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A GLIMPSE AT ISOALGEBRAIC SPACES 

ROLAND HUBER, MANFRED KNEBUSCH 

Dedicated to the memory of  Bofessor Gottfned Kothe 

Isoaigebraic geomeuy is a rudiment of complex anaiysis which retains meaning over an 
aigebraic closed field C of characteristic zero instead of the filed C of complex numbers. 
In the classical casse C = C isoalgebraic spaces lie somewhat «in the middle» between 
aigebraic varieties and complex analytic spaces. In some sense, to be made precise below, 
isoalgebraic spaces over C form a smailest category containing the algebraic varieties over 
C, in which the inverse function theorem (hence the implicit function theorem) becomes right. 

An introduction to isoalgebraic geometry (without proofs) from a somewhat naive view- 
point has been given by one of us already in 1981 [K]. A look at this introduction might still 
be helpful for the interested reader. We now intend to give a - slightly less naive - introduc- 
tion to isoalgebraic spaces and to survey some results obtained since 1981. Proofs of most 
of the more difficult theorems are contained in [H], while a completely explicit systematic 
exposition is still lacking. 

It is an honour for us to dedicate this survey article to the memory of Professor Gottfned 
Kothe, and perhaps this is also not quite inappropriate. K6the has amplified our understanding 
of analysis enormously by penetrating this subject from the aigebraic side, more precisely, 
from the viewpoint of linear algebra (enriched by topology, but this is now very common in 
algebra). He certainly is one of the persons responsible for a drzstic change of present day's 
feeling among the mathematicians, «where algebra stops and analysis beginsn compared to 
the last century. 

In due modesty we believe that from our endeavours in isoalgebraic geomeuy one also 
leams something about the border line between analysis and algebra, this time anaiysis and 
commutative algebra or, what is nearly the sarne, aigebraic geometry. Our main motivation for 
entering isoaigebraic geometry has been the need for results from this area for semiaigebraic 
topology. (If a locaily semialgebraic space canies an isoaigebraic structure this has a lot of 
implications on its topology). But on the way we found much pleasure being forced to think 
about the relation between algebra and analysis in a somewhat new way. The isoalgebraic 
Kugelsatz in 35 below (theorem 5.2) may serve as an illustration that the border line between 
algebra and mly transcendentai analysis is not always where people usuaily think it is (at 
least where we have once believed it to be). 

1. INTRODUCTION; THE SEMIALGEBRAIC SPACE V (  C) 

We shail work over a fixed aigebraic closed field C of characteristic zero. By an (algebraic) 
varie& V we always mean a separated scheme V of finite type over Spec C, this being the 
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most generai reasonable choice for us. As usual we denote the set of geomeh-ic (= C -rational) 
points of V by V(C) . 

If C is the field C of complex numbers then it is sometimes important, and often helpful, 
to apply to V( C) complex analysis instead of just algebraic geometry. For example, if V 
is the affine line A over C , hence V( C )  = C , then already a disc D in C escapes the 
framework of al1 of agebraic geometry. To give still another example, the universal covering 
V( C ) of V( C ) as a complex analytic space is usually very different from the (profinite) 
universal covering ? of V in the sense of algebraic geometry. Quite often V( C)" is the 

interesting space and not ? . 
If C# C then it is impossible to dea1 with such spaces as D'and V( C)"  reasonably in a 

classica1 setting. Isoalgebraic geometry, to be descnbed bebw, intends to fill this gap at least 

The basic ingredient leading to complex analysis on V( C) in the case C = G is the field 
R of real numbers, the most important reason being that this field allows us to introduce a 
reasonable «strong» topology on V (  C )  instead of the tembly coarse Zariski topology. 

In genera1 we choose, once and for all, a subfield R of C with [ C : R] = 2 .  This is 
aiways possible, in fact in infinitely many different ways. We also choose a fixed square root a 
of - 1 in C . Then C = R( a) and the field R is real closed, hence has a unique total ordering 
compatible with addition and multiplication. The ordering makes R a topological field, the 
open intervals 

la," {z E Rla < z < b }  

( a  E R, b E R, a < b) forming a basis of open sets. We use the element i to identify C 
with R2 . This makes C a topological space, in fact a topological field. 

More generally we obtain from R a strung tupulugy on V( C) for e v e j  variety V as 
follows. Assume first that V is affine. Then we choose a (Zariski-) closed embedding V c-1 
A into some affine standard space A N ,  and we equip V( C) with the subspace topology in 
A N (  C )  = CN = R2N.  It is easily seen that this strong topology on V( C) does not depend 
on the choice of the embedding. If V is any variety we choose a covering (V,li E I) of V 
by affine Zariski-open subsets V, with I finite. The intersections V,  n i$ are again affine. 
Thus we have already established a strong topology on the sets Vi( C) and ( V,  n y) (C) = 
V,( C) n Vi( C) . Every intersection V,( C) n i$( C) is q open subspace of V;.( C )  and of 
V, ( C) in tiieir given strong topologies. This implies that we have a unique topology on V (  C )  
such that every V,( C) is an open subspace of V( C) . This is our strong topology on V( C) . 
It does not depend on the choice of the affine covering (V,la E I )  of V . It is Hausdorff and 
is finer thari thc Z a & i  topology of V( C )  , i.e. the subspace topology of V( C) in V . 

Unfortunately, whenever R '#' R , the strong topology makes V ( C )  a toially discon- 
nected spac:e. Our way out of this difficulty is to regard V( C )  as a semialgebraic space (over 

partially. 

R). 
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We refer the reader to the paper [ DK 3 for the basic theory of semiaigebraic spaces and 
the book [BCR] for background materiai. Later we shall aiso need parts of the theory of 
locally semialgebraic spaces, a slight generalization of semiaigebraic spaces. For this and 
some more advanced theorems on semiaigebraic spaces we refer to the book [DK]. A bnef 
survey on locally semialgebraic spaces has been given in [ DK 2 ]  . This paper also contains a 
section on covering maps which are not yet covered by [DK]. 

Here we just mention some forma1 ingredients of the definition of a semialgebraic space 

M . On the set M there is given axiomatically a set i( M) of subsets which are called «open 
semialgebraic sets». The union and the intersection of finitely many open semialgebraic sets 

are again open semialgebraic. 0 and M are open semialgebraic. Given some U E S( M) 
O 

we call a family (U,lX E A )  in i( M) an admissible open coveringof U if U, c U for 
every X E A and U is aiready the union of finitey many U, . A semialgebraic sheaf F on 
M (of abelian groups, say) is an assignment U H F( U) of an abelian group F(  U) to every 

U E i( M )  and an assignment of a restriction homomorphism s H slV, F( U) -t F( V )  for 

every pair ( U, V) E i( M) x i( M )  with V c U ,  such that the usuai sheaf axioms holds, 
but only with respect to admissible open coverings. As a final ingredient of a semialgebraic 
space there is given on M a semialgebraic sheaf C, such that C,( U) is a ring of R-valued 

functions on U for every U E i( M) and, of course, h[V is the natura1 restriction of h 
to V for any open semialgebraic V c U and h E C,(U){i .e.(hlV)(s) = h ( s )  for 
5 E V}. It is assumed that C,( U) contains the constant functions, hence in an R-algebra. 
The h E C, ( U) are called the semialgebraic functions on U . 

If M is a semiaigebraic space then S( M )  denotes the boolean lattice of subsets of M 

generated by i( M) . The elements of S( M )  are cailed the semiaigebraic subsets of M . 
The strong topology on M is the topology on the set M , in the classica1 sense, with S( M) 
a basis of'open sets. Thus the open sets of M are the unions of arbitrary (not necessarily 

O 

n 

finite) families in s( M) . The axioms of a semialgebraic space [ DK , $71 imply that every 
semialgebraic function h : U + R is continuous with respect to the strong topologies of M 

and R.  Also, a semiaigebraic subset A of M is an element of i( M) iff A is open in M in 
the strong topology. 

