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REMARKS ON JOHN’S THEOREM ON THE ELLIPSOID OF MAXIMAL
VOLUME INSCRIBED INTO A CONVEX SYMMETRIC BODY IN R™*
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Abstract. Relationships between some geometric properties of finite dimensional Banach
spaces and distribution of contact points of the boundary of the unit ball of the space with the
ellipsoid of maximal volume inscribed into the space are discussed. It is shown that every
n-dimensional Banach space is isometrically isomorphic to a norm one complemented k-
dimensional Banach space whose unit ball i1s affinely equivalent to a convex body which (%)
lies between the Euclidean unit ball and the standard cube circumscribed about the Euclidean

1
unif ball, where k < -z—n( n+ 1). Every n-dimensional space whose unit ball satisfies (x) IS

within Banach-Mazur distance /2 from some Banach space with the ball D whose boundary

1
has En( n+ 1) «equiweighted» contact points with the ellipsoid of maximal volume inscribed

info D.

INTRODUCTION

Fritz John [J] had discovered in 1948 that contact points of a boundary of a convex body in
R ™ withe the ellipsoid of maximal volume inscribed into the body satisfy with certain weights
a Parseval type 1dentity. Dan Lewis [L] gave later for symmetric convex bodies an alternative
proof of John’s result in a more general setting. Lewis’ approach bases on trace duality and
Banach ideals technique. The minimal number k of contact points involved in John’s Parseval

. . . . : : 1
type identity for n-dimensional convex symmetric body satisfies n < k < -j—n(ﬂ—i- 1). The

case k = n holds iftf (x) the body is affinely equivalent to a body which lies between the
Euclidean unit ball and the standard cube circumscribed about the ball.

A recent deep result of Szarek [S] asserts that there is a convex symmetric body in R™
such that it generates a Banach space which is «far» (i.e., within a Banach-Mazur distance at
least C'log n) from any Banach space whose unit ball satisfies (x). However we show that
every n-dimensional Banach space 1s 1sometric to a norm one complemented subspace of a
k-dimensional Banach space whose unit ball satisfies () where k is the number of contact
points in a John’s Parseval type identify for the unit ball of the original n-dimensional space.
We also show that if the unit ball of an n-dimensional real Banach space satisfies (%) then

the space is within Banach Mazur distance at most +/2 from a Banach space whose unit ball

satisfies John’s Parseval type identity with 'ﬁ—"( n+ 1) contact points with equal weights. The
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paper also contains a simple elementary proof of a well known converse to John’s Theorem
as well as a construction for a given weights (satisfying the necessary condition: the sum of
the weights equals the dimension of the space) a system of versors which satisfy with these
weights John’s Parseval type 1dentity. We are indebted to Stanislaw Kwapien for supplying
the main ingredient in the construction.

The results are stated for real spaces. Extending to the complex case requires usual

1
changes, e.g. replacing -2—'n.(n+ 1) by n?.

PRELIMINARIES

We consider finite dimensional Banach spaces over the field R of reals. An n-dimensional
Banach space we usually identify with a pair (R",C) for appropriate C € C_ where (
stands for the family of all compact convex bodies in R™ which are symmetric with respect

1/2
to the origin. The Euclidean ball B, = {:c =(z(j)) e R": |z}, = (E;l [z(j)]z)

1<

< 1} and the standard cube Q" = {:1: =(z(j)) e R": maé{ lz(/)| < 1} are members of

C,. Wewrite IZ = (R",B,);£2 = (R",Q™). By 13  : £ — £ we denote the formal

identity map. For fixed m = 1,2,... weput (z,y) = E:ﬂ(i)y(i) for zx = (z(j)) € R™
j=1

and y = (y(7)) € R™. Given integers k£ > n > 1 the natural embedding ik - R" = R

and the natural projection Py, R* — R™ are defined by (1,,2)(J) =2(J) for1 < j<m

and (i,,2)(7) = 0 for n < j < k; P () (J) = y(j) for 1 < j < n(y = (y())) €

R*). By | - |, we denote the gauge functional ofa C € C,. By d(X,Y) = inf {||T: X -

Y|| IT7! : Y — X]|| : T isomorphism } we denote the Banach-Mazur distance between
Banach space X and Y. If £ € C_ is an ellipsoid (= the image of B_ under a non singular
athne transformation, say 7 : R™ — IR ™), then we put

(z,9)p = (T 'z, T 'y) for z,y € R™.

