}$, which is not possible. Now we consider the possibility $L_{3}=L_{-\frac{3}{8}}$. Then $\left[P_{0}, L_{3}\right]=1$. This implies $P L$, $=L_{23} P$. For PL, $\neq L_{23} P$ implies $\mathrm{Z}(\mathrm{P}) \leq P_{\sigma \tau}$, which contradicts $P L_{3} \neq L_{3} P$. Hence $L_{23}=1$ by (7.28) (i) and so P_{σ} centralizes $L_{2} L_{3} L_{23}=L_{2} L_{3}$, which is not possible. This proves (7.34).
(7.35) A contradiction.

Let P be a fixed (non-trivial) α-invariant Sylow p-subgroup of L^{-}. Since $P=P_{\boldsymbol{\tau}}$ by (7.33)(i), I(2.3) (ix) and I(2.13) imply

$$
N_{G}\left(\left[L_{2}, \tau\right]\right) \geq P, O_{\pi_{3}}\left(L_{2} L_{3}\right)
$$

If $\left[L_{2}, \tau\right] \neq 1$, then (7.33)(ii) forces $0,\left(L_{2} L_{3}\right)=1$. But then $L_{3}=L_{3_{\sigma}}$, against (7.34). Therefore

$$
\begin{equation*}
L_{2}=L_{2_{r}} . \tag{7.36}
\end{equation*}
$$

Clearly $\left(P L_{2}\right)_{\rho \sigma}=1$ and so, since $P_{\rho}, P_{\sigma} \leq N_{P}\left(L_{3}\right), \mathrm{I}(5.8)(\mathrm{f})$ (with $L=L_{2}, M=$ $P, N=L_{3}$) gives $O_{\pi_{2}}\left(L_{2} L_{3}\right)=1$. We may now argue as earlier to obtain $L_{3} L_{23} \unlhd$ $\unlhd L_{2} L_{3} L_{23} L^{+}$. Hence

$$
\begin{equation*}
L_{3} \unlhd L_{2} L_{3} L_{23} L^{+} \tag{7.37}
\end{equation*}
$$

If $L_{3} L_{1}=L_{1} L_{3}$, then, as $L_{3} \neq L_{3_{\rho}}$ by (7.34). $O_{\pi_{3}}\left(L_{3} L,\right) \neq 1$ whence $L_{1} L_{23}=L_{23} L_{1}$. Therefore using (7.33) (i) and (7.36)

$$
G=\left(L_{1} L_{3} L_{23} L^{+}\right)\left(L^{-} L_{2}\right)=\left(L_{1} L_{3} L_{23} L^{+}\right) G_{\tau}
$$

This cannot happen since $L_{1} L_{3} L_{23} L^{+}$is a soluble subgroup, and so we infer that $L_{1} L_{3} \neq L_{3} L_{1}$. Hence either $L_{1_{\sigma}} \leq N_{L_{1}}\left(L_{3}\right)$ or $L_{3_{\sigma}} \leq N_{L_{3}}(L$,$) .$

Suppose $L_{1_{\mathrm{o}}} \leq N_{L_{1}}\left(L_{3}\right)$ holds. Then, by (7.30),

$$
\left(L^{-} L_{1}\right)_{\rho},\left(L^{-} L_{1}\right)_{\sigma} \leq N_{G}\left(L_{3}\right)
$$

Now L - L, admits $\rho \sigma$ fixed-point-freely and $s 0$, since

$$
G=\left(L_{2} L_{3} L_{23} L^{+}\right)\left(L^{-} L_{2}\right)=N_{G}\left(L_{3}\right)\left(L^{-} L_{2}\right)
$$

by (7.37), the argument used at the conclusion of the proof of Theorem 7.2 will prove that $L_{1}^{-} L_{1}$ is nilpotent. Since $\left[P_{\rho}, L_{2}\right]=1$ because $\left.\left(P L_{2}\right)_{\rho \sigma}=1\right)$, we obtain $L, L_{2} \leq$ $C_{G}\left(P_{p}\right)$, which contradicts (7.25). So $L_{1_{\sigma}} \nsubseteq N_{L_{1}}\left(L_{3}\right)$.