In the following we always assume tacitly that a semiaigebraic space M is separated, i.e. 
that the strong topology is Hausdorff. 

If M and N are semiaigebraic spaces then a morphism (f, r S )  from the ringed space 
(M, C,) to ( N ,  C,) is determined by its first component, a map f from the set M to the 
set N . These maps f are cailed the semiaigebraic maps from M to N . They are continuous 
in the strong topologies of M and N .  It is well known (Tarski's projection theorem) that 
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the image of a semialgebraic subset of M under a semialgebraic map f : M + N is a 
semialgebraic subset of N . Also the preimages of semialgebraic sets under semialgebraic 
maps are semialgebraic. 

In the following words like «continuous», aopen", «closed»,,«dense», . . . will referto the 
strong topology (except in the axiomatic part of $3). 

The easiest examples of semialgebraic spaces are the affine standard spaces R" with n E 
N . (For n = O we have the one-point-space). Reca11 that a subset A of R" is classically 
called semialgebraic if A is a finite union of the sets {s E. R"IPl (s) > O , .  . . , P,( s) > 
O Ql (s) 2 O ,  . . . Q,( s) 2 O} with Pil Qj polynomials in n variables with coefficients 

in R. Now i( R") is defined as the set of classically semialgebraic sets in R" in R" which 

are open in the suong topology of R" (coming from the topology of R). For U E S( R") 
the elements of C,(U) are the functions h : U --+ R which are continuous and have a 

(classically) semialgebraic graph r ( h)  c U x R c R"" . 
Notice that S( R") is indeed the set of al1 classically semialgebraic subsets of R" . It is 

known that the elements of S( R") are the finite union of sets { s E RnlP, (z) > O ,  . . . , 
P,( s) > O} with Pj E RITl , . . . , T,] , cf. [BCR, Chapter III. 

If M is a semialgebraic space then it tums out that the elements of C,( M) are just the 

semialgebraic maps from. M to R' . Also, if A E S( M )  , then there exists a natura1 structure 
of semialgebraic space on the set A inherited from the semialgebraic space M . These spaces 
A are the semialgebraic subspaces of M .  If f : N + M is a semialgebraic map and if 
f( N) c A ,  then f can be read as a semialgebraic map from N to A .  

In the special case M = R" the semialgebraic space structure on A can be described as 

follows: &A)  in the set of al1 subsets U of A which are classically semifgebraic in M 

and open in A .  If U E ; (A)  then a function h : U + R is an element of CA( U) if h is 

continuous and the graph r ( h )  of h is semialgebraic in R" x R = R"" . 
The semialgebraic spaces which are isomorphic to a semialgebraic subspace of some R" 

are called the affine semialgebraic spaces (over R).  By definition [ DK , $71 every semial- 
gebraic space M has a covering by finitely many open semialgebraic subsets Mi of M such 
that every Mi (as a subspace of M )  is affine. 

A semialgebraic space M is called connecfedif M is not the disjoint union of two proper 
open semialgebraic subsets. It is known that then any two points of M can be joined by a 
semialgebraic path ( [  DK , $121, [BCR]; such a path is just a semialgebraic map from the 
unit interval [O, 11 in R to M ) .  It is also known (loc. cit.) that every semialgebraic space 
M is the disjoint union of finitely many open semialgebraic subsets M ,  , . . . , M, which are 
connected. They are called the connected componenfs of M . 

If U E ;( M )  then we call a C-valued function f on U semialgebraic if the real and 

O 

O 
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the imaginary part of U are elements of C,( V) . Of course, this just means that the map 

f : U -+ C = R2 is semiaigebraic. 
That much about semiaigebraic spaces and maps. We shail obey the philosophy here that 

semialgebraic (or more generaily, locaily semiaigebraic) spaces and maps are just the good 
substitute for topologicai spaces and continuous maps in the present setting. 

We return to a variety V and now explain how the semialgebraic space stnicture on V (  C )  
is defined. Please look again at the introduction of the strong topology on V (  C )  above. If V 
is affine and V + A is a closed embedding, then V (  C )  is a closed semialgebraic subset 
of CN = R 2 N .  We equip V (  C )  with the semiaigebraic subspace structure in CN . This 
stnicture does not depend on the choice of the embedding. In generai, let again ( Kli  E I )  be 
a finite covering of V by affine Zariski-open subsets. Ali the sets &( C )  and ( Vin 3) ( C )  = 

K( C )  n 5 ( C )  cany a structure of an (affine) semialgebraic space and Vi( C )  n ( C )  is 
an open subspace of V;.( C )  and of 7 ( C )  . Thus the semialgebraic space structures of the 

V;.( C )  glue together to a semiaigebraic space structure on V (  C )  with (Vi( C )  li E I )  an 
admissible open covering. This structure does not depend on the choice of the affine open 
covering (V;.li E I )  of V . The associated strong topology of this semialgebraic space is just 
the strong topology of V (  C )  introduced above. 

From now on we tacitly regard V (  C)  not merely as a set but as a semialgebraic space. 
This space is obviously locally compiete [DK, Chap. I, $73, hence regular (in the semialge- 
braic sense), hence affine, cf. [Ro], [DK, p. 421. Notice that V (  C )  = Vred( C )  with Vred 
denoting the reduced variety associated with V . 

If V is irreducible and has (aigebraic) dimension n then it turns out that V ( C )  is con- 
nected and is pure of semiaigebraic dimension 2 n, i.e. every non empty open semialgebraic 
subset U of V (  C )  has semialgebraic dimension 2 n (cf. [ DK , $81 for semiaigebraic di- 
mension theory). U is aiso Zariski dense in V (cf. [ H, ] ; there the Zariski closure of arbitrary 
semialgebraic subsets of V (  C )  has been computed). 

Every morphism p : V -+ W from V to a variety W restricts to a semiaigebraic map 
pc : V ( C )  --f W ( C )  . In particular, if U is a Zariski-open subset of V ,  then every h E 
O,( U) gives us a C -valued semialgebraic function h, on U( C )  . In the following we will 
call these maps pc (resp. functions h,) dgebraic maps (resp. algebraic funcfions). Notice 
that, for z E U( C )  , we have 

If (o : V -+ S, $ : W + S are morphisms between varieties then we can fiorn the fibre 
product V xs  W with respect to p and $ . On the other hand we can form the semiaigebraic 
fibre product V ( C )  xS(,) W( C)  with respect to pc and $,, cf. [DK $73. It is easily 
seen that 

(V X S  W ) ( C )  = V ( C >  XS(C) W ( C ) .  
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In particular (S = SpecC) we have 

( V  x W)(C) = V(C) x W(C) 

for any two varieties V, W . 
Usuaily nice properties of a morphism (o : V --i W give us nice properties of the semial- 

gebraic map (oc . For example, if (o is proper (in the algebraic sense) then (oc is proper (in 
the semialgebraic sense, cf. [DK , $91). The same holds for «finite >> instead of «proper». If 
(o is etale then (oc is a locaì isomorphism, i.e. every point z E V( 0 has an open semialge- 
braic neighbourhood U such that (oc( U) is open (and, of course, semialgebraic) in E’( C) 
and (oc resiricts to a semialgebraic isomorphism from U to (oc( U) . This last observation, 
which is based on the fact that the inverse function theorem is nght in semiaigebraic topology 
in constrast to Zariski topology, is the «prima movenw of isoaigebraic geometry (cf. [K]). 

If f : M --t N is anly local isomorphism between semialgebraic spaces then it is known 
that there exists a finite covering ( Vila E I )  of M by open semialgebraic subsets such that 
f maps Vi isomorphicaily onto the open semialgebraic subset f( Vi) of N [DK, p. 2183. 

2. ISOALGEBRAIC FUNCTIONS 

Let again V be a variety. We start out to define a sheaf A, of «isoalgebraic functions» on 
the semialgebraic space V( C) . 

