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CURVES IN SUBSPACES OF RECURRENT FINSLER SPACES
IRENA COMIC

1. INTRODUCTION

In this paper we examine subspaces of recurrent and non-recurrent Finsler spaces as well as
curves 1n these subspaces. Following A. Mo6r [13] a recurrent Finsler space FH 18 defined
as a Finsler space in which there exist vector fields A and u, the vector of recurrency of the
metric tensor with respect to the covariant differentiation | and |, which are given below (see
(2.2), (2.3)). In such a space two families of vector fields, B¥(z,z),a = 1,2,..., M and
NXz, ),k =M+ 1,..., N are given which are mutually orthogonal (satisfing (2.8)). In

F, the generalized Cartan connections are obtained. Vectors dz and z are decomposed 1n
the direction of B (z,z) and NZ(z, z) . Decomposing the vectors DB and DN in the
direction of B and N7 by using the method of O. Varga in [18], we introduce connection

coefficients ' and A (see (2.19)-(2.21) and (2.27), (2.28)). The existence of subspacé:s o
which BX(z,z)( NJ(x,z)) are associated should not be assumed at this stage.

Letus denote by T',(T),) the vector space spanned by B (z,z) (N (z,z)). In §3 the
conditions under which DBZ(DNg) are in T, T\, or equal to zero are examined. One of
the interesting cases, examined in §5, will be determined as the so-called subspace of the
third kind.

In §4 we investigate some special cases when the vector fields BY(z) and N2(z) are
associated to subspaces, in the sense that they are the tangent vectors of these subspaces.
The case when in a recurrent Finsler space F,, B® = B*(z) and dv* = 0,v* = 0 (case

4.1.a) hold, will be denoted by (F,,, A) . In this case B*(z),a = 1,2,... M, under special
circumstances determine the subspaces, and the so-called induced connection coefficients T

and A really reduce here to induced connection coefficients I and A of the subspace.
The space (FN, B) i1s such a case of (F_N, A) 1n which the vector of recurrency p 1s

equal 1o zero, i.e. gnﬁ|1 = 0. (Fy,C) is such a case of (F,,B) in which A = 0 i.e.

0aply = 0. This means that (Fy,C) is the non-recurrent Finsler space F,, supplied with

Cartan connection coefficients, in which the vector fields B¥(x) determine subspaces. The

induced connection coefficients I" and A are obtained in these cases.

In all former investigations concerning the subspace of the Finsler space, the equation
% = z%(u!, u?,...,uM) of the subspace was given. Here we will give the differential equa-
tion 9z%/du® = B%(z) of the subspace and the results of this paper are valid for any subspace

= zr*(u',...,uM Cyui0,- .-, Cy,) Whichis the solution of the former differential equa-
tion. It 1s a generalization of the former problem, but there are also some restrictions. Here,
in §5, in the investigation of curves in the subspace the element of support is (u,du/ds) ,
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where £° = du®/ds is the tangent vector to the curve u® = u®(s) of the subspace. From
this it follows that the definition of the path and h-path as given in [10] and [11] coincides
both 1n the recurrent and 1n the non-recurrent Finsler space. From this it follows that here the
subspaces of the first and second kind are also the same. We restrict our investigation only to
the case when the enveloping space (FH , A) 1s supplied with generalized Cartan connection
coefficients.

The curvature vector of the curve in the subspace is defined as D2%/ds and its part in
Ty(Ty) 1s the mngent'(nﬂrmal) curvature vector. The tangent curvature K, (the normal

curvature K, ) is the projection of D£%/ds on Bf (on N, ) as given in Definition 5.1. In §5

relations between these curvatures and curvature vectors in the cases (FN VAY, (“FN ,O) are

obtained.

Definition of subspaces of the first and third kind are given and a condition for a subspace
to be such 1s given as well. The definitions given here are generalizations of defintions given
in [10] and [11], which are related to the hypersurfaces of the non-recurrent Finsler space F), .
The generalization concerns the dimension of subspace and the kind of enveloping space.

2. INDUCED CONNECTION COEFFICIENTS
IN A RECURRENT FINSLER SPACE

In a Finsler space let the metric function be L( z, £) and, then, the metric tensor 1s determined
as usually by

(2.1) 00p(T, %) = 0,0,F(z,%), F(z,%) =27"L*(z,1)

ﬂ]ﬁ}’}.}"'= llzl"'!N*

Definition 1.1. The recurrent Finsler space, F'y, is a Finsler space in which there exist
vector fields X ,I(m, ) and y,r(:z:, 1) homogeneous of degree zero in T, such that

(2.2) 9aply = A9ap
(2 3) g&ﬁ{.—: = pl‘rgﬂﬁ‘
AS

Dgnﬁ = guﬁlqdzq + gaﬁ!qDIT (31 = L'_I(Ij 3:) : I'T)

from (2.2) and (2.3), we obtain

Dguﬁ = K(I: i,dﬁﬂ, Dl)guﬁ:



Curves in subspaces of recurrent Finsler spaces

where
K(z,z,dz, Dl) = )x,,(a:,z') dz” + ,u,,r(z,:i:)Dl"’.

The absolute differential of g, 4 is determined by
Dg,p=dgag — (F*Ega,s +TIg Qua)di — (4; ay9sp T Aﬁqﬂua)DlT,
where
(2.4) DI*=dl*+ F{;',‘;‘dx” + Ag, DU
The connection coefficients are determined in [3] under conditions

(2 5) (a) r;ﬁq r-":ﬁn (b) Anﬁq = A’Tﬁa'

A. Modr, who first introduced the recurrent Finsler spaces, had the condition Auﬁ,r = A Bory

([13]) instead of (2.5.b).
Let us define for any quantity T, 5 the following expression

{ n:ﬁ} nﬁ + T o Tﬁf\fu'

Then we have

(8) 2T 35, = {0,905 — LOs9ag L0y — X190}
(2.6) (b) 2155, = 2704, — L0595, To0 — (X, lg+ Xoap, — Aglo)

() 2Tgg0 = 27950 — (29l — Ap),

31

where 7, 4. 1s the Christoffel symbol, and «0» means the contraction by {. Further, we obtain

(ﬂ) Z‘Auﬂ"r {L@ngﬁq - La‘,ﬁgﬁq-’qgﬂ '_' ”agﬁq}
(2.7) (b) 2404, = —L0sg5,A00 — (o9s, + lals — igl.)

(€) 24050 = —(2pqls — pg).

As DI* is given by (2.4), the connection coefficients determined by (2.6) and (2.7) are the

generalization of Cartan connections in a non-recurrent Finsler space (where A, =

7

coefficients will be denoted by F), .

0 and

u, = 0). The non-recurrent Finsler space (A, = 0, u, = 0) supplied with Cartan connection
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In the space of ?N let us introduce M vector fields BX(z,z) and N — M vector fields
N (z, 1)
ﬂ,b,C,d,E,f,.“= 112:*“1M
k,,mn..=M+1,..., N,

homogenecous of degree zero in z, linearly independent at each (z, z) , satisfying the relation:
(2.8) gnﬁ(m,i)B:(m,i)Nf(m,i) =0

foreachae=1,2,... M k=M+1,... N.

