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1. INTRODUCTION AND RESULT

Two compact, connected polyhedra (V' K2 and L? are called Andrews-Curtis equivalent
if there exists a sequence of expansions and collapses (in the sense of simple-homotopy
theory) transforming K? into L?, during which all cells have dimensions not exceeding 3

3
(K% N, L?). Itis an open problem, whether simple-homotopy equivalence of K* and L?

(K? N, L*) always implies K 2 /3\, L?. The expectation «yes» as an answer to this question
is the generalized Andrews-Curtis conjecture (AC'"), the naming referring to a paper [1] of
J. Andrews and M.L. Curtis in which the authors drew attention to the case of contractible
K? L? (Andrews-Curtis conjecture (AC)). But there exist several notorious examples (s.

[17]), for which the implication K? ~ % = K? ji\ * seems debatable. Moreover, we are
convinced that counterexamples to (AC’) for nontrivial fundamental groups are even more
likely to exist, s. §3, A).

The main contribution of this paper is that, on the other hand, (unexpected) Andrews-
Curtis equivalences can be constructed in a systematic way. They reveal that the search for
AC® -invariants is a delicate matter.

We shall prove the

Theorem. Let K¢, L} be compact, connected polyhedra P which are simple-homotopy equi-
valent. Then by forming the one-point unions K*=K;VKEV...V K? and L* = L3V
K2V ...V K2, where the K*,v = 1,...,n are standard complexes of the presentation
(a,Blo? = [, B] = f* = 1) of Z, x Z,, and if nis big enough (depending on K}, L3),

K? and L? are Andrews-Curtis equivalent.

Y

ate number of 2-spheres, Andrews-Curtis equivalences could already be obtained under the

It 1s well known that, if the K 3 ,v > 1 of this theorem were replaced by an appropri-

*Parnly supported by a DI‘G-grant.

() Throughout this paper we could as well consider 2-dimensional CW-spaces (without a specified cell structure)
s. [16], footnote 2 and [6], Thm. 5. But there is no real advantage in admitting nontriangulable spaces, compare the

remark 1n §2.

(2) Compare footnote 1.
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weaker assumptions: m,( K2) ~ m,(L3) and x(K2) = x(L3) instead of K§ /\, L§. The
essential point of our theorem is that the K>, v > 1 are complexes with minimal Euler char-
acteristic for their fundamental group Z, x £,.

One-point unions with these complexes have already been studied in Metzler [18] so as to
realize torsion values of Wh(x, (K?2)) by maps between 2-complexes * of minimal Euler
characteristic, thereby distinguishing homotopy type and simple-homotopy type in dimension
2. The Z, x Z ,-factors allow to bypass the commutator problem (s. §2, (6) and §3; C))
which marks the main difference between complexes of dimension 2 and the case n# 2, where

n+l

K™ /N, L™ always implies K™ /\, L™, s. Wall [24]. |

In [18], Thm. 3 examples of homotopy equivalent but simple-homotopy inequivalent 2-
complexes are given which remain simple-homotopy distinct even after forming the one-point
union with arbitrarily (finitely) many standard complexes of (¢, Bla* = [, 8] = Bg* = 1).
Hence the assumption K3 /\, L3 in the theorem of the present paper cannot generally be
dismissed with.

The one-point union of polyhedra corresponds to forming the free product of fundamental
groups. That free products, free products with amalgamation, H N N -extensions and graphs
of groups as fundamental groups of 2-complexes reveal (simple)-homotopy phenomena that
are not merely a «sum» of those of the factors, has already turned out several times. For
instance, the deficiency of groups is not additive under the forming of the free product (Hog-
Lustig-Metzler [10], s. also Hog-Angeloni [8]). Our paper is part of a program to study
these phenomena. For simple-homotopy purposes the free factors £ , x £ , have the advan-
tage of not contributing to Wh(m,) (s. [18], footnote 3). But for the stabilization process
yielding Andrews-Curtis equivalences they can be replaced by bigger factors. Such possible
extensions of the theorem and their connection with further ideas towards a‘solution of the
Andrews-Curtis problem are discussed in the concluding §3.

