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ON THE CHARACTERIZATION OF THE RANGE
OF AN INTEGRAL FUNCTIONAL

O. CALIGARIS

Abstract. In this note we characterize the range of an integral functional on decomposable
spaces and successively also on non-decomposable space.

INTRODUCTION

In [1], [2] we studied an existence theorem for the following non convex problem of calculus
of variations.

Let f:[0,1]xR™ — RU{+00} be anormal proper, lower semicontinuous integrand in
the sense of R.T. Rockafellar [4]; let moreover L' (0,1, R™) be the usual space of summable
functions and let

1
Ly(0,1,R™) = {I c L'(0,1,R™ :f z(t)dt = 0}_
0

Since f is a normal integrand, we can consider the integral functional [ f defined for every
measurable function z as

1
@) = [ fta)ar
0
and we can state the following problems:

(1) Minimize{I(z) :z € L'(0,1,R")}

2) Minimize{I/(z) : z € Ly(0,1,R™)}.

When a milder version of the classical «basic growth condition» is satisfied we prove that,
(2], problem (1) has a solution, while to prove a similar result for problem (2) we need the «ba-
sic growth condition» together with an assumption which assures that f** 1s a Caratheodory
integrand.

Proving the above results we find some inclusions between the ranges of I, and of I..;

here, using the same assumptions on f, we intend to study the ranges of I, and I,. on

L'(0,1,R™) andon L{(0,1,R™).
We prove a sort of intermediate value theorems for I, and successively we show that

R1(If) = Rl(ff“) = [}“1:""5':')
Ry(I1)) = Ry(I}.) = [Xy,+00)
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where R, (I,) and R, (I,) stands for the range of I, on L'(0,1,R™) and L;(0,1,R™),
respectively, while A, and )\, are the minimum values 1n problems (1) and (2), respectively.

An example shows that, when some of the assumptions we used are missing, equality of
ranges 1s no longer true.

NOTATION AND ASSUMPTIONS

We collect in this section all notation we use in the sequel 1in order to make the following
sections free of thecnical definitions.

R™ is the usual n-dimensional euclidean space with norm || - || and inner product (-, -);
[0, 1], the unit interval of the real line is equipped with the Lebesge measure; % indicates the
o-algebra of all Lebesgue sets in [0, 1] while % is the o -algebra of all Borel sets in R™,

f:10,1]xR™ —- RU{+00} is said to be a normal integrand when it is measurable with
respect to the o-algebra £ @ & in [0, 1] x R™; it1s said proper when f(t,-) is a proper
function (not identically +oco), a.e. —t € [0, 1] ; while it 15 said lower semicontinuous (l.s.c.
in abreeged) when f(t,-) is als.c. function a.e. — ¢t € [0, 1]. By standard results [4], for
every measurable function z : [0,1] — R™, f(-,z(-)) 1s a measurable function and we can
define

1
Ij(z) = f f(t,2(1))dt.
0
We also consider the mtegrands defined as
f*(t,y) =sup{{z,y) — f(t,z) : 2 € R"}

and by
7t x) = (f(¢,-))"(z).

By [4], f* and f** are normal proper L.s.c. integrands whenever f 1s so and we can also
consider the corresponding integral functionals I, and I...

L1(0,1,R™) stands for the usual space of summable functions from [0, 1] to R™ while

1
L,}}(U,I,R“)z{zeLI(O,I,R“):/ :::(t)dt=0}.
0
We define the range of I, on L'(0,1,R") as

Ry(I;) ={I{(z) :z € L'(0,1,R™)}

while R, (1,.) has obvious meaning.
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Moreover we set
Ry(I;) = {I(z) 1z € Ly(0,1,R™}

and R, (I,.) is consequently defined.

In [2], we gave two existence theorems and some other related results, which need some
assumption which we recall here for the use in the present work.

We say that f satisfies (M.B.G.C.) when

3r € R, , 3y € L'(0,1,R) such that

ffi,p) <) VpeR™  |pf|<r

(M.B.G.C)

we say that f (B.G.C.) when

VpEeRT , EqrpELl(O,l,R) such that
(B.G.C)
f7(t,p) < 7,(1).

and we say that f satisfies (C.C.**) when:
(C.C.*™) 7 (t,z) < +00 Vz € R" a.e.—te[0,]1]

We also always assume a condition of consistence for problems (1) and (2).
Working in L}(0,1,R™) we suppose that

(C1) 3% € L'(0,1,R™) : I (%) €R
while, when we deal with L3(0,1,R™), we suppose that

(C2) 3T € Ly(0,1,R™) : I(T) €R

In [2], we proved the following existence theorems.

Theorem 1-[2]. Let (M.B.G.C.) and (C1) be satisfied, then there is T, € L'(0,1,R™) such
that

M =I(z) <I(z) VzelL'(0,1,R").

