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0. INTRODUCTION

The thcory of superconvex spaces has been developed over the past fifteen years in the circle
of the first-named author in Saarbriicken; in particular fundamental contributions are due to
Gerd Rodé [7] [8] and Norbert Kuhn. It is an abstract theory on the formation of countable
convex combinations, with the primary purpose to extend and to reinforce the power of a
technique due to Stephen Simons, the roots of which date back to R.C. James and J.D. Pryce.
We refer to 1ts systematic presentation in [1], with the subsequent new versions of the main
theorems in [2]. We adopt the basic notions and facts on convex and superconvex spaces from
[1] Section 1, which for the sake of completeness will be summarized in §1 below.

There are certain classes of natural examples of convex and superconvex spaces. The
present paper 1S devoted to the problem whether and when a convex or superconvex space
(X,I) can be identified with some member of such a class, and thus also to explore the
relations between these classes.

The relevant kinds of morphisms are quite obvious: For convex spaces (X, I) and (Y, J)
amap J: X — Y iscailed a c-map iff

1 —t ¢ 1 —t ¢
1&(1( ] U))=J(ﬁ(u) ﬂ(u)) Vu,v€ X and 0 <t < 1;

It 1s equivalent to require that

1-9 (I?:(tiimﬁ)> - E;;: (tiiﬁ(:ﬂi)) Vt — (tl)f - Pand z = (I£)£ - Xm

Then 9(X) C Y is aconvex subset of Y. If in addition ¥ : X — Y is bijective then the
inverse map 9=! : X « Y is ac-map as well; in this case 4 will be called a c-1somorphism.
Likewise for superconvex spaces (X, ) and (Y,J) amap ¥ : X — Y is called an sc-map
iff

’ @““Ii)) } : (t,9(z)) Vt=(t), €Qand z=(z) € X

Then 9(X) C Y is a superconvex subset of Y. If in addition ¥ : X — Y is bijective then
9! : X « Y is an sc-map as well; in this case 9 will be called an sc-isomorphism. We
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mention one more obvious fact: If 4 : X — Y is a c-isomorphism between the convex
spaces (X, I) and (Y, J), then the superconvex extensions § : Q x X* — X of [ and
T :QxY® — Y of J are in one-to-one correspondence via the condition that ¥ be an
sc-isomorphism between (X, S) and (Y, T).

We shall start with the convex spaces. The standard example of a convex space 1s a non-
void convex subset Y C FE of areal vector space E with its natural convex structure

C:C(t,z) =) tz, Vt=(t) €Pand z=(z), €Y,

=1

Thus a convex space (X, I) 1s c-isomorphic to some such standard example (Y, C) 1itf there
exists an injective c-map ¢ : X — FE 1nto a real vector space E. We shall see 1n §2 that
this holds true iff ( X, I') satisfies the cancellation law introduced in [1] Section 3, defined to
mean that

1 —t ¢ 1 -t ¢
I( >=I( >=>-u=u Ya,u,ve X and 0 <t < 1.

a U Q v

An equivalent condition is that the set Aff (X, I) of the affine functions f : X — R
separates the points of X. The proof will be based on an algebraic standard procedure.

We pass to the superconvex spaces. Let us define a nonvoid convex subset Y C E of
a real vector space FE to be superconvex iff its natural convex structure C can be extended
to some superconvex structure SC : Q@ x Y*® — Y on Y. It 1s quite clear that such a
superconvex extension does not exist for all nonvoid convex Y C FE; in particular in case
dim F < oo it will exist iff Y is bounded (in the pairwise equivalent norms on E') . It follows
that a superconvex space ( X, I) is sc-isomorphic to some such standard example (Y, SC)
iff its convex restriction (X, I|P x X *°) is c-isomorphic to some convex standard example
(Y, C) as above, thatis iff X, I|P x X*) satisfies the cancellation law.

Now a basic uniqueness theorem due to Rodé€ [8] asserts that a superconvex subsetY C E
of a real vector space F' carries a unique superconvex structure SC which extends its natural
convex structure C. Itis because of this uniqueness that the superconvex subsets ¥ C E form
a basic class of superconvex standard examples (Y, SC). In view of §2 below an equivalent
statement 1S that a convex space (X, I) which satisfies the cancellation law admits at most
one superconvex structure which extends 7. This 1s the uniqueness result [1] Theorem 3.1
which appeared to be more comprehensive. However, the benefit of [1] Section 3 1s that it
isolates [1] Lemma 3.4 as the main step in the proof of the uniqueness theorem. In the present
paper this lemma will be a basic component in the first proof of our main result of §4 below,
which in its turn will be decisive for the rest of the paper. It asserts that, on a superconvex
space ( X, I) with the cancellation law, the set BAff ( X, I) of the bounded f € Aff (X, I),
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which happen to be the superaffine functions f : X — R, separates the points of X. Besides
the first proof, which leans on some basic points of the convex and superconvex theories, we
shall present a second proof of this result which can be done with bare hands. Let us note that
the main result of §4, and hence 1n particular its direct second proof, permits to reprove the
basic uniqueness theorem. In §3 we isolate certain simple preliminaries on convex subsets of
real vector spaces.