Let us define
(2.9) () gop = 9agBIBY (D) gy = gsNEN/
(2.10) (a) By = g%g,4BS  (b) Nf=g""g,,NE,

where (¢°%) and (g*™) are inverse matrices of (g,,) and (g,,,) respectively. From (2.9)
and (2.10) we have

(a) NEN® = g¥g .NPN2 = gHlg, = 6
(a) NEN® = gMg  NPN& = gMg, = 6F
(b) BaBy' = ¢°°9,5BI By = 9%g = &
As usual,
o _ a D6 oaark
(2.12) 65 = BSBy + NEN§.

If £*(x, 1) 1s a vector field in Fp, homogeneous of degree zero in 1, then 1t can be
decomposed in the following form:

Enz B:fu"f‘ NfEk-
We may write

(2.13) dz® = B*du® + N¥dv*

(2.14) 1% = Bu® + Nfv*,
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Let us denote the absolute differential which corresponds to the motion from (z, %) to
(r+dzx,z+ dz) by D.
The so-called induced differentials are defined by

(2.15) (a) D¢® = B2 D¢®, (b) D¢k = NXDe¢@
and
(2.16) D¢* = B*D¢® + NFDEF.

We shall use the notation
1*= L7'i* = L7 (B + Nfok) = B21° + NPk,

where
=L, r=L7'F L7'=(L(z, 1))},

From (2.16) we have
(2.17) DI* = B*DI® + N¥DI*.

The vectors dz7 and DI” are not linearly independent. As it is known, in any space F), from

gﬂﬁl“lﬁ = 1 1t follows that [, DI* = 0. In the recurrent Finsler space FN from gaﬁlﬂlﬁ =1
we obtain, using (2.2)-(2.4),

(2.18) gdz? + (pg+ 215) DIF = 0

Since 1n the entire paper, we will need the formula for induced connection coefficients,
we will write them here as they were determined in [4], using relation (2.18). The absolute
differential of BY and N} may be decomposed in the direction of these two classes of vector
fields 1n the following way:

(2.19) DBZ = wi(d) By + W (d) N2
(2.20) DNg = wi(d) B + Wi (d) N3,
where

—z T, b k . AT Tb , AT Tk
T2 (d) = T ydu’ + T, pdvk + 45, Di* + 4., Dl

(2.21)
r=d or T=m, y=a or y=k.
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From (2.2), (2.3) and (2.8), we have
D(gasB2NE) = 9,5(DBZ)Nf + g,sBEDNf = 0.

Substituting (2.19) and (2.20) into the above equation and using (2.8), we obtain in F N

—_  _ = —m —b
Wop = — Wy, g JemWq = —Gap Wi,

an equation of the same type as in F, . If we express DB by the connection coefficients of
the space 'FN and use (2.13), (2.17), we get

(2.23) DB = (Bggdu® + BZ| ;DI By + (Bggdv* + BZ|,DI*) Nf,
where

(a) By = 05B2 — 0,BeT,"+ T2¢B] (7 = 173
(2.24)

(b) Bg|; = LOgBg (85 — Ajg) + AggBL  (Afg = Algl®).

If we substitute (2.13) and (2.17) into (2.18) using the notation

(2.25) Ny = ByAg, A = NN g,y = B g, = NP,
we obtain
(2.26) 0= 0%z, ) [ Mydub + X dv® + (py+ 20) DI+ (u, + 21,) DIk,

where 6% is any parameter homogeneous of degree zero in . If we equate the right-hand
side of (2.19) with the sum of the right-hand sides of (2.23) and (2.26), we get the equation
where on both sides terms with factors du®, dv¥, DI® and DI* are present. Equating the
corresponding coefficients after multiplying by g MBE and 0 oer N7 and then using the notation

b, = 0%9,, BY,  0,,=0%, N,
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we obtain

(2.27)

(a) rud, QH,TB BﬁB&ﬁ+ 9

= QQTBENEB:;H + gncAk

(€) Auct = 9oy BIBY B |5+ 0,0y + 214)

(d) Ayek = Goy BINEBZ|; + 0, (s + 21,)

s
(E) anb — QQTN'TB’EB 1A + H
(DT = QHTN:NE ol t Oani

(8) Ay = QMN:BfB: + 60 (u,+21)

5
( h) Zﬂﬁk

9o NINEBE|, + 0, (1 + 21,)

s

In a similar manner, using the expression for DN and the notations

where v(z, ) 1s any parameter homogeneous of degree zero 1n z, we obtain:

(2.28)

— 7 7
Ve = Vg gch* Vin = Vg gcﬂN

(a) F gnTBquﬁNﬁﬁ + ‘Ukc}‘b
(b) T = 90y BINENGs + ),

(€) Apey = 9an BIBYNE| 5+ vy + 21,)

(d) A4, , = gmBngNf + v (p+ 21)

P
(©) Ty = 9o N Bﬁ k8 T Vintb
() Ty = QETNTNJG kgt Vin

(&) Em = QMN:BENE gt Vin(y +24)

(h) Ay = 9oy NINENE |5+ v (py + 20)

35

The parameters 6% and v cannot be chosen arbitrarily because of (2.22), from which we

obtain

(2.29)

p—
rukb = _Fkab rum = _rkul

Aﬂkb = _Akab Auk! = '"_Akul"
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Substituting the connection coefficients from (2.27) and (2.28) into (2.29) and using the rela-
ton

x

gnﬁBa]ﬂNE + QMB:NEI,B = U
and a similar one with g we obtain
(2.30) gﬂk = _Dkﬂ'
From (2.14) and (2.17) we have

(2.31) DI* = B*DI® + N¢DI* = (DB*)I° + (DN&)I™ + B%dl* + N2di*.

If we substitute from (2.19) and (2.20) the expression for DB and DN by using the nota-
ton

(2.32) oy = I"wi“ + I 0"
o — r=d O zT=m
(2.33) Apy, = Awl“ + Amyi“‘
y=b or y=k
we obtain
(2.34) DI* = dI* + T gydu’ + T, dv* + Ay, DI° + Ay, Dit

T=d Of T="m.

3. SOME SPECIAL VECTOR FIELDS IN fﬁ

Let us denote by 7', T, the subspace of the tangent space of the differentiable manifold
M spanned by vectors B (z,z), NJ(z, ) respectively. We will examine the special cases
where the vector fields B (z,z) and NJ(z,z) satsfy some special conditions such as:
Casel. DB € Ty, Case la. DN = Case 1b. DB% =0,
Case 2. DB € Ty
Case 3. DN2 € T,
Cased. (DB € Ty) AN(DNZ € Ty),
where DB? and DN/ are determined by (2.19), (2.20), (2.21), (2.27) and (2.28).
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Lemma 3.1. In the recurrent Finsler space F, condition DB* € Ty fora=1,2,.... M
is equivalent to condition DNZ €Ty, fork=M+1,...,N.

