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A GLIMPSE AT ISOALGEBRAIC SPACES
ROLAND HUBER, MANFRED KNEBUSCH

Dedicated to the memory of Professor Gottfned Kothe

Isoaigebraic geometry is a rudiment of complex anaiysis which retains meaning over an
aigebraic closed field C of characteristic zero instead of the filed C of complex numbers.
In the classical casse C = C isoalgebraic spaces lie somewhat «in the middle» between
aigebraic varieties and complex analytic spaces. In some sense, to be made precise below,
isoalgebraic spaces over C form a smallest category containing the algebraic varieties over
C, in which the inverse function theorem (hence the implicit function theorem) becomesright.

An introduction to isoalgebraic geometry (without proofs) from a somewhat naive view-
point has been given by one of us already in 1981 [K]. A look at this introduction might still
be helpful for the interested reader. We now intend to give a - slightly less naive — introduc-
tion to isoalgebraic spaces and to survey some results obtained since 1981. Proofs of most
of the more difficult theorems are contained in [H], while a completely explicit systematic
exposition is still lacking.

Itis an honour for us to dedicate this survey article to the memory of Professor Gottfned
Kdthe, and perhaps this is also not quite inappropriate. Kéthe has amplified our understanding
of analysis enormously by penetrating this subject from the aigebraic side, more precisely,
from the viewpoint of linear algebra (enriched by topology, but this is now very common in
algebra). He certainly is one of the persons responsible for a drastic change of present day's
feeling among the mathematicians, «where algebra stops and analysis begins» compared to
the last century.

In due modesty we believe that from our endeavours in isoalgebraic geomeuy one also
learns something about the border line between analysis and algebra, this time anaiysis and
commutativealgebra or, what is nearly the same, aigebraic geometry. Our main motivation for
entering isoaigebraic geometry has been the need for results from this area for semiaigebraic
topology. (If alocally semialgebraic space carries an isoaigebraic structure this has a lot of
implications on its topology). But on the way we found much pleasure being forced to think
about the relation between algebra and analysis in a somewhat new way. The isoalgebraic
Kugelsatz in §5 below (theorem 5.2) may serve as an illustration that the border line between
algebra and truly transcendentai analysis is not always where people usuaily think it is (at
least where we have once believed it to be).

1. INTRODUCTION; THE SEMIALGEBRAIC SPACE V(C)

We shail work over a fixed aigebraic closed field C of characteristiczero. By an (algebraic)
variety V we always mean a separated scheme V of finite type over Spec C, this being the
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most general reasonable choice forus. As usual we denote the set of geometric (= C-rational)
points of V by V(C) .

If C is the field C of complex numbers then it is sometimesimportant, and often helpful,
to apply to V(C) complex analysis instead of just algebraic geometry. For example, if V
is the affine line A over C ,hence V(C) = C ,then already a disc D in C escapes the
framework of all of agebraic geometry. To give still another example, the universal covering
V(C)~ of V(C) as acomplexanalytic space is usually very different from the (profinite)
universal covering ¥ of V in the sense of algebraic geometry. Quite often V(C)™ is the

interesting space and not ¥ .

If C# C then itis impossible to deal with such spacesas D and V(C)"" reasonably in a
classicalsetting. Isoalgebraic geometry, to be described below, intends to fill this gap at least
partially.

The basic ingredient leading to complex analysis on V(C) in the case C = C is the field
R of real numbers, the most important reason being that this field allows us to introduce a
reasonable «strong» topology on V(C) instead of the tembly coarse Zariski topology.

In general we choose, once and for all, a subfield R of C with [C : R] = 2. This is
aiways possible, in factin infinitely many different ways. We also choosea fixed squareroot a
of —1in C.Then C = R(a) and thefield R is real closed, hence has a unique total ordering
compatible with addition and multiplication. The ordering makes R a topological field, the
open intervals

la,b[={z E Rla <z <b}

(a E R,b e R a < b) forming abasis of open sets. We use the element i to identify C
with R? . This makes C a topological space, in fact a topological field.

More generally we obtain from R a strong topology on V(C) for every variety V as
follows. Assume first that V is affine. Then we choose a (Zariski-) closed embedding V —
AV into someaffine standard space A , and we equip V' (C) with the subspacetopology in
AN(C)=CVN = R?V. Itis easily seen that this strong topology on V(C) does not depend
on the choice of the embedding. If V is any variety we choose a covering (V;]i E I) of V
by affine Zariski-open subsets V, with | finite. The intersections V; N Vv, are again affine.
Thus we have already established a strong topology on the sets V,(C) and (V; N V;)(C) =
V,(C) N V;(C). Every intersection V;(C) N iI$(C) is an open subspace of V;(C) and of
V,(C) intheir given strong topologies. This impliesthat we have a unique topology on V(C)
such thatevery V;(C) is an open subspace of V(C) . This is our strong topology on V(C) .
It does not depend on the choice of the affine covering (V;|i E |) of V . It is Hausdorff and
is finer than thc Zariski topology of V(C), i.e. the subspace topology of V(C) in V.

Unfortunately, whenever R # R , the strong topology makes V(C) a toially discon-
nected space. Our way out of this difficulty is to regard V' (C) as a semialgebraic space (over
R).
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We refer the reader to the paper [DK,3 for the basic theory of semiaigebraic spaces and
the book [BCR] for background materiai. Later we shall also need parts of the theory of
locally semialgebraic spaces, a slight generalization of semiaigebraic spaces. For this and
some more advanced theorems on semiaigebraic spaces we refer to the book [DK]. A bnef
survey on locally semialgebraic spaces has been given in [DK ,] . This paper also contains a
section on covering maps which are not yet covered by [DK].

Here we just mention some formal ingredients of the definition of a semialgebraic space

M .Ontheset M thereis givenaxiomatically a set §( M) of subsets which are called «open
semialgebraic sets». The union and the intersection of finitely many open semialgebraic sets

are again open semialgebraic. # and M are open semialgebraic. Given some U E §( M)

we call a family (U, |» E A) in S(M)) an admissible open coveringofU if U, C U for
every A E A and U is aiready the union of finitey many U, . A semialgebraic sheaf F on
M (of abelian groups, say) is an assignment U 1 F(U) of an abelian group F(U) to every

UE §( M) and an assignment of a restriction homomorphism s 15|V, F(U) — F(V ) for

every pair (U, V) E §( M) x §( M) with V C U, such that the usual sheaf axioms holds,
but only with respect to admissible open coverings. As a final ingredient of a semialgebraic
spacethere is givenon M a semialgebraic sheaf C,, suchthat C,,(U) is aring of R-valued

functions on U for every U E S(M ) and, of course, h|V is the natural restriction of h
to V for any open semialgebraic V C U and A E C,,(U){i.e.(h|[V)(z) = h(z) for
z E V}. Itis assumed that C,,(U) contains the constant functions, hence in an R -algebra.
The h E C,,(U) are called the semialgebraic functionson U .

If M is a semiaigebraic space then S(M) denotes the boolean lattice of subsets of M

generated by S(M ). The elements of S(M) are cailed the semiaigebraic subsets of M .

