A CHARACTERIZATION OF LAGRANGIAN DUAL PROBLEMS

J.-E. MARTINEZ-LEGAZ, I. SINGER

Dedicated to the memory of Professor Gottfried Köthe

Abstract. For constrained primal infimization problems, we give a characterization of the Lagrangian dual objective function, regarded as a function of three variables (namely, of the target set, the primal objective function and the dual variables).

1. INTRODUCTION

Let $(F \xrightarrow{u} X)$ be a (fixed) system (i.e. [5], [8], a triple consisting of two non-empty sets F and X and a mapping $u: F \to X$), Ω a non-empty subset of X, called target set and $h: F \to \overline{R} = [-\infty, +\infty]$ a function, called the objective function. We shall consider the primal infimization problem (with constraint set $u^{-1}(\Omega)$)

(1)
$$(P) = (P_{\Omega,h}) \quad \alpha = \alpha_{\Omega,h} = \inf_{\substack{y \in F \\ u(y) \in \Omega}} h(y)$$

By a dual problem to (P) we shall mean any supremization problem of the form

(2)
$$(Q) = (Q^{\Omega,h}) \quad \beta = \beta^{\Omega,h} = \sup \lambda(W),$$

where W is a fixed set (assumed non-empty, without loss of generality), called *dual constraint set* and $\lambda = \lambda^{\Omega,h} : W \to \overline{R}$ is a function, called *dual objective function*. We recall (see [1], [8]) that the Lagrangian dual problem to (P) is, by definition, the dual problem $\sup \lambda_{\operatorname{Lagr}}(W)$ of (2), with (fixed) $\Omega \subseteq R^X$ (where R^X denotes the family of all functions $f: X \to R = (-\infty, +\infty)$) and with $\lambda_{\operatorname{Lagr}} = \lambda^{\Omega,h}_{\operatorname{Lagr}} : W \to \overline{R}$ defined by

(3)
$$\lambda_{\text{Lagr}}(w) = \inf_{y \in F} \{h(y) - wu(y)\} + \inf_{Y \in F} w(\Omega) \qquad (w \in W),$$

where + denotes the «lower addition» [3] on \overline{R} , defined by

(4)
$$a+b=a+b$$
 if $R\cap\{a,b\}\neq\emptyset$ or $a=b=\pm\infty$,

(5)
$$a+b=-\infty \quad \text{if } a=-b=\pm\infty.$$

Key Words: primal infimization problem, Lagrangian dual problem, Fenchel conjugate.

The assumption that $W \subseteq R^X$ is fixed (i.e., it does not depend on F, u, Ω or h) is satisfied e.g. when $W = R^X$, or when X is a locally convex space and $W = X^*$, the family of all continuous linear functionals on X. On the other hand, we shall regard Ω and h as (variable) parameters of (P), (Q); some of the advantages of this method have been shown in [8], [9] (for example, in [9], consideration of the case when $X = F, u = I_F$, the identity operator, and Ω is a singleton $\{y_0\}$ where $y_0 \in F$, has led to the concept of «the subdifferential of h at y_0 , with respect to a primal-dual pair of optimization problems $\{(P), (Q)\}$ », which encompasses, as particular cases, several known concepts of subdifferential). This also motivates our simplified notations $\beta^{\Omega,h}$, $\lambda^{\Omega,h}$, instead of $\beta^{u^{-1}(\Omega),h}$, $\lambda^{u^{-1}(\Omega),h}$ of [8].

The aim of the present Note is to give a characterization of the Lagrangian dual objective function $\lambda_{\text{Lagr}}^{\Omega,h}(w)$ as a function of three variables Ω , h and w (where $(F \xrightarrow{u} X)$ and $W \subseteq R^X$ are fixed). Namely, we shall show that four natural conditions on a function $\lambda^{\cdot \cdot \cdot}(.)$ are necessary and sufficient in order to have

(6)
$$\lambda^{\Omega,h}(w) = \lambda_{\text{Lagr}}^{\Omega,h}(w) \qquad (\Omega \in 2^X \setminus \emptyset, h \in \overline{R}^F, w \in W),$$

where 2^X denotes the family of all subsets of X, and \emptyset denotes the empty set; for simplicity, we write $2^X \setminus \emptyset$ instead of $2^X \setminus \{\emptyset\}$. Throughout this Note, we shall adopt the usual conventions inf $\emptyset = +\infty$, sup $\emptyset = -\infty$.