Proof. Let us suppose that DB € T, fora = 1,2,..., M. From (2.2), (2.3) and (2.8)
follows

(3.1) D(g,gBENE) = (M, dz7+ o, DI") g,z BINE + gog( DBYNE + 9,5 BSDNg = 0

Since the first summand on the right-hand side is zero by (2.8), the second is also zero by the
assumption DBZ € Ty and (2.8), so, from (3.1) we obtain

gnﬁBjDN,’?:O, for a=1,2,..., M,

which proves that DN? = h2NFf ie. DN¢ €Ty fork=M+1,...,N.
The proof, that from DNZ € Ty for k = M + 1,..., N it follows DBJ € T, for
a=1,2,..., M,is similar.

Remark. Lemma 3.1 is valid in any Finsler space F), .

Lemma 3.2. /n FN the relation DBZ € Ty, is true iff

(a) NIB B = 07X,
(b) NINEBZ s = —07'),
(3.2) (¢) NIBY B2y = =00 (uy + 21,)

(d) N™N/B®

n]ﬁ= —0™(p, + 21)

formk=M+1,... N and b=1,2,... . M.

Proof. From (2.19) and condition DB_ € T, follows

(3.3) DB® = w%(d) B
1.
w™(d)N® = 0.

As the vector N2 are linearly independent, from the above equation follows w7 (d) = 0 for
m=M+1,..., N. From (2.21) we have

(3.4) o(d) =T ., dub+ T, dv*+ A, DI*+ A, DI*.

a
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From (3.4) follows that w™(d) = 0 for every du®,dv¥, DI, DI* and m = M + 1,... N
which satisfy (2.13) and (2.17) iff
(35) —IiLH:UrnkﬂU abuo uk=0

form k=M+1,... N and b=1,2,... M.

From (2.27) it follows that (3.5) and (3.2) are equivalent. We have proved that (DBY €
Ty ) = (3.2) . On the other hand,

(32) ©(3.5,3.5A34) >T™(d) =0 for m=M+1,... N,
(T™(d)=0 for m=M+1,...,N) A(2.19) = DB® € Ty,.
Lemma 3.3. In F), relation DB* € T, is true iff
(a) B{BSs = by, BS — 023,

(b) Nkaﬁ = b B — 03
(3.6)

O _d 4 4

(€) Ban 8= bbuB;{k — 0, (uy + 210)

B rha ¢ pa o
(d) NpBg |, = b B — 05 (pe + 21)
forb=1,2,... Mand k= M+ 1,...,N,where b,b and 0 are any parameters homoge-
neous of degree zero in .
Proof. The proof follows directly from (2.8) and 07" = 0 N*.
Lemma 3.4. In any Finsler space F\, relation DB € Ty, holds iff

(a) Bf B3, = b2, BS

(b) NﬁBulﬁ = b?, BS
(3.7)

(c) B/B® ude 20,1,

=
(d) NPB2, = By BS — 2621,
forb=12,.. Mandk=M+1,... N.

Proof. The Finsler space F), is a special case of a recurrent Finsler space F,, defined in the
former way, when A_(z,2) = 0 and p,(z,z) = 0. From ‘3‘1 =0, u, = 0 and (2.25), it
follows that

(38) kb=0,/\k=0,uc=0,ﬂk:0,

It is easy to see that under conditions (3.8) the corresponding formulae of (3.6) and (3.7)
are equivalent.
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Lemma 3.5. In F,, the relation DNZ € T\, holds iff
(a) BB N = —vi),
(b) BANINEs = —up),
(3.9) ,
(€) BBy N| 5= —vg(py + 21,)
(d) BENPNg|g= —vi(u+ 21)
fora=1,2,... Mandl=M+1,...,N.
Proof. In F,, from (2.20) and DN, € Ty, follows

(3.10) DNg =w](d)N; &
(3.11) w,(d)B, =0.
Since the vectors B, a = 1,2,..., M are linearly independent, so form (3.11) we have

—-m

(3.12) we(d) =T pdu’ + T, dvt + A, DI°+ A, DI' = 0,

for a=1,2,..., M. The above relation is satisfied for every du®, dv', DI¢, DI* iff

fora,b=12,... Mandl=M+1,..., N. From (2.28) it is evident that (3.13) and (3.9)
are equivalent. On the other hand,

(39« (3.13) & (3.12) ©Wi(d) =0 for a=1,2,..., M,
(@We(d)=0 for a=1,2,...,.M)A(220) = DNZ€T,.

Lemma 3.6. In F, the relation DN® € Ty, holds iff
(2) BYNjjs = Ny — vidy

(b) Nﬁ k| = TN — Vi Al

(3.14) p
() BYNg|, = TG — v (uy + 21,)
(d) -NIﬁNa‘ﬁ =nNy —ve(p + 210)
forb=1,2, ... Mandl=M+1,..., N where n,n and v are any parameters homoge-

neous of degree zero in .

Proof. The proof follows from (2.8) and v{ = v B?.
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Lemma 3.7. In the Finsler space F,, the relation DN € T\, is true iff

(a) B{Ngs = ny N2
(b) NPNgg = n N2

(3.15) (c) BPNZ|, =7 NS — 2081,

r

(d) N;ﬁNf ‘-HHNQ"EUkI

’
forb=1,2,.... M, and [=M+1,... N,
where n,m and v are parameters homogeneous of degree zero in 1.

Proof. In the Finsler space Fy, we have A, =0 and v, = 0. From (2.25) follows
AN=0,4,=0,y,=0,y,=0.

(3.15) is the obvious consequence of the above relation and (3.14).

Lemma3.8. In F n the following relations are equivalent.

NmB ﬂ — —Qm.}xb < BﬂBﬁ kB = —Uk/\\b
NI'NPB2s = —07\, < BANPNg = 2\,
NI BYBZ|g= =07 (py+ 24) <> BLBN |5 = —vp(uy + 21,)

NINEBZ| = =07 (uy + 21) < BaNENE |5 = —vp(u + 21).

s =

Proof. The proof is a direct consequence of Lemma 3.1. On the other hand, it follows directly
from (2.8) and (2.30) or from (2.29).

Lemma 3.9. If N2 are parallel vector fieldsin F, ,for k= M +1,..., N, then in the same
space DB € Ty fora=1,2,..., M.

Proof. From DN =0 for k= M+ 1,..., N and (2.20) follows E‘,f(d) =0,wy(d) =0
Further, from (2.19) and (2.22) we have

DB®* = w%(d) B,

which proves the Lemma.
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Lemma 3.10. If B are parallel vector fields in -F_N fora=1,2,..., M, thenin the same
space DN} €Ty fork=m+1,...,n.

Proof. From DB® = 0 for a = 1,2,..., M and (2.19), we have W = 0,@" = 0 for
d=1,2,... Mandm=M+1,..., N. From (2.20) and (2.22) we obtain

DN/ =w, (d)N_,

which proves the Lemma.