The strong topologyon M is the topology on the set M , in the classicalsense, with §( M)
a basis of'open sets. Thus the open sets of M are the unions of arbitrary (not necessarily

finite) families in §( M) . The axioms of a semialgebraic space [ DK , ,§7] imply that every
semialgebraicfunction h : 7 — R is continuous with respect to the strong topologies of M

and E. Also, a semiaigebraic subset A of M is an element of §( M) iff A is openin Af in
the strong topology.

In the following we always assume tacitly that a semiaigebraic space M is separated,i.e.
that the strong topology is Hausdorff.

If M and N are semiaigebraic spaces then a morphism (F¢) from the ringed space
(M@ to (N Cy) is determined by its first component, a map f from the set M to the
set N . Thesemaps f are cailed the semiaigebraicmapsfrom M to N . They are continuous
in the strong topologies of M and N . Itis well known (Tarski’s projection theorem) that
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the image of a semialgebraic subset of M under a semialgebraicmap f : M — N isa
semialgebraic subset of N . Also the preimages of semialgebraic sets under semialgebraic
maps are semialgebraic.

In the following words like «continuous», «open», «closed», «dense», ...will referto the
strong topology (except in the axiomatic part of §3).

The easiestexamples of semialgebraic spaces are the affine standard spaces R' with n E
N . (For n= 0 we have the one-point-space). Recall that a subset A of R" is classically
called semialgebraic if A is a finite union of the sets {z E. R*|P,(x) > 0,...,P(z) >
0,Q,(z) >0,...,Q,(z) > 0} with P,-,Qj polynomials in n variables with coefficients

in . Now §( R™) is defined as the set of classically semialgebraic sets in R™ in R* which

are open in the strong topology of E™ (coming from the topology of R).For U E ¢ R")
the elements of Cp.(U) are the functions h : U — R which are continuous and have a
(classically) semialgebraic graph T' (h) CU x R ¢ R™! .

Notice that S(R™) is indeed the set of all classically semialgebraic subsets of R" . It is

known that the elements of §(R") are the finite union of sets {z E R*|P,(z) > O, ...,
P.(z) > 0} with P, E R[T},...,T,) ,cf. [BCR, Chapter II).

If M is a semialgebraic space then it tums out that the elements of C,, (M) are just the
semialgebraic maps from.M to R! . Also,if A E S(M ) ,then there exists a natural structure
of semialgebraic spaceon the set A inherited from the semialgebraic space M . These spaces
A are the semialgebraic subspaces of M . If f : N — M is a semialgebraic map and if
f(N) c A ,then f can be read as a semialgebraic map from N to A .

In the special case M = R" the semialgebraic space structure on A can be described as

follows: §(A) in the set of all subsets U of A which are classically semizilgebraic in M

andopenin A. FU E §(A) then a function h : U — R is an element of C,(U) if h is
continuous and the graph " (h) of & is semialgebraicin R* x R = R™! .

The semialgebraic spaces which are isomorphic to a semialgebraic subspace of some R*
are called the affine semialgebraicspaces (over R). By definition [DK, ,§7] every semial-
gebraic space M has a covering by finitely many open semialgebraic subsets M; of M such
that every M, (as a subspace of M ) is affine.

A semialgebraic space M is called connectedif M is not the disjoint union of two proper
open semialgebraic subsets. It is known that then any two points of M can be joined by a
semialgebraic path ([DK ,§12], [BCRY]; such a path is just a semialgebraic map from the
unit interval [0, 1] in R to M). It is also known (loc. cit.) that every semialgebraic space
M is the disjoint union of finitely many open semialgebraic subsets M ,..., M, which are
connected. They are called the connected components of M .

If U E §( M) then we call a C-valued function f on U semialgebraic if the real and
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the imaginary part of U are elements of C,,(U) . Of course, this just means that the map
f :U — C = R? is semiaigebraic.

That much about semiaigebraic spaces and maps. We shall obey the philosophy here that
semialgebraic (or more generaily, locally semiaigebraic) spaces and maps are just the good
substitute for topological spaces and continuous maps in the present setting.

We return to a variety V and now explain how the semialgebraic space structure on V(C)
is defined. Please look again at the introduction of the strong topology on V' (C) above. If V
is affineand V — A¥ is a closed embedding,then V' (C) is a closed semialgebraic subset
of Y = R*. We equip V(C) with the semiaigebraic subspace structure in G . This
structure does not depend on the choice of the embedding. In generai, let again (V;]: E | ) be
a finite covering of V' by affine Zariski-open subsets. All the sets V;(C) and (V;nV;)(C)=
V;(C)N V;(C)carry a structure of an (affine) semialgebraic space and V;(C)n V,(C)is
an open subspace of V;(C) and of V,(C). Thus the semialgebraic space structures of the
V;(C) glue together to a semiaigebraic space structureon V(C) with (V,(C)js E |) an
admissible open covering. This structure does not depend on the choice of the affine open
covering (V;|1 E 1) of V. The associated strong topology of this semialgebraic spaceis just
the strong topology of V' (C) introduced above.

From now on we tacitly regard ¥V (C) not merely as a set but as a semialgebraic space.
This space is obviously locally compiete [DK, Chap. I, §7], hence regular (in the semialge-
braic sense), hence affine, cf. [Ro], [DK, p. 421. Notice that V(C) = V,,,(C) with V_,
denoting the reduced variety associated with V .

If V is irreducibleand has (aigebraic) dimension n then it turns out that V(C) is con-
nected and is pure of semiaigebraic dimension 2 n, i.e. every non empty open semialgebraic
subset U of V(C) has semialgebraic dimension 2n (cf. [DK, ,$§8] for semiaigebraic di-
mension theory). U is also Zariski densein V (cf. [H,] ;there the Zariski closure of arbitrary
semialgebraic subsets of ¥ (C) has been computed).

Every morphism ¢ : V — W from V to a variety W restricts to a semiaigebraic map
pe 1 V(C) — W(C) . In particular, if U is a Zariski-open subset of V', then every h E
Oy (U) givesus a C-valued semialgebraic function h, on U(C). In the following We will
call these maps ¢ (resp. functions h) algebraic maps (resp. algebraic functions). Notice
that, for z E U({C),we have

ho(z) = h(z) € Oy ,/my, = C.

If o :V — S, : W — S are morphisms between varieties then we can from the fibre
product V x g W with respect to ¢ and # . On the other hand we can form the semiaigebraic
fibre product V(C) X g W(C) with respect to ¢ and 9, cf. [DK, §7]. Itis easily
seen that

(V xg W)(C) =V(C) xgc) W(CO).
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In particular (S = SpecC) we have
(Vx W)(C) =V(C) x W(C)

for any two varieties V, W .

Usually nice properties of a morphism © : V — W give us nice properties of the semial-
gebraic map ¢, . For example, if © is proper (in the algebraic sense) then ¢ is proper (in
the semialgebraic sense, cf. [DK, ,§91). The same holds for «finite» instead of «proper». If
(o is etale then g, is @ local isomorphism, i.e. everypoint z E V(C) has an open semialge-
braic neighbourhood U such that p~(U) is open (and, of course, semialgebraic)in W(C)
and p,; restricts to a semialgebraic isomorphism from U to ¢(U) . This last observation,
which is based on the fact that the inverse function theorem is nght in semiaigebraic topology
in constrast t0 Zariski topology, is the «primamovens» of isoalgebraic geometry, (cf. [K]).