Given an open semialgebraic subset U of V( C) we define a category I (  U )  as follows. 
The objects of I (  U )  are the iriples (V’,  U’, f) with V’ a variety, f an etale morphism 
from V’ to V and U’ an open semialgebraic subset of V’(C) such that fc resiricts to a 
semialgebraic isomorphism from U‘ onto U . A morphism from an object ( V ’ ,  U’, f) to an 
object (V”,  U”, g) is a isomorphism of varieties h : V” --t V’ (we reserve the arrows!) such 
that f o h, = g and hc( U”) c U‘ , hence hc( U”) = U’ . 

The category I (  U )  is filtered [Mi, p. 3051. We assign to every object (V‘, U’, f) the 
C -algebra O,,( V’) and obtain a direct system of C -algebras. We define 

Pv(U) := iim O,,(V’). 
I«;> 

Varying i7 we obtain a presheaf of C-algebras P, on V( C) . It is separated [Mi, p. 491. 
We define A, as the semiaigebraic sheaf associated to P, . 

An elcment of ‘A,( U) may be viewed as a family (h,li E I )  arising as follows. There 
is given a finite covering (Vili E I )  of U by open semialgebraic subsets. For each i E I 
there is given an object ( y, U:, fi) of I (  Vi) , and hi is an element of CIK( 4) . For any two 

indices i#  .i in I the elements hi and hj  are «compatible». This means the following. Let 
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Uij := U,!rif;’(UinUj) andUji := U:.nf~’(U,nUj) .Then(x,U,! j , f i )  and(i$,Uij,fi) 
are both objects of I (  U,nUj)  . hi and hj  are compatible iff there exist morphisms from these 

two objects into a third object ( qj,  Ui j ,  fij) of I (  Vi n Vi) which send hi and hj  to the same 
element of O,.( x j )  . 

This looks complicated. It is much easier to visualize A, if the vkety V is reduced, as 
we explain now. If (V’, U’, f) is an object of I (  U) and h is an element of O,,( V’) then 
V’ is again reduced and h may be identified with the algebraic function h, on V’( C) . In 
the triple ( V’, U’, f) we may replace V’ by the Zariski-open subset which is the complement 
of the union of al1 irreducible components which do not meet U’ . Thus we may assume that 
U’ is Zariski-dense in V‘ . Now h is determined by the semialgebraic function h,lU’. On 

the other hand, U’ defines a semiaigebraic section s : U < U’ ~ - t  V’( C) of fc over U . 
Altogether we obtain a semialgebraic function h, o s on U. It turns out that Pv( U) may 
be identified with the set of functions on U obtained in this way. Now P, becomes a sub- 
presheaf of the sheaf Cv(c)  BR C of C-vaiued semialgebraic functions on V( C) , hence d, 
becomes a subsheaf of Cv(,, 

We call the elements of A, ( U) the isoalgebraic functions on U with respect to V (even 
if V is not reduced). In the reduced case a semialgebraic function h : U + C is isoalgebraic 
iff there exists a finite covering (Vili E I )  of U by open semialgebraic subsets such that each 
restriction hlUi admits an etale factorization, i.e. there exists an etale morphism filx + V ,  
a semialgebraic section si : Vi + x(C) of (f,), over Vi and some h, E O,(Q such 

that hlUi = ( hi), o si. 

C. 

Things are even better if the variety V is normal. Then every isoalgebraic function on U 
has a globaì etale factonzation (cf. [K, $23 for the explicit description of a canonical such 
factorization). If, in addition, U is connected then the isoalgebraic functions on U also obey 
an identitypnnciple. An isoalgebraic function f on U which vanishes on some non empty 
open subset of U vanishes everywhere on U. In particular, A,( U) is an integra1 domain. 

We write down the proto-typical example of an isoalgebraic function. Let V be reduced 
and U be a simply connected open semialgebraic subset of V( C) . This means that U is 
connected and that the semialgebraic fundamentai group of U (cf. [ DK 1, [DK, Chap. 1111) 
vanishes. Notice that such sets U abound in V( C) . Every semialgebraic space M is known 
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to be a union of finitely many simply connected semialgebraic subsets, since M can be tri- 
angulated ([DK, , (BCR, Cap. 91). Let 

be a polynomial whose coefficients are algebraic functions a l , .  . . , a, on V (  C) . Assume 
that the discriminant of p( z ,  T )  vanishes nowhere on U . Let 

M := { ( z , t )  E u x Clp(z,t) = O } .  

This is a semiaigebraic subset of V (  C) x C , hence a semialgebraic space. The natural pro- 
jection n : M -+ U, ( z ,  t )  H z ,  is a semiaigebraic covenng [ DK, , $51 of degree n. Since 
U is simply connected this covering is trivial (loc. cit.). This means that M consists of n 
connected components M ,  , M, , . . . , M ,  and that n restricts to semialgebraic isomorphisms 

ni : Mi 7 U. The C-valued functions h,, . ;., h, on U defined by n;'( z )  = ( z ,  hi( z ) )  

are isoalgebraic. In the polynomiai nng A,( V) [TI we have the factorization 

Thus h,  , . . . , h, are the esemialgebraic roots» of p( z ,  T )  . 

by the following theorem [H, Satz 10.61. 

Theorem 2.2. Assume that V is reduced and that f : U -+ C is a semialgebraic function 
on some open semialgebraic subset U of V (  C) . Assume further that every point p of U has 
some open semialgebraic neighbourhood such that the restriction of f to this neighbourhood 
is isoalgebraic. Then f is isoalgebraic. 

Isoaigebraic functions are amenable to uuly locai considerations, at least if V is reduced, 

. 
Let us look at the sta& A , ,  of AV at some point p of V (  C) for any variety V ! It is 

a locai ring. O , ,  embeds into A , ,  by a local injection and thus will be regarded a local 
subring of dV,,. It follows immediately from the definition of dV,, (cf. [K, p. 134]), that 

dV,, in the henselization CI!,, (cf. l31) of Uv,,. 

We have a natural local injection of A , ,  into the mv,,-adic completion 8,,  of CIv,,, 

and thus regard A, a locai subnng of dV,,. If V is normal at p then d , ,  is an integra1 
domain. In this case, by a iheorem of Nagata @, Th. 44.11, A , ,  is the set of al1 elements of 

6, which are algebraic over the quotient field of Civ,,. 
Using already some genuine isoalgebraic geometry, one can prove the following global 

version of Nagata's theorem [H, Satz 10.11. 
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Theorern 2.3. Assume that V is affine and normal. A C-valued semialgebraic function 
f on some connected open semialgebraic subset U of V (  C )  is isoalgebraic iff there exist 
algebraic functions a. , a, ,  . . . , a, on V such that a. does not vanish everywhere on U and, 
for every z E U , 

In the case R = R it suffrces to assume that f is continuous instead of semialgebraic. 

This theorem reminds us of the classica1 definition of Nash funcfions as «algebraic real 
analytic functionss [AM, p. 883. Indeed, the modern theory of Nash functions over a real 
closed field - or even on a real spectrum - also starts with semialgebraic sections of etaie 
maps ([Roy]; already Artin and Mazur have been well aware of this approach [loc. cit.]). In 
some sense we are just doing the analogue of this theory over C . But this analogue has its 
own complex analytic flavoun). Moreover there is a closer connection than just analogy: 
The real and the imaginary part of an isoalgebraic function - say, for V reduced - both are 
Nash functions. 

In the case V = A" it can be seen particularly well that isoalgebraic functions show a 
local behaviour similar to complex analytic functions, as it should be. 