Lemma 3.11. In F, relation DB® € Ty, holds iff wi(d) =0 for d=1,2,..., M, which
is equivalent to the conditions

F:j= Olr:i=01zjb=0=gjk=0

for bd=1,2,....M and k=M+1,..., N.

Proof. The proof is the direct consequence of (2.19) and (2.21).

Lemma 3.12. In F,, the relation DN, € Ty holds iff wp(d) =0 form=M+1,...,N
which is equivalent to the conditions

Fy =0Ty =0,43=0,4,=0

for mi=M+1... N and b=1,2,..., M.

Proof. The proof is a direct consequence of (2.20) and (2.21).

Remark. Lemmas 3.9-3.12 are vahid also 1n the space F), .

4. VECTOR FIELDS IN F,, WHICH DETERMINE SUBSPACES
Here we will examine special vector fields BX(z,#) and N2 (z, %) which determine sub-

spaces in _P"N , in the sense that they are the tangent vector of these subspaces. In what follows
we will consider some special cases having an interesting geometric interpretation:

(a) (85B2 = 0) A (¥* = 0)

(b) (95N = 0) A (4° = 0)
(4.1) . |

(©) (95BZ = 0) A (94N = 0)

fora,=1,2,....N, a=1,2,....M, k=M+1,...,N.



42 Irena Comié

Case 4.1.a. In this case when dv* =0 for k= M + 1,..., N (2.13) and (2.14) reduce
to the form

dz® = B (z)du® % = BJ(z)u’.

AS
B,(9) = Bi(2) 50z, By(=) = B{(9)55
we have
[B,(x), By(2)] = BX(2)8,B(z) = — BE(2)3,B%(z) ~— =
oz P oz
= (Bf9,By — BJ3,B%) a_i? .
If we suppose that the relations
(4.2) B?3,Bf = 0,Bf = 6,B> = B} 9,B°
for a,b = 1,2,..., M are valid, then the Frobenius integrability conditions are satisfied

and the vector fields B¥(z),a = 1,2,..., M span T}, which 1s the tangent space of the
submanifold in M . The system of partial differential equations

o )

(4.3) Ee

=B¥z) e=1,2,....M, a=1,2,...,N

is satisfied by the family of subspaces of the form

(44) In=fﬂ(u]1"':“MICM+I:“':CN) E!=],2,...,N,
where
o(z!, ..., z™)
det J = det 0
o J=de [ﬂ(ul,...,u”,GMH,”.,CN 7

and C,,,,,...,C) are arbitrary constants. It is obvious from det J # 0, that (4.4) may be
solved in the form

u® = ul(z’,..., ") a=1,2,..., M,

Gk=ck($1,,..}$ﬁ) k':M"}'l,..;‘N.
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Using these equations, we obtain

ox® o .
Bzﬂ =0, f (ul,...,uMICMH,...,CN) = Bﬂ(u1='*':“M;CMH,--.,CN) _

=B [v',(a!,...,2"Y),...,.Cy(z!,...,2")] = B*(z,...,zV).

For all M-dimensional subspaces determined by (4.4), BJ(z) are tangent vectors to the co-
ordinate curves and, according to (2.8), N(z, z) arc the normal vectors.
Case 4.1.b. In this case for du® = 0, (2.13) and (2.14) have the form

dz® = N(z)dv*® 1% = N7 (z)v".

If the relations

(4.5) NEQ,NZ =0, Ni = O, N& = N OzN2

for k= M+ 1,..., N are valid, then the conditions of the Frobenius theorem are satisfied
and the vector fields N (z), k= M+1,..., N, which form the vector space T}, , are tangent

vectors to the submanifold of M , i.e. the distribution 7'y, is integrable. The system of partial
differential equations

ox®
ov*k

=N (z), k=M+1,...,Na=12,...,N
is satisfied by the family of N — M dimensional subspaces
2% = ¢*(Cy,...,Cp, 0™ WYY a=1,2,... N

As follows from (2.8), for this family of subspaces, N¥(z) = ﬁ';:((]’1 oo ,GM,L-”” eee
k=M+1,...,N aretangent vectors and B¥(z,z)a=1,2,..., M are normal vectors.

V)

Case 4.1.c. Let us suppose that the metric tensor g, 4(z, ) of ?"N allows vector fields
Bl(z) and N (z), such that .

(4.6) gnﬁ(:r,i)B:(::)Nf(I) = ().

Itis clear that g 4(z, ) should have a special form when (4.6) is satisfied. In this case, the
system of differential equations

oz N or* . .
W —BE(I) (m—Nk(I))
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under conditions (4.2) (and (4.5)) are satisfied by the family of subspaces

4

T =ﬂ:“(ul,...,uM,CMH,...,C'N)
(mu:Iﬁ(clr'*':GM!UM+lr*":UN))J
for which B¥(z)(NZX(z)) are tangent vectors and NJ(z) (B, (z)) are normal vectors. Ac-

cording to (4.6), these two families of subspaces are mutually orthogonal.
Connection coefficients for case 4.1.a. If we fix the parameters C,,,,,...,Cy in the

equation z® = z*(uv',...,uM C,.,,...,Cy), weobtain one subspace. The induced metric
tensor on the subspace 1s

(4.7) 0us(1, 1) = gog(z(w), B,i®) By (w) By (u).

It is known that this is the same as the intrinsic metric tensor, obtained by
9(u,n) =2 _Eaﬂ SbLZ (z(u), _gn u?).

A vector field € defined on the subspace is given by

£%(z, 1) = €%(z(u), B,u%) = B, (u)€%(u, 1)
(B*(z) = B, (u) = 8,2%),

from which we have

a Y G Y . d
(48) Ek=0,8k£ =0,3kf =0<3k= 3k=é-:)—‘:—).

dvk’
Definition 4.1. A recurrent Finsler space FN in which the conditions
(A) B% = B(z),v™=0,dv* =0,8,B*=3,Bf a,b=1,2,.... M

are satisfied will be denoted by ( F Ny A).

In the following we will examine the induced connection coefficients in (F),, A) . From
(A) follows

(4.9) M=0=dl™"=0 for m=M+1,...,N,
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and by substitution (4.9) into (2.34), we obtain

(4.10) DI™ =T, du’ + Ay, DI + Ay, DI* =
(4.11) IPDIF =T, dub + A, DI,
where

(4.12) I =60 — Ay,

From (4.9), (2.32) and (2.33) follows that in (F_,)

(4.13) To, =To°, Ay, =4

u — — — —
y oyl T=dOrz=m, y=bory=k.

If we suppose that the matrix [ I[*] is regular, then from (4.11) follows

(4.14) DI* = J*(T o du® + Ay, DI%),

where [ J] is the inverse matrix of [ I["]. Substituting DI™ form (4.14) and dv* = 0 into
(2.21), we obtain in (F,, A)

wi(d) =T ,dub+ A, D’ + A J=(Ty, du® + Ag, DI’ =

yn“m
(4.15) = I)Fdu® + A%, DI = ©7(d)
xr=d or T=m, y=b or y=k,
where
(4.16) =T, +A JiTq,
(4.17) Az, = AL+ A TRAG,.