Moreover
M =In(z) <In(z)  Vz€L'(0,1,R™).
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Theorem 2-[2]. Let (B.G.C.), (C.C**) and (C2) be satisfied then there is T, € LE,(O, 1,R™)
such that
Ny =T(z,) <I(x)  Vze€Ly(0,1,R™).

Moreover there is x, € L{(0,1,R™) such that

Ay = Ip(zy) <Ip(z)  Vz€eLy(0,1,R™).

In the sequel we constantly refer to the preceding notations and, in particular we reserve
the names z, z,,z5, A\;, X\,, T, T to be used in the sense specified in the previous statements.

THE RANGE OF I, ON L'(0,1,R")

This section is devoted to describe the range of the integral functional I, on the space L'(0,
1.R™).
We recall that, 1n [2], we proved the following

Theorem 3-[2]. Let f satisfy (M.B.G.C.)and (C1) then

Rl(jf“) C R](If) C [A;,+00).

A simple example shows that the assertions 1n theorem 3 cannot be precised if we only

assume (M.B.G.C.) and (C1).
Indeed let us consider the following integrand

£:10,1 x R = R U {+00)}

1 -z, -1<z<L1
l,1) = -
/(t,2) { + 00, elsewhere
we have
0 -1 <z<1
* ¥ t! — ) — —
7t 2) {+{x}, elsewhere

and R,(I;.) = {0}.
On the other side if we choose z(t) = 0 we obtain

I(z) = 1.

Theorem 4. Let o, € R(1;),a < B then [, ] C R( I;). A similar results holds for
R(I;.).

Proof. Let z,y € L' (0,1,R™)

a=1I(z), B=I(y)
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and let us consider p : [0,1] — R defined as

t 1
w(t)=A f(s,y(s))ds+f £(s,2(s))ds.
i

i 1S absolutely continuous and

p(0) =a, (1) =8

So, Vu € [a, B] wecan find t, € [0,1] such that p(t,) = p. Let us define

_ y(t): tE[ﬂitﬂ]
2(1) = {:c(t)f t € (4, 1]

then
If(z)=p(tﬂ)=”! zeLl({]!l}Rn)

and the theorem is proved. a

We prove now that, under suitable assumption R, ([ f..) is upper unbounded.

Lemma 5. Let us suppose that (M.B.G.C.), (C.C**) and (Cl) are satisfied; then Yo € R
thereis y € L'(0,1,R™) such that

a<I..(9) €R.
Proof. Let z, € R™,||z.|| — +o0 and let us define
9,(1) = f7(L, )3
J, is a real valued, measurable function and we can define, Vn € N
t(t) = min{9,(t),n}.
Since, by (M.B.G.C.), we have
f7(t,v) 2 (p,v) — F1(t,p) 2 (p,v) — (V)

Vpe R™  |lp|l < r
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and
(4, v) > 1] — (1), Vv € R”

we can assert that
min {r||z, || — y(t),n} < 9 (t) <=n

50, since the first and the last member isin L'(0,1,R), we can deduce that
97 € L'(0,1,R).

Let
E,={te[0,1]: f*(t,z;) <n}=

={te€[0,1]: (%, z,) = 9.(1)}

it results
f**(t}Ik): tGE
I (1) = "
(1) {n, tg E

E_ 1s a sequence of measurable sets such that

n

Eﬂ.+1 2 En

and
U E =1[0,1].
neN

Someas( E,) is an increasing sequence and meas(E_ ) — 1.

Let us define
n _ mk: tE Eﬂ
y (1) = {i(t), LeE
we have
1
_/; |f7 (2, e (1))]dt =
=f If**(t,mldwf £ (¢, 2(t))|dt
E, (0,11\E,
and
f*C,vi()) € L'(0,1,R™).
Moreover

1
j; VeIt > [zl imeas(E,)
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and, by (3),
rllye (D] — (1) < £, yi(1)).

Now, when n 1s sufficiently large, we can assume that

1
meas( E,) > )

sO that

1
If..(yf) = 7ty (t))dt >
0
1 1
‘;_>fr‘/{; ]|y§(t)”dt—fu v(1)dt >

- 1
> —HI;;H*/ y(t)dt
0

and, when k 1s sufficiently large, we have

If..(y;:) 2> Q.

The preceding result allows us to prove the following theorem

Theorem 6. Let us suppose that (M.B.G.C.), (C.C**) and (Cl) hold; then
Rl(If) — RI(IJ{H) = [)\1,+DD)
Proof. By theorem 3 it is sufficient to prove that

RI(II") - [}\1,+D-:})

Let « € R, > )\, thenbylemma 5, thereis g € L'(0,1,R™) such that
I..(y) ER, [(Y) 2 «
and by theorem 4, we can assert that, since f..(:cl) = A;, we have
o€ Ry(1s)

and
RI(II") :) [Al 5+{x})

the opposite inclusion being obvious.