Given C € C, by E, we denote (the unique) ellipsoid of maximal volume inscribed into C.

1. JOHN’S PARSEVAL TYPE IDENTITY
Recall [J], [L], [P1], [T].

Theorem. (F.John) Forevery C € C, the ellipsoid E, satisfies: For some k withn < k<
{n+ 1)/2 thereare z,,2,,...,z, € R™ and positive numbers d,,d,,...,d, such that
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(i) lI}-lc'i" |$jIE¢ =1(;j=1,2,...,k)

k
(ii) z=Y dyz, z;) gy for v € R™.
j=1

Note that (1) and (i) formally imply (iii), and (i) together with the inclusion E, C C
imply (iv) where

k
(iif) Ed}. =mn, d;<1forl <7<k, (iv) sup{{z;,y)g |=1:y€C}.
j=1

, . . , 1
If (1) and (ii) are satisfied for some k, not necessarily k < En(ﬂ + 1), then we say

that the vectors z,,z,,...,x, satisfy John’s Parseval type identity for E, with the weights
dy,dy,...,d;.

A converse to John’s Theorem also holds (cf. e.g. [P-T], p. 132). The proof can be easily
deduced from [T], Proposition 14.3 or from the material presented in [Pi], Chapt. 3. Since the
argument in both books involves trace duality and Banach ideals technique, we begin with an
elementary proof of this result.

Theorem 1.1. Let C € C_, and let E € C_ be an ellipsoid. Assume that E C C and that a

John's Parseval type identity is satisfied with E, replaced by E. Then E is the ellipsoid of
maximal volume inscribed into C.

Proof. Without loss of generality one may assume that E = B_. Let D be another ellipsoid

with D C C. Let ey, e,,..., e be the orthonormal basis in £2 consisting of versors of the
principal axes of D. Then

r n )

D=3zeR": Ecm<ﬂ:,€m>2 = |5c|2ﬂ <1¢;

L m=1 w

where c}f is the length of the half axes of D parallel to e_(m = 1,2,...,n). The polar
ellipsoid

D¥={zeR": |z,y)| < 1 for y € D}

satisfies

- )

n
D'=1z€R": Y e (ze,) = lafh <1

. m=1 v

It follows from (iv) and the inclusion D C C that

715 = sup [(z;,9)| < sup |(z;,9)| = 1.
lylp<] lyle<1
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Hence using the inequality between arithmetic and geometric means one gets HG;I <1

m=1

n
Thus vol D = (Hc;”z) vol B. < vol B, .
m=]

Remarks. 1) The equality in the latter inequality is possible only when ¢, = 1 for m =
1,2,...,n, 1e,, when D = B,_. This shows uniqueness of E,. 2) Ball [B] generalized the
proof of Theorem 1.1 to non centrally symmetric convex bodies.

Our aim 1s to construct various sequences of versors satisfying (ii). First we recall

Proposition 1.1. Given integers 2 < n< k andreals 0 < d; <1 forj=1,2,... k wih

k
Ed}- = n. Then the following are equivalent
j=1
(1) there exist z,,%,...,z, € R™ with |z|, =1 for j = 1,2,... k such that

T =

k
d{z,z;)z; forz€R";
j=1

(2) there exists an nX k real matrix ( a; ;)1gisn SUCh that the column vectors of the matrix
77 1S5%k

are orthonormal, i.e.

k k
2 _ 1. - S A A
E a;; = 1; E a; iay ;=0 fori#e (4,9 =1,2,...,n)
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and the square of the length of the j-th row vector equals d., i.e,

mn

Eagj-:dj for j=1,2,...,k;

1=1

(3) there is an orthonormal basis (g;); ;< in R* such that

|Pk,ngjlz — -”d} fﬂfj= 1,2,...,k.

For the proof see [P-T], Proposition 2.6, although the result goes back to [K] and [M].
Note that the connection between the conditions (1), (2), (3) are

”dj:ﬁ}- = (ﬂ;'_;')n_:,'gn - Pk_ﬂ(gj) (7=1,2,...,k).