Besides the notion of a superconvex set one considers another kind of standard example
of a superconvex space, which appears to be of a more concrete character. This is, in a real
vector space E equipped with a Hausdorff vector-space topology &, anonvoid subsetY C E
which is o-convex in &, defined to mean that

00
Etzmz converges in 2 to some member =: [(t,z) €Y
I=1

YVt = (t;)z - Q and z = (II)I € Y.

Then Y is convex,and themap I : Q x Y* — Y thus defined extends the natural convex
structure C of Y. We shall see in §1 that a nonvoid subset Y C E is o-convex in < iff
it is superconvex and bounded in 7, and that then [ is the natural superconvex structure
SC of Y. The problem arises to characterize those superconvex spaces (X, I) which are sc-
1isomorphic to some standard example of the new kind. In view of the former results, this
amounts to characterize those superconvex subsets Y C E of a real vector space E which
are g-convex in some Hausdorff vector-space topology % on E. Thus our natural problem
18, for a superconvex subset Y C FE of areal vector space E, to characterize those Hausdorff
vector-space topologies . on E in which Y is o-convex.

The latter problem has a comprehensive and pleasant solution. Let Y C FE be a super-
convex subset of a real vector space E. First note that if Y is o-convex in a Hausdorff
vector-space topology < on FE then the same is true in each weaker % C Z of equal
sort, Now-assume that Lin(Y) = FE. Then our main theorem in §5 states that there exist
topologies & as required, and that there is an (of course unique) maximum such one .4
which is a Banach-space topology on E and is obtained as follows: The circled convex hull
Z:=conv(Y U(-Y)) C EofY is absorbent, and thus its Minkowski functional || - || is a
seminorm on . It turns out that || - || is a complete norm on F, and that its topology . is
the desired maximum Hausdorff vector-space topology on E in which Y is o-convex. The
hardest point in the proof is that || - || is in fact a norm; this requires our main result of §4
quoted above.

In the above situation the open mapping thecorem implies that the topology .# of the
complete norm || - || is the unique Banach-space topology on E in which Y is o-convex.
Also note that on a real vector space E the existence of a superconvex set Y C E with
Lin(Y) = F is equivalent to the existence of a complete norm || - || on E.



346 ' Heinz Kénig, Gerd Wittstock

In conclusion we fix a real vector space E and ask for superconvex sets Y C FE with
Lin(Y) = E and complete norms ||| -||| on E such that Y is not o-convex in ||| -|||. In case
dim F < oo ail superconvex subsets Y C E are o-convex in the unique Hausdorff vector-
space topology on E. Thus we assume F to be infinite-dimensional. Now one observes that
on each infinite-dimensional Banach space ( E, || - ||) there exists an abundance of complete
norms ||| - ||| which are non-equivalent to || - || and to each other. In fact, fix a Hamel basis
B of E, and form for each function ¢ : B —]0, oo[ the unique linear map T,: E—E

with Tw” = p(u)u Yu € B, so that Tw 18 bijective and T is the identity map. Then
I ”w : ”I”w = |[T,z|| Yz € E is a complete norm on E; and for p,¢ : B —]0,00(
the estimation || - ||, < c|| - ||, with ¢ > O implies that ¢ < cp. We refer to Laugwitz [4]
[5] where this idea has been carried further in order to obtain the cardinality of the set of all
Banach-space topologies on E.

Thus if Y C E 1s superconvex with Lin(Y') = E and || - || is its natural complete norm,
then Y is not o-convex in any of the complete norms ||| - [|| on E which are non-equivalent
to ||-{|. On the other hand we obtain, in any infinite-dimensional real Banach space ( E, ||-|)),

in form of the open and closed balls with respect to the non-equivalent complete norms ||| - |||
on E, myriads of superconvex sets ¥ C E with Lin(Y) = E which are not o-convex in

1. CONVEX UND SUPERCONVEX SPACES

We summarize the basic notions and facts from [1] Section 1, with a few additions. Let Q)

OO

consist of the sequences ¢ = (t,), of real numbers t, > 0 VI € N with EtI =1, and P of
I=1

the ¢t = (¢;), in Q with ¢, = 0 for almost all [ € N . For a nonvoid set X let X consist

of the sequences x = (x,), of elements z; € X VI € N. A superconvex structure on X is
defined to be a map

[:Q xX*® — X, written I(t, z) = T(ti,zj) = I(tl mt“’”),
=1 Ty ...T_ ...

with the properties

D T (43 @=) =] Lttt | weqmareqwen:
p=1

oo

note that this makes sense because Etptp, 1s1n (). A convex structureon X is defined
p=1 ]

tobcamap [/ : P x X* - oo with the respective properties 1) 2). Then (X, ) is called a
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superconvex resp. convex space. The axioms 1) and 2) permit to a wide extent to handle the
operation I like conventional convex combinations. In particular one deduces that ¢, = O
for an [ € IN 1mplies that I(¢, z) is independent of z; € X ; thus we can write

(et (tets 00
T,...T ) Ty...T k...

for tl...,t;‘ > 0 with Et; = 1 and z,,...,z, € X, where x x ... denote arbitrary

elements of X.