Substituting dv* = 0 and DI" from (4.14) into (2.34) we get in ( HP‘.N, A)

(4 .18) DIt = di* + T ddub + A, DI,
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where index «0» mecans contraction with [ 1.e.

—— —r

Fof =Tl Afy= ARl z=dorz=m.
In (F,,A), (2.19) and (2.20) are reduced to the form

(4.19) DB® = 94(d)B% + @™(d) N®

(4.20) DN = w{(d) B + @' (d) N5,
where wY(d) is given by (4.15). Asin ('FN,A).?,“ = B¥l?, so from (4.19) we have
(4.21) DI* = (DB%)1® + B*dl® = B§(dl*+ @%(d)1°) + Nfwr(d)1°.
From (4.21) and (4.15) 1t follows

DI* = BS(dl¢ + Tgidub + AL, DY) + N (T dub + AX DIY).
Using (4.18) and introducing the notation
(4.22) DIF = Tykdub + A5 DI,
(4.21) has the form
(4.23) DI* = BSDI* + NgDI*.

Comparing (4.23) and (2.31), we obtain taht in (?N, A) these two formulae are consistent
iff DI* = DIF.

Lemmad.1l. In (F_, A),
(4 .24) DlI* = DI*

is always true, where DI is defined by (4.22) and DI* by (4.14).

Proo!f. From (4.22), (4.14), further, from (4.16) and (4.17), we get

(4 .25) DI* — DI* = (T, dub + Ay, DI (65 + Ak _J» — JF).
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Multiplying (4.12) with Jf we get

5" — I+ AR JF=0.

Substitution of the above relation into (4.25) after the changing of indices proves (4.24).
If we denote DI¢ defined with (4.18) by DI¢, thenin (F_, A) (4.23) has the form

DI* = BSDI¢ + N2DIF.

If we suppose that the matrix
[15] = [65— AS,)

i1s regular and introduce the notation

(4.26) [JS) = (T = (85— A5,) "

from (4.18), (4.22) and (4.24) we have

(4.27) DI¢ = J§[dl® + Tgddub)

(4.28) DIF = Tgkdu® + Ak _JS[di4 + Tgddub).

Definition 4.2. The special case of a Finsler space ( F v, A) inwhich beside (A) the condition
., =0 holds will be denoted by (Fy, B) , where (B) is given by

guﬁ[q=}‘19uﬁ! ”JT:O'#’guﬁ'q:O#(iu’k=0)/\(.\u‘b=0):
(B) B® = B*(z),dv*=0,9*=0,1*=0,0,Bf = 3,B°
for Va,B,vy=1,2,...,N, a=1,2,.... M, k=M+1,..., N.

Lemmad4.2. In (F N, B) the following relations hold:

(4.29) By|l*=0,  Afz=0
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(4.31) Im=8r=Jr
(4 .32) Tgr=T,,
(4.33) A%y = Aoy

r=d Or xT=m.

Proof. From (2.24b) we can see that the first term on the right-hand side is zero, because
QEB;" = (. In the case oy = 0 and {* = BZX{®, we have from (2.7b) and (2.7¢) that Asg=0,

so from (2.24b) follows (4.29). (4.30) follows from (2.27d), (2.27h) and B2 | ﬁlﬂ = 0; (4.31)
follows from (4.12) and (4.30); (4.32) and (4.33) follow from (4.16), (4.17) and (4.30).

Lemmad4.3. In (F ~» B) , the following relations are valid:

(4.34) Az DIb= —0¢\du® forz=dorz=m
(4.35) Di* = DIF = (TgF - 0k),) du
(4 .36) Dl = Dl¢=dl¢+ (Tgd— 62, dub.

Proof. From (2.27¢) and (2.27g) follows
(4.37) A%, DIb = 2621,DI.
Asin (Hﬁ‘hﬁ, B) the formula (2.26) has the form

(4 .38) 21, DI® = —)\,du’,

the substitution of (4.38) into (4.37) gives (4.34). Formulae (4.35) and (4.36) follow directly
from (4.27), (4.28) and (4.34).
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LLemma 4.4. In (F_N,B) we have

(4.39) Tk — 05N, = NEB (8B + 3By 1°

(4 .40) oy — 03), = BB} (8,BZ + Tx¢ BHI°.

Proof. Taking into account (4.32), (2.27a) and (2.27¢) the proof follows immediately. In
(4.39) and (4.40), the connection coefficients I'* are functions of the metric tensor g and the
vector M.

Definition 4.3. The special case of a Finsler space ( F n» B) inwhich A = 0 will be denoted
by (Fy,C) , where the conditions (C) are given by

B* = B*(z),0,Bf = 9,B%,dv* =0,9* =0,

- Gapy =0 © A, =0 (X,=0) A(X,=0)
9apl7=0 ¢ 1, =0 & (4, = 0) A(py = 0)

fora,B,v=1,2,....N,a,b=1,2,... M and k=M+1,... N.

Lemma 4.5. In (F,,,C) we have

(4.41) A5x=0, Agy=0

(4.42) Tof =T o, = NEBP(8,B2 + T g BII°
(4 .43) ol =Toy = BEBP(8,B> + T2 BN
(4 .44) DI* = Di* = Tg¥du®

(4 .45) Di¢ = DI® = dI% + T{tdu®,

where the I"g,? are determined by (2.6) in which >‘1 =0.

Proof. Lemma 4.5. follows from Lemma 4.4 and Lemma 4.3, if we put A, = 0, which

characterizes ( F ~ O) .
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Lemma 4.6. In (F',, A), the relation DB® € Ty, for a = 1,2,..., M holds iff one of the
following equivalent conditions is valid:

(a) @ =0

(b) DNZ € T,

(c) T =Toy+ A JiTor =0

Etb=;ijb+ﬁk InAoy =0

an-m

fora,b=12 ... M and k=M+1,... N.

P

Proof. Condition (a) follows directly from (4.19) and DB € T . From w, = —w
which is valid in (F,, A) and (4.20), (b) follows. As

ma?

(4 .46) @¥ = T ¥dub + AY, DI®,

(c) follows from (a). The proof that from (a) or (b) or (c) follows DB& € T, is trivial.
In the space (F',,C) condition (c) reduces to

() T =T +A.Top =0

a

Y _k ji-' T
Aﬁb = ‘Aub + AﬂnAﬂb = 01
because in (F',, C) we have from (4.41) that Ay, = 0,50 J* = 6.

Lemma 4.7. In (FFN,A) relation DBY € T\, is valid iff one of the following equivalent

conditions holds:
(a) @ =0

(b) = T4 B2 Jm o = 0

an- m

A =7 +A I A =0

forbc=12,... M.

Proof. Condition (a) follows from (4.19) and DB, € Ty, (b) follows from (a) and (4.16).