83



84 O. Caligaris

THE RANGE OF I, ON L(0,1,R™)
This section 1s devoted to provide a description for R, (1 f) . This problem is a bit more

complicated than the preceding one becasue of the boundary condition fﬂl z(t)dt = 0, which

characterizes L) (0,1, R™) and make it a non decomposable space.
In [2] we proved a result which we recall here:

Theorem 7-[2]. Let f satisfy (B.G.C.), (C.C.**) and (CI) then

RZ(If") C Rz(xrf) C [)&2,4‘{!}).

Under the same assumptions we are now able to prove that, in theorem 7, equality holds.
We begin with a lemma which 18 a sort of intermediate values theorem.,

Lemma 8. Let us assume that o, € Ry(ly),a < B,a = I,(zy),8 = I,(yy), for some

To,Yo € L{(0,1,R™) and let us suppose moreover that x, — Yo IS afunction symmetric

1
with respect to t = E,i.e. (2o — Yo ) (1) = —(zg — Y ) (1 —1t), then [a,B] C RQ(If).
Proof. Let us define

1t 1

i
*P(t)='/; f(s,yp(s))ds+ f(s,z9))ds+ f(s,yp))ds;
t

1 —t

then
1

p(0) = a, @(5) =p

i
and, since ¢ is absolutely continuous, Vi € [, 8], we can find ¢, € [0, 5} such that

"P(t{)) = M.
Let us define
Yo (), te€[0,t,J Ul —1,,1]
z2(t) =
Ty (1), tE€(ty,1—1).
We have

If(z) = p(ty) = p
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and moreover

1 s 1-t, 1
/ z(t)dt=[ yﬂ(t)dt+'/ zﬂ(t)dt+f yo(t)dt =
0 0 t 1—t,

1 1—t,
=./; yﬂ(t)dt+-/ (:I:U(t)—yﬂ(t))dt:o
to

because y € Ly(0,1,R™) and by the assumption of symmetry of =, — y, with respect to
1
t —_— '2_ .
So z € Lg(0,1,R") and I,(z) = p and the theorem is proven. -

Lemma 9. Let us assume (M.B.G.C.), (C.C**) and (C2); then Ya € R there is § €
Li(0,1,R™) such that
< Ij'"(i}) € R

. . . . ] _ .
and T —y is a symmetric function with respect to t = 5 We recall that T is the argument of

minimum for I foo
Proof. Let z, € R™ ||z,|| — +00 and let us define

rrf(t) +I,, 1€ [0,%—}
Ek(t) = 9

\

T(t) —z,, tE€ (% 1]

et us moreover set

ﬂk(t) - f**(ts mk(t))s

J, is a measurable function and we define
+(t) = min{J,(1),n}.

Exactly as in lemma 5 we have §7 € L'(0,1,R").

Let us define
E,={tel0,1]: f*(t,5,(t)) < n}=

= {t € 10,11 : f**(t,F(t)) = (1)}

and
F,=E,U{tel0,11:1—-t€E}=

= E U({1} - E,).
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F, is a measurable set and, since, as in lemma 5, meas( E_ ) — 1, we have
1 > meas(F,) > meas(E,) — 1

and
meas( F,) — 1

10O0.

. .. I
Moreover F, 1s a set symmetric with respect to 5

I et us define
,(1), t€eF

yL‘(t)-—'{ﬂt)’ ‘d P
We have
£, vr()) € L' (0,1,R™)

and moreover
1
[ﬂ PO fF 17, ()]1d¢ = ||z, Imeas( E,) — [[Zllyrco 1 rer-

So, as in Lemma 5, we can find, for n» and k sufficiently large, y;* such that
a < Ip(y}) €R.
It only remain to prove that
]
/ y(t)dt=0.
0
Indeed
1 1
f ye(t)dt = / E(t)dt+/ (Z(t) —z,(t))dt =0
0 0 F,

1

since T — z, 1S a symmetric function and F, is a symmetric set with respect to 5

Theorem 10. Let us assume that (B.G.C.), (C.C.**) and (C2) hold; then
Ry (1) = Ry(If) = [Ay,+00).
Proof. Let a > X\, ; by lemma 9, we can find § such that
VELy(0,1,R™),  I.(7) €R

1

and T — v i1s a symmetric function with respect to 5

So, by lemma 8, we can conclude that

creRQ(If..) and Rz(ff..):)[)xz,+m)+

The opposite inclusion being obvious we can conclude by means of theorem 7.

O. Cahigans
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