If f :M — N is anly local isomorphism between semialgebraic spaces then it is known
that there exists a finite covering (U;]i E I) of M by open semialgebraic subsets such that
f maps U, isomorphically onto the open semialgebraic subset f(U;) of N [DK, p. 218].

2. ISOALGEBRAIC FUNCTIONS

Letagain V be a variety. We start out to define a sheaf A, of «isoalgebraic functions» on
the semialgebraic space V(C) .

Given an open semialgebraic subset U of V(C) we define a category 1(U) as follows.
The objects of 1(T) are the iriples (V’,U’, ) with V' a variety, f an etale morphism
from V' to V and U’ an open semialgebraic subset of V'(C) such that f restricts to a
semialgebraic isomorphism from U’ onto U . A morphism from an object (V' U’, ) toan
object (V" ,U", g) isaisomorphismof varieties h : V' — V’ (wereserve thearrows!) such
that f oh =g and h(U") CU' ,hence ho(U") =U".

The category 1(U) is filtered [Mi, p. 3051. We assign to every object (V*,U’, f) the
C-algebra Oy,(V’) and obtain a direct system of C-algebras. We define

Py(U) :=lim Oy(V").
()]

Varying U we obtain a presheaf of C-algebras Py, on V(C). Itis separated [Mi,p. 49].
We define A, as the semiaigebraic sheaf associated to Py, .

An element of Ay, (U) may be viewed as a family (h;|i E |) arising as follows. There
is given a finite covering (U,{i E |) of U by open semialgebraic subsets. For each i E |
there is given an object (V;, Uy, f;) of 1(U;) ,and h; is an element of Oy, (V,) . For any two

indices i# 7 in | the elements h; and h; are «compatible». This means the following. Let
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U, = Uinf7H(U;NU)) and Uj; == U;N f71(U;nU,) . Then (V;, UL, f,) and (V;,U};, £)
areboth objects of I(U,.nt) . h; and h; arecompatible iff there exist morphisms from these
two objects into a third object (V;;,U;;, £;;) of 1(U;nU;) whichsend h; and &; to the same
elementof Oy, (V;;) .

This looks complicated. Itis much easier to visualize A, if the variety V is reduced,as
we explain now. If (V’,U’, T) is an object of I(U) and h is an element of O,,.(V’) then
V' is again reduced and h may be identified with the algebraic function h on V’(C) . In
the triple (V’,U’, T) we may replace V’ by the Zariski-open subset which is the complement
of the union of all irreduciblecomponents which do not meet U’ . Thus we may assume that
U’ is Zariski-dense in V*. Now h is determined by the semialgebraic function h~|U’. On

the other hand, U’ defines a semiaigebraic section s : U = U’ — V'(C) of f, over U.
Altogether we obtain a semialgebraic function h, o s on U. It turns out that P, (U) may
be identified with the set of functions on U obtained in this way. Now P,, becomes a sub-
presheaf of the sheaf Cy,, ®z C of C-vaiued semialgebraic functionson V(C) , hence d,
becomes a subsheafof Cy oy ®5 C.

Wk call the elements of A, (U) the isoalgebraicfunctionson U with respect to V (even
if V is not reduced). In the reduced case a semialgebraic function h : U — C is isoalgebraic
iff there exists a finite covering (Ui E |) of U by open semialgebraic subsets such that each
restriction AU, admits an etale factorization,i.e. there exists an etale morphism £,|V, — V',
a semialgebraicsection s; : U; — V;(C) of (f,)¢ over U; and some h,; E Oy (V;) such

that hlU‘ = (hi)C 0 8;.

Vi(O)
S L(f)e Mo
(2.1)
U o V() C
h|U;

1

Things are even better if the variety V is normal. Then every isoalgebraic function on U
has a global etale factorization (cf. [K, §2] for the explicit description of a canonical such
factorization). If, in addition, U is connected then the isoalgebraic functions on U also obey
an identity principle. An isoalgebraic function f on U which vanishes on some non empty
open subsetof U vanishes everywhereon U . In particular, A, (U) is an integral domain.
We write down the proto-typical example of an isoalgebraic function. Let V be reduced
and U be a simply connected open semialgebraic subsetof V(C) . This means that U is
connected and that the semialgebraicfundamental group of U (cf. [DK, ], [DK, Chap. I11J)
vanishes. Notice that such sets U abound in V( C) . Every semialgebraic space A is known
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to be a union of finitely many simply connected semialgebraic subsets, since M can be tri-
angulated ([DK, ,(BCR,Cap. 93). Let

p(2,T) =T"+a,(2)T" " + ...+ a,(2)

be a polynomial whose coefficients are algebraic functions a,,. ..,a, on ¥(C). Assume
that the discriminant of p(z, T ) vanishes nowhereon U . Let

M :={(2,%) EU x C|p(z,t} = 0}.

This is a semiaigebraic subset of V(C) x C ,hence a semialgebraic space. The natural pro-
jection 7 : M + U,(z,t) — 2, is a semiaigebraic covering [DK, ,§5} of degree n. Since
U is simply connected this covering is trivial (loc. cit.). This means that M consists of n
connected components M, , M, , ..., M, and that = restricts to semialgebraic isomorphisms

m; © M; 5 U. The C-valued functions h,, ..., h_ on U defined by n;'(2) = (z,h(2))

1

are isoalgebraic. In the polynomiai nng A, (U) (T} we have the factorization
p(2,T) = (T = hy(2)) .. (T — h,(2))

Thus hy ,...,h, arethe «semialgebraic roots» of p(z, T) .
Isoaigebraic functions are amenable to truly locai considerations,at leastif V is reduced,
by the following theorem [H, Satz 10.61.

Theorem 2.2. Assume that V is reduced and that f : U — C is a semialgebraicfunction
on some open semialgebraic subset U of vV (C) . Assumefurther thatevery point p of U has
some open semialgebraic neighbourhood such that the restrictionof f to this neighbourhood
is isoalgebraic. Then f is isoalgebraic.

Let us look at the stalk A-\ of A, at some point p of V(C) for any variety V! Itis
alocal ring. O,, embedsinto A, , by a local injection and thus will be regarded a local
subring of Ay . It follows immediately from the definition of A, , (cf. [K, p. 134)), that

Ay, in the henselization O}, (cf. [R]) of O,
We have a natural local injection of A, into the my ,-adic completion (f)v_p of Oy,

and thus regard A alocal subring of @, . If V is normal at p then &y, is an integral
domain. In this case, by a iheorem of Nagata [N, Th. 44.11, A, is the set of all elements of

@V,P which are algebraic over the quotient field of Oy, .
Using already some genuine isoalgebraic geometry, one can prove the following global
version of Nagata's theorem [H, Satz 10.11.
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Theorem 2.3. Assume that V is affine and normal. A C-valued semialgebraic function
f on some connected open semialgebraic subset U of V(C) is isoalgebraic iff there exist
algebraicfunctions a; ,aq, ...,a, onV suchthat o, does notvanisheverywhereon U and,
forevery z EU ,

0o (2) f(2)"+ ay () F(D™ + ...+ a,(2) = 0

Inthe case R = R it suffices to assume that f is continuous instead of semialgebraic.