Let us observe at this point that if djﬂ = 1 and if the versors z,,z,,...,z, together with

positive numbers d,,d,, ..., d, satisfy (1) then Z;, 1s orthogonal to all z; with J¥F Jo- Indeed

2 2 2
<$fu L } = (Ifu ’ m.?'u) + E d}'cmfn ’ Iiu} '
J#Jo

Hence (Efu’mju) = 0 whenever j# j,. This observation implies for instance that if d;, =

dy =...=d, ; =1 thenall the vectors z_,z_,,,...,z, mustbe colinear. To simplify the
formulation of the next result we shall assume that d}- < 1forj=1,2,..., k. Note that
the assumption of non colinearity of the versors z ;s satsfying (1) means in terms of John’s
Theorem that we deal with essentially distinct contact points. Now we are ready to state the
main result of this section.

Theorem 1.2. We are given positive integers 2 < n< k and real numbers 1 > d; >0 for

k
7=1,2,..., k with Edj = n. Then there exists an nx k real matrix whose column vectors
j=1
are orthonormal, the square of the length of the j-th row vector equals dj- fori =12, ...k,

and no two distinct row vectors are colinear.

Proof. 1° n= 2. We are looking for y,,y,,...,y, € R? of the form y; = (1/djcos 05

djsint,oj>,wim0 <p;<mforj=1,2,... k such that

k k k
2 — 02 _ 1. : —
(+) E d,; COS p; = E cij sIn” p; = 1; E a; Cos p;sinp; = 0.

j=1 j=1 j=1
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The condition (+) is equivalent to

k k
(++) Y d;cos2p; =0, Y d;sin2p; =0,
j=1

j=1

k
which, in view of de‘ = 2, 1s equivalent to
j=1
(+++) ‘there exists in the plane a (convex) k-gone with lengths of sides d,,d,, ..., d, respec-
tively.

The existence of the desired k-gone follows from

k
Lemmall. Letl > d, >d, > ... > d;, > 0, Edi = 2, k > 3. Then there
j=1

exists a convex k-gone inthe plane, say A A, ... A,, with lengths of consecutive sides equal
d,d,,...,d, respectively, i.e. ]AJ-A}-H| =d;, for }=1,2,...,k—1and |A;, A||=d,

Moreover except the case

(*) k=4, d1=d1=6%=d4=1/2
the k-gone has no pair of parallel sides.

The proof of Lemma 1.1 1s given at the end of this section.
Note that the «<moreover part» of the Lemma guarantees the non colinarity of each pair of

distinct vectors y,,y,, ..., ¥, exceptthe case (*). Inthecase (x) wefix ¢ with 0 < p < -;E

and put

1 _ 1 .
Yy, = -ﬁ(ﬂﬂs ©,8In p),y, = \—E(—Sln p,COS ),

1 ‘ |
= COS , SIn ), ¥y, = —=(SIn ¢, COSs ©),
Ys \/E( ©,Sin ), y, \/5( © ©)

2° General case. We proceed by induction with respect to n. The case n = 2 has been
already considered. Fix n > 3 and assume the validity of the assertion of Theorem 1.2

for all pairs (n— 1,k) with 2 < n—-1 < k. Letl >d, > d, > ... > d >0

k m
with Y “d, = n be given. Pick the index m so that 1 > Y d; > 1 —d,,,. Puta =
7=1 J=1
m

m
1—1Edj. Clearly 0 <a < d_,,. Pick a,,0,,...,a_ sothata = Eﬂ d .s— G, >0

8! m+s
j=1 : s=1
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: _ 1
fors=1,2,...,m. (Forinstance put a, = min { —d__ | 2 fors=2,3,...,m and
8 2 ™M m+ 1

NIE

a =a-— as) . Note that 3m < k, in particular 2m < k. Indeed md_, < Ed]- < 1
j=1

s=2

k —m

2

k
and (k—m)d,, > »  d; >n—1>2.Hence md, <

J=m+l

d,, which yields 3m < k.

Put d = d

m—s+1

y+tagand d ., = dg ., —a, fors=12,... md, =d for

m—s+ m+3a

j=2m+1,2m+2,... k. Observethat 1 > d: >0 forj=m+ 1,m+2,...,k and

k
E d_‘;- = n— 1, consequently k — m > n— 1. Hence, by the inductive hypothesis, there

