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It 1s well-known that each distribution g with compact support can be convolved with an
arbitrary distribution and that this defines a convolution operator SH acting on D'(R) . The
surjectivity of 5 was characterized by Ehrenpreis [5]. Extending this result, we characterize

in the present article the surjectivity of convolution operators on the space D/ (R) of all
w-ultradistributions of Beurling type on R . This 1s done in two steps. In the first one we
show that ker S, has an absolute basis whenever S;; admits a fundamental solution v €

D,(R). The expansion of an clement in ker S, with respect to this basis can be regarded
as a generalization of the Fourier expansion of periodic ultradistributions. In the second step
we use this sequence space representation together with results of Palamodov [15] and Vogt
[17], [18] on the projective limit functor to obtain the desired characterization. It turns out
that S, 1s surjective if and only if S, admits a fundamental solution. Hence the elements of

ker .5‘” admit a generalized Fourier expansion for each surjective convolution operator S,u

on D, (R). Note that this differs from the behavior of convolution operators on the space
E{m}( R ) of w-ultradifferentiable functions of Roumieu-type, as Braun, Meise and Vogt [4]

have shown. Note also that the results of the present article apply to convolution operators on
D'(R), too.

1. PRELIMINARIES

In this preliminary section we introduce most of the notation which will be used in the sequel.

Definition 1.1. A continuous increasing function w : [0,00[ — [0, 00[ is called a weight
function if it satisfies
(a) thereexists K € N withw(2t) < K(1+w(t)) forallt >0

(B) f;"‘;{{}m{m
: logt _
() lim,_ 2% =0
(6) p:tw— w(e) isconvex.

The Young conjugate ¢* . [0,00[ — R of ¢ 15 defined by

p*(y) = sup{zy — p(z)|z > 0}.

By abuse of notation we shall write subsequently w(z) instead of w(|z]) for z € C.
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Definition 1.2. Let w be a weight function, and let 2 be an open subset of R . Then we
define

E () = {f € C™(£2)| for each compact subset K of  and each m € N :

'ﬁ

Pim(f) 1= sup sup |f(z)]exp <_m¢|,9* (J_)) < 00 §

€K jJEN, (!

and we endow & (R) with the Fréchet space topology which is induced by the semi-norms
Prm» K Q82, m € N. Theelementsof £ ,(R) are called w-ultradifferentiable functions

of Beurling type.
For k € N we sct

D, [—k,k] = {f € &, (R)| Supp(f) C[—k, k1},
cndowed with the inducced topology. Finally, we define

D,(R) := ind D,[—k,k].

The elements of D (R )" are called w-ultradistribution of Beurling type. D_(R)' will
be endowed with the strong topology.

Remark 1.3. (a) For further details concerning the spaces D_(R) and & (R) we refer
to Braun, Meise and Taylor [3]. In particular it 1s shown there that D _(R) 1s an infinite
dimensional, complete, nuclear ( L F') -space for each weight function w.

(b) By [3], 3.4, the spaces £ (R) and D_(R) do not change if we replace w by o :
t — max(w(t) — w(1l),0). Therefore we can and shall assume 1n the sequel that p* 1s
non-ncgative,

(¢) The function w : t — log(1 + t) 1s not a weight funcuon since 1.1 () 1s not
satisfied. Nevertheless it can be subsumed under the present theory, provided that one uses
the right interpretation.

Example 1.4. The following functions w : [0, 00[ — [0, 00[ are examples of weight func-
tons

(1) w(t):=t* 0 <a<l

(2) w(?) := (log(1+ )P B>1

(3) w(t) :=t(log(e+1t)) P B>1.

Nolte that for w(t) =t*,0 < a < 1, the space £ (R) is the Gevrey class £ (R) for

d:= +.

x
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The Fourier-Laplace transform on D_(R) 1.5. Let A(C) denote the algebra of all entire
functions on € . For a weight function w and &, m € N we define the Banach space

A(w,k,m) = {f € ACT)| || £ llg mi= sug |f(2)]| exp(—k|Im z| + mw(2)) < m}
zE

and the ( L F')-space

A, 1= {f € A(T)| there exists k € N so that for all m € N :|| ||, ,,< oo}
= ind proj) A(w, k,m).

k—  «—m
By [3], 3.5(1), the Founier-Laplace transform

F.D,(R) - A,

F(f)l2) = F(2) = fn f(t)e-tdt

1s a linear topological isomorphism.