2. PRELIMINARIES

In the sequel, we shall use the following tools:

a) Formula (3) can be also written in the form

(7)
$$\lambda_{\text{Lagr}}^{\Omega,h}(w) = -h^*(wu) + \inf w(\Omega) \qquad (w \in W),$$

where $h^* \in \overline{R}^{(R^F)}$ is the (generalized) Fenchel conjugate of $h \in \overline{R}^F$, defined (see e.g. [3], [2]) by

(8)
$$h^*(\Psi) = \sup_{y \in F} \{ \Psi(y) - h(y) \} \qquad (\Psi \in R^F).$$

It is easy to check (and well known) that for every index set I we have

(9)
$$(\inf_{i \in I} h_i)^*(\Psi) = \sup_{i \in I} h_i^*(\Psi) \qquad (\{h_i\}_{i \in I} \subseteq \overline{R}^F, \Psi \in R^F).$$

b) We have (see [7], formula (3.7))

(10)
$$h = \inf_{(y,d) \in Epi \ h} \{\chi_{\{y\}} + d\} \qquad (h \in \overline{R}^F),$$

where $Epi\ h = \{(y,d) \in F \times R | h(y) \le d\}$ is the epigraph of h and $\chi_{\{y\}}$ is the indicator function of the singleton $\{y\}$ (defined by $\chi_{\{y\}}(y') = 0$ if y' = y and $\chi_{\{y\}}(y') = +\infty$ if $y' \in F \setminus \{y\}$).

c) We shall also use the following known formula (see [3], corollary 4.b) and [8], lemma 2.1): If E is a non-empty set, $f: E \to \overline{R}$, $b \in \overline{R}$ and $c \in R \cup \{-\infty\}$, then

(11)
$$\inf_{y \in E} f(y) + c = \inf_{y \in E} \{ f(y) + c \}.$$

3. THE CHARACTERIZATION THEOREM

Theorem 1. Let $(F \xrightarrow{u} X)$ be a system and $W \subseteq R^X$. For a function $\lambda = \lambda^{...}(.)$: $(2^X \setminus \emptyset) \times \overline{R}^F \times W \to \overline{R}$, the following statements are equivalent:

- 1) λ is the function (3) (i.e., we have (6)).
- 2) For any index set I, any $\Omega \in 2^X \setminus \emptyset$, $\{h_i\}_{i \in I} \subseteq \overline{R}^F$, $w \in W$, $h \in \overline{R}^F$, $d \in R$, $\{\Omega_i\}_{i \in I} \subseteq 2^X \setminus \emptyset$ with $I \neq \emptyset$, and any $x \in X$, $y \in F$, we have

(12)
$$\lambda^{\Omega,\inf_{i\in I}h_i}(w) = \begin{cases} \inf_{i\in I} \lambda^{\Omega,h_i}(w), & \text{if } I \neq \emptyset \quad \text{or inf } w(\Omega) > -\infty \\ -\infty, & \text{if } I = \emptyset \quad \text{and inf } w(\Omega) = -\infty, \end{cases}$$

(13)
$$\lambda^{\Omega,h+d} = \lambda^{\Omega,h} + d,$$

(14)
$$\lambda^{i \in I} = \inf_{i \in I} \lambda^{\Omega_i, h}, \quad \text{if} \quad h \not\equiv +\infty,$$

(15)
$$\lambda^{\{x\},\chi_{\{y\}}}(w) = w(x) - wu(y),$$

where the inf in (14) is taken pointwise on W.