This theorem reminds us of the classical definition of Nash functions as «algebraic real
analytic functions» [AM, p. 88]. Indeed, the modern theory of Nash functions over a real
closed field — or even on a real spectrum — also starts with semialgebraic sections of etale
maps ([Roy]; already Artin and Mazur have been well aware of this approach [loc. cit.]). In
some sense We are just doing the analogue of this theory over C . But this analogue has its
own «complex analytic flavour». Moreover there is a closer connection than just analogy:
The real and the imaginary part of an isoalgebraic function — say, for V' reduced - both are
Nash functions.

Inthe case V = A™ it can be seen particularly well that isoalgebraic functions show a
local behaviour similarto complex analytic functions,as it should be.

Let 2 ,...,2, be the standard coordinate functions on C™ ,and let T; and Y; denote the
real and the imaginary part of z; . Let f be anon constant isoalgebraic function on some
connected open semialgebraic subset U of C* .

£ is an open map. (This remains trueif V is any reduced irreduciblevariety, cf. [H, Prop.
7.161). Thus neither the real part nor the imaginary part nor the modulus |f| of f attainsa
local extremum at any point in U .

The partial derivatives gf and gf exist at every point in U aithough, of course, the
7 pl
topological field R is not complete in generai. The real and the imaginary part of f obey

the Cauchy-Rimann equations. Conversely if v and v are R-valued Nash functions on 7
obeying the Cauchy-Riemann equations then « +iv is isoalgebraicon U .

The partial derivatives gf are again isoalgebraic functions. Thus also all higher deriva-
]

tives g;é exist and are isoalgebraic on U. {We may use such a notation since indeed
3@1- = aﬁ%ﬁ—_}. We can form the Taylor series of 7 at any point a = (a,,...,a) of
chzk lk l,

U and this series is the image of f in @v,a = Clilz; —ay,...,2z, —a,]] . {Recall that

Ay, C év,a-}

The field R is called microbialif R contains some element ¢ > 0 with (9"|n E N)
converging to zero (a «microbe»). Microbial fields abound among real closed fields. For
example,if C is the algebraic closure of some field which is finitely generated over Q , then

n
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R is automatically microbial. Now, if R is microbial, then the Taylor series of f at a point
a E U convergesto f in some neighbourhood of a (cf. [K] fora more explicit statement).
Conversely,if f isa C-valued semialgebraic functionon U which locally everywhere is the
iimit of some power series, then f is isoalgebraic.

Proofs of these facts are contained in [H, $2 and §10]. More generaily all this remains
valid on a smooth n-dimensional variety V instead of A™ since then every point of V(C)
has an open semialgebraic neighbourhood which is isoalgebraically isomorphic (see below)
to the open unit ball in C".

We hope that the reader has gained some confidence that isoalgebraic functions occur «in
nature» and thus is willing to accept a reasonable definition of isoalgebraic spaces based on
these functions. We did not say much about isoaigebraic «functions» in the non reduced case.
But also non reduced isoalgebraic spaces will be needed for functonal (and other) reasons, as
in algebraic and in analytic geometry.

3. DEFINITION OF LOCALLY ISOALGEBRAIC SPACES

We shall work in the category of ringed spacesover afield F with either F =R or F = C,
as defined in [DK, Chap. I, §1). Such a ringed space is a pair (X,0y) consisting of a
generalized fopological space X [loc. cit] and a sheaf of F -algebras. On a generalized

topological space there is axiomatically given a set 19( X)) of subsets which are called «open

subsets» and, for every U E '13()() ,a set (or better class) Cov x(U) of families in TO(X)
which are called «admissible open coverings» of U .

Usually only the union of finitelymany open subsets of X is again open. By one of the
axioms [loc. cit.] then this finite family is an admissible covering of the union., A generalized
topological space is asite in the sense of Grothendieck. Thus sheaf theory makes sense on it.

A morphism from (X ,0,) to asecondringed space (YQ,) over F is a pair (f,19)
consisting of acontinuous map f : X — Y between generalized topological spaces and a ho-

momorphism 6 : O, — f,0x . Here «continuous» has the obvious meaning: If V E 1 @)

then £~1(V) E T(X), and if (V3]» E A) E Covy(V) then (f'(V))| E A) E
Cov x(f~1(V)) . The homomorphism ¥ may be thought of as a family of F -algebra ho-

momorphisms 8y, : Oy (V) + Ox(U) with U E T(X),V E T(Y), f(U) C V ,and
the obvious compatibility conditions.

If no confusion s likely then we shall denote a ringed space (X, O) by the single letter
X and a morphism (f, 6) by the single letter f . All the maps Jyy then will be denoted by
F*.

If X is aringed space over F then every open subset of X may again be regarded as a
ringed space over F . These are the open subspacesof X .
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Every semialgebraic space M is a ringed space over R, with stnicture sheaf C,, . By
definition, a Jocally semialgebraic space (over R )is a ringed space M over R which has
some admissible open covering (M;|i E |') E Cov,, (M) such that every M,, as an open
subspace of M , is isomorphic to a semialgebraic space. We usually denote the structure shcaf
of a locall semialgebraic space M againby C,, .

A morphism (F§) between locally semialgebraic spaces (M,C) and (N,C),) is de-
termined by its first component f . These maps f : M — N are called the locally semiaige-
braic maps from M to N .

Of course, avariety V = (V,Q,) isaringed spaceover C, this time with first component
V a genuine topological space, albeit almost never Hausdorff. We associate with V a ncw
ringed space V* over C as follows. The underlying generalized topological space of v*
is the same as that of the semialgebraicspace V( C) . The stnicture sheaf O, is the sheaf

A, introduced in $2. Slightly abusively we may write V* = (V(C),A,) . Notice that the
choice of the field R in C is essential for the definitionof V4.

Definition 1. A locally isoalgebraic space over (C,R) isa ringed space (X ,0,) over C
which has an admissible open covering (X;|i E 1) such that every open subspace X, is
isomorphic to an open subspace of some V* , where V is a variety. If one can choose |
jinite, then ( X ,0,) is called isoalgebraic.

Usually we shall suppress the words «over (C,R) », since always the fields C and R will
remain fixed.

As afirstexample, if V is a variety, then V' is an isoalgebraic space. Every open subspace
of an isoalgebraic (resp. locally isoalgebraic) space is again an isoalgebraic (resp. locally
isoalgebraic)space. In $6 we shall discuss somenatural examples of truly locally isoalgebraic
spaces.