In a convex space (X,I) asubset A C X iscalled convexiff I(t,z) € A forallt € P
and z € A®™. In a superconvex space (X,I) asubset A C X 1s called superconvex iff
I(t,z) € Aforallt € Q and z € A™.

Let (X, ]) beaconvex space. A function f : X — R 1is called convex iff

u

f(f(l_t i)) <(1—=1)f(u)+tf(v) Vu,veXand 0<t<1;

it 1s equivalent to require that

FU,2) <) 4f(z) Vi=(t),€Pand z=(z) € X™.

=1

And f : X — R is called concave resp. affine iff the above holds true with > resp. =.
Note that 1n the present paper we shall not need functions with infinite values. Let Aff( X, I)
consist of the affine functions f : X — R, and BAff (X, I) of the bounded functions
feAff(z,I).

As an important example we transfer the notion of the Minkowski functional to the context
of convex spaces. We shall not need but the particular case of the Minkowski functional
¢, - X — [0, 1] relative to the entire space X and to a base point ¢ € X; it is somewhat
simpler than its counterpart relative to a nonvoid convex subset A C X and to a base point

a € A (in the usual real vector space situation the base point will be a = 0). The definition
1$

1-t ¢
tﬁu(I)Z:Iﬂf{O{ti:l!IEI( )} Vr € X;
a X

note that with 0 < ¢ < 1 each number in [, 1] is as required. This function appeared in [1]
Section 3 under the notation ¢ (z) = e(a,z) Va,z € X.
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Proposition 1.1. For a € X the function ¢, : X — [0,1] is convex.

Proof. It suffices to prove that

$.(z) < (1 =XN)p,(u) + 2 ,(v)foru,ve Xand 0 < A < I'with z := I(l -2 A).

U v

Fix 0 < s, t < 1 such that

1 — ' 1—t t\
u=I( > S) andu=I( )wuhp,qEX,
q

a D a

andput p:= (1 —=MX)s+ At; thus 0 < p < 1. Then
1 — ) A \
= 1 — ] —
=1 I( 3 3) I( t t)
a P a g /
I((I—}\)(I—-s)+)\(1~t) (1 —MX)s At)
a P q

Il

-
i—

I

1 1
1 — (1 — _
I( P p) with z:= 1| 507N 22 | e x.

a z
1% q

It follows that ¢, (z) < p and hence the assertion.
Now let (X, I) be a superconvex space. A function f : X — R is called superconvex

iff

FU@D)) <Y tf(z) VE=(t),€Qand z=(z,), € X
=1

such mqt ( f(z I)) ; is bounded above; note that then the infinite series involved converges in
[—00,00[ and hencein R . Wecall f : X — R superconcave iff — f is superconvex, and
superaffine iff both f and — f are superconvex. Let SAff (X, I) consist of the superaffine
functions f: X - R.

We recall from [1] Remark 1.9 that

1) a convex function f : X — R which is bounded above is superconvex, and ii) a
superconvex function f : X — R 1s bounded below; hence

1) aconcave function f : X — R which is bounded below is superconcave, and ii) a
superconcave function f : X — R is bounded above.

Therefore a function f : X — IR 1is superaffine iff it 1s affine and bounded; in other words
SAft (X,I) = BAff (X, ]).

In conclusion we recall [1] Example 1.6 to take a first 100k at the o-convex sets.
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Proposition 1.2. Let F be a real vector space and & be a Hausdorff vector-space topology
on E. For a nonvoid subset Y C E the following are equivalent.

1) Y is o-convexin &.

2) Y is superconvex and bounded in & .
In this case

[:1(t,z) =) tz,:= lim

n—00
=1

Y 4z, Vi=(t),€Qand x=(z), €Y™
=1

is the unique superconvex structure on Y which extends its natural convex structure C.

Proof of 1) = 2). It has been shown in [1] Example 1.6 thatthe above [ : Q X Y*® — Y
is @ superconvex structure on Y'; we remark that this can be done in a more natural manner
without the use of the Banach-Steinhaus theorem.

Proofof 2) = 1). Assumethat T : () x Y — Y is a superconvex structure on ¥ which
extends its natural convex structure C. Let t = (¢;); € Q \ P and z = (z;); € Y. For
ne N we put

oo 1

T, = E t;,>0and 2z, := T <_t£=53:) €Y.