J=m+1l
exists an (n— k) x (k — m) real matrix, say (y;.( 1)) Sign) such that its column vectors are
m+1</g
e 2
orthonormal; the row vectors satisfy E [y;(i)} = d;- forj=m+1,m+2,..., k; distinct
i=1

row vectors are not colinear. Now we consider the n x k matrix

-
-
o
EE

0, 0, , 0, dy,
y:n+1(1)1 yin+1(2): ey y:-n+l(n_1))! 0
y:,n+-2(l), y:’n+2(2)’ ) y:ﬂ+2(n_ 1))1 0
i y;;(l):- y!k(z)I * ) y;:(ﬂ""'l), 0 |
Next we construct a new n X k matrix. Its row vectors y,,y,,...,y, are defined as follows:
y; = y; = (y}(l),y’z(Z),...,y;-(n- 1),0) forj =2m+ 1,2m+ 2,..., k; each pair of
TOW VECIOTS (Y, _o41, Umss) 1S ODtained from the pair of row vectors (y,._ .1, Ymss) Of the

«0ld» matrix by applying the rotation by an angle , with 0 < ¢, < m, 1.e., according to

the rule
|: COS [ffj.s! Siﬂ {ps } |:y:'n—-3+1 ] — l:ymra+1 :|
=S Y, COSP, | | Ymes | L YUmes

Thus

ym—3+l = (y:"n+$( ]’) Sin Elﬂ,gr y:'n+5(2) Sln Efgs! e :ry:ﬂ-'r,s(ﬂ'_ 1) Si“ ()G,gl M ;n—3+] COS ifr‘?,ﬂ) }
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f

ym+3 = (y:n+,5( 1) CDS 503! yin+3(2) COS {p;! R y:'n+3(n - 1) CDS ED;!! _Jdm_~3+l Sln ;?03)

fors=12... m.
It can be easily verified that for arbitrary angles ¢, ¢,,...,p, we get in that way from

our «old» matrix an n x k£ matrix with orthonormal column vectors. Next we choose p, $o
that

— . 2 / 2
|ym—a+1 =d,, = ““m+a Sin O, + dm~—a+1 COS Ps
d

= d

m+s

2 o Iy
|ym+5 COS {ﬂ'ﬂ + dm—.ﬂl S11 {FJE

To this end ¢, should satisfy

sin* p, = a,(d,

—8+1

~d_,.+2a) ' for s=1,2,...,m.

The latter identify suffices because d__ ., +d_, . =d_ ., +d,

m+s

m+ s fors=12,...,m.

Finally we verify thatif 1 < r <t < k then the row vectors y, and y, are not colinear.
Indeed if the pair (7,?) is different from apair (m — s+ 1,m+ s) foralls=1,2,....m
thenfor 1 <7 <1< n—1 wehave

(1), v (4) |

det [yr(i’), v, (1)
Y1),y ()

y,(3"), ¥, (1) } = O(r1) det

where p = p(7,t)# ¢ = q(r,t) € {m+1,m,+2,...,k} and C(r,t) # 0. Thus the condition
that the row vectors .y;_ and y; are not colinear implies the non colinearity of the row vectors
y, and y,. Forapair (m — s+ 1, m + 3) we have

n—1 _ )
ym—-.5+l(1')1y _ +1('ﬂ) I) .i' !
- )\ U = dpy 418,70
] ( |: ym+3(1):ym+3(ﬂ) m—s+1""m '-!é

1=

which implies the non colinearity of the pair (y,, ., 1, Umes) -

Proof of lemma 1.2. If
(*x) 0 < min(a,b,c) < max(a,b,c) < l;a+b+c=2

then b+ c>1>a > |b— ¢|, hence
(% » x) thereis a triangle AABC with |AB| = ¢,|BC| = a,|CB|=b.
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This proves the Lemma for £ = 3.
If () holds then there 1s square with sides of length half.
Now assume that & > 4 and (%) doesnothold. Then d, + d,_; < 1/2+ 1/2 =1,

Hence there exists an index m with kK — 1 > m > 3 such that 1 — dm ) < EJ m@ <1
Let us put

k
=>_:d}., '5’:2‘1;‘: c=d,.
j=m y=2

Then a, b, ¢ satisfy (xx). Let AABC satisfies (x x x). Let «, 8, vy denote measures of the
m

angles of AABC at the vertices A, B, C respectively. Then either max(¢«,y) < > or
max( 3,y < ; We consider only the case max(«, 7v) < g—; the argument in the remaining

cases 1S similar.