2. PROOF OF THE THEOREM

It clearly suffices to establish the assertion for polyhedra which arise by varying K 2 and L

within their Andrews-Curtis classes. Hence, by starting with p.l. cell-decompositions and

3
contracting spanning trees (which are modifications of type /), we may assume without

loss of generality that

(1) K¢ and L} are standard complexes of finite presentations.

(3) The theorem of the present paper can be used to show that the complexes L%u of the claim of [18], Thm. 1 are
unique «up to Andrews-Curtis equivalence» after (further) stabilization with these standard £ , x Z 4 -complexes.
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If f : K2 — L2 is a simple-homotopy equivalence, we may moreover apply further

3 _
A,-modifications to K5 and L3 and deform f homotopically until we also get:

(2) (a) The 1-skeleta of K2 and L3 coincide;
(b) the restriction of f to the 1-skeleta is the identity map.

(Compare [15] for these normalizations.)
Thus K} may be given as the standard complex of a presentation &, = {a,,..., a,|R;(a;),

..., R,(a;)), L§ as the standard complex of &, = (ay,.-+ya,]8(a;),...,Sy(q;)), where
the normal closure of the R}- and that of the Sj in the free group F'(a;) coincide (and will be

denoted by N henceforth). (2) together with the fact that f is a simple-homotopy equivalence
implies that with respect to cellular bases

(3) the induced map C’z(ff 0) — Cz(f,ﬂ) determines an (invertible and) Whitehead-
trivial £ (7, )-matrix F'.

Here K, L, denote the universal covering complexes of K3 resp. L. m; = F(a;)/N is
isomorphic to the fundamental groups of K§ and L§. The R, resp. S; give rise to fundamental

systems 2 resp. S; of 2-cells for K, resp. Ly; and if R; is mapped to the Z (;)-linear

combination ¢, ) + ...+ ¢, 5, then its coefficients o, ..., p;, constitute the j-th row of
F.

The fact that F' is trivial in Wh(,) means that I can be transformed into the identity
matrix by a sequence of the following elementary operations (s. [4], p. 31):

(4) (a) adding a row of F' to another row;
(b) multiplying a row of F' by plus or minus an element of y;

F 0
(¢) passing from F' to the prolonged matrix (0 i )

3
These operations can be effected by /\,-modifications of K¢ which correspond to the

following operations applied to the presentation &%,

(5) (a) multiplication of a defining relator to another one (from the right or left);
(b) inversion of a defining relator and/or conjugation of it by an element w € F'(a,);
(c) prolongation, 1.e. introduction of a new generator and a new defining relator read-
Ing this generator.

In the case (c¢) the prolongation resp. the corresponding 2-dimensional expansion has also
to be applied to &, resp. to its standard complex L3j.
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Remark. Together with the operation of (d) replacing the a. by the result of a free transfor-
mation in all defining relators and (e) the inverse of (c) (if possible), the operations of type
(5) generate all Q**-transformations, they completely characterize Andrews-Curtis classes of
2-dimensional polyhedra (or CW -spaces) in terms of combinatorial group theory, s. Wright
[25] and the references given in footnote 1.

After this further normalization we may assume without loss of generality that the given
simple-homotopy equivalence f : K5 — L3 fulfills (1), (2) and:

(3°) the induced map C, (K,) — C,(L,) sends R; 10 S,,7 = 1,..., h.
This does notimply R; = S;,7 = 1,..., h; but the following weaker implication holds:

(6) The R, - S;! are contained in the commutator subgroup [N, N of the group N of

relators (¥,

A proof of this (well known) fact can be given by an argument mainly due to Reidemeister
[22]. It will be supplied for the convenience of the reader at the end of this section. (6) can
be related to handlebody considerations which are an important motivation for the Andrews-
Curtis problem, s. Quinn [21]. If the commutator «obstructions» given by (6) could be trivial-
ized by applying Q**-transformations to (a;| R;), then (AC’) would be proven. But although
it is possible to impose further restrictions on the commutators ;S ! at the moment they
might just as well point towards ( AC’)-invariants, s. §3, C).

Nevertheless (6) gives rise to an interplay with additional free £, x £ ,-factors of m; it
is the main idea of this proof (and similar to the one of [18], Thm. 1):

By (6) the R.S; ! can be expressed as products of elementary commutators [T, , T, 1,
altogether using only finitely many T € N. For each p and each pair (p,, p,) that occurs
we bijectively reserve one of the indices v between 1 and = (thereby determining n).