[=n+1 I=n+1 Tn

Then
T(t,z) =T bt T = _5_ tyz; + 7,2,
Ty...T, 2, — non

Now 7.z — O for n — oo in & since Y is bounded in . The assertion follows.
Note that this time we did not use the uniqueness theorem of Rodé€.

Furthermore we recall from [1] Example 1.6 the particular classes of o-convex sets which
follow.

Remark 1.3. 1) Let E be a finite-dimensional real vector space and % be the unique Haus-
dorff vector-space topology on E. Then each nonvoid convex subset Y C FE which i1s
bounded in & is o-convex in . 2) Let (E,|| - ||) be areal Banach space. Then each open
or closed nonvoid bounded convex subset Y C E is o-convex in || - ||.

2. THE EMBEDDING THEOREM

The aim of the present section is the theorem which follows.



350 Heinz Konig, Gerd Wittstock

Theorem 2.1. For a convex space (X, I) the following are equivalent.
1) There exists an injective c-map ¥ . X — FE into a real vector space E.
2) Aff (X, I) satisfies the cancellation law.

3) (X,I) satisfies the cancellation law.
In this case it can be achieved that E = Lin(9(X)) #Lin(#( X) — 9(X)).

Proofof1) = 2). For u,v € X with u# v we have ¥(u) # J(v). Thus there exists ¢ € E*
with p(9(u)) # p(9(v)). Then f := po ¥ isin Aff( X, I) and fulfills f(u)# f(v).

Proofof 2) = 3). Assume that a,u,v € X and 0 < t < 1 are such that

1—t t 1 -t ¢
(00 )=l
a i a v
For f € Aff (X,I) then

a-of@sese =£ (170 D)) =s (117 1)) = a-os@etso,

and hence f(u) = f(v). From 2) we obtain u = v.
The proof of 3) = 1) will be based on an algebraic standard procedure of folklore char-
acter. It will be formulated below without proof in the appropriate version.

Algebraic Lemma 2.2, Assume that the nonvoid set H is equipped with
1) an associative and commutative addition + : H x H — H which fulfills the cancel-
lationlaw (=) :a+u=a+v=>u=vVa,u,v € H;
2) a scalar multiplication 10,00 xH — H : (s,x) v 8x with the properties
i) le=x2 Vze H,
ii) (s+t)x=sx+tzxand (st)z = s(tzx) Vs,t >0 and z € H,
iii) s(u+v)=su+svVs>0 and u,v e H.
Then there exists an injective map A : H — FE into a real vector space E such that

A(u+v)=A(u) +A(v) and A(su) = sA(u) Vs > 0 and u,v € H.
It can be achieved that
(0) E={A(u) —A(v):u,v € H}.
If (0) is fulfilled then for each map ¢ : H — F into a real vector space F such that

o(u+v) =p(u)+ e(v) and p(su) = sp(u) Vs>0 and u,ve H
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there exists a unique linear map ¢ : ¥ — F which satisfies p = ¢ o A.

From the last assertion one obtains as usual the canonical uniqueness of A : H — E
under the condition (0).

Proof of 3) = 1) and of the final assertion. 1) On the product set H :]0, co[ xX we define
an addition +: H x H — H tobe

3 t O\

(s,u) + (t,v):=|s+t,I| s+t s+1
U v

One verifies that + 1s associative and commutative, and that it satisfies the cancellation law
(—) as aconsequence of assumption 3). Then we define a scalar multiplication ]0,co[zH —
H tobe t(s,z) := (ts, ). The properties 1) i1) 1i1) in 2.2.2) are immediate. Thus 2.2 furnishes
an injective map A : H — FE into areal vector space £ such that

A((s,u) +(t,v)) =A(s,u) + A(t,v) V(s,u),(1,v) € H,
A(t(s,x)) =tA(s,z) Vt>0and (s,7) € H,

and E = {A(s,y) — A(t,v) : (s,u),(t,v) € H}. ii) We define an injective map 0 : X —
H tobe 0(z) := (1,z) Vz € X. Then the composition ¥ := A o € is an injective map
J: X — E. Wehave 9(z) = A(1,x) and hence

t9(z) =tA(1,2) =A(t(1l,2)) =A(t,z) Vi>0and z € X.
Thus ¢ 1s a c-map since for u,v € X and 0 <t < 1 we have

(1 —1)0(u) +19(v) = A(1 —t,u) + A(t,v) =

=A((1—-tu)+(tv)=A (1’I<1 L t)) =13<I<1ﬁt t>>
U v u v

1) We defineamap ¢ : H — R tobe ¢(s,z) = s. By the definition of the operations in H
it 1s as required 1n the final part of 2.2. Thus 2.2 furnishes a linear functional ¢ € E* which
satisfies ¢ = ¢ o A, that means

s=¢(A(s,z)) V(s,z) € H=]0,00[xX.