Let z1 , . . . , z, be the standard coordinate functions on C" , and let xj and yj denote the 
reai and the imaginary part of zj  . Let f be a non constant isoalgebraic function on some 
connected open semialgebraic subset U of C" . 

f is an open map. (This remains true if V is any reduced irreducible variety, cf. [H, Prop. 
7.161). Thus neither the real part nor the imaginary part nor the modulus I f I of f attains a 
local extremum at any point in U . 

exist at every point in U aithough, of course, the 

topological field R is not complete in generai. The real and the imaginary part of f obey 
the Cauchy-Rimann equations. Conversely if u and v are R-valued Nash functions on U 
obeying the Cauchy-Riemann equations then u + iu  is isoalgebraic on U . 

The partial derivatives $ are again isoalgebraic functions. Thus also al1 higher deriva- 

tives 2 exist and are isoalgebraic on U. { We may use such a notation since indeed 

= &}. We can form the Taylor series of f at any point a = ( a l , .  . . , a,) of 

U and this series is the image of f in Uv,a = CC [.q - a l , .  . . , z, - a,]] . { Reca11 that 

The partial derivatives e and 

A"$ c %Y} 

The field R is called microbiaf if R contains some element 19 > O with (Pln E N )  
converging to zero (a «microbe»). Microbial fields abound among real closed fields. For 
example, if C is the algebraic closure of some field which is finitely generated over Q , then 
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R is automatically microbial. Now, if R is microbial, then the Taylor series of f at a point 
a E U converges to f in some neighbourhood of a (cf. [K] fora more explicit statement). 
Conversely, if f is a C -valued semialgebraic function on U which locally everywhere is the 
iimit of some power series, then f is isoalgebraic. 

Proofs of these facts are contained in [H, $2 and $103. More generaily ai1 this remains 
vaiid on a smooth n-dimensional variety V instead of A " since then every point of V( C) 
has an open semialgebraic neighbourhood which is isoaigebraicaify isomorphic (see below) 
to the open unit ball in C" . 

We hope that the reader has gained some confidence that isoalgebraic functions occur «in 
nature» and thus is willing to accept a reasonable definition of isoalgebraic spaces based on 
these functions. We did not say much about isoaigebraic «functions» in the non reduced case. 
But also non reduced isoalgebraic spaces will be needed for functonal (and other) reasons, as 
in algebraic and in analytic geometry. 

3. DEFINITION OF LOCALLY ISOALGEBRAIC SPACES 

We shall work in the category of ringed spaces over a.fie1d F with either F = R or F = C , 
as defined in [DK, Chap. I, $13. Such a ringed space is a pair (X ,O, )  consisting of a 
generaiized topofogicai space X [loc. cit.] and a sheaf of F -aigebras. On a generalized 

topological space there is axiomatically given a set I( X) of subsets which are called ccopen 

subsetsw and, for every U E f ( X )  , a set (or better class) Cov,( U) of families in f ( X )  
which are called ccadmissibfe open coveringsw of U . 

Usuaily only the union of finitely many open subsets of X is again open. By one of the 
axioms [loc. cit.] then this finite family is an admissible covering of the union., A generalized 
topological space is a site in the sense of Grothendieck. Thus sheaf theory makes sense on it. 

A morphism from ( X ,  O,) to a second ringed space (Y, O,) over F is a pair ( f, 19) 
consisting of a continuous map f : X + Y between generalized topological spaces and a ho- 

momorphism 6 : O, + f,c?,. Here «continuous» has the obvious meaning: If V E I( Y) 

then f-'(V) E f ( X ) ,  and if (VAIX E A )  E Covy(V) then (f-'(V,)lA E A )  E 

Cov,( f-' (V)) . The homomorphism 19 may be thought of as a family of F -algebra ho- 

momorphisms 6u,v : O,( V) + 0, ( U )  with U E ?(X), V E ?(Y), f( U )  c V , and 
the obvious compatibility conditions. 

If no confusion is likely then we shall denote a ringed space (X, O,) by the single letter 
X and a morphism ( f, 6) by the single letter f . Al1 the maps 6u,v then will be denoted by 

F*.  
If X is a ringed space over F then every open subset of X may again be regarded as a 

ringed space over F . These are the open subspaces of X . 

o 

o 
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Every semialgebraic space M is a ringed space over R,  with stnicture sheaf C, . By 
definition, a locaily semialgebraic space (over R )  is a ringed space M over R which has 
some admissible open covering ( Mili E I )  E Cov,( M )  such that every Mi, as an open 
subspace of M I  is isomorphic to a semialgebraic space. We usually denote the strutture shcaf 
of a locall semialgebraic space M again by C, . 

A morphism (f, 6 )  between locally semialgebraic spaces ( M ,  C,) and (N, C,) is de- 
termined by its first component f . These maps f : M + N are called the locally semiafge- 
bmic maps fiom M to N . 

Of come, a variety V = ( V, O,) is a ringed space over C, this time with first component 
V a genuine topological space, albeit almost never Hausdorff. We associate with V a ncw 
ringed space V h  over C as follows. The underlying generalized topological space of V h  
is the same as that of the semialgebraic space V( C) . The stnicture sheaf Ovh is the sheaf 
A, introduced in $2. Slightly abusively we may write V h  = ( V (  C) ,A,) . Notice that the 
choice of the field R in C is essential for the definition of V h  . 

Definition 1. A locally isoalgebraic space over (C, R) is a ringed space ( X ,  O,) over C 
which has un admissible open covering (Xili E I )  such that e vey  open subspace Xi is 
isomorphic to un open subspace of some V h  , where V is a variety. If one can choose I 
jinite, then ( X ,  O,) is called isoalgebraic. 

Usually we shall suppress the words «over ( C, R) », since always the fields C and R will 
remain fixed. 

As a first example, if V is a variety, then V h  is an isoalgebraic space. Every open subspace 
of an isoalgebraic (resp. locally isoalgebraic) space is again an isoalgebraic (resp. locally 
isoalgebraic) space. In $6 we shall discuss some natura1 examples of truly locally isoalgebraic 
spaces. 

Let (X, O,) be a locally isoalgebraic space. There lives a canonical sheaf C, on the 
generalized topological space X such that (X, C,) is a locally semialgebraic space. (X, C,) 
is called the locally semialgebraic space associated to the locally isoalgebraic space (X, O,) 
and is denoted by 1x1. C, is constructed in the following way. Let (X , l i  E I )  be an 
admissible open covering of X such that every Xi is isomorphic to an open subspace of Kh 
for some variety vi, pi : Xi 7 Vi 2 Y h .  Via pi every X i  becomes a semialgebraic space, 
hence we have a sheaf C,, on Xi . The CXi glue together to the sheaf C, . 

Let (X, O,) be a locally isoalgebraic space. Al1 stalks O,,% are local rings with residue 
field C. X is called reduced (rcsp. normal, resp. smooth) if al1 local rings O,,% are reduced 
(resp, normal, resp. regular). Let U be an open subsct of X and f E O,( U )  . For every 
z E U, f( z) denotes the image of f in the residue field O,,,/m, E C. The C-valued 

function 7 : U + C, z H f( z) is locally semialgebraic, i.e. f is a section of C, @.RC over 
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U . If X is reduced then the sheaf homomorphism O, --t C, BR C, f H 7 is injective. This 
follows from the description of the sheaf A, for a reduced variety V ($2). The elements of 
O, ( V) are called the isoalgebraic functions on U (even if X i s  not reduced). 

Simiiar to a semialgebraic space we equip every locally semialgebraic space (X,  C,) 
(and hence also every locally isoalgebraic space) with a strong topology. This is the topology 

generated by .f( X) . Henceforth words likeopen, closed, continuous, ... al1 refer to the strong 

topology of X . A subset U of X is called open semialgebraic if U E I( X) and the open 
subspace (U, C, IU) is a semialgebraic space. Since «open>ì revers to the smng topology we 

cali the elements of I( X) now open locally semialgebraic subsets of X . (This notation is 

justified by the following observation: A subset S of X is an element of I ( X )  iff S n U 
is an open semialgebraic subset of U for every open semialgebraic subspace ( U, C, IV) of 
(X, C,) .) 