The proof in the opposite direction is trivial. In the space (F,,, C) condition (b) of Lemma

4.7 takes the form
=*b —b =n

(b)Y =T, +A T, =0
ﬁic = E:C.l- Ezﬂ_—gﬂ = 0



Curves in subspaces of recurrent Finsler spaces 51

Lemmad4.8. In (F),, A) the relation DN& € Ty, holds iff

(a) ﬁ‘: =0 or

—*m

(b) Fk?n =1 *‘EJ;FET =0
EL=3E+EEJ;EEE= 0

form=M+1,... N and b=12,... M.

Condition (b) for (Fy,, C) reduces to

(D) T =Ty + A0, =0

Ay = A+ Apnfoy = 0
form=M+1,.... N and b=12,..., M.

Proof. Condition (a) follows from (4.20) and the condition DN € Ty . (b) follows from
(a) and (4.46). The proof in the opposite direction is trivial. The explicit expressions for F;f’
and A, in (F),C) are given in [4] with formulae (4.12) and (4.16).

5. CURVATURE, THE NORMAL AND TANGENT CURVATURE OF A CURVE IN
THE SUBSPACE OF THE RECURRENT FINSLER SPACE (F,,, A)

According to Definition 4.1 we will restrict our attention to the case when the differential
equation of the subspace in the recurrent Finsler space is given by

(5.1) dx® = Bf(r)du”,
and where
. o a-a o 31:& k - k o aje
(5.2) T =Buu ,Bu=-—,du =0,v"=0<¢1 =Bn£
Jus

1.e when dz and 7 are in T, spanned by B¥(a = 1,2,..., M) . On any subspace

(5.3) z% = z%(u’, ..., u™,Cyu1 0, Cro)

which is the solution of (5.1), the normal vectors and the metric tensors are given by
(a) NP (z,%) = Nf(2(u), B,(1)i®) = Ny (u, 0)
(b) g“ﬁ(I: I) = gﬂ-ﬁ( I( U),Eu(u) t}‘ﬂ) = -g-nﬁ(u:u)

(5.4) o —
(€) gop(u, ) = Gog(u, w) B (w) By (u)

(d) gyn(t,8) = Gog(u, ) Ny (u, D) No(u, d).
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If (g°°) and (g*") are inverse matrices of (g_,) and (g,,) respectively, then

(5.5) Ne(u, i) = g5 (u, 4)Gop(u, ) N2 (u, i)
(5.6) By(u, i) = g°(u, i) 4(u, 4) BE(u).

The equation of any curve on the subspace (5.3) is given by
(5.7) u® = u(s) a=1,2,... M,

where s 1s the arclength.

The curvature of the curve u® = u°(s) in the subspace of ("FN, A) , further the tangent
and the normal curvature of the curve will be defined in a similar manner as in the Euclidean
space. The supporting element 1n all formulae connected with the curvature is supposed to be
(u,u), where

du®

- 0 a . a b
= [" = = ]
0’ =1 R g, (u, u)l®!

Definition 5.1. If we take in (F y,, A)

du® dz*
8 ¢ = B¢ = —
(5.8) B, ds ds

Gap(u, )10 = 1

i.e. 1® is the unit tangent vector to the curve (5.7) of the subspace (5.3), and if we denote by
N the unit normal vector in the direction of DI®/ds and by K the curvature of the curve,

then

Dl®

= KN*“.
ds

(5.9)

The normal curvature K, of the curve in the direction of the normal vector N f (u,u) is
defined by

(5.10) Ky = 9ap—— Nt

(5.11) K,=g,s—Bf.
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Theorem S.1. The curvature K and the normal and tangent curvatures K_ and K, of the

curve u® = u®(s) of the subspace (5.3) in ('FN, A) are connected by the formulae

(5.12) KN®%= KdB§'+K*Nf= ii :
where
(5.13) Ky=g,K* K, =g,K*

dul | =gdu® du® 74 du® DI¢

5.14 K=
( ) ds? o ds ds e¢ ds ds

¢ mopdutdub  ~ du® DI

(5.15) K* =T ————+ Ay ———.
Proof. From (5.8) we obtain

Dl DB? , L dul
(5.16) T —*'"-Zs'—*i +B.‘:I qa2

Substituting DBZ from (4.19), then w from (4.15) into (5.16), we get

Dle d?ud - ) .
7 =B:(dst; +wfl“)+wa:I“=Bde+NkKk,

which proves (5.12). (5.13) follows directly from Definition 5.1, formulae (5.10) and (5.11).
Considering 1* as a vector in the space (F, A) , we have

Dl* dl* _..sds" .. sDI
@ G =% TRl A
5.17
17 by 2E _ g d’z® . .sdo” da”
ds "% | ds? Ar ds ds |’
where

(5.18) [J2 =181 If =65 — Af; det [I§1#0.
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LemmaS5.1. In (FN, A) the normal curvature K, of the curve u® = u®(s) in the subspace
(5.3) is given by

~ - /fdl =, ol sdTf dz7
(5.19) Ky =Tgxo + AorcJa (E+Fﬂﬂ>=guﬁNkjﬁ [Ei"'*%w ds ds |

Proof. From (5.13) and (5.15) we have

~ ~ DI
Kk= r0k0+‘40kc ds

The first part of (5.19) follows from the above equation and the second part from (5.17) and
(5.10).

Lemma 5.2. The normal curvature K, of the curve u® = u®(s) on the subspace (5.3) in

(FN A) is equal to zero iff one of the following equivalent conditions hold

- ~  DI°
a) I oy =—A
(a) I'gio Oke 7

DI* Jﬂ,[dzzﬁ s dzP dz”
- v

(5.20)

(b) — $ T2 | = °Be,

ds? Br ds ds

where c® = c®(u, w) is any scalar field homogeneous of degree zero in 1.
Proof. The proof follows from (5.19) and (2.8).

Lemma 35.3. The normal curvature K, of the curve u® = u®(s) on the subspace (5.3) in

(Fy,A) isequal to zero when

DI*
(5.21) (5=0) A(B3E = 0 A (00, = 0)

Proof. From (4.16) and (4.17) we obtain

—— _I
.

_ - nT=*m
0k0 = L oko + Aokndml 00

ﬂ

(5.22)

(5.23) -‘Eﬂkc = Agke + EﬂknJ:;Z:Jncr
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and from (2.27e), (2.27g) and (2.27h) follow

(2) Toyo = Qn—,NTBﬁzbﬂuw + Gy o

(5.24) (b) Apge = 9oq NEBEB2| 1° + Oy ps,

r

(C) Eﬂkn = gct’jN:NfB“

o |_3In + gﬂk“n

Further we have

DI¢
ds

(5.19) A (T = 0) A ( =0) =K, =0.

Remark. It is clear that the conditions (5.21) of Lemma 5.3 are satisfied if we take the
stronger conditions

dz ¢ =,.du’ du®
(El) rub ds ds =0
(5.25) (b) By =8B+ 8Bl =0 (3;B=0)
(€) Opx = 0.