It only remains to consider the case $L_{3_{\sigma}} \leq N_{L_{3}}\left(L_{1}\right)$. If $C_{L_{3}}\left(L_{1}\right) \neq 1$, then (7.33) (ii) forces $O_{\pi_{1}}(P L)=$,1 . Therefore, as $\left(P L_{1}\right)_{\rho \sigma}=1, L_{1}=L_{1\langle\rho \sigma\rangle}^{*}=L_{1_{\sigma}}$. Hence $Z\left(L_{3}\right) \leq$ $L_{3_{\infty}}$ by $1(2.3)(\mathrm{x})$ and $\mathrm{I}(5.1)(\mathrm{b})$. But then $\left[Z\left(L_{3}\right), N_{P}\left(L_{3}\right)\right]=1$ by $\mathrm{I}(2.3)(\mathrm{xi})$ which is contrary to the form of $\mathscr{A}\left(p, \pi_{3}\right)$. Thus $C_{L_{3}}\left(L_{1}\right)=1$, and SO $N_{L_{3}}\left(L_{1}\right) \leq L_{3}$. So, by (7.34), $L_{3}^{*}=L_{3_{p}} \neq L_{3}$. Since $P_{\rho} \leq N_{P}\left(L_{3}\right), L_{3}=L_{3_{p}} C_{L_{3}}\left(P_{\rho}\right)$ by I(2.14)(ii). Since, $C_{L_{3}}\left(P_{\rho}\right) \neq 1$, using (7.33)(ii) we deduce that $\mathrm{Z}(\mathrm{P}) \leq N_{P}\left(L_{3}\right)$ and $\mathrm{Z}(\mathrm{P}),=1$. Because $\left(P L_{1}\right)_{\rho \sigma}=1$, wehave $L,=N_{L_{1}}(Z(P)) O_{\pi_{1}}\left(P L_{1}\right)$ and so, as $Z(\mathrm{P}),=1,\left[Z(P), L_{1}\right]=$ 1. Therefore $\mathrm{Z}(\mathrm{P}) \leq N_{P}\left(L_{1}\right) \cap N_{P}\left(L_{3}\right)$ and so $\mathrm{Z}(\mathrm{P})$ normalizes $N_{L_{3}}\left(L_{1}\right)\left(\geq L_{3_{\sigma}}\right)$. Since $L_{3} \neq N_{L_{3}}\left(L_{1}\right), \mathrm{T}(2.14)$ (i) and $\mathscr{M}\left(p, \pi_{3}\right)$ give $\mathrm{Z}(\mathrm{P}) \leq P_{\sigma}$.

Now $K=L-L$, admits $\rho \sigma$ fixed-point-freely and so $K=N_{K}(P) O_{p^{\prime}}(K)$. Combining $Z(P) \leq P_{\sigma}$ and $\mathrm{I}(2.3)(x i)$ gives $\left[\mathrm{Z}(\mathrm{P}), N_{K}(P)\right]=1$. By (7.30) $P_{\langle\rho \sigma)}^{*} \leq N_{P}\left(L_{3}\right) \neq P$, thence $O_{p}(K) \neq 1$. Therefore

$$
1 \neq D=Z(P) \cap O_{p}(K) \leq N_{G}\left(L_{3}\right) \cap Z(K)
$$

Consequently, using (7.37),

$$
G=\left(L L_{1}\right)\left(L_{2} L_{3} L_{23}\right)=K N_{G}\left(L_{3}\right)=C_{G}(D) N_{G}\left(L_{3}\right),
$$

which is not possible.
This verifies (7.35) and completes the proof of Theorem 7.6.

Taken together Theorem 6.3,7.2 and 7.6 show that G cannot exist, so proving the main theorem of this paper.

REFERENCES

[1] Z. Arad, G. Glauberman, A characteristic subgroup of odd order, Pacific J. Math. 56 (1975). pp. 305-319.
[2] W. Fert, J.G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), pp. 775-1029.
[3] D. Gorensten, Finite groups. Harper and Row, 1968.
[4] P.J. Rowley, Finite groups which admit a fixed-point-free automorphism of order rst, Ph.D. Thesis, University of Warwick, 1975.
[5] P.J. RowLeY, Solubiiity of finite groups admitting a fixed-point-free aufomorphism of order rst I, Pacific J. Math. 93 (1981), pp. 201-235.
[6] P.J. Rowley, Solubility offinite groups admitting afixed-point-free aufomorphism of order rst II, J. Algebra 83 (1983). pp. 293-348.
[7] P.J. Rowley, Solubility of finite groups admitting a fixed-point-free automorphism of order rst III, Israel Journal of Mathematics 51 (1985), pp. 125-150.
[8] P.J. Rowley, Solubility of finite groups admitting a fixed-point-free automorphism of order rst N, Mathematische Zeitschrift 186 (1984). pp. 435-464.

Received November 24.1988.
Peter Rowley
UMIST
P.O. Box 88

Manchester M60 1QD
England