In particular ¢ (9(z)) = ¢(A(1l,z)) = 1 Vzr € X. Thus ¢|9(X) = 1 and hence
¢| (9(X) —9(X)) = 0. It follows that

E = {s¥9(u) —t9(v) : s,t > 0and u,v € X} = Lin (J(X)) is # Lin (9(X) — 9(X)) .

The proof is complete.
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3. PRELIMINARIES ON CONVEX SETS IN REAL VECTOR SPACES

In the present section let Y C E be a nonvoid convex subset of a real vector space E. Then
Lin(Y —Y) C Lin(Y) with

Lin(Y) ={su—tv:s,t >0 and u,v €Y},

Lin(Y - Y)={s(u—v):8>0and u,ve Y}

We have to distinguish between the two cases (=) Lin(Y —Y) = Lin(Y") and (#) Lin(Y —
Y)#Lin(Y).

Lemma 3.1. For each affine function f € Aff (Y) there exists a unique ¢ € (Lin(Y))*
Such that
const = c€ R incase (=) }

fhwlyz{{] in case ( #)

Proof. 0) The uniqueness assertion is clear in both cases. i) There exists a unique function
¢ :Lin(Y —Y) — R such that

p(s(u—v))=s(f(u) —f(v)) Vs>0and u,vey.
In fact, the uniqueness of ¢ 1s obvious. In order to see its existence let
si(u; —v;) =8,(uy —vy) with 5, >0 and u;,v, €Y (l=1,2);

then

1 1 1 ] :
<51t + TSV = T8 + ZS1v = r€Y with s:=s5,+5s, >0,

1 1 1 1
f(z) = ;-Slf(TL1) + ;'Szf(uz) = ;Szf(ﬂ-z) + 551)((”1):

sy (FCuy) = f(v))) = 85 (fluy) = f(vy))

sO that the assertion follows. 11) Onc verifics that ¢ € (Lin(Y — Y'))™ . 11i) Assume (=). For
u,v € Y then ¢(u) — ¢(v) = ¢(u —v) = f(u) — f(v), or f(u) —¢(u) = f(v) — ¢(v).
Thus ¢ := ¢ is as required. iv) Assume (#) and fix a € Y. It is obvious that Lin(Y) =
(Ra)) ®Lin(Y —Y). Let ¢ € (Lin(Y))™ be the extension of ¢ with p(a) = f(a). For
z €Y then p(z) = pla)+p(z—a) = f(a)+Pd(z—a) = fla)+(f(z) — f(a)) = f(z).

Thus ¢ 1s as required.
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Consequence 3.2. Incase (#) the restrictionmap (Lin(Y))* — Aff(Y) : o — p|Y isa
bijection. In particular there exists a unique o € (Lin(Y))* such that a|Y = 1; it satisfies

Lin(Y —Y) = {z € Lin(Y) : o(z) = 0}.

Proof. In the last assertion we have C, and hence = since Lin(Y — Y) C Lin(Y) has
codimension one.

Lemma 3.3. The following are equivalent. 1) BAff (Y') separates the pointsof Y. 2) {p €
(Lin(Y))* : p|Y bounded} separates the points of Lin(Y').

Proof. 2) = 1) is obvious. In order to prove 1) = 2) fix a nonzero z € Lin(Y). We
have to find ¢ € (Lin(Y"))” such that |Y" is bounded and ¢(z)# 0. If z ¢ Lin(Y - Y)
then we have (#), and ¢ := « as obtained in 3.2 does it. If x € Lin(Y — Y) and thus
z=s(u—v) with s > 0 and u,v € Y with u# v, then by assumption there is a bounded
f € Aff (Y) with f(u)# f(v). Thus ¢ € (Lin(Y))" as obtained in 3.1 has a bounded
restriction @Y and satisfies p(z) = s (p(u) — p(v)) = s(f(u) — f(v)) #0.

The next proposition introduces the candidate || - || for the rdle prophesied in the Intro-
duction.
Proposition 3.4. Assume that Lin(Y') = E. Define || -|| : E — [0, 0o[ to be

llz|| ;=Inf{s+t:z2=su—tvwiths,t >0andu,veY} Vz€E.
Then 1) || - || is a seminorm on E. 2) For ¢ € E* we have
Sup{|p(z)|: z € E with ||z]| < 1} = Sup{lp(z)|: s € Y}
In particular || < || - || if |e|Y| < 1, and hence by the Hahn-Banach theorem
|z|| = Max{|e(z)|: ¢ € E* with |p|]Y|< 1} Vz€E.

3) The circled convex hull Z := conv(Y U (=Y)) of Y is absorbent. And || - || is the
Minkowski functional for Z; that means

|z||=Inf{A >0:2€XZ} VzeeE.
Proof. 1) is obvious. 2) For ¢ > 0 therelation |¢| < ¢l| - || or ¢ < || - || means that

sp(u) —to(v) =p(su—tv) <c(s+t) Vs,t>0and u,vev.
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But this is equivalent to |p(z)| < cVz €Y. 3)Letz € F and z = su — tv with s, > 0
and u,v € Y. Then

8 1
U
s+ 1 S+ 1

:z:=(3+t)< u) €E(s+1t)2.