This means that the sufficient conditions in (FN,A) for the normal curvature to be zero

C

are that the unit tangent vectors Eu’-— to the curve u® = u®(s) be parallel in the subspace with
S

respect to the induced connection coefficients (in which 6,, = 0) and the tangent vectors
B%(a=1,2,..., M) tothe coordinate curves

o _ _ayg.l a—1 a+1 M
T _I(uﬂ,...,uﬂ ‘U ‘Uv{] ,---:uﬂ aCM+1,ﬂ:“':GN,ﬂ)

be covariant constant with respect to | and the connection coefficients of the surrounding
space (?—N,A) :
Let us examine the normal curvature of the curve in the subspace of ( Fy,, B) i.e. where

9al, = 0,8,B5 = 8,B}, By = Bi(z),dv* = 0,i* = 0 & I* = 0.

Here we have
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Lemma 5.4. The normal curvature K, of the curve u® = u®(s) in the subspace (5.3) of
('F-N, B) has the form

d* z* L e dzf dz"
ds? P17 ds ds

(526) Ky =g NiBy(83Bs + Ty Bl = g,4Nf [

Proof. From (5.15) we have

I *n rt E)F
Kk = Gin (rﬂﬂ + AE: ds ) :

Substituting from (4.34), (4.39) into the above formula, we obtain the first part of (5.26). The
second part follows from (4.29) and (5.19) (in (Fy, B) from A, = 0 = J& = §g). In

(5.26) the connection I'* is determined by (2.6).

Lemma5.5. In ( FN} B) the normal curvature K, of the curve u® = u®(s) in the subspace
(5.3) is equal to zero iff one of the equivalent conditions holds:

(a) Bf(85B2 + I12BNI°l* = ¢“Bg,

(5.27) d* z* dz? dx”

ds? B ds ds

(b)

where ¢ = ¢*(u,u) and ¢ = c®(u, 1) are scalar fields homogeneous of degree zero in 1.
Proof, The proof follows directly from (5.26) and (2.8).

Lemma 5.6. In (F,,, B) the normal curvature K, of the curve u® = u®(s) in the subspace
(5.3) is equal to zero when

(5.28) @ 0e=0.
Remark. The condition of Lemma 5.6 is satisfied when instead of (5.28) we take B:I s=0.

Proof. The proof follows from (5.26) and (2.24a) (9,B2 = 0).

Let us examine the normal curvature in (Fy,, C) i.e. in the space where
Tofly = U:Qnﬁ|1 =0,B*= B*(z),0,B* = 0,BX,dv* =0,9* = 0.

Now, we have a Finsler space F,, in which the differential equation of the subspace (F,,, C)

is given, as in the former case, by d,z% = B¥(z) . In ('FN, C) Lemma 5.4, Lemma 5.5, and
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Lemma 5.6 are valid, but the connection coefficients 1"5,‘:‘ in them are determined by (2.5),

where A,, =0.
It is not difficult-to see that (5.26) is equivalent to (7.6) and (2.7) in [11], when we take

o 0 O — O a
Ng =Tgg =T = T2 BIC.

Let us now examine the tangent curvature of the curve in the subspace of (FN, A) . We have
Lemma 5.7. The tangent curvature K of the curve u® = u®(s) in the subspace (5.3) of

(-FNrA)

[ d*x? dz? dxb 8
K, = Qaﬁie (“EST‘* r'rﬁ ds ds ) By =

Prd . dutdu®  ~; dut ~ [d*ut =, duf duf
= + I + A ¢ + 77 -
9db I: ds2 6¢ Jo ds ac Jg v € ( ds? fg ds ds ):|

Proof. The first part of (5.29) follows from (5.11) and (5.17), the second part from (5.13),
(5.14) and (4.27).

Lemma 5.8. The tangent curvature K, of the curve u® = u®(s) in the subspace (5.3) of
(Fy,A) is equal to zero iff

DI* d? z° dr" dx®
5.30 — =Jg{ = +T% = c*N{
(-39 ds J‘-"(dsz "% s ds) © Tk
k_ kfo oy C DI* .
where c* = c*(u, 1) Is ascalar field homogeneous of degree zero in u (i.e. when e is the

vector field in the space spanned by N ).
Proof. The proof follows from (5.29) and (2.8).

LemmaS$.9. In (-FFN,B) the tangent curvature K, of any curve u°® = u®(s) of the subspace
(5.3) has the form

(5.31)
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Proof. In (F,,, B) we have

(1, =0) A(2.75) A(2.7.0) = AZy =
(AS5=0)A(5.17.0) = J&' = 63
(J& =88 A(531) = (531.0).

On the other hand, using (4.32), (4.33), (2.27) and (2.26) we have

~y DI°  —d  —d DI° _

= B2B2I°1P + 6§ >\-—+21Wi = B¢B> 1°1°
- o|f b ds o ﬂ]ﬁ

which proves (5.31.b).

Lemma 5.10. In ( FN, B) the curve u® = u®(s) of the subspace (5.3) has the tangent cur-
vature Ky (for b=1,2,..., M) equal to zero iff its equation z® = z%(u®(s)) in (?H,B)
satisfies the relation
d* ¢ dzf dx"
PR A P

where c* = c¥(u, 1) is any scalar field homogeneous of degree zero in 1.

- K
=c"N/,

Proof. The proof 1s obvious from (5.31.a).

Now, let us examine the space (FN,C) (where A = 0, u, = 0). Here we have:

Lemma 3.11. The tangent curvature K of any curve u® = u®(s) of the subspace (5.3) in

( FN ,C) is equal to zero iff one of the following conditions holds:

d? ud gdu? du€

+T* =0
ds? * ds ds ’
- g
d°z® l_,mdz dz® = tNE,

ds2 7 ds ds
where c* = c*¥(u, 1) is any scalar field homogeneous of degree zero in 1.

Proof. The proof follows from (5.31) and
d ajc o
T, l°l° = BSBFBg,l°l°,

where I",;"g' 1s determined by (2.6), in which A, = 0.
From Lemma 5.11. follows
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Lemma 5.12. If z* = z%(u®(s)) is a geodesic line of the subspace (5.3) with respect to the
connection coefficients 1" 7, then u® = u®(s) is a geodesic line of the subspace (5.3) with

respect to the induced connection coefficients T *®, and its tangent curvature K, is equal to
zeroforb=1,2,... M.

Theorem 5.2. If the curve u® = u®(s) of the subspace (5.3) in the space (FN,A) satisfies
the relation
d? £°

dzf dx?
. 2 & I"#E - {]
(5.32) J5 ds? T By ds ds :‘

then the curvature K of the curve, its tangent curvature K, and the normal curvature K,
are equal to zero.

Proof. Form (5.17.b) follows that the Ieft-hand side of (5.32) is equal to DI*/ds. From this
fact and Definition 5.1 follows Theorem 5.2.