Proof. Note that, by $W \subseteq R^X$, we have

(16)
$$\inf w(\Omega) < +\infty \qquad (\Omega \in 2^X \setminus \emptyset, w \in W).$$

1) \Rightarrow 2). Assume 1), and let I, Ω, \ldots be as in 2). If $I \neq \emptyset$ or inf $w(\Omega) > -\infty$, then, by (6), (7), (9), and (11), we obtain

$$\lambda^{\prod_{i \in I} h_i}(w) = -(\inf_{i \in I} h_i)^*(wu) + \inf_{i \in I} w(\Omega) = -\sup_{i \in I} h_i^*(wu) + \inf_{i \in I} w(\Omega) =$$

$$= \inf_{i \in I} (-h_i^*(wu)) + \inf_{i \in I} w(\Omega) = \inf_{i \in I} \{-h_i^*(wu) + \inf_{i \in I} w(\Omega)\} = \inf_{i \in I} \lambda^{\Omega, h_i}(w).$$

On the other hand, if $I = \emptyset$ and inf $w(\Omega) = -\infty$, then, by (3),

$$\lambda^{\prod_{i\in I}^{\Omega,\inf h_i}}(w) = \lambda^{\Omega,+\infty}(w) = +\infty + -\infty = -\infty,$$

which proves (12). Furthermore, by (3) and (11) we have (13). Now, if $h \not\equiv +\infty$, then $-h^*(wu) < +\infty$, whence, by (6), (7) and (11),

$$\begin{split} \lambda^{\cup \Omega_i,h}(w) &= -h^*(wu) + \inf w \left(\bigcup_{i \in I} \Omega_i \right) = -h^*(wu) + \inf_{i \in I} \inf w(\Omega_i) = \\ &= \inf_{i \in I} \left\{ -h^*(wu) + \inf w(\Omega_i) \right\} = \inf_{i \in I} \lambda^{\Omega_i,h}(w), \end{split}$$

which proves (14). Finally, by (6), (3) for $h = \chi_{\{y\}}$ and $\Omega = \{x\}$, we get

$$\lambda^{\{x\},\chi_{\{y\}}}(w) = \inf_{y' \in F} \{\chi_{\{y\}}(y') - wu(y')\} + w(x) = -wu(y) + w(x),$$

which proves (15). Thus, $1) \Rightarrow 2$).

2) \Rightarrow 1). Assume 2) and $h \not\equiv +\infty$, whence $Epi \ h \not= \emptyset$ and $\inf_{y \in F} \{h(y)\} - wu(y)\} < +\infty$. Then, by (14), (10), (12), (13), (15) and (11) we obtain

$$\lambda^{\Omega,h}(w) = \inf_{x \in \Omega} \lambda^{\{x\},h}(w) = \inf_{x \in \Omega} \lambda^{\{x\}, \inf_{\{y,d\} \in Bpi \, h}} \{x_{\{y\}} + d\} \} (w) =$$

$$= \inf_{x \in \Omega} \inf_{(y,d) \in Epi \, h} \{\lambda^{\{x\},\chi_{\{y\}}}(w) + d\} = \inf_{x \in \Omega} \inf_{y \in F} \{w(x) - wu(y) + h(y)\} =$$

$$= \inf_{x \in \Omega} \{w(x) + \inf_{y \in F} \{h(y) - wu(y)\} \} = \inf_{x \in \Omega} w(\Omega) + \inf_{y \in F} \{h(y) - wu(y)\},$$

i.e., (6) for $h \not\equiv +\infty$. On the other hand, if 2) holds, then, by (12) for $I = \emptyset$, we have

(17)
$$\lambda^{\Omega,+\infty}(w) = \begin{cases} +\infty, & \text{if inf } w(\Omega) > -\infty \\ -\infty, & \text{if inf } w(\Omega) = -\infty, \end{cases}$$

i.e., (6) for $h \equiv +\infty$. Thus, 2) \Rightarrow 1).