Fix € > 0 sufficiently small. Since v < ; there exists a point C* on the circle centered

at A of radius |AC| = b such that |BC?| < |BC| = a and max(«,,v,) < ; where o, 7,

are measures of the angles £ BAC®, £ AC®B respectively. Since |BC¢| < a=d, +d, .+

.+ d_ for e > 0 sufficiently small, there exists a convex polygone A A, ;... A, C"
where B = A, suchthat: |A;A;,|=d;, forj=mm+1,..., A |l =4d.;
the points A, _,,A,_, ..., A, are separated from A by the straight line passing through

B and C°®; the measure of the angles £ AC*A_ and £ A,_, BA are less than -; and

respectively. Now if m = 3 then the polygone AA, ... A _C°* has the desired properties
because then b = d, = |AC| = |[AC®| and c = d, = |AA,| = |AB]|. If m > 3 then because

the measure of the angle £ AC®A__ is less than ; for € > 0 sufficiently small there exists

apoint A__, on the circle centered at A, of radius |A  C¢| such that |[AA, | < |[AC?| =
m—1

b= E‘iﬁ' Hence there exists a convex polygone A,,A4, ... A _, where A, = A such that
j=2

|A;Ai | =d;,, forj=1,2,. — 2, the points A, , A,,..., A _, are separated from

the points A_,A_,,,..., A, by Lhc straight line passing through A = A, and A__,; the

measure of the angles £ A A A , and £ A A A, are less than 5' The polygone

ALA,, ..., A, has the desired properties. Note that if € > 0 is sufficiently small then each
side of the gone 1s «almost parallel» to one side of the triangle AABC. Therefore two sides
of the gone which are «almost parallel» to different sides of the triangle cannot be parallel
each to other. Two sides which are «almost parallel» to the same side of the triangle are not
parallel between themselves for convexity reason.
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§ 2. Given a Banach space X with dim X = n, a Dvoretzky-Rogers factorization
through X is a pair of linear operators u : 2 — X and v : X — £ such that vu =17 ,.

We put
dr(X) = inf |ull [lv]

where the infinum extends over all Dvrotezky-Rogers factorizations through X.
The following is routine

Proposition 2.1. Given X with dim X = n. Then

(a) dr(X) > 1,

(b) there exists a Dvoretzky-Rogers factorization through X, say (u,v) such thar ar( X)
= {lull []v]l;

(c) if S: X — Y isanisomorphism then dr(X) < ||S|| ||S~!||dr(Y);

(d) there exists an ndimensional Banach space Y such that

dr(Y)=1and d(X,Y) = dr(X).

Proof. (a) Note that if vu = 13_, then |lu|| ||v]| > ||¢5, 2 ]| = 1. (b) Use a standard compact-
ness argument for finite dimensional spaces.

(c) Note thatif (u,v) is a Dvoretzky-Rogers factorization through Y then (S~ 'u,vS)
so does through X.

(d) Let (u,v) beasin (b). One can additionally assume that ||u|| = 1, and one can identi-
fied X with its isometrically isometric copy (R™,C) where C = v~ {z € X : ||z|| < 1}.
Then u and v becoms formal identities. Let a = ||v||™. Put C, = conv(B, U aC) and
Y = (R*C,). Clearly B, C C, and C; C Q" because B, C Q" and ||v|| = o™
yields aC C Q™ Thus ||u : £2 - Y| =|lv: Y — £°] = 1. Hence dr(Y) = 1.
Furthermore aC C C, C C (because ||u : &2 — X]|| = 1 yields B, C C whil
a < 1 vyields aC C C). Thus d(X,Y) < a~! = dr(X). On the other hand, by (c),

dr(X) < d(X,Y)dr(Y) =d(X,Y).
We left to the reader the routine proof of the next

Proposition 2.2. For a Banach space X with dim X = n the following are equivalent
(j) dr(X) =1
(jj) X is isometrically isomorphic to (R™,C) with C satisfying B, C C C Q"
(jjj) X is isometrically isomorphic to (R", C) with C satisfying 1°. B, C C, 2o
there exists an orthonormal basis, say (g;)1¢jc,, SUch that |g;|, = lg;lc = 1 for j =
1,2,...,n

It was proved by Szarek [S] that there exists a sequence (X_) of Banach spaces such
that dmX =mnforn=1,2,..., and imdr(X_) = +oco. On the other hand from the
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classical Dvoretzky-Rogers Lemma (cf [D.R], [T], Proposition 15.6) it follows that each X
with dim X = n contains a subspace Z with dr(Z) < 2 and dim Z > vn. The latter result

has been recently improved to dim Z > cn (cf [B-S]). It is interesting to compare these facts
with the following

Theorem 2.1. If X(RR™, C) is a Banach space such that a John’s Parseval type identity is
satisfied for E, with k contact points then there exists a k-dimensional Banach space Y with

dr(Y') = 1 such that X is isometrically isomorphic to a norm one complemented subspace
of Y.