For this number n we consider the complexes K? and L? of the assertion. They are

standard complexes of the presentation ¢° = (a,, o, ,6’“|Rj,u§, [, B,],B8)) resp. & =
(ﬂ';‘i &yl' ﬁul‘g}: &3 ’ [ﬂp:ﬂp] 3 ﬁj >

By multiplication of the 8. to o, 8, ;' B; ' we get the Q**-transformation

(7) P — (a;,0,,B,|R;, 02, 0,8,0,' B2, B)) = P,

v )

As the T are consequences of the R;, we may apply the Q**-transition

(8) '@1 — (ﬂi!aum lejzﬁil&yﬁu&;lﬁﬂlﬁi{p]Tp_l ICSP. )Bf:(pl Ip.z)(Tplsz)_l) = ‘@2'

(4) Conversely, if (a;|R1,..., R;) and (a;|S,...,S}) are finite presentations with the same relator subgroup N C
F(a;) and if (6) is fulfilled, then the corresponding standard complexes are simple-homotopy equivalent.
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Note that in &, cez = 1 and auﬁumj = [3’;3 together (already) imply ,83 = 1. The relations

_ 4 : 2 _ _ -
T, resp. T, T, J(p, .p,) ENCE imply T 1, 7,7, T, T, =1, from which

[T, T, 1=1 f{}HDWS. In achieving these consequences, the original relators R, of K % have

u(p)

not been used. Thus the representation of the RJ-S}-‘I as products of the [T’ﬂr1 ,sz] gives rise

to a Q**-transformation
(9) ‘gaz — (ﬂﬂ&y!ﬁ |S EEUIEE ;811& ﬁylﬁu{p}T I.E’Sp ﬁd(p lpz}(T T )-1) - @2

In total analogy to (7) and (8), & Q**-transforms to 7, . Reversing these last transitions, we
have completed a chain of Q™" -transformations

-1

8 9 7y
P 9.3(1 ()@2 4?(1,5?

which establish the desired Andrews-Curtis equivalence of K? and L?, g.e.d.

We close this section with the postponed argument for (6): with the finite presentation
Py = {(ay,...,a |R1,... R,) we associate a (bigger) free group F'(a;, r;),t=1,...,9,

0Ty — R Let

r:). F(a;) operates on FY( r;) by conjugation;

j =1,..., h and a projection p : F(a;,r;) — F(a;) givenby a; — a

i) _}
FY( r;) be the normal closure of the r; in F'(a;, 7;
p induces a surjection p,_ : F(frj) — N. The kernel of p, is the group of identities of % .

Peiffer identities, i.e. identities of type

(10) () =r-s-r . p(r)s ip. () rys € F(r,)

are of particular relevance for the Andrews-Curtis problem.
There exists a natural homomorphism

(11) @gan : F(rj) — Cz(fﬂfﬂ) which sends T.UT'j'IU_I to [w]f—?j, where w € F(a,) and

[ w] denotes the residual class of w in 7, = F'(a;)/N.

Clearly commutators [, s] and Peiffer identities (7, s),r, s € F( r;) are contained in
kETE‘)@D. The result of Reidemeister [22] which we need, is

(12) ker@gaﬂ 1s normally generated by commutators and Peiffer identities as an lﬁ(rj)-

subgroup.
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(This can be seen as follows: Choose representatives for the residual classes of F'(aq;)

mod N. Letw = vR, where R € N and R = p (7). Commutators and Peiffer identities

generate equivalence classes in F(rj-) such that wr;w™" = URU_I(UTJ-U-I)UR_IU_I ~

vro~ ! . v'rj'u_l cor~ ol ~ ufrju‘l. Hence every element s' € “ﬁ"(r}-) 1S equivalent to a

product of factors §r;( "3:9) g~ (with n(r;,9) € Z 7 the representative of g € ), each pair
r;,g occurring at most once. A product of this form is mapped to zero under B4 (if and)
only if all exponents n(r;,g) vanish; hence 95;1“(3) = (0 implies s ~ 1).