Thus Z 1s absorbent. Let ¥ : F — [0, oo[ be the Minkowski functuonal for Z. Then the
above shows that 9(z) < s+t; hence ¥(z) < ||z|| Vz € E. Inorder tosee ||z|| < 9(z) fix
z € E and A > 9(z). Then z € \Z or z = A(su — tv) forsome s,t > 0 with s+t =1
and u,v € Y. For € > 0 we have

Su + EV
3+ E

m=,\((s+s) (t+5)u)';

hence by definition ||z]| < AM(s+€) + AM(t+ €) = AM(1+ 2¢). It follows that ||z|| < 9(=z).

3.5 Addendum to 3.4. Assume that Lin(Y) = E. If BAff (Y') separates the .pafnrs of Y
then || - || is a normon E.

Proof. Combine 3.4.2) with 3.3,

4. THE SEPARATION THEOREM

The primary purpose of the present section is the basic theorem which follows. We shall
present two proofs.

Theorem 4.1. Let (X, I) be a superconvex space which satisfies the cancellation law. Then
SAff (X, I) = BAff(X,I) separates the points of X.

The first proof leans on some basic points of the abstract convex and superconvex theories.
On the one hand, one specializes the abstract Hahn-Banach theorem due to Rodé [6] [3] to
obtain the adequate version for convex spaces.

Hahn-Banach Theorem 4.2. On the convex space (X,I) let G : X — R be concave
and H : X — R be convex with G < H. Then there exists an f € Aft (X,I) such that
GLfLH

On the other hand, we adopt from [1] Lemma 3.4 the basic result below on the extended
Minkowski functional as introduced 1n §1, the proof of which has been quite technical.

Lemma 4.3. Let (X,I) be a superconvex space with the cancellation law. Assume that
u,v € X are such that ¢ (a;) — 0 and ¢ (a;) — O for some sequence (a;), in X. Then
u=uv.

First proof of 4.1: Fix u,v € X with u# v. By 4.3 then
d:=Inf{¢ (z)+¢(z) :z2€X}>0.
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By 1.1 the function &G := d — ¢, is concave and the function H := ¢, i1s convex, and we
have G < H. By 4.2 there exists an f € Aff (X, I) suchthat G < f < H, and hence f is
bounded. Now

flu) > G(u) =d—-¢,(u) =d>0, f(v) <H(v)=¢,(v) <0,

and hence f(u)# f(v). The proof is complete.

We pass to the second proof of 4.1. The basic observation is that part of the later results
in §5 can be proved with bare hands, and at the same time via 2.1 suffice to obtain 4.1. This
will be carried out in the two lemmata below; the first one will on purpose be done without
reference to the uniqueness theorem of Rodé.

Lemma 44. Let Y C E be a nonvoid convex subset of a real vector space E such that
Lin(Y — Y) #Lin(Y'). Then each superconvex structure L - Qv ¥ — Y onY whith
extends its natural convex structure C can be extended to some J . Q X 4% — Z of equal
sort on the circled convex hull Z = conv(Y U(-=Y)) of Y.

Proof. 1) Fix A = (X)), € Q and z = (z;); € Z*. For a fixed sequence of representations
T; = s;u; — tv, where s;,t; >0 with 5;+¢,=1and u,,v, €Y Vi€ N

we form

o0 OO
8 = E)«ISI and t := E}‘Itir sothat s, >0 with s+1t=1,
=1 =]

1

o (1

Then z := su — tv € Z. We assert that the resultant 2 € Z is independent of the sequence
of representations it started from. In fact, if

T, = sju; — tyv; where sj,t; > 0 with s;+ ¢; =1 and u,v, €Y VIEN

18 another such sequence, then application of the functional a € (Lin(Y))* obtained in 3.2
leads to s; — t;, = s; — t; and hence to s; = s; and ¢, = ¢; thus
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By [1] Rule 1.4 for superconvex structures

oo 00 A At t
T Opw) = 1 (xg(sf tﬁ,)) - I( i *f) - 1(5 ) - su+tv,
=1 =1 'U-I UI UI UI . uv

[>1 1>1
and likewise = su’ + tv. Thus su — tv = su’' — tv' = s'u’ — t'v/, as claimed. Therefore we
have a well-definedmap J : Q x Z°° — Z. 2) Incase A € P we have

oo o0 o0
Su = E As;u; and tv = E M\itv;, and hence z = z AT
I=1 =1 I=1

Thus J extends the natural convex structure C of Z. 3) Incase x = (z;); € Y™ we can
take s; = 1 and ¢t; = 0, u; = z; and v; arbirary € Y VI € N. Then z = v = I(A,z).
Thus J extends the superconvex structure I on Y. 4) It remain to show that J 1s mdeed a
superconvex structure on Z. This is another routine verification as before, and will not be
carried out 1n detail.