Let (X,0,) be a locally isoalgebraic space. There lives a canonical sheaf G on the
generalized topological space X such that ( XGy) is alocally semialgebraic space. (XGx)
is called the locally semialgebraic space associated to the locally isoalgebraic space ( X Q)
and is denoted by |X|. Cj is constructed in the following way. Let (X, E I) bean

admissibleopen covering of X such that every X, is isomorphic to an open subspace of V}*
for some variety V;,p; : X; = U, C V. Via ¢; every X, becomes a semialgebraic space,
hence we have a sheaf C,, on X; . The Cx_glue together to the sheaf G

Let (XQ) bealocally isoalgebraic space. All stalks © x,. are local rings with residue
field C. X is called reduced (rcsp. normal, resp. smooth)if all local rings Oy , are reduced

(resp, normal, resp. regular). Let U be an open subsct of X and f E O (U) . For every
x E U, f(z) denotes the image of f in the residue field Oy ,/m, ~ C. The C-valued

function f : U — C,x — f(z) is locally semialgebraic,i.e. f isasection of G ®pzC over



326 Roland Huber, Manfred Knebusch

U . If X isreduced then the sheaf homomorphism O, — Cx ®,C, f 1 f is injective. This
follows from the description of the sheaf .A,, for a reduced variety V (§2). The elements of
O (V) arecalled the isoalgebraicfunctions on U (even if X is not reduced).

Similar to a semialgebraic space we equip every locally semialgebraic space (X,Cx)
(and hence also every locally isoalgebraic space) with a strong topology. This is the topology

generated by 13( X) . Henceforth words likeopen, closed, continuous, ... all refer to the strong

topology of X . A subset U of X is called open semialgebraicif U E TO(X) and the open
subspace (U, G |U) isa semialgebraic space. Since «opens revers to the strong topology we

cali the elements of 'f(X) now open Jocally semialgebraic subsets of X . (This notation is

justified by the following observation: A subset S of X is an element of ’IS(X ) iffSNU
is an open semialgebraic subset of U for every open semialgebraic subspace (U, G |U) of

(X,Cx) ")

Definition 2. By a morphism berween locally isoalgebraic spaces over (C R),or isoalge-
braic morphismfor short, we mean a morphism between such spaces in the category of ringed
spaces over C.

Let £ = (9.9) :(X,04) — (Y,0y) be a morphism between locally isoalgebraic
spaces. Then g : |X| — |Y] is locally semialgebraic and, for every z E X, the ring
homomorphism ¥, :Oy,g(z) — O,, islocal,sinced, is a C-algebra homomorphism and

C 5 Oy ,/m,. Iif X is reduced then f is determined by g ,since O, is a subsheaf of the
sheaf G ®j5 C of C-vaiued locally semiaigebraic functionson X .

Let (X,0) be alocaliy isoalgebraic space and z the coordinate function of A! . As
in algebraic geometry, the map f ~ f*(z) from the set Hom(X, (A")*) of isoalgebraic
morphisms X — (A')" to theset O, (X)) is bijective. Since (A™)" is theproduct (A*)* x
...x (Ah% in the category of locaily isoalgebraic spaces, the map Hom(X, (A™"*) —
Ox(XD™, f w1 (f*(2),..., f*(2,)) is also bijective (z,...,2, denote the coordinate
functions of A™).

Let f : X — Y be an algebraic morphism of varieties. f induces an isoalgebraic mor-
phism 4 = (g,9) : X* — Y in the follwoing way. We put g = £, . We define a presheaf
morphism n : Py, — g, Py whose associated sheaf morphismis 19. Let U be an open semial-
gebraic subsetof Y(C) and s an element of Py (V) represented by an object (Y U, p) of
I(U) andan elementt of O,,(Y™)Let X' be the fibreproduct X x oY "and p' : X' — X
and f : X' — Y "the projections. (X',(f5)~'(V') ,p') is an objectof 1(g~!(V)). We
define n(s) to be the element of Py (¢7*(V)) represented by (X',(f5)~"(U"),p") and
(fH*(1) € Ox(X").

Thus we have established a functor X = X" f i f* from the category of varieties
to the category of isoaigebraic spaces. Using some comparison theorems between coherent
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sheaves on aigebraicvarieties X and coherent sheaveson their associated isoalgebraic spaces
X" (cf. §4), onecan prove [H, 12.111.

Theorem 3.1. Thefunctor X X *,f + f* from the category of varieties to the category
of isoalgebriac spaces isfullyfaithful.

Let £ : X — Y be an etale morphism of varieities and U an open semialgebraic subset
of X(C) such taht £jU is injective. Then V := f(U) is an open semiaigebraic subset of
Y(C) and fMU : (U, Ax|U) — (V,Ay|V) is an isoalgebraic isomorphism. This is an
immediate consequence of the definition of the sheaves Ay and Ay .

Let X and Y be varieties and f : U — Y* be an isoaigebraic morphism, where U is
an open subspaceof X* . Then locally f is the composition of the inverse of an isoalgebraic
isomorphism just described and an aigebraic morphism. There exists a finite open covering
(U;li € 1) of U such that each restriction f{U, admits an etale factorization,i.e. there exists
an etale morphism g; : X, — X ,an open semialgebraicsubset U/ of X,( C) and an algebraic
morphism £, : X; — Y such that g,|U! : U} — U, is bijectiveand f|U; = (f;)"* o s,, where
s, :U; — U} is the inverse of the isoalgebraic isomorphism (g,)*|U! : U! — U;.

Xh

S Ly N
U, < Xk Y!

f1U;

In the special case X reduced and Y = A! this etale factorization was aiready described in
52 (cf. diagram 2.1).

4. COHERENT SHEAVES

Let (XQ) bearinged spaceover C and F of a sheaf of O, -modules on X . F is called
of finite fype on X if there exists an admissible open covering (U,|i E |) of X such that,
forevery i E I, F|U; is finitely generated (i.e. there exists a surjective O, |U;-morphism
(Ox|U)™ — F|U,). F is called coherent if F is of finite type on X and if for every

UE f(X) and every (O, |U-morphism O, |U)™ — F|U the kernel is of finite typeon U .
Coherent sheaves play an important role in many parts of isoalgebraic geometry.
First we consider the fundamental coherence theorems of complex analysis. They remain
true in isoalgebraic geometry:
1. The structure sheaf O, of a locally isoalgebraic space ( XQ) is coherent.
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2. A subset A of a locally isoalgebraic space ( XQ) is cailed locally isoalgebraic if
there exists an admissible open covering (U,| E I') of X such that, forevery i E I , AN U,
is the zero set of finitely many isoaigebraic functions on U;. To alocally isoaigebraicsubset
A of X we define a sheaf J, of ideais on X by J,(U) = {f E Ox(WN|f(z) =0 for
every z EANU} . J, is coherent.

Let X be a locaily isoaigebraic space. The support supp(F) of a coherent sheaf F on
X is defined to be {z E X|F,# 0}. Notice that we define the support of a sheaf here only
for coherent sheaves. For an arbitrary sheaf on X this definition would not be good. The
reason for this is that the family of functors (F — F_|z E X)) does not share the good
proprieties of the sheaf theory on a topological space. For instance, the family of functors
(F — F_lz E X) is neither faithful nor conservative. (The resmction of this family of
functors to the category of coherentsheaveson X is faithful and conservative).

The support of a coherent sheaf on X is a locally isoalgebraic subset of X . Let T be
a coherent sheaf of ideals on X and let A be the support of O,/Z. We have Hilbert’s
Nullstellensatz: J 4 is the radical ideal sheaf of T .