Convolution operators on D_(R)’ 1.6. Let w be a weight function. For 4 € £ (R)’ and
f € &,(R) we define the convolution y x f : R — € by

px f(z) 1= (p,, f(z—y)).
By [3],6.3, u* f isin & ,(R) . Moreover, by the same reference
5;‘l : D (R) - D, (R)’,

defined by
S,(W):=pxv:Y (yhxy), PEDLUR),

where (i, f) = (u,, f(—x)), is a continuous linear map. S, is called the convolution

operator on D_(R)’ which is induced by u € &, (R)’. Note that by [3], 6.2, we have
S,(f)y=pxfforal fe &, (R).

Since D_(R) isrefiexive by (3], 5.6, the adjoint S; of §, canberegarded as a continuous
linear operator on D_(R) . Itis easy to check that on A, defined in 1.5, we have

t -1 _
(1) FoSloF =M,
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where M;; . A, — A, denotes the operator of multiplication by the function g which is
defined by

n(z) = (,uI,ei”) ze C.

¥

By 1 we denote the function i : z — g(—2). Then g and g are entire functions on €
and there exist m € N and C > 0 so that

(2) i(2)| < Cexp(m|Im z|+ mw(z)) forall z¢€ C.

Next note that by [3], 5.6, D_(R )’ is a complecte nuclear space. Hence ker S, has these
properties, t00. By Schwartz [16], p. 43, this implies that (ker S#)", the strong dual of

ker .S’jul , is ultrabornological. By the refiexivity of D (R) we can identify (D (R )')’ with
D_(R) . Then the restriction map

p:D,(R)=(D,(R)) — (kerS))

1s continuous and surjective by the theorem of Hahn-Banach. Hence the open mapping theo-
rem 1mplics

(3) (ker S,)' = D,(R)/ker p= D, (R)/(ker S,)*.
Since D (R ) isreflexive, (ker SM)l equals the closure imS:l.r Hence (1) and (3) imply
(4) (ker S,)' = A, /uA,,

where the isomorphism is induced by the map ® := po F~!. Note that the theorem of
Hahn-Banach implies

[ A subset G of (ker Sp)’ 1s equicontinuous if and only if there exist k € N
(5) {1 andabounded set M in proj A(w, k,m) C A, sothat G = ®(M).

b

We want to characterize those p € &,(R)’ for which the convolution operator S, is

surjective on D_(R)’. A necessary condition for the surjectivity of .S"u 1s obviously that the

equation
S,(v) = px*xv= )

has a solution v € D_(R)’, i.e. that §, admits a fundamental solution v . This property of
S, was characterized alrcady by Braun, Mcise and Vogt [4], 2.7. From there and from the
diameter estimates obtained in the proof of Meise, Taylor and Vogt [13], 2.3, we know:
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Proposition 1.7. Let w be a weight function and let u € £ ,(R)' be given. Then S, admits

a fundamental solution v € D_(R)' if and only if ji is slowly decreasing in the following
sense: there exist positive numbers €, C and D such that on each component S of the set

S(p,e,C) :={z€ C||u(2)| < eexp(—C|Im z| — Cw(2))}

we have

sup(|Im z|+w(2)) < D (1 + inf (|Im 2|+ w(z))) :
z€S zES

If u is slowly decreasing then one can choose €, C and D in such a way that

(%) sup w( z) <_ZD<1+inf w(z))

€S ZES

holds for each component S of the set S(u,e,C) .

In the next section we will show that ker S, has an absolute basis, whenever 5, admits a
fundamental solution. In doing this we shall use certain sequence spaces which we introduce

now.

Definition 1.8. Let o« and B be sequences in [0, o00[ with im; ,,B; = oo andlet E =

(E; |l - |l;);en e a sequence of finite dimensional normed spaces. For k,m € N we

introduce the Banach spaces

}\(kim:E) = T € H Ejl ” I ”k,m:= E ” Ij ||4;I EIP(kﬁ} -"- mﬁ;) <00
JEN j=1

K(km,E) = 12 € [T Bl Il llem = sup |l z; I exp (—ka; + mB;) < oo
jeN JE

and we define
Ma,B,E) :=projind M(k,m,E)

—k ™M

K(a,B,E) :=1ind pro) K(k, m,E)
m— .k

IfE =(C,|- |}jE“ then we write M(«, B), Ak, m) etc. instead.