By (1) and (2) the given map Cz(ffn) — CZ(EC,) lifts to an F'(a,)-equivariant homo-
morphism

F(r) 5 F(s))

(13) Pe N at
N

such that p, = g, ¢, where the data for &, are constructed and denoted in analogy to those
for #%,. By (3’)  fulfills

(14) p(r,)s;" € ker®y ;

hence — because of (12) — p(7;) 3;1 is a product of commutators of F(s ;) and conjugates of
Peiffer identities of 7. As the latter are trivialized under the projection q,, q,(@(7;) 5;1 ) =

R;S;! is a product of commutators of N, g.e.d.

3. DISCUSSION AND ADDITIONS

In this section we (almost) confine ourselves to the algebraic notation of the Andrews-Curtis
problem via Q**-classes of finite presentations, as this is more adequate in treating the exam-
ples below.

Presentation classes ¢ and ¢ may be added by taking «disjoint» representatives & =
(a;|R;), @ = (b;|S,) and passing to the presentation F° + @ = (a;,b|R;,Sp). The sum
¢ + 1) corresponds to the free product of the groups which are presented and to the one-point

union of standard 2-complexes. Thus an abelian semigroup of presentation classes arises; the

3
class ¢, which consists of the presentations %™ ~ (—|—) (i.e. K* /\ %) is the neutral element

of this semigroup (compare [16] and [17]).

A) If & is a balanced presentation of the trivial group (i.e. K* A\, *) and if & is a finite
presentation, then &° and #°+ £~ determine standard complexes of the same simple-homotopy
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type. But it is at least as hard to disprove (AC') via P, P + £ as to establish £ as a
counterexample to (AC).. A striking reason is that & ~ {—|-) implies & ~ £ + %

Moreover, even if ( AC) is false with ™ 4 (—|—) a counterexample, then for some ;1 (Z, X

1=

Z ,). the theorem of §1 provides a & of maximal deficiency (* such that # ~ P+ &, (The

falsity of ( AC) thus would yield that a «cancellation law» P+ @ ~ P+ @' = O ~ @
needs strong assumptions on the summands, compare Sieradski [23]).

The preceding discussion gives rise to the following definition: Suppose that &, , %>,
constitute a counterexample to (AC’) such that %, and &%, remain inequivalent (even) if we
pass to the coarser equivalence classes for which we allow Q**-transitions and the addition
or deletion (if possible) of a balanced presentation of the trivial group (s. [17]); then we call
P, , 9, acounterexample to (AC") which is specific for the group presented by &7, , and &, .

In our opinion it is worth while to focus on such group specific counterexamples to ( AC")
forw# {1}. They mightbe detected by invariants which by definition are unable to distinguish
between & and P+ %", £ a balanced presentation of the trivial group; however the structure
of = may play an essential role.

Remark. Qur expectation is also based on work in progress on concrete «exotic» presen-
tations. Their construction involves «typical» nontrivial elements of m and of N C F'(a;)
(such as: elements of finite order, commutators, stable letters of H N N -extensions). Exotic
presentations of m = G x H were first considered by us in [10], 5. also [13]. Originally we
confined to nonsplittable homotopy types with respect to the given factorization of w. In the
meantime we have obtained various examples, the corresponding 2-complexes of which are
all of the same simple-homotopy type (s. [3],[12], compare also [7], [8], [9], [15], [23]); but
only in some cases we have achieved ()**-equivalences. Moreover we are fairly convinced
that establishing such counterexamples to (AC') would naturally be done by proving at once
that they are specific for the group in question.

B) The presentations {«, Blo? = [«, 8] = B* = 1) provided universal factors of minimal
Euler characterisuc which turn simple-homotopy equivalences into Andrews-Curtis equiv-
alences. For the stabilization process one might as well use the presentations (o, Bla?™ =
[a®, A"] = B*" = 1); in the defining relators of (7), (8) and (9) one merely has to substitute
a, B by o™, " throughout. The presentation (o, fla” = 8°,0° = (af)?,a® = 1) of the
1cosahedral group is also a candidate, as already the first two of the defining relators together
imply «® = 1. But in certain concrete situations we even know a bi gger variety of trivializ-
ing factors. Consider the presentation 2, = {a, b|b> = ab?a~!,a® = ba?b~!) of w = {1},
for which an AC-trivialization has not yet been achieved (s. Crowell-Fox [5], Osborne [20],

(3) In particular: no trivial relator can be isolated by applying Q**-transformations to &,
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Metzler [17]). C.F. Miller and P.E. Schupp observed that, in fact, the second relator of &%
can be replaced by any R with exponent sum 1 in q, still yielding a presentation &%, ¢ of
m = {1}, s. [19]. For these presentations we may extend our theorem to the following

Proposition (%, Let (m,n)# 1 and @ = {a,Bla™ = 1, [«, B] = 1,8™ = 1) be the «stan-
dard» presentationof Z X Z _.ThenP,, ¢+ T ~ 2.