Theorem 5.3. If the curve u® = u®(s) of the subspace (5.3) in ( me A) satisfies the relation

d?u® =~ dub duf
| I =0
(5.33) dsz % ds ds
then
2.8 B v ~ , du® dub
(5.34) Je AT, g 9T N dy U

ds? A1 ds ds o ds ds

i.e. its curvature vector K N® lies in the vector space spanned by the normal vectors N2 of
the subspace.

Proof, Substituting (5.17), (5.14), (5.15) and (4.27) into (5.12), we obtain

d? 2 dzP dx?
N==Js [dsz * B g ds}
~, dub ~ d2u® ~ dul duf
. o d d c *Q
(5.35) = BY (aﬂ + A — ) (—dgz + P — )+

~ du® dub ~, du® d?u¢  ~ duf du?
o r#k + Ak Th + * ‘
* N [ b ds ds ab ds Je ( ds? fe ds ds )}

In this formula T'* is determined by (2.6) and the induced connection coefficients I'* and A,
by (5.22)-(5.24). Substituting (5.33) into (5.35) we obtain (5.34).
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Theorem 5.4. If in the Finsler space (Fy, B)(p., = 0)

(5.36) (8gBZ + e B)I°IF =
then

dZ d
(5.37) KN®=Bj——

i.e. the curvature vector K N* is in the tangent space of the subspace spanned by BJ,d =
1,2,.... M

Remark. The condition (5.36) of Theorem 5 4. is satisfied when we take

(5.38) ap = 9gBs + I gB] =0,

i.e. when B are parallel vector fields in (_FN, B).

Proof. Substituting (5.26) and (5.31) into (5.12), we obtain 1n (T?'N, B)

d? z® dz? dr”
EI___ r\!h‘.'l’ —_
ANT= T v ooy o

(5.39)

o dz ¢ d 1] axrn nd e
=Bd dg +BﬁBu|ﬁ +N“N&Bml

Using (2.11) we obtain

2 ..d
a"u + B2 1°1P,

(5 40) KN = Bf—— + B

which proves Theorem 5.4.

Proposition 5.1. /fin (FN,B) we have for the curve u® = u®(s) of the subspace (5.3) the
equations
d? ud
dsz
then K = 0,K, =0,K, = 0. This is the consequence of (5.39).

=0 and Bﬂiﬁ -

Theorem 5.5. In (FN, C) (where )\,T = 0, we have

d? z° md:t:ﬁ d.’s"
+ T
(5 .41) ds? Bv ds ds
* _Bu dzﬂu +I—_,—-udub dﬂ-c 4 Nn-l:-*kdu-ﬂ i‘lﬁ
S Te | ds2 bc ds ds k- eb s ds
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Proof. The proof follows from (5.35), (4.41), (4.42) and (4.43). In (5.41) Fg,‘;" 1s determined

by (2.6), in which X_ =0 and T, T} by (2.27.a), (2.27.c), where A, = 0.

It 15 easy to see that (5.40) is the generalization of (7.5) in [11] for the case of the M-
dimensional subspace of a non-recurrent Finsler space supplied with Cartan connection coef-
ficients and for M = 1 it coincides with (7.5) in [11].

Definition 5.2. The curve z* = x(s) in the recurrent Finsler space "Fn supplied with the

generalized Cartan connection coefficients (1"5;’ , 1"5‘: =qu) is a path in FN. if it satisfies

the equation
DI~ [ d*z® o5 dz\ dzf dz” . [ d*x® o5

where I* = dz®/ds and 1"5,?, Ad T § are determined by (2.6), (2.7) and (5.18) respectively.

Definition 5.3. The curve u® = u®(s) is a pathin the subspace of (FH,A) with respect to

the induced connection coefficients (T X2 T'g® A® ) if it satisfies the equation

ac?

DI~ [d®u® ~_,du® du ~ [d*u? =
543 = JS + r#d = J°| —— + r*d =
(>4 ds f‘(dsz ® ds ds) Jd(dsz “") 0

where T*0 A% J< DI¢ are given by (4.16), (4.17), (4.26), (4.27) respectively.

: . dzx . .
In equation (5.42) of the path, we used the supporting element (:1:, Es—) which 1s the unit
dz® . du° .
tangent vector to the curve, namely [* = At = , SO 1n our case the path and h-path

ds ds

as defined by (39.1) 1n [10] coincide.
This means that we have examined such curves in (F N, A) or in its subspace for which

the following is valid: if they are paths in (F,, A) or in its subspace, then they are at the
same time h-paths 1n the corresponding spaces.

Now, we can say that in this paper we have used such connection coefficients and such
supporting elements that the paths and h-paths coincide both in (F'N, A) and in its subspace
(5.3).

Definition 5.4. The subspace (5.3) of the recurrent Finsler space (FN,A) is a subspace
of the first (second) kind, if each path (h-path) of the subspace with respect to the induced
F;i, r 0*5 ,Eﬁc) is a path (h-path) of (FN, A) with respect to the

connection coefficients (I’ ;Eﬁ, I"D*f :

connection coefficients (

AP ) of the enveloping space (Fy, A) .

Asin our cases paths and h-paths coincide, Definition 5.4. is at the same time the definition
of subspaces of the first and second kind.
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Theorem 5.6. The subspace (5.3)in ('FN, A) is a subspace of the first kind, if for each curve
u® = u®(s) of the subspace for which

d?u®  ~.  du? dub
5 .44 — 4T -
(5.44) ds? ¢ ds ds 0,

the normal curvature is zero, i.e.

_ a b
(5 .45) e dul du

= (.
k~ ab ds ds

Proof. 1t should be noted that (5.44) 1s a stronger condition as DI{®*/ds = 0, which can be
seen from (5.43), because in (F,,, A) J$# 85. For (F,, A) the proof follows from (5.35).

Theorem 5.7. In (FN, C),i.e. in the non-recurrent Finsler space, the subspace (5.3) is of
the first kind if for each curve u® = u®(s) of the subspace (5.3) for which

El“_dzu“_k-l—:mdub du"’_o
ds  ds? ¢ ds ds '

the normal curvature vector is zero i.e.

—xk {I).Uaﬂ dub
NZT° = ().
k* ab ds ds

Proof. The proof follows from (5.41).
Subspaces of the third kind in the recurrent Finsler space ('F-N, A) similar to Definition
3in [11] are determined by

Definition 5.5, The subspace (5.3) of the recurrent Finsler space (?N A) is a subspace of
the third kind, if its normal vectors N* for k = M+ 1,..., N are parallel vector fields along
any curve (u®(s),1%(s)),l® = du®/ds of the subspace.

Theorem 5.8. The subspace (5.3) of the recurrent Finsler space (FN, A) is a subspace of
the third kind iff one of the following equivalent conditions holds:

(a)wi(d) =0 and wy'(d) =0,

where
~r _ T %1 3. b AT 11
o = Trrdu® + A%, D,

or
w =0 and A;,=0 for z=0 or z=m,.

Proof. The proof follows directly from (4.20), (4.15), (4.16) and (4.17).
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