Definition 2. By a morphism behveen locally isoalgebraic spaces over ( C ,  R) , or isoalge- 
braic morphism for short, we mean a morphism behveen such spaces in the category of ringed 
spaces over C . 

Let f = (g, r S )  : (X,O,)  + (Y,O,) be a morphism between locally isoalgebraic 
spaces. Then g : 1x1 + IYI is locally semialgebraic and, for every z E X , the nng 
homomorphism 19, : + O,,, is local, since 9, is a C-algebra homomorphism and 

C Ox,,/m,. If X is reduced then f is determined by g , since O, is a subsheaf of the 
sheaf C, BR C of C-vaiued locally semiaigebraic functions on X . 

Let (X,  O,) be a localiy isoalgebraic space and z the coordinate function of A . As 
in algebraic geometry, the map f H f*( z )  from the set Hom(X, ( A  I )  h ,  of isoalgebraic 
morphisms X + ( A  I )  to the set O,( X) is bijective. Since ( A  ") is theproduct ( A  ') x 

. . . x ( A  I )  in the category of locaily isoalgebraic spaces, the map Hom(X, ( A  ") h ,  + 

Ox(X)",f H ( f*(z l ) ,  ...,f*( z")) is aiso bijective ( Z  ',...,z, denote the coordinate 
functions of A").  

Let f : X + Y be an algebraic morphism of varieties. f induces an isoalgebraic mor- 
phism f = ( g , 1 9 )  : X h  + Y h  in the follwoing way. We put g = fc . We define a presheaf 
morphism 7 : P, + g+ Px whose associated sheaf morphism is 19. Let U be an open semial- 
gebraic subset of Y( C) and s an element of P, (V) represented by an object (Y', U', p )  of 
I(  U) and an element t of O,,( Y') . Let X' be the fibre product X x , Y' and p' : X' + X 
and f' : X' + Y' the projections. (X', (f&)-' (V') , p')  is an object of I (  g-' (V) )  . We 
define q( s) to be the element of Px ( g-I ( V)) represented by (X' , ( f&) ( U') , p')  and 

Thus we have established a functor X H X h ,  f H f h  from the category of varieties 
to the categoq of isoaigebraic spaces. Using some comparison theorems between coherent 

(f'>*(t) E O,dX') * 
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sheaves on aigebraic varieties X and coherent sheaves on their associated isoalgebraic spaces 
X h  (cf. 54), one can prove [H, 12.111. 

Theorem 3.1. The functor X H X , f H f from the category of varieties to the category 
of isoalgebriac spaces is fully faithful. 

Let f : X -+ Y be an etale morphism of varieities and U an open semialgebraic subset 
of X( C) such taht f l U  is injective. Then V := f ( U )  is an open semiaigebraic subset of 
Y( C) and fh lU  : ( U ,  A, IU) -+ (VI dylV)  is an isoalgebraic isomorphism. This is an 
immediate consequence of the definition of the sheaves A, and dy . 

Let X and Y be varieties and f : U -+ Y h  be an isoaigebraic morphism, where U is 
an open subspace of X h  . Then locally f is the composition of the inverse of an isoalgebraic 
isomorphism just described and an aigebraic morphism. mere exists a finite open covering 
(Vili E I )  of U such that each resoriction f IUi admits an etale factorization, i.e. there exists 
an etale morphism g, : Xi -t X , an open semialgebraic subset U,! of Xi( C) and an algebraic 
morphism f, : Xi -+ Y such that gilU,! : U,! -+ Vi is bijectiveand flUi = ( f i ) h  o si, where 
si : Vi -+ U,! is the inverse of the isoalgebraic isomorphism ( gi) IU,' : U,! --t Vi. 

S i  

In the s p i a i  case X reduced and Y = A this etaie factorization was aiready described in 
52 (cf. diagram 2.1). 

4. COHERENT SHEAVES 

Let (X, O,) be a ringed space over C and T of a sheaf of O, -modules on X . T is called 
of finite f y p  on X if there exists an admissible open covering ( Vila E I )  of X such that, 
for every i E I ,  TIU, is finitely generated (i.e. there exists a surjective O, IU, -morphism 
( O,IUi)" -+ TIU, ) .  T is called coherenf if T is of finite type on X and if for every 

U E I( X) and every (O, IU -morphism O, IU)n -+ FIU the kernel is of finite type on U . 
Coherent sheaves play an important role in many parts of isoalgebraic geometry. 
First we consider the fundamental coherence theorems of complex analysis. They remain 

1 .  The structure sheaf O, of a locaily isoalgebraic space (X, O,) is coherent. 
true in isoalgebraic geometry: 
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2. A subset A of a locally isoalgebraic space (X, O,) is cailed fmaily isoalgebraic if 
there exists an admissible open covering (Vili E I )  of X such that, for every i E I ,  A n Vi 
is the zero set of finitely many isoaigebraic functions on Vi. To a lccaily isoaigebraic subset 
A of X we define a sheaf JA of ideais on X by JA( U )  = {f E O,( U )  If( z) = O for 
every z E A f l  U} . J A  is coherent. 

Let X be a locaily isoaigebraic space. The support supp( F) of a coherent sheaf F on 
X is defined to be {z E X IFz# O}. Notice that we define the support of a sheaf here only 
for coherent sheaves. For an arbitrary sheaf on X this definition would not be good. The 
reason for this is that the family of functors (F H FzIz E X) does not share the good 
proprieties of the sheaf theory on a topological space. For instance, the family of functors 
(F H Fzlz E X) is neither faithful nor conservative. (The resmction of this family of 
functors to the category of coherent sheaves on X is faithful and conservative). 

The support of a coherent sheaf on X is a locally isoalgebraic subset of X . Let Z be 
a coherent sheaf of ideals on X and let A be the suppon of O,/Z. We have Hilbert's 
Nullstellensatz: J A  is the radical ideai sheaf of Z . 

Let (X, O,) be a locally isoalgebraic space. We want to define locally isoaigebraic sub- 
spaces of X . Let Z be a coherent sheaf of ideals on X . We equip Y := supp( O,/Z) 
with the weakest structure of a generalized topologicai space such that the inclusion rnap 
i : Y ~t X is continuous. We have the sheaf i-'( O,/Z) on Y. (Y, i-' (O,/Z)) is a 

ringed space over C and we have a canonical morphism i : (Y, i-'( O,/Z)) --t (X, O,) 
of ringed spaces over C. Al1 ringed spaces over C arising in this way are called focaily 
isoalgebraic subspaces of X . This notation is justified, since one can prove that locaily isoal- 
gebraic subspaces are locally isoalgebraic spaces in the sense of Definition 1 of 93. 

A first example of a locally isoalgebraic subspace of X is the reduction. of X : J ,  is 
a coherent sheaf of ideals on X . The locally isoalgebraic subspace of X defined by J ,  is 
called the reduction of X and is denoted by X r e d .  

According to Definition 1 of $3 the open subspaces of the ringed spaces V h ,  V a variety, 
are the local models for the locally isoalgebraic spaces. In complex analytic geometry the lo- 
cally closed subspaces of C " are the local models for the complex analytic spaces. The same 
is true in isoalgebraic geometry: Every locally isoalgebraic space ( X ,  O,) has an admissi- 
ble open covenng ( Vila E I )  such that every (U,, CI, IU,) is isomoprhic to an isoalgebraic 

subspace of an open subspace of some ( A ") . 
The finite coherence theorem holds in isoalgebraic geometry: 

Theorem 4.1. Let. f : X -f Y be ajni te  morphism of locally isoalgebraic spaces and let 
T be a coherent sheaf on X . Then f , (F )  is a coherent sheaf on Y .  