Let (XQ) be alocally isoalgebraic space. We want to define locally isoaigebraicsub-
spaces of X . Let T be a coherent sheaf of ideals on X . We equip Y := supp(Oy/I)
with the weakest structure of a generalized topologicai space such that the inclusion rnap
i Y < X is continuous. We have the sheaf i1 (O, /Z) on Y . (Yi5'(04/T)) is a
ringed space over C and we have a canonical morphism i : (Yi31(04/I)) — (X0Q)
of ringed spaces over C. All ringed spaces over C arising in this way are called locally
isoalgebraic subspacesof X . This notation is justified,since one can prove that locally isoal-
gebraic subspaces are locally isoalgebraic spaces in the sense of Definition 1 of §3.

A first example of a locally isoalgebraic subspace of X is the reduction of X : Jy is
a coherent sheaf of ideals on X . The locally isoalgebraic subspace of X definedby J, is
called the reduction of X andis denoted by X, ;.

According to Definition 10f §3 the open subspaces of the ringed spaces V* V avariety,
are the local models for the locally isoalgebraic spaces. In complex analytic geometry the lo-
cally closed subspacesof C" are the local models for the complex analytic spaces. The same
is true in isoalgebraic geometry: Every locally isoalgebraic space (X,0,) has an admissi-
ble open covenng (U;|s E I) such that every (U,, O |U,) is isomoprhic to an isoalgebraic
subspace of an open subspace of some (A™)" .

The finite coherence theorem holds in isoalgebraic geometry:

Theorem 4.1. Let.f : X — Y be a finite morphism of locally isoalgebraic spaces and let
F be a coherent sheaf on X . Then f,(F) is a coherent sheaf on Y .

We do not know whether the direct image sheaf f,(F) of a coherent sheaf F under a
proper isoalgebraic maps .f is a coherent. The proper coherence theorem (all direct image
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sheaves R" f,(F) of a coherentsheaf F under a proper isoalgebraic map f are coherent)
does not hold. For example, H'(P'(C),Ap:) is not finite dimensional. But nevertheless,
using some special aspects of isoalgebraic geometry, one can prove Remmert's proper map-
ping theorem.

Theorem 4.2. Let f : X — Y be aproper morphism of locally isoalgebraic spaces. Then
f (X) isa locally isoalgebraic subset of Y .

The connection between isoalgebraic geometry and algebraic geometry is rather strong.
This is reflected, for example, by the following theorem.

Theorem 44.3. Let F be a coherent sheaf on an isoalgebraic space X . Let f be an isoal-
gebraicfunction on X and ser U = {x € X|f(X)# 0}. Then thefollowing holds:

i) Forevery s € F(X) with s]U =0 there exists a natural number n with f* .s =0.

i) Forevery s € F(U) thereexistsa natural number nsuch that f * .s can be extended to
a section of F over X .

As mentioned aiready above Serre's beautiful GAGA Principles do not remain true in
isoalgebraic geometry. For instance, H'(P1(C), Ap:1) # H'(P',Op1). But is turns out
that, whenever there is a comparison theorem between varieties and their associated isoal-
gebraic spaces, the comparison theorem holds for every variety and not only for projective
varieties. \We give some examples.

Let X bea variety and let o : X* — X be the canonical morphism of ringed spacesover
C.

«Chow’s Theorem» 4.4. Every isoalgebraic subset A of X" isalgebraic,i.e. there existsa
subvariety Y of X with A =Y (C).

Let G be a coherent siieaf on X" . We deduce from Theorem 4.3 that ,(G) is a quasi-
coherentsheaf on X . But even more, one can prove that ¢, (G) is a coherentsheaf on X .

Now let F be a coherentsheaf on X . Then ¢*(F) is acoherent sheaf on X". Onecan
show that the canonical morphism T (X, F) — T (X (C)p*(F) )is bijective. In particular,
A (X(C)) = 04(X).

Not every coherent sheaf G on X" is algebraic (i.e. isomorphic to a sheaf ¢*(F) with
F acoherent sheaf on X ). For example,if X is affine reduced and dim X > 1,then there
exists an invertible sheaf G on X* with no nontrivial global section. But if a coherent sheaf
G on X" has enough globai sections, then G is algebraic. More precisely

Theorem 4.5. , and ¢* are quasi-inversefunctors between the category of coherent shea-
veson X and the category of coeherentsheaves F on X* which satisfy the following prop-
erty: There exists a covering (U;|i E I') of X by Zariski-open subsets such that,for every
i E | ,the sheaf F|U;(C) isgenerated by its global sections.
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5. EXTENSION OF ISOALGEBRAIC FUNCTIONS AND GLOBAL IRREDUCIBLE
COMPONENTS

Wk first state the classical theorem conceming the extension of isoalgebraaic functions. The
Riemann removable singularity theorern is one of the basic resulis in the elementary isoalge-
braic geometry.

Let (X,0) be a normal connected locally isoalgebraic space and A a closed locally

semialgebraicsubsetof X (i.e. X — AE 13( X)). An isoalgebraic function f E O, (X —A)
on X —A is called weaklybounded near A, if foreverypoint x E A thereexisisat E R such
that for every neighbourhood U of x in X thereexists somey E U — A with |f(y)| < t.
Here dim**X and dim*®*® A denote the semialgebraic dimensions of X and A.

Theorem 5.1. Let f E O, (X — A) be anisoalgebraicfunctionon X — A.

i) Ifdim* A < dim**X — 1 (i.e. X —A isdensein X)and f has a continuous extension
to X , then this extension is isoalgebraic.

i) If dim** 4 < dim**X —2 and f isweakly bounded near A, then f hasan isoalgebraic
extensionto X .

iii) If dim®*¢A < dim*X - 3 ,then £ has an isoalgebraic extension to X .

ii) and iii) are the first and second Riemann removable singularity theorems. Since we
work only in the semialgebraic category and have the semialgebraic dimension theory at our
disposal, the isoalgebraic version of the Riernann extension theorem is alittle bit sronger than
the complex analytic version: Let (C,R) = (C,R) . To the locally isoalgebraic space X
there is associated in a canonical way a complex analytic space X °" . It is connected and
normal. £ is a holomorphic function on X°* . Obviously, if f is locally bounded near A,
then f is weakly bounded near A . If A is thin in X°* ,then dim**4 < dim*X — 2 andif
A is thin of order > 2 in X°" ,then even dim** A < dim**X —4 .

Another classical extension theorem in complex analysis in the Kugelsatz of Hartogs.

Theorem 5.2. Let X be a connected normal affine variety of dimension > 2 and let K be
a complete semialgebraic subset of X(C) such that X(C) — K is connected. Then the
restriction A x (U) — Ax(U —K) is bijectivefor each open semialgebraic neighbourhood
Uof KinX(C).

For X = A™ one can prove a slightly stronger version of Hartogs’ theorem.

Theorem 5.2". Let U be an open semialgebraic subset of C" and K a closed semialgebraic
subset of U. Let p be theprojection C" = C™! x C — C™! . Weassume

i) U and U — K are connected.

it) p|K K — p(U) isproper and p( K)# p(U).