Lemma 4.5. Let the subset Z C E of the real vector space E be circled convex and ab-
sorbent. If Z is superconvex then the Minkowski functional || - || : E — [0,00[ for Z isa
norm on K.

Proof. Let z € E with ||z|| = 0; we have to show that z = 0. By definition z € tZ Vt > 0,
thus 2°z € Z VIl € N. Define z := [ (2~} 2'z) € Z. Then on the one hand
=1

1 1
1 1 _ 2_1\ o© I Al-]
sa+zz=I102 2 |=I{2 2 = 127t 211,
I=1
T T 2£:1:/
[>1
and on the other hand
11 - Lo-b g
0+—z2=I1[2 2 |=1(2 2 = T(27 21y,
° ’ 0 2 0 2z -
[>1 [>1

It follows that x = 0, as claimed.
We come to our second proof of 4.1, based on 4.4 and 4.5 (and on 2.1) as announced In
the Introducuon.
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Second proof of 4.1: Let (X, S) be a convex space which satisfies the cancellation law,
andlet 7 : Q x X®° — X be a superconvex structure on X which extends S. By 2.1 the
convex space (X ,S) admits an injective c-map ¢ : X — E into areal vector space E such
that Y := 9(X) C E satisfies E = Lin(Y)#Lin(Y —Y). Then Y C E 1s a superconvex
set, and carries a superconvex structure [ : Q x Y*° — Y which extends its natural convex
structure C and is such that 4 is an sc-map with respectto 7" and 1. By 4.4 I canbe extended
to some superconvex structure J : QX Z2®° — Z on Z = conv((Y U(-Y)) which extends
the natural convex structure C of Z. By 3.4.3) Z is absorbent, and by 4.5 the Minkowski
functional || - || for Z isanormon E. Now Y C Z is contained in the closed unit ball of
(E,||-|]). Thus the functionals ¢ € E' C E* produce bounded affine functions on Y, and by
the conventional Hahn-Banach theorem their collection separates the points of Y. It follows
that {p o ¥ : p € E'} C BAFf (X, S) separates the points of X. This proves 4.1.

Remark 4.6. We assert that the basic uniqueness result 1s an immediate consequence of 4.1.
In fact, assume that (X, I) is a convex space with the cancellation law, and that S and T' are
superconvex structures on X which extend I. For t = (t;); € Q and z = (zx;); € X* let
u:=S(t,z) and v :=T(t,z). Thenfor f € SAff (X,S) = BAff (X,S) = BAff (X, ]) =
BAff (X, T) = SAff (X, T) we have

f(u) = "t f(z) = f(v).
I=1

Thus © = v by 4.1. It follows that S = T..

5. SUPERCONVEX SETS AND o-CONVEX SETS

Theorem 5.1. Let Y C E be a superconvex subset of a real vector space E such that
Lin(Y) = E. Then the Minkowski functional || -|| for Z := conv(Y U(~-Y")) isa complete
normon E.

Proof. 1) We combine 4.1 applied to (Y, SC) with 3.5 to conclude that || - || is a norm
on E. 2) In order to prove that || - || is complete consider a sequence (z;), in E such that

v & o0
E”I |l < 0o. We have to show that Ezz s convergentin (E, ||-|[). We fix representations

=1 =1

o0
z; = s;u; — tyv, With 5,1, > 0 and u;,v; €Y such that ) “(s;+ ;) < oo
[=1
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Then with
oo o0 o0 OO
s:=Es;>Uandt:=Etl:>0, g, = E 8;>0and 7, := Et;::r{]
I=1 =1 I=n+1 l=n+1
we form
Sy [ 1 oy 7 1
u: =.§;1 (‘;SI,UI)EY and wv: =§=1 (+t,v) €7,
a, P Iﬁ;g (E:SI,UI) c Y and bn . = £=ﬂg (;:ti,ﬂz) - Y V’HE N.
It follows that
1 1 1\ " ,
"'"'Sl PR _S — g
u=5C1| s s " 8 " |= E ZSiU + —0,a,,
u’l u‘n uﬂ / =1
lt lr, : ~1 1
- cen = -,
V= SC t l t m i " — E ?tIUI-}' ?Tnbn‘-f
U] U“ bﬂ =1

and hence

"N
su—1tv= Eml + 0,0, — T,b,,

=1
n
E‘TI _ (Su —tv)| = ”ﬂ'ﬂ{l“ _ Tnbn” < Tp + Tpy
=1

since Y C Z is in the closed unit ball of (E, || - ||). The assertion follows.
Before we proceed further we insert the next consequence which is natural after 4 4.

Consequence 5.2. Let Y C E be a superconvex subset of a real vector space E. Then its
circled convex hull Z := conv(Y U(=Y)) C FE is superconvex as well.