Proof. By Miller and Schupp’s result a given presentation 2, o+ & = (a,b, o, fla™ =
1,[e, 81 =1,8"=1,b = ab’a™!, R = 1)Q**-transforms into

(15) (a,b, @, Bla™ = 1,afa"" = B** " = b,* = ab?a™! R = 1).

The first two relations of (15) imply that 2 is of an order which divides (1 + n)™ — 1 (a
multiple of m); hence already by the first 3 relations b has finite order too. Now the fourth
relation shows that 5> and b%* have the same order which in tumn then has to be the order of b.
Therefore b% and b® are primitive elements in the cyclic group generated by b. b* = ab* = o'
thus implies |

(16) aba”! =b*  a7'ba = b* for some k,£ € N;

and in achieving these consequences, the last relator R has not yet been used.:
Hence because of (16), this relator in (15) can be changed into a = b* for some 7 € IN by
a Q**-transformation. But now a final chain of Q**-transitions 1s apparent:

(a,b, @, Bla™ = 1,afa~" = B, B = b, b = ab?a™! ,a = b) —

(a,b, o, Bla™ = 1, afa” ! =B B =b,b= 11[1-_-bi) —
{(a,b, a, Bla™ = l,aBat=p"" f*=1,b=1,a=1) =@, q.e.d.

Note that (m, n) # 1 didn’t enter the computation. This sassumption solely has been made to
ensure that ¢ is of maximal deficiency.

C) In a forthcoming paper [11] it will be shown that the commutator property (6) of §2
can be sharpened as follows:

(6} The argument of Miller and Schupp is given in the even more general situation in which the exponents 2, 3 in the
first relator of 9%y and 9°,,_g are substituted by arbitrary adjacent natural numbers. This generalization also holds

for the proposition.
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6) If#=(ay,...,a,|R;,...,Ry)and & = (qy,...,a,|S},...,S,) are finite presenta-
tions with the same relator subgroup N C F'(a,) and if (6) holds, then by applying appropriate
transformations of type (5) (a), (b) (Q-fransformations) to (one of) the presentations &2, 7 we
can achieve

Rj.S’;l e N foranyn> 1, where

N(™ denotes the n—th derived group of N (i.e. NV = [N, N}, N® = [N(»D n(n=D7y

This 1s an extension to simple-homotopy of an (unpublished) result of W. Browning [2],
who was mainly interested in the ( AC) -case. It prevents us from attempts to disprove (AC’)
by projecting the R, and S; to a quotient of F'(a;) mod F, (lower central series), (" | N_

or N{" and trying to achieve Q-invariants for the projections of the «vectors» (Ry,...,Ry)
and (S,,...,5,) as a first step towards Q**-invariants.

On the other hand, a study of the terms R, S;l € N™ forincreasing values of n may be

worth while — in particular for w# {1} — in order to obtain Q**-invariants, s. [14].

(6’) moreover is a motivation to look for «refined» factors instead of S? (serving for N),
Z, x &, (serving for [ N, N1), which are appropriate for a modification of the commutator-
trick of §2 on the level of a preassigned n > 1.

Finally we want to point out that even via their consequences of providing universal sta-
bilizing factors (6) and (6’) prevent from concentrating on futile invariants: A Q**-invariant
must «die» after wedging on sufficiently many copies of a universal stabilizing factor, and
for many suggested invariants this requirement implies that they are unable to distinguish
between different (Q**-classes at all.

These considerations are disillusions for quick attempts to disprove ( AC"). But they also
contain «positive» aspects which — in connection with concrete potential counterexamples as
mentioned in [17] and the remark at the end of A) above — leave the Andrews-Curtis problem
as a challenging topic for further research.
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