The proof of Meise [9], 1.6, also applies to the present sequence spaces and gives:
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Proposition 1.9. For o, 8 and E asin 1.8, the following holds:

(1) Ma, B, E) 1s acomplete Schwartz space

(2) Ma,B,E)', the strong dual of M «, 3, E), can be identified with K(«,8,E"),
where E" = (EJ, || - [15);en -

(3) With respect to the duality in (2), a set M C K(«, 8, E’) is equicontinuous if and
only if there exists k € N so that

sup sup || y, ||; exp(—ka; + mf;) < oo for all m € N.
yeEM jEN

Also, the proof of Lemma 1.7 in Mcise [9] gives:

Lemma 1.10. For o, and E asin 1.8 assume 1 < m, := dim E; forall j € N . Then
the condition
(%) there exists [ € N such that sup m E:ﬂp(-—i(ﬂrj - ﬁj)) < 00
JEN
implies
Ma,B,E) = X(~,0) and K(«,5,E) ¥ K(7,90),

where the sequence -y (resp. 6) is obtained from a (resp. ) by repeating a; (resp. B;)
times.

2. GENERALIZED FOURIER EXPANSION

In this section let w always denote a fixed weight function. We will show that for each con-
volution operator .S"u on D, (R)’ which admits a fundamental solution, ker S, admits an

absolute basis of exponential solutions. With respect to this basis ker S, 1s 1somorphic to

a suitable sequence space A{«, 8), whenever ker Sﬂ is infinite dimensional. The idea of
proof for this is the same as in Meise [10], however, some modifications are needed. In par-
ticular we use a result of Braun and Meise [2] to overcome the difficulty that the function
z +— |Im z| -- mw(2) is not subharmonic in general. The proof of the main result 1s prepared

by several lemmas.

Lemma 2.1. Assume that f € C(R) satisfies Supp( f) C [—A, A] for some A > 0 and

/l;lf(t)lﬂzp(ffw(t))dtﬁm,

where K is the constant appearingin 1.l («a). Thenforeach € > 0 thereexists g € D (R)
with Supp(g) C [—A, A] such that

./1; |f(t) —g(t)| exp(w(t))dt < «.
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Proof. Let € > 0 be given. By the hypothesis on f we can choose C > 0 so that

ge K

6

f 17()] exp( Kw(t))dt <
21t1>C

For ¢ > 1, let f denote the function z — f(qz). Since f, converges to f uniformly
on R as g tendsto1,wecanfind 1 < p < 2 so that

E—M(C"}
6C

Next note that by Braun, Meise and Taylor [3], 2.6, for each 0 < § < 1 there exists
hs € D (R) satisfying

'/; |f(2) = f(2)|dz < -

hs >0, Supp(hs) C [-6,6] and '/‘hg(m)d:r.::l.
R

Since limg,, "EB(I) =1 forall z € R, wecanchoose 0 < n< A(1 —p~!) so that

f h £
./1.1 | £(1) (I — h,}(t)) | ezp(w(t))dt < =

Now define g := fp * hﬂ and note that g 1s in D_[—A, A]. Moreover, the following
estimate holds:

Llf(t)—ﬁ(t)[emp(w(t))dt=
= [1 70 = Feayh (0 + Foyh, - F0R, 0] exp(®)dt <
R

< 1700 =Rl eapweats [ 170 - F0)] emplwin)at <

£ - -~ ~
<5+ [ IO -Folemwmats [ | Folemua

12C

+ f | £,(t)] ezp(w(t))dt <
t>C

< 5 +2Ce @ sup | (f - f;)(t)|+f | F(®)] ezp(w(®))d i+
t|2C

teR

+ _[ | f(2)| exp(w(pt))dt <
plt|>C

< §+2ce”<f’>/ |f(z) — f()|dz + zeff/ (1) | exp{ Kw(t))dt <
R 21t|>C

< E.