Proof. We can assume that Lin(Y) = E. Fix A = (X)), € Q and z = (z;); € Z°, and let
I;"—'—' SIH'I _tIUI Whel‘ft SE"tI :_> D ‘Wll.h 3;"‘ t; = ]. Eind U'I"UI - YVZ - N

As earlier we form

oo o0
8= E/\IBE and t := E}qt;, sothat s, >0 with s+t =1,
=1 I=1

o /1
U= SG(;}.IS;,UI) eY1f s>0and u €Y arbitrary if s =0,

o (1]
V= .IS’(ID' (E—)}ItE,UJ ceYift>0and veY arbitrary if t = 0.
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=) o0
By 5.1 and 1.2 the series E}‘ESIU’E and E)'Etﬁ'”.{ converge in || - || with sums su and tv;
=1 =1

oo

hence E Az, converges in || - || with sum su — tv € Z. Therefore Z is o-convex in || - ||
=1

and thus superconvex.

Theorem 3.3. Let Y C E be a superconvex subset of a real vector space E such that
Lin(Y') = E. Let || - || be the Minkowski functional for Z := conv(Y U(=Y")) and 4 be
its norm topology on E. Then for any Hausdorff vector-space topology & on E we have

Y iso-convexin ¥ & 9 C 4 .

Thus by the open mapping theorem A is the unique Banach-space topology on E in which
Y is o-convex.

Proof. <) By 5.1and 1.2 Y is o-convex in .# , and hence o-convex inany & C 4 . =)
Let U C E be a 0-neghbourhood in &, and take anotherone V C F suchthat V -V C U
andtV C V for 0 <t < 1. Byl.2thereexists A > 0 suchthat Y C AV. Now consider a
point z € E with ||z|| < 1. Then z = su —tv with 0 < s,t < 1 and u,v € Y. It follows
that su € sAV C AV and tv € tAV C AV, and hence z € A\V — AV C AU. Thus the open
unit ball of ( E,|| - ||) is contained in AU. It follows that 9 C . .

Special case 5.4. Let E be a finite-dimensional real vector space and & be the unique Haus-
dorff vector-space topology on E. For a nonvoid Y C E the following are equivalent.

1) Y is superconvex.

2) Y isconvex and bounded in &.

3) Y is o-convex in &
Proof. We'have 1) = 2) by 5.1 appliedtoLin(Y) C E, and 2) = 3) by 1.3.1).

At this point we have obtained the results announced in the Introduction. We add one
more consequence; it 1ooks innocent but does not seem to be accessible without the results
developed so far.

Remark 5.5. Let A, B C FE be superconvex subsets of a real vector space E such that
A C B. Then the natural superconvex structure SC : @ x A*® — A of A is equal to the
natural superconvex structure SC : (Q x B® — B of B restricted to QQ x A.

Proof. We can assume that Lin(B) = FE. Let || - || be the Minkowski functional for Z :=
conv(BU(—B)). By5.1and 1.2 then A and B are o-convex in the topology of || - ||; thus
the assertion follows from 1.2.
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In conclusion we return to the problem of the identification of a superconvex space ( X, I)
with members of our two classes of standard examples. We can summarize our results from
1.2,2.1,3.2and 3.4, 4.1 and 5.1 as follows.

Theorem 5.6. For a superconvex space (X, I) the following are equivalent,

1) (X,I) satisfies the cancellation law.

2) Aff (X, I) separates the points of X .

3) SAff (X, I) = BAff (X, I) separates the points of X .

4) (X, I) is sc-isomorphic to some superconvex subsetY C FE of a real vector space E.

5) (X, 1) is sc-isomorphic to some o-convex subset Y C E of a real vector space E
equipped with a Hausdor(f vector-space topology & .

6) (X, I) is sc-isomorphic to some o-convex subset Y C E of a real Banach space
(E,||-|) suchthat E = Lin(Y)#Lin(Y - Y).

In this case let ¥ : X — FE be an injective c-map of (X, ) into a real vector space
E suchthat Y = J(X) C E fulfills E = Lin(Y)#Lin(Y —Y), and let || - || be the
complete norm on E which is the Minkowski functional for Z := conv(Y U(-Y)). Then
the ransposed map
E* - Aff (X, ]):pr— fi=pod

is a bijection, and induces a bijection
E' — SAff(X,I) =BAff (X, ) : o fi=pod

which is isometric in the sense that ||p|| = || f|| := Sup{|f(z)|: z € X}.
Let us also note the characterization consequence below which, however, does not require
our full results.

Proposition 5.7. For a convex space (X, I) the following are equivalent.

1) BAff (X, I) separates the points of X .

2) (X, 1) is c-isomorphic to some convex subset of a superconvex space which satisfies
the cancellation law.

3) (X, I) isc-isomorphic to some bounded convex subset Y C E of areal Banach space

CE, [l -1D

Proof. In order to obtain 1) = 3) it suffices to combine 2.1 with 3.5. The rest is obvious.
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