Proof. Without loss of generality assume that £, = B, . In particular B_. C C. Put D =

conv(C U B,) and Y = (R*, D) (we identify here C with i_,(C)). Observe that ik

regarded as an operator from (R™ C) into (R*, D) is an isometric embedding because
DNR" = C. Also ||F, (R*. D) — (R™,C)|| € 1. Indeedif y € D then y =
tb+(1—t)cforsome be B, ce C, 0 <t < 1. Thus P, .(y) =tP, (D)+(1-t)ceC
because for every b € By, P, .(b) € B, C C.

[tremains to show that dr(Y') = 1. Since B, C D, in view of Proposition 2.2 it is enough
to show that there is an orthonormal basis, say (g9;); «;<, in R* with |9;12 = lg;|lp =1 for

J=1,2,...,k. Let (9,);<;<, be the orthonormal basis appearing in Proposition 1.1 (3)
which satisfies P (g;) = , /djm}-. We are going to show that |g}-]D =1for;j=12,...,k.

Fix an integer 7 with 1 < 7 < k. Since g; € B, C D, wehave 1 = [gj-|2 > |g_},-|ﬂ+ Since

g; € D, there exist g € B, and c € C such that |g}.]ﬂ = lg|, + |c| and gi=g+c
Hence

l9;1p < 1
={9,,9;)
={9;,9) *+ (9;,¢)
< g5l 1g9l2 + {9;,¢)
= |g|, + (Q;-:Pklﬂ(ﬂn

= |gj|2 + <Pk,n(gj)lc>

= lg;la + 1/d;(z;,0)
< lggly + 1/dslele (by(iv))

< g;l, + lele (because0 < d; < 1)
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= |Q;ID

Thus |g;|p = 1.

1
Remark. In [P-T] for every fixed £ with n < k£ < E—n(n-l'- 1) abody C € C, was

constructed with the property that there exists only one John’s Parseval type identity for E,
and it involves all k contact points of the boundary of C with E,. Therefore by Proposition
1.1 and Proposition 2.2 the space X = (R™, C) 1s not isometrically isomorphic to a norm
one complemented subspace of any Banach space ¥ with d{r(Y) =1landdimY < k.

§ 3. The convex body D, € C, examined in [P-S], section 6 satisfies: d((R", D,),

1 .
£2°) < 2 and there exists an equiweighted John’s Parseval type identity for ', with En( n+

1) contact points. In this section we establish a more general fact.

Theorem 3.1. If X isan n-dimensional Banach space with dr(X) = 1 then for every k > n

1 1
of the form k = 5P where p > 1 is an integer, in particular for k = -i—n(fn,+ 1), there

exists a Banach space Y = (R", D) suchthat d(X,Y) < V2 and a John's Parseval type
identity is satisfied for E, by some k contact points with equal weights.

Proof. Theorem 3.1 is an immediate consequence of the next two lemmas Proposition 1.1 and
Theorem 1.1.

Lemma 3.1. Let C € C,, satisfies B, C C C Q™. Put D = conv(B, U p~12C) where p
is a fixed integer with 1 < p < m. Then |z|p = |z|, for every z € R™ which has at most p
non-zero coordinates.

Proof. Fix z = (z(1)) in question. Put o = {1 : z(¢) #0} and define P_by (P_(y)) (1) =
y(1) fori € o and (P,(y)) (1) = 0 for +# o. Clearly P, is an orthogonal projection which
satisfies

(+) IP()]|, < p'*y

Qn f'DI' yERn

because o has at most p elements. Next pick b € R™ and ¢ € R" so that |z|, = |b], +
Pl”2|6|g and z = b+ c. In particular P_(z) = P_(b) + P_(c). We have

lzlp, <z, (because B, C D)
= |P,(z)], (because P_(z) = 1)
<|P,(b)|, +|P,(c)|, (by the triangle inequality)
< |bl, +|P,(9)], (because the projection P_ is orthogonal )
< [b, + P72 c|gn (by (4))
= |g_r; D
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Thus |z|, = |z|5 .