Remark 1. a) Condition (14) can be replaced by the equivalent condition

(18)
$$\lambda^{\Omega,h} = \inf_{x \in \Omega} \lambda^{\{x\},h}, \quad \text{if } h \not\equiv +\infty.$$

b) Condition (15) shows that, for any $y \in F$ and $w \in W$, $\lambda^{\{x\},\chi_{\{y\}}}(w) - w(x)$ does not depend on $x \in X$. Moreover, we also have the following property: for any $h \in \overline{R}^F$ and $w \in W$,

(19)
$$\lambda^{\{x\},h}(w) - w(x) \qquad \text{does not depend on } x \in X;$$

indeed, by (6), (3) for $\Omega = \{x\}$ and $W \subseteq R^X$, we obtain

(20)
$$\lambda^{\{x\},h}(w) - w(x) = \inf_{y \in F} \{h(y) - wu(y)\} + w(x) - w(x) = -h^*(wu).$$

c) Note that the mapping $u: F \to X$ of (1) and (3) occurs only in condition (15). Also, (12)-(14) refer to properties for general sets Ω and functions h, and only (15) refers to elementary sets (singletons) and elementary functions (indicator functions of singletons).

4. CONCLUDING REMARKS

In the present Note, regarding the objective function $\lambda:W\to \overline{R}$ of a dual optimization problem (2) as a function not only of the dual variables $w\in W$, but also of the target set $\Omega\subseteq X$ and the primal objective function h, we have given a characterization of the Lagrangian dual objective function (3), by four natural conditions (12)-(15). Hence, one can obtain an axiomatic approach to the theory of Lagrangian dual optimization problems, by starting from these conditions.

Let us note that in the particular case of systems $(F \xrightarrow{I_F} F)$, i.e., when

(21)
$$X = F, \qquad u = I_F, \qquad \Omega = G \subseteq F,$$

where I_F denotes the identity operator on F, (1) and (3) become, respectively, the primal problem

(22)
$$(P) = (P_{G,h}) \qquad \alpha = \alpha_{G,h} = \inf h(G),$$

and the Lagrangian dual objective function (occurring in [6], [4], [8])

(23)
$$\lambda_{\text{Lagr}}(w) = \inf_{y \in F} \{h(y) - w(y)\} + \inf_{x} w(G) \quad (w \in W),$$

where $W \subseteq \mathbb{R}^F$; in this case, condition (15) becomes

(24)
$$\lambda^{\{y'\},\chi_{\{y\}}}(w) = w(y') - w(y) \qquad (y',y \in F).$$

We shall show elsewhere that some other dual optimization problems to (1) can be also studied with similar methods.

REFERENCES

- [1] J.P. Aubin, I. Ekeland, Estimates of the duality gap in nonconvex optimization, «Mathematics of Operations Research», 1 (1976), 225-245.
- [2] S. Dolecki, S. Kurcyusz, On Φ -convexity in extremal problems, SIAM Journal on Control and Optimization 16 (1978), 277-300.
- [3] J.-J. MOREAU, Inf-convolution, sous-additivité, convexité des fonctions numériques, Journal de Mathématiques Pures et Appliquées, 49 (1970), 109-154.
- [4] J. Ponstein, Approaches to the Theory of Optimization, Cambridge University Press, Cambridge (1980).
- [5] S. ROLEWICZ, On general theory of linear systems, Beiträge zur Analysis 8 (1976), 119-127.
- [6] I. SINGER, Some new applications of the Fenchel-Rockafellar duality theorem: Lagrange multiplier theorems and hyperplane theorems for convex optimization and best approximation, Nonlinear Analysis, Theory, Methods and Applications, 3 (1979), 239-248.
- [7] I. SINGER, Conjugation operators, in: G. Hammer and D. Pallaschke eds., «Selected Topics in Operations Research and Mathematical Economics», Lecture Notes in Economics and Mathematical Systems 226, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo (1984), 80-97.
- [8] I. SINGER, A general theory of dual optimization problems, Journal of Mathematical Analysis and Applications 116 (1986), 77-130.
- [9] I. SINGER, Abstract subdifferentials and some characterizations of optimal solutions, Journal of Optimization Theory and Applications 57 (1988), 361-368.

Received June 29, 1990

Juan-Enrique Martínez-Legaz

Department of Applied Mathematics and Analysis

University of Barcelona

08071 Barcelona, Spain

Ivan Singer
Institute of Mathematics of the Romanian Academy
P.O. Box 1-764
70700 Bucharest, Romania