—



258 Uwe Franken, Reinhold Meise

Definition 2.2, For A, B > 0 define the Hilbert space
Lyp:= {f e Li, (O] f ,’?4,3:=/;:{|f(2)| ezp(—A|Im z| + Bw(2)) }?d\(z) < m}

where A\ denotes the Lebesgue measure on C = R,
Moreover, we define the Fréchet space

Ly:=projLy,,,.

+—TT

Lemma 2.3. For each A > 0 and each bounded set M in L , there exists a bounded set

Q in L, , such that for each w € M there exists v € Q with dv = u in the distributional
sense.

Proof. For A,B >0 and K > 1 asin 1.1(a) we let

Youp = {f € Lz,»q,ﬂ/glc € LA,ZKB}

and we endow Y, , g with the graph norm

[floas =l flloas + 11 9F a2k, f€Yap8
Then Y), 4, 5 1s a Banach space and we claim that

(1) 0:Y, 05 — Ly,yp is surjective for all A,B > 0.

To prove this, we recall from Braun and Meise [2], Prop. 5, that there exist a subharmonic
function u: € — R and C > 0 sothat forall 2z € € we have

2 2B
~C — HTBM(REE) <u(z) <|Imz| - -E—w(z).

Now define v: z — Au(z) + A|Im z|, z € €, and note that
(2) Allm z| -2 KBw(z) — AC < v(z) < 2A|Im z| — 2 Bw(=z)
holds for all z € € . Since w satisfics 1.1(«), we can choose D > 0 so that

(3) log(1+ |z[*) < Bw(z)+ D forall z€ C.
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Nextlet f € L 4, xp be given. Then (2) implics

(4) f[If(z)lemp(—u(z))ﬁwz) < exp(2A0) || B2k

Since v is subharmonic on € , Hérmander [6], 4.4.2, implies the existence of g € L7

(C€) sothat g = f in the distributional sense and

2
[ |loen=EEE 22 ) < [ 117 fean(-u(2) P

1+ |2)?
Because of (2), (3) and (4), this implies

19 1545< ezp(2D+2A0) || f |a2x5< -

Consequently, g 1sin L, , 5 and the proof of (1) is complete.
For A > 0 and n€ N we now define

Wonn={f € AN fllzan< 00} = {f € L2s,l05 =0}

Then W) 4,01 C W4, SO that we can consider the projective spectrum (W, 4 .,
in 1 e With inclusion maps (see 3.1 for the notation). It is easy to see that this spectrum is
equivalent to the spectrum (A(w,24,n), j5. ;1 )uen »-again with inclusion maps. From Braun,
Meise and Taylor [3], 3.3, it follows that this projective spectrum is equivalent to the spectrum
(D pn» Kne1) » Where

Dyan = {f€C(R)|Supp(f) C[-2A,2A] and

1 £ lhi= [R 70 lezp(mo())dt < oo},

and where " , denotes the corresponding inclusion map. From these equivalences and

n+1

Lemma 2.1 we get:

For each j € N there exists k € N,k > j, so that proj W, , , is dense
—n

(3)
in W, , , with respect to the topology induced by W, 4 ;.
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Moreover, proj W, 4, 1s isomorphic to proj D, 4, = D, [—~2A,2 A} and hence a nu-

clear Fréchet space by [3], 3.6. In particular, we have

(6) proj W, 4, 1S quasinormable.

Tl

Now note that by (1) we have for each n € N the exact sequence of Banach spaces

(?) U —> Wl:‘l,'ﬂ “— YZA,HE}L&,ZK‘H —3 0

From this and (5) it follows by Komatsu [7], 1.3, that

—

0 — proj Wy, < proj YZA,ﬂiLA — 0

—n +—n

1S an exact sequence of Fréchet spaces. Therefore, (6) and Merzon [14], Thm. 2, implies that
for each bounded set M in L , there exists a bounded set ¢ in proj Y, , . with 9(Q) =M.

Since proj Y, 4, . 18 continuously embedded in L, 4, the proof 1s complete.

Remark. Lemma 2.3 remains truc for w : t v log( 1+ ). The only change in the proof 1s
that 2.3(1) holds for all B which are sufficiently large.