We do not know whether the direct image sheaf f,( T )  of a coherent sheaf F under a 
proper isoalgebraic maps . f is a coherent. The proper coherence theorem (al1 direct image 
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sheaves R" f,( F) of a coherent sheaf T under a proper isoalgebraic map f are coherent) 
does not hold. For example, H'( P (C) , Apl) is not finite dimensional. But nevertheless, 
using some special aspects of isoalgebraic geometry, one can prove Remmert's proper map- 
ping theorem. 

Theorem 4.2. Lei f : X + Y be a proper morphism of locally isoalgebraic spaces. Then 
f (X)  is a locally isoalgebraic subset of Y . 

The connection between isoalgebraic geometry and algebraic geometry is rather strong. 
This is reflected, for example, by the following theorem. 

Theorem 44.3. Let F be a coherent sheaf on an isoalgebraic space X .  Lei f be an isoal- 
gebraic function on X and sei U = { x E X I f ( x) + O } .  Then the following holds: 
i )  For every s E F ( X )  with slU = O there exists a natural number n with f" . s = O .  
ii) For every s E F( U) there exists a natural number n such that f " . s can be extended io 
a section of F over X . 

As mentioned aiready above Serre's beautiful GAGA F'rinciples do not remain true in 
isoalgebraic geometry. For insiance, H'(P'(C),dpl)#H'(P',Opi). But is turns out 
that, whenever there is a comparison theorem between varieties and their associated isoal- 
gebraic spaces, the comparison theorem holds for every variety and not only for projective 
varieties. We give some examples. 

Let X be a variety and let p : X h  + X be the canonical morphism of ringed spaces over 
C. 

uChow's Theorem» 4.4. Every isoalgebraic subset A of X h  is algebraic, i.e. there exists a 
subvariefy Y of X with A = Y( C )  . 

Let Q be a coherent siieaf on X h  . We deduce from Theorem 4.3 that p*( Q )  is a quasi- 
coherent sheaf on X . But even more, one can prove that p,( Q )  is a coherent sheaf on X . 

Now let F be a coherent sheaf on X . Then p*( F) is a coherent sheaf on X h .  One can 
show that the canonical morphism r (X,  F) -+ r ( X  (C) , p*( F)) is bijective. In particular, 

Not every coherent sheaf C on X is algebraic (i.e. isomorphic to a sheaf p*( F) with 
F a coherent sheaf on X ). For example, if X is affine reduced and dim X _> 1 , then there 
exists an invertible sheaf C on X h  with no nontrivial global section. But if a coherent sheaf 
C on X h  has enough globai sections, then Q is algebraic. More precisely 

Theorem 4.5. p, and p* are quasi-inverse functors between the category of coherent shea- 
ves on X and the category of coeherent sheaves 3 on X h  which satisfy the followingprop- 
erty: There exists a covering (Vili E I )  of X by Zariski-open subsets such that, for every 
i E I ,  the sheaf FIUi( C) is generated by its global sections. 

A,(X(C)) = o,y(X) .  
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5. EXTENSION OF ISOALGEBRAIC FUNCTIONS AND GLOBAL IRREDUCIBLE 
COMPONENTS 
We fìrst state the classical theorem conceming the extension of isoalgebraaic functions. The 
Riemann removable singularity theorern is one of the basic resulis in the elementary isoalge- 
braic geometry. 

Let (X ,  O,) be a normal connected locally isoalgebraic space and A a closed locally 

semialgebraic subset of X (i.e. X -A E ?( X)) . An isoalgebraic function f E O, ( X -A) 
on X -A is called weakly boundednear A, if for every point x E A there exisis a t E R such 
that for every neighbourhood U of x in X there exisis some y E U - A with I f ( y) I < t . 
Here dimSaX and dim""A denote the semialgebraic dimensions of X and A .  

Theorem 5.1. Let f E O,( X - A) be an isoalgebraic function on X - A .  
i )  if dimSaA 5 dim""X - 1 (i.e, X - A is dense in X ) and f has a continuous extension 
to X , then this extension is isoalgebraic. 
ii) If dimSaA 5 dim""X - 2 and f is weakly bounded near A ,  then f has an isoalgebraic 
extension to X . 
iii) if dimSaA 5 dim"X - 3 , then f has an isoalgebraic extension to X . 

ii) and Rii) are the first and second Riemann removable singularity theorems. Since we 
work only in the semialgebraic category and have the semialgebraic dimension theory at our 
disposal, the isoalgebraic version of the Riernann extension theorem is a little bit sronger than 
the complex analytic version: Let (C, R) = ( C  , R ) . To the locally isoalgebraic space X 
there is associated in a canonical way a complex analytic space X"" . It is connected and 
normal. f is a holomorphic function on X"" . Obviously, if f is locally bounded near A ,  
then f is weakly bounded near A .  If A is thin in Xa" , then dim""A 5 dims"X - 2 and if 
A is thin of order 2 2 in X"" , then even dim""A 5 dimSaX - 4 . 

Another classical extension theorem in complex analysis in the Kugelsatz of Hartogs. 

Theorem 5.2. Let X be a connected normal affine varie0 of dimension 2 2 and let K be 
a complete semialgebraic subset of X( C )  such that X( C)  - K is connected. Then the 
restriction A,( U) -+ A,( U - K )  is bijective for each open semialgebraic neighbourhood 
U of K in X ( C ) .  

For X = A " m e  can prove a siightly stronger version of Hartogs' theorem. 

Theorem 5.2'. Let U be an open semialgebraic subset of C" and K a closed semialgebraic 
subset of U. Let p be the projection C" = C"' x C --f C"' . We assume 
i) U and U - K are connected. 
ii) p l K :  K - + p ( U )  i sp roperandp(K)#p (U) .  
Then every isoalgebraic function on U - K can be continued to an isoalgebraic function on 
U. 
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Here are two classica1 examples to which one can apply Theorems 5.2 and 5.2' respec- 
tively. 

1) Let P, := {z,,. . . , z,) E C"IIzil < s, i = 1,. . . , n} denote thepolycylinder of radius 
S .  Let n 2 2 ,  s > r > O . Then every isoalgebraic function on P, - p, can be extended to 
an isoalgebraic function on P, . 

2) Let g, , . . . , g,, s E R with O < gi < s, i = 1, . . . , n. Then every isoaigebraic function 
on {(z, ,..., z,) E Cnllzil < s , i  = 1 ,..., n- 1 and g, < Iz,~ < s }U { ( z l  ,..., zn) E 
C"IIzil < gi, i = 1,. . . , n- 1 and Iz,I < s} can be continued to an isoaigebraic function on 
the polycylinder P, . 

In complex analysis the essential tool in the proof of Riemann's theorem or Hartogs' the- 
orem is the Cauchy integrai formula. Clearly, in isoalgebraic geomeuy this method is not 
possible. Here the methods are purely aigebraic or semiaigebraic. 

Let (X, O,) be areduced locally isoalgebraic space. The non-norma1 locus { z E X IO,,= 

is not normai} is denoted by N (  X) . It is a locally isoalgebraic subset of X . An isoaigebraic 
morphism f : 2 + X is cailed a nonnalizationof X if the following conditions are satisfied: 

i) 2 is a normai locally isoaigebraic space. 
ii) f is finite. 

iii) K - f - ' ( N ( X ) )  isdensein 2 andtheresiriction i - f - ' ( N ( X ) )  4 X - N ( X )  
of f is an isoalgebraic isomorphism. 

Theorem 5.3. Every reduced locally isoalgebraic space X has a normalization. The nor- 
malization is uniquely determined up to an isomorphism. 