Lemma 3.2. Let k = mn whereeither(I) m= 1,2, ...;n=23...,0r(l) m= (2r+
1)/2, m=2q (r,q=1,2,...). Then there exists an nx k real matrix such that the column
vectors of the matrix are orthonormal, the row vectors have the same length, no two row
vectors are collinar, each row vector has at most two non-zero coordinates.

Proof. Case (I). Let s = m/2 for m evenand s = (m —1)/2 for m odd. Let 0 < € < 1

and let reals a;,a,,...a, satisfy 1 >a; >a, >...>a,>1—¢*/2. Putb,= /1 —a?
for t = 1,2,...,s. Define auxiliary column vectors A and B of length m as follows:
for even m

_ 1/2
A=m! (a;,ay,a5,05,...,0,,0,),

B = m'_lﬁ(bl:_blsbzahbzw“lbs*_bﬁ);

for odd m
A:mlfz(lsaliﬂ'llﬂ2!ﬂﬂﬂ”"aﬂ’ﬂﬂ)’
B:m_l‘/z(ojbl]_bl,bz,_b21-*':b31—ba);
Let us put
A B 0 0
0 A B , 0
M =
0 0 , A B
B 0 , 0 A

Precisely if y,(4) is the j-th coordinate of the i-th column of the matrix M(1 <1< m 1<
) < k), then

y;(t) = the [j — (1 — 1)m]-th coordinate of A for (i — 1)m < j < im
yj(l) = the [; — (n— 1)m]-th coordinate of B for (n— 1)m < j < nm

y;,(1) = the [j — (2 — 2)m]-th coordinate of B for (i — 2)m < j < (i — D)m
fori=23,...,n |

y;(1) = 0 elsewhere

We omit a routine verification that M satisfies the assertion of the Lemma.
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Case (II). Define the auxiliary 2 X (27+1) matrix N, = (n, ).o; 2:0212,.. 241 as follows

Aleksander Pelczynski

_ 1 ) .
COS 7 sin -
2r+ 1 2r+ 1
2
Nr=\/ COS 2 T sin 2 u
27+ 1 2r+ 1 o 2r+1
¥l W
2 in 2
_ms T2r+ 1 S T2r+ 1

(The matrix N, corresponds to the equiweighted (2 r + 1) — contact point representation for
the regular 2(2r + 1) — gone in the plane).
The desired n X k matrix is

‘N, 0 0
0 N 0
M = r
0 0 N,

' i —_ (1 i<n th
Precisely if M (yj(t)):é_ét then
V(1) =1 _rny-n, 0r (2r+ D -1 <j<(2r+ Di;i=2t -1
Y;(1) =22 or (2r+ D —-1) <j < (2r+ Dtja=2¢ (t=1,2,...,5)
yj(i) = () elsewhere.

We omit a routine verification that the matrix M has the desired properties.

Remark 1. In general the constant v/2 can not be improved to 1 + n for arbitrary 5 > 0.
Indeed if Y = (R?, D) is a Banach space with E,, = B, such that an equiweighted John’s
Parseval type identity 1s satisfied by 3 contact points, say z,,z,,z,, then B, C D C §
where S 1s a regular hexagon circumscribed about B, . For, putting in (i1) z,, z,, z; Instead
of z and using (1) we get the system of equations

3
1='§'E {E‘-,Ej =§+§' E‘<Ii,3}}- f{}r1=l,2,3.
}:1 J#I
: : _ 1
Solving this system of equations we get (x., mj)z =7 for 1# j. Hence the measures of the

T 2T . .
— Or T Thus [ 18 contained

angles between two different versors z,,z,,x, iS either 2
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in the regular hexagon S determined by the tangent lines to B, passing through the points
L. 2
T,,T,,Z3. Theinclusion B, C D C S easily implies that d(Y,(R%,9)) < ﬁ By a

3
result of Asplund [A], d(£°,(R?,8)) = 5 Thus

d(€P,Y) > d(&P,(R*%,8)) -d(Y,(R?*,8)~" > 3—;/_3’- > 1.
Remark 2. Incase(I), k=m-n(m=1,2,...; n=2,3,...) forevery n > 0 there exists
Y satisfying the assertion of Theorem 3.1 such that d(X,Y) < 1+ 5 because in case (I) for
given € with 0 < € < 1 the matrix M is constructed so that its row vectors can be divided
into m groups, each group having m elements and all elements of the i-th group are within
Euclidean distance & from the i-th unit vectorof R™*(:1=1,2,...,n).
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