Then every isoalgebraicfunction on U — K can be continued to an isoalgebraicfunction on
U.
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Here are two classical examples to which one can apply Theorems 5.2 and 5.2' respec-
tively.

1) Let P, = {z,...,2,) EC"||z] < s,i = 1,...,n} denotethepolycylinderof radius
s. Letn> 2,5 > r > 0. Then every isoalgebraic function on P, — P can be extended to
an isoalgebraic function on P, .

2) Letg,,...,0 s ERwithO < ¢; < s,i = 1,...,n. Thenevery isoaigebraicfunction
on {(z, ,---,2,) EC|lz] < 84 =1...,n— Lland g, < |z| < s}U{(21,.--,2,) E
C"*|zl < ¢;,i = 1,...,n— 1and |z,| < 8} can be continued to an isoaigebraic function on
the polycylinder P, .

In complex analysis the essential toot in the proof of Riemann's theorem or Hartogs’ the-
orem is the Cauchy integrai formula. Clearly, in isoalgebraic geometry this method is not
possible. Here the methods are purely algebraic or semiaigebraic.

Let ( XQ) beareducedlocally isoalgebraic space. The non-normallocus {z E X|Oy .
is not normai} is denoted by N (X) . Itis a locally isoalgebraic subset of X . An isoaigebraic
morphism £ : X — X is cailedanormalizationof X if the following conditions are satisfied:

i) X isanormai locally isoaigebraic space.

i) f is finite.

i) X — f~Y(N(X)) isdensein X andtheresiriction X — /' (N(X)) — X —=N(X)
of £ is an isoalgebraic isomorphism.

Theorem 5.3. Every reduced locally isoalgebraic space X has a normalization. The nor-
malization is uniquely determined up to an isomorphism.

The uniqueness of the normalization follows from the Riemann removable singularity the-
orem. Let (X,}i E |') be an admissibleopen covering of X such thatevery X is isomorphic
to an open subspace of some V' ,where V is a reduced variety. Let g : ¥ — V be the alge-
braic normalization of V . Then g" : 7% — V" is a normalization of the isoaigebraic space
V. Hence every X; has a normalization f; : X, — X, . Since the normaiization is unique,
the £, glue together to a normalization f X - X.

Finally we state the fundamental global decomposition theorem. The essential ingredients
of its proof are the Riemann externsion theorem and the finite mapping theorem 4.1.

Let (XQ,) be a locally isoalgebraic space. A locally isoaigebraic subset A of X is
called irreducible if there are no proper locally isoalgebraic subsets A, and A, of A with
A = A, UA,. The maximal irreducible locally isoaigebraic subsets of X are cailed the
irreducible componentsof X . For example, if V is a variety with irreducible components
Vi,...,V, ,then Theorem4.4 impliesthat V; (C) ,...,V,(C) arethe irreduciblecomponents

of Vh.
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Theorem 54. Let (Z,]i E 1) be thefamily of connected components of the locally semial-
gebraic space X — N (X,,,) and ler Z; be the closure of Z; in X . Then (Z,]i E 1) isthe
family of irreducible components of X . Thefamily (Z,|i E 1) islocally finite (i.e.for every
open semialgebraic subset U of X there are only finitely many'i E | with Z,nU#0) .

Let Z be a connected cornponentof X — N(X,,,) . The delicate point in the proof of

Theorern 5.4 is to show that Z is a locally isoalgebraic subset of X . The difficultiesarise,
because We have to show that there exists an admissibble open covering (U;|s E I) of X

such that Z N U, is the zero set of finitely many isoalgebraic functions on U;, whereas Z
is the closure of Z in the strong topoiogy of X . Let f : X — X, be the normalization
of X,.,. Let W be the connected cornponent of X containing f~'(Z) . The set f~!(Z2)

is dense in W . It follows from the finite mapping theorern 4.1 that Z = f(W) is a locally
isoalgebraic subset of X .

6. COVERINGS

Let £ : X — Y be a rnorphism of locally semialgebraic spaces. f is cailed a covering if f
is locally trivial with discrete fibres, i.e. there exists an admissible open covering (U,|: E )
of Y having the property that every f~!(U;) is a direct sum of open subspaces, f~'(U,) =
Ijer Vs suchthat f|V, 1V, — U, is an isomorphism for every j E J. If, moreover, all
fibresof f are finite then f is called a finite covering.

As a first example, if f : X — Y is an algebraic covering of varieties then f. :
X(C)— Y(C) is afinite sernialgebraic covering. Let X be a connected locally semialge-
braic space and let z be a point of X . The relation between the sernialgebraic fundamental
group m; ( X ,z) of X and the coverings of X is the same as in topology ([DK, §5]):

1) p = p(m (Yyy) is abijection from the set of isornorphism classes of coverings
p:(Yy — (X,z) with Y connected to the set of subgroups of =, ( X ,z) . p is finite iff
p,(m (Yy)) has finite index in 7, ( X ,z) .

2) Thereexists a universal covering p : (X,%) — ( X ,z) of X which is determined by
the following property: X is connected and for every covering q : (Yy) — (Xz) there
exists a unique lovally sernialgebraicmap f : (X, 5) — Yy} with p =gof. X issimply
connected and there is a (canonical)bijection from 7, (X, z) to the fibre p=! (z) .

If f :Y — X is acovering with Y sernialgebraic then f is finite. But in generai,
7 ( X ,z) is not finite. In this case the universal covering X is not sernialgebraic.

The Riernann existencetheorern states that the algebraic fundarnental group of a connected
variety X over C is isornorphic to the profinite cornpletion of the fundamental group of the
topological space X (C) [Mi,p. 40]. This rernains true if we replace R by an arbitrary real
closed field.
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Theorem6.1. Let X be avariety. The functor, which associates with any algebraic covering
Y — X the semialgebraic covering Y (C) — X{(C) ,is an equivalencefrom the category
ofalgebraic coverings of X to the category of finite semialgebraic coverings of X (C).

In a first step one proves Theorem 6.1 for Zariski-open subsets of A! . This special case
follows easily frorn the descnption of coverings by subgroups of the fundarnental group and
the fact that Theorern 6.1 is true for R = R. Then the general result of Theorem 6.1 is
obtained by the same proof as in the topological case R = R using etale cohornology [SGA
4,XV14.1].

A locallyisoalgebraic structure on a locally semialgebraic space (X,C) is a sheaf O on
the generaiized topological space X such that (X,0) is a locally isoalgebraic space with
associated locally semialgebraic space (X,C) . Two locally isoalgebraic structures O, and
0, on (X,C) arecalled isomorphicif (X,0,) and (X,0,) areisoalgebrically isornorphic.

Let (X,0) be a locally isoalgebraic space and let f : Y — X be a locally semi-
algebraic covering. Then there exist a locally isoalgebraic structure O, on Y and a sheaf
homomorphism ¢ : O, — f,Oy suchthat (F9) : (Y,0y) — (X,0) is an isoalgebraic
covenng (isoalgebraiccoverings are defined analogously to semialgebric coverings). O, and
4 are uniquely determined.