The uniqueness of the normalization follows from the Riemann removable singularity the- 
orem. Let ( Xili E I )  be an admissible open covering of X such that every Xi is isomorphic 

to an open subspace of some V h  , where V is a reduced variety. Let g : ? + V be the alge- 
braic normalization of V . Then g h  : vh + V h  is a normalization of the isoaigebraic space 
V h  . Hence every Xi has a normalization fi : ki 4 Xi . Since the normaiization is unique, 

the fi glue together to a normalization f : 2 4 X . 
Finally we state the fundamental global decomposition theorem. The essential ingredients 

of its proof are the Riemann externsion theorem and the finite mapping theorem 4.1. 
Let (X, O,) be a locally isoalgebraic space. A locally isoaigebraic subset A of X is 

called irreducible if there are no proper locaily isoalgebraic subsets A ,  and A ,  of A with 
A = A ,  U A , .  The maximai irreducible locally isoaigebraic subsets of X are cailed the 
in-educible components of X . For example, if V is a variety with irreducible components 
V, , . . . , V, , then Theorem 4.4 implies that V, (C) , . . . , V,( C) are the irreducible components 
of V h .  
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Theorem 5.4. Let (Z,li E I )  be the family of connected components of the locally semial- 
gebraic space X - N ( X r e d )  and let z, be the closure of 2, in X . Then (Tili E I )  is the 

family of irreducible components of X . The family (z,ii E I )  is locallyfrnite (i.e. for every 
open semialgebraic subset U of X there are only finitely many ' i  E I with 2, r7 U # 0) . 

Let Z be a connected cornponent of X - N (  Xred) . The delicate point in the proof of 
Theorern 5.4 is to show that z is .a locally isoalgebraic subset of X . The difficulties arise, 
because we have to show that there exists an admissibble open covering ( Vilà E I )  of X 

such that z n U, is the zero set of finitely rnany isoalgebraic functions on U,, whereas z 
is the c~osure of 2 in the strong topoiogy of x . Let f : X --i Xred be the norrnaiization 

of Xred. Let w be the connected cornponent of X containing f-' ( Z )  . The set f-' ( Z) 

is dense in W . It follows from the finite rnapping theorern 4.1 that z = f( W) is a locally 
isoalgebraic subset of X . 

6 .  COVERINGS 

Let f : X + Y be a rnorphism of locally semialgebraic spaces. f is cailed a covering if f 
is locally trivial with discrete fibres, i.e. there exists an admissible open covering (Vili E I )  
of Y having the property that every f-' (Vi) is a direct sum of open subspaces, f-' (Vi) = uiEJ 7, such that f l V j  : 7 + Vi is an isornorphisrn for every j E J .  If, rnoreover, al1 

fibres of f are finite then f is called a finite covefing. 
As a first example, if f : X + Y is an algebraic covering of varieties then fc : 

X (  C )  + Y( C) is a finite sernialgebraic covering. Let X be a connected locally sernialge- 
braic space and let 3: be a point of X .  The relation between the sernialgebraic fundamental 
group 7r1 ( X ,  s) of X and the coverings of X is the same as in topology ([ DK, $51): 

1) p H p,( 7r1 (Y, y)) is a bijection from the set of isornorphisrn classes of coverings 
p : (Y, y) + ( X ,  s) with Y connected to the set of subgroups of 7r1 ( X ,  s) . p is finite iff 
p,( 7rl (Y, y)) has finite index in 7r1 ( X ,  s) . 

2) There exists a universal covering p : (x, ?) --f ( X ,  s) of X which is deterrnined by 
the following property: x is connected and for every covering q : (Y, y) --f (X, s) there 
exists a unique lovally sernialgebraic rnap f : (x, 5) --+ (Y, y) with p = q O f . x is simply 
connected and there is a (canonical) bijection frorn 7rl (X: s) to the fibre p-' ( Z) . 

If f : Y + X is a covering with Y sernialgebraic then f is finite. But in generai, 
7r1 ( X ,  s) is not finite. In this case the universal covering is not sernialgebraic. 

The Riernann existence theorern states that the algebraic fundarnental group of a connected 
variety X over C is isornorphic to the profinite cornpletion of the fundamental group of the 
topological space X (  C ) [Mi, p. 401. This rernains true if we replace R by an arbitrary real 
closed field. 
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Theorem 6.1. Let X be a variety. The functor, which associates with any algebraic covering 
Y -+ X the semialgebraic covering Y( C )  -+ X ( C )  , is an equivalence from the category 
of algebraic coverings of X to the category offinite semialgebraic coverings of X( C )  . 

In a first step one proves Theorem 6.1 for Zariski-open subsets of A . This special case 
follows easily frorn the descnption of coverings by subgroups of the fundarnental group and 
the fact that Theorern 6.1 is true for R = R .  Then the genera1 result of Theorem 6.1 is 
obtained by the same proof as in the topological case R = R using etale cohornology [SGA 
4,XVIA.ll. 

A locally isoalgebraic structure on a locally semialgebraic space (X, C) is a sheaf O on 
the generaiized topological space X such that (X, O) is a locally isoalgebraic space with 
associated locally semialgebraic space (X,  C) . TWo locally isoalgebraic structures O, and 
O, on (X, C) are called isomorphic if (X,  O, ) and (X,  02) are isoalgebncally isornorphic. 

Let (X, O,) be a locally isoalgebraic space and let f : Y -t X be a locally semi- 
algebraic covering. Then there exist a locally isoalgebraic structure O, on Y and a sheaf 
homomorphism r9 : O, --+ f,Oy such that (f, a)  : (Y, O,) -+ (X,  O,) is an isoalgebraic 
covenng (isoalgebraic covenngs are defined analogously to semialgebric coverings). O, and 
B are uniquely determined. 

Theorem 6.2. Let X and Y be the normal connected varieties. Let V be a locally isoal- 
gebraic space and let f : V -+ X h  and g : V --f Yh be isoalgebraic coverings. Then X 
a d  Y have a common algebraic covering, i.e. there exist algebraic coverings W --+ X and 
W + Y .  

We may assume that V is connected. (X x Y) is the product of X h  and Yh in the 
category of locally isoalgebraic spaces. Therefore f and g define an isoalgebraic morphism 
s : V --f ( X  x Y) h .  The crucial (but not difficult) point in the proof of Theorem 6.2 is that 
s( V) is contained in an n-dimensional isoalgebraic subset of (X  x Y) h ,  where n is the 
dimension of V .  Indeed, the Zariski-closure 2 of s( V) in X x Y has dimension n. Let 
p : 2 + k and q : Z --+ Y be the projections. Using the fact that an isoalgebraic space 
has only finitely rnany irreducible components one can show that s( V) is an n-dimensional 
isoalgebraic subset of Z h  and that pls( V) : s( V )  -t X( C) and qls( V) : s( V) -+ Y( C) 
are finite. Since Z is irreducible, we have s( V) = Z(  C) . Thus p and q are finite. Let 
t :W-+2be t theno rma l i za t i ono fZ .Thenpo t :  W - t X  a n d q o t : W - - + Y  arethe 
coverings we are looking for ( 'I. 

Corollary 6.3. Let X and Y be connected normal varieties. lf X and Yh have a common 
isoalgebraic covering then X and Yh have also a common finite isoalgebraic covering. 

Now we give a detailed example of an isoalgebraic covering. 

We ihank Mikahel Grmov for a discussion which led to h i s  proof. 
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For every natura1 number n we put V, = { z  E Cllzl  < n}. Let V be the union of al1 V,. 
V is a valuation ring of C with maximal ideal mv = { z  E Cllzl < i for every n E N}. If R 
is archimedean then V = C, and if R is not archimedean then V is not a semialgebraic subset 
of C. Let O, be the sheaf of isoalgebraic functions on V,. We.consider the inductive limit 

iim - ( V,, O,) of the open subspaces (V,, O,) of ( A  ') in the category of ringed spaces 

over C. This space can be described as follows. The underlying sets is V. A subset U of V 

is an eiement of T(  V )  iff u n V, E T(  v,) for every n E N . Let u be an eiement of T( V I .  

A family ( Vili E i) of elements of I( V )  is an admissible open covering of U iff, for every 
n E N , (Vi f l  V,li E i) is an admissible open covering of U f l  V,.O,( U) is the ring of al1 
functions f : U 4 C such that f l U  n V, is an isoalgebraic function on U n V, for every 
n E  N .  

This space (V ,  O,) is locally isoalgebraic. Let C, be the associated sheaf of locally semi- 
algebraic functions. Then C, is the ring of al1 functions f : U -+ R such that f l U  n V, is 
semialgebraic for every n E N . 

The residue field K := V/mv is the algebraic closure of the real closed field S := Y r l  
R/mv f l  R. Let 7r : V + K be the projection. By a lattice of V we mean a subgroup L 
of V which is generated by two elements wl and w, such that r ( w l )  and r ( w 2 )  are linearly 
independent over S. 

Let L = Zw, + Zw, be a lattice of V and let p ,  : V + V / L  be the projection. We 

equip V / L  with the quotient slructure, i.e. ?( V / L )  is the set of al1 subsets U of V/L  with 

p i l  (U) E ?( V )  , Cov,,,( U) is the set of al1 families (Vili E i) with ( p i '  ( Vi) li E I) E 

Cov ,( p;' (U))  and the smcture sheaf O, is defined by O,( U) = {f E O,.(pi* (U)) If is 

constant on p i l  (s) for every s E U}. Then p L  is a morphism of ringed spaces over C. We 
set W = { swl + tuz Is, t E R and - $ < s, t < $} and E = { O ,  $wl , $ w 2 ,  $w + $I+}. For 
everye EEandLEL,p , (e+W)  isanopensubsetofV/LandpLle+l+W:e+l+W+ 
p,( e + W )  is an isomorphism of ringed spaces over C. Furthermore, ( p L (  e + W )  le E E )  
is an admissible open covering of V / L .  Hence ( V / L ,  O,) is an isoalgebraic space and p ,  is 
an isoalgebraic covering. Let C, be the associated sheaf of semialgebraic functions on V/L. 
ThenC,,(U) = {f E ~,(p,'(~))lfisconstantonp,'(s) foreverys E u}. Since(v,Cv) 
is simply connected, p ,  : ( V,  C,) -+ ( V / L ,  C,) is the universal covenng of ( V / L ,  C,). 

Let U be a connected open locaily semialgebraic subset of V and let f be an isoalgebraic 
functiononU. Weassumethats,+L C Uforsomepoints, E Vandthatf(s,) = f(z,tl) 
for every 1 E L. Then f is constant. This is a consequence of the global etale factorization of 
f (cf. 132). This shows that the isoalgebraic space ( V / L ,  O,) is not algebraic. 

Next we want to parametrizc the isomorphism classes of spaces (V/L, O,). Let L : M 
be two lattices of V and let f : V / L  -+ V/M be an isoalgebraic isomorphism. f lifts to an 

O 
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isoalgebraic isomorphism f : V + V .  It is of the form z H az + b with b in V and a a unit 
of V. Hence V / L  and V/M are isornorphic if and only if the lattices L and M are linearly 
equivalent, i.e. there exists a unit a of V with a L  = M. 

We denote by HV the set {s E VI Im( s) > i for some n E N}.SL( 2 ,  Z )  acts on 

HV in the usual way, AT = 3 with A = (z i) and T E HV. Every lattice of V is 

linearly equivalent to a lattice of the form Z + 2 T with T E HV and two lattices 2 + Z 
and Z + Z T~ with T', r2 E HV are linearly equivalent if and only if T~ = A T ~  with some 
A E SL( 2 ,  Z )  . Hence the orbit space of the action of SL( 2 ,  Z )  on HV parametrizes the 
isomorphism classes of spaces ( V /  L ,  O,). 

S' denotes the one dimensional sphere over the red closed field R. For every lattice L of 
V the semialgebraic space ( V / L ,  C,) is isomorphic to S' x S' . Hence we get 

Theorem 6.4. On the torus S' x S' there are injinitely many non isomorphic smooth isoal- 
gebraic structures O such that (S'  x S' , O )  is not algebraic. 

Corollary 6.3 is not m e  for arbitrary normal isoalgebraic spaces. There exist lattices L 
and M of V such that V / L  and V/M have no common finite isoalgebraic covering. Let 
s : V + V/  L x V / M  be the isoalgebraic morphism induced by p ,  and py . We conclude 
from the proof of Theorem 6.2 that s( V )  is not contained in an one dimensional isoalgebraic 
subset of V / L  x V/M.  

lìvo projective srnooth algebraic curves X and Y are called isogenous if they have a com- 
mon algebraic covering. The universal covenng of the semialgebraic space X( C) , where X 
is aprojective smooth algebraic curve, is isomorphic to (V ,  C,) . Hence every isogeny class of 
curves induces, up to isomorphism, a locally isoalgebraic smcture on (V ,  C,) . We conclude 
from Theorem 6.2 that non isogeneous curves induce non isomorphic locally isoalgebraic 
structures on ( V,  C,) . Thus we obtain 

Theorem 6.5. On the locally semialgebraic space ( V ,  C,) there exist injinitely many non 
isomorphic smooth locally isoalgebraic structures. 

The last theorem should be compared with the complex analytic situation. If (C, R) = 
(C , R) then V = C . On the complex plane there are (up to isomorphism) only two smooth 
holomorphic structures. 



336 Roland Huber, Manfred Knebusch 

REFERENCES 
[AMI M. Arrrm, B. MAZLTR, On periodicpoinfs, Ann. of Math. 81 (1965). 82-99. 

[BCR] J. BOCHNAK, M. COSTE.. M.F. ROY. Géoméirie algébrique réelle, Ergebnisse der Math. 3. Folge Bd. 12, 

[DK] H. D w ,  M. KNEBUSCH, Locally semialgebraic spaces, Lecture Notes Math. 1173 Spnnger Verlag (1985). 
[ DK i ]  H. D w s ,  M. KNEBUSCH, Sernialgebraic iopology over a real ciosedfieldff , Math. 2.178 (1981). 175-213. 
[ DKz] H. DEWS, M. KNEBUSCH, An iniroduciion io locally semialgebraic spaces, Rocky Mwntain J. Math. 14 

[ DK 3 ] H. D m ,  M. KNEBUSCH, On ihe homology of algebraic wrieiies over real clasedfields, J. reine angew. Mah. 

SpringerVerlag (1987). 

(1984), 945-963. 

335 (1981). 122-163. 
[H] R. HLJBER, fsoalgebraic Ruwne. Thesis, Universitat Regensburg (1984). 

[ H l ]  R. HLJBER, The Zorkki closure of semialgebraic subseis of complex varieties. Arch. Math. 52, (1989), 618- 

[K] M. KNEBUSCH, fsoalgebraaic geomefry: Firsi sieps,, Séminaire de Théorie des Nombres, Delange-Pisoi- 
624. 

Poitou, Pans 1980/81. in: «Progress in MathematicsN 22 Birkhauser (1982) ,127-140. 
[Mi] J.S. MLNE, Eiale cohomology, Princeton University Press (1980). 
[N] M. NAGATA, Local rings, Interscience, New York (1962). 
[R] M. RAYNAUD, AnneaLuLocaux Henséliens. Lecture Notes Math. 169 Springer Verlag (1970). 

[Ro] R. ROBSON, Embedding semi-algebraic spaces, Math. 2. 183, (1983). 365-370. 
[Roy] M.F. ROY, Fakceau siruciural sur le specire réel et fonciions de Narh, Proc. Rennes 1981. Lecture Notes 

[SGA 41 M. A m ,  A. GROTHENDIECK, J.L. VERDIER, Théorie des iopos et cohomologie éiale des schémas, Lecture 

Math. 959 Springer Verlag (1982). 406-432. 

Notes Math. 269 Springer Verlag (1972). 

Received March 31, 1990 
R. Huber, M. Knebusch 
Fakultat fur Mathematik der Univcrsitat 
D-8400 Regensburg 
Germany 