Theorem 6.2. Let X and Y be the normal connected varieties. Let V' be a locally isoai-
gebraic spaceand let f : V — X" and g : V — Y'* be isoalgebraic coverings. Then X
and Y have a common algebraic covering,i.e. there exist algebraic coverings W — X and
W-Y.

W& may assume that V' is connected. (X x Y)" is the product of X* and Y'* in the
category of locally isoalgebraic spaces. Therefore f and ¢ define an isoalgebraic morphism
s:V — (X x Y)". Thecrucial (but not difficult) point in the proof of Theorem 6.2is that
s(V) is contained in an n-dimensional isoalgebraic subset of (X x Y)*, where n is the
dimension of V. Indeed, the Zariski-closure Z of s(V) in X x Y has dimension n. Let
p:Z — X and q : Z — Y be the projections. Using the fact that an isoalgebraic space
has only finitely rnany irreducible components one can show that s(V) is an n-dimensional
isoalgebraic subset of Z# and that p|s(V) :s(V ) — X(C) and g|s(V) :s(V) — Y(C)
are finite. Since Z is irreducible, we have s(V) = Z(C). Thus p and q are finite. Let
t: W — Z be the normalization of Z. Then pot: W — X and qot: W — Y arethe
coverings we are looking for (V.

Corollary 6.3. Let X and Y be connected normal varieties. If X * and Y'* have a common
isoalgebraic covering then X » and Y'' have also a common finite isoalgebraic covering.

Now we give a detailed example of an isoalgebraic covering.

(M We ihank Mikahel Gromov for a discussion which led to this proof.
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For every natural number n we put V,, = {z E C||z| < n}. LetV be the union of all V.

V is a valuation ring of C with maximal ideal m,, = {z E C||z| < % foreverynE N}. IfR
is archimedean then V = C, and if R is not archimedean then V is not a semialgebraic subset
of C. Let O, be the sheaf of isoalgebraic functions on V,. We.consider the inductive limit

iim - (V,, O,) of the open subspaces (V,, ) of (A!)* in the category of ringed spaces
over C. This space can be described as follows. The underlying sets is V. A subsetU of V
is an eiementof To(V) iffUNV, E f( V,) forevery nE N .LetU be an eiementof f(V).

A family (U;|s E I) of elements of zg(V )is an admissible open covering of U iff, for every
ne N ,(U;NV,|i E I) is an admissible open covering of U N V,,.0y, (U) is the ring of all
functions f : U — C such that /|U N V,, is an isoalgebraic function on U N V,, for every
neN.

This space (V ,0,) is locally isoalgebraic. LetC, be the associated sheaf of locally semi-
algebraic functions. Then C, is the ring of all functions f : U —+ R such that f|JU NV, is
semialgebraic for every nE N .

The residue field K := V/m,, is the algebraic closure of the real closed field § := Y n
R/my N R. Letw : V — K be the projection. By a lattice of V we mean a subgroup L
of VV which is generated by two elementsw; and w, such that #(w,;) and 7(w,) arelinearly
independent over S.

LetL = Zw, T Zw, be a lattice of V and letp; : V — V/L be the projection. We

equip V/L with the quotient structure, i.e. :zi( V/L) is the set of all subsetsU of V/L with
p;'(U) ET(V),Cov,,,(U) is the set of all families (U,Ji E i)with (p;' (Ui E I)E
Covy, (p;' (U)) and the structure sheafO, is definedby O, (U) = {f E O, (p;' (U))Ifis
constanton p; ' (z) forevery z E U}. Then p; is @ morphism of ringed spaces over C. We
setW = {sw; Tiw,|s,t ERand -} < s,t < 3} andE = {0, 3w, ,7w,, yw; + Fw, }. For
everye € Eandl € L,p,(e+ W) isanopensubsetof V/L andp,le+ 1+ W i e+ 1+ W -
p, (et W )is an isomorphism of ringed spaces over C. Furthermore, (p,(e + W )e E E)
is an admissible open covering of V/L. Hence (V/L, O,) is an isoalgebraic space and p, is
an isoalgebraic covering. Let C; be the associated sheaf of semialgebraic functions on V/L.
Then C, (U) = {f E C,(p;'(U))|f is constant onp; ' (z) foreverys E U}. Since (V,C,)
is simply connected,p, : (V§ — (V/L,C) is the universal covenng of (V/L,C).

Let U be a connected open locally semialgebraic subset of V and let f be an isoalgebraic
function on U. We assume that z,+ L C Uforsomepoints, E V andthat f(z,) = f(z,+))
forevery 1€ L. Then f is constant. This is a consequence of the global etale factorization of
T (cf. §2). This shows that the isoalgebraic space (V/L, O, ) is not algebraic.

Next we want to parametrizc the isomorphism classes of spaces(V/L,0,). LetL :M
be two lattices of V and let f : V/L — V/M be an isoalgebraic isomorphism. f liftstoan
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isoalgebraicisomorphism f : V — V. Itis of the form z — a2z + b with b in V and a a unit
of V. Hence V/L and V/M are isornorphicif and only if the lattices L and M are linearly
equivalent, i.e. there existsa unita of V withaL = M .

W& denote by HV the set{z E V|Im(z) > % for somen E N}.S§L(2,Z) actson

T+d

HV in the usual way, At = 22 with A = (Z 2) and 7 E HV. Every lattice of V is

linearly equivalentto a lattice of the form Z + Z~ with + E HV and two latticesZ + Z 7,
andZ + Zr, with r, 7, € HV are linearly equivalentif and only if , = A7, with some
A € SL(2,2Z). Hence the orbit space of the action of SL(2,Z) on HV parametrizes the
isomorphism classes of spaces (V/L,0,).

S' denotes the one dimensional sphere over the reat closed field R. For every lattice L of
V the semialgebraic space (V/L,C) is isomorphicto S' x S'. Hence we get

Theorem 6.4. On the torus S x S' there are injinitely many non isomorphic smooth isoal-
gebraic structures O such that (S' x S' ,0) isnot algebraic.

Corollary 6.3 is not true for arbitrary normal isoalgebraic spaces. There exist lattices L
and M of V such that V/L and V/M have no common finite isoalgebraic covering. Let
s :V — V/L x V/M be the isoalgebraic morphism induced by p, and p,, . We conclude
from the proof of Theorem 6.2 that s(V ) is not contained in an one dimensional isoalgebraic
subsetof V/L x V/M.

Two projective srnoothalgebraiccurves X and Y are called isogenous if they have a com-
mon algebraic covering. The universal covering of the semialgebraic space X ( C) ,where X
is aprojective smoothalgebraiccurve, is isomorphicto (V C) . Henceeveryisogeny class of
curves induces, up to isomorphism, a locally isoalgebraic structure on (V C) . We conclude
from Theorem 6.2 that non isogeneous curves induce non isomorphic locally isoalgebraic
structureson (V,C) . Thus we obtain

Theorem 6.5. On the locally semialgebraic space (V C,) there exist infinitely many non
isomorphic smooth locally isoalgebraic structures.

The last theorem should be compared with the complex analytic situation. If (C,R) =
(C,R) then V = C. On the complex plane there are (up to isomorphism) only two smooth
holomorphic structures.
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