Lemma 2.4. (Semi-local to global interpolation). Let F' = (F\,..., Fy) be an N-tuple of
entire functions which satisfy

(i) thereexist Ay, By > 0 withsup, _;y Sup ¢ |F;(2)exp(—Ay ([Im z|+w(2))) <
B, .

(i) there exist positive numbers €, C, D such that for cach component S of the set

1/2

N
S(F.e,C):=3z€ C|| ) |F(2)]| < € exp(—C(|Im z| + w(z2)))
J=1

we have

sup(|Im z| + w(z)) < D (l + inf (|Im z|+ w(z))) .
z€S z€S

Furthermore, let QQ be a set of holomorphic functions defined on S(F,e, C) which sali-
sfics
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(iif) there exist A; > O such that for each m € N there exists B, > 0!

sup  sup |f(2)|exp(—A,|Im z| + mw(2z)) < B,..
feQ zeS(Fe,C)

Then there exist 0 < g, < e, C, > C, M > 0 and a sequence (E_), .n Of positive
numbers, such that the following holds:

For each f € Q there exists g € A(C) and o; € A(S(F\¢,,C))) for1 < j <N,
such that

N
9(2) = f(2) + Y a(2)F(2) forall z€ S(F,&,C)
=1

and

sup |g(2)| ezp(—M|Im z| + mw(z)) < E_ foreach m € N.
zeC

Proof. From (11) it follows (se¢ Berenstein and Taylor [1], p. 120) that we can find 0 < g; <
e,Cy>C,A B>0and x € C®(C) with Supp(x) C S(F,e,C) and 0 < x <1 so
that

(D Xlsre,cn =1, 10x(2)| < B exp(A(|Im 2|+ w(2))) forall z€ C.

Next fix £ € Q. Then x f isin C®°(€) and d(xf) = (9x) f.
Moreover, (1) implies thatfor 1 < j < N

is in C*( €) and that

Supp(v]) C S(F,e,C) \ S(F,e1,Cy).
From the hypothesis and (1) we get:

1
|uf| < BmBUB;EIp ((A+ Ay + A +2C)|[Im z|+ (A+ Ay + 2C — m)w(2))

forallmeN,ze C,1<j< N andall f € Q. This shows that

P={JIfeQ 1<j<N}
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isaboundedsetin Ly, S := A+ Ay + A, +2C. By Lemma 2.3 we can choose a bounded set
R in L,e sothatforeach f € Q and 1 < j < N there exists uj—r € R satisfying Euj-' = u;f.

Since P is contained in C*( C), u;'.r isin C®(C) forall feQ,1 <j<N.For feQ
we now define

N
(2) g/ = xf+ EﬂfFj and ﬁ-’{ = “ﬁs-:F,sl,c,): 1<7<N.
j=1

Then g/ € A(C) and ! € A(S(F,g,,C,)) for 1 < j < N, since

-1

N N N
39’ = 0(xf) + ) (EUf) Fy=03(xf) — | D FFo(xfN) | [ DIRP ] =0
J=1

j=1 J=1

and
a.f_3.f S _
aﬂ-’j - au}'lS[F‘,sl,C,} =V IS(F,EI,CIJ = V.

This proves the first assertion. The second one follows by standard arguments from (2),
(1), (11) and the fact that P 1s bounded in L, ¢.
In order to apply Lemma 2.4, we introduce the following notation.

Notation 2.5. For an N-tuple F' = (Fy,..., F},) of entire functions let

V(F) := {z€ C|Fy(z) = 0 for 1 g;‘gw}_

For a € V(F) we define m, = min,; .y ordF;(a), where ordf(a) denotes the

zero-order of f at a. Then we let

{feAord f(a) >m,_ forall a € V(F)},

I, CF):

N
feAlf=) 9;F 0 €A, for 1<j<N
) =1

[(F) :

It is casy to see that [( F') and [, (F') arcidcals in A, satisfying I(F) C I, (F') and
that [, (F') 1s closed.

Proposition 2.6. Assume that F'= (F,,...  Fy) € A( CYN satisfies the conditions (i) and
(i) in 2.4. Then we have:

@ I(F) = I,,.(F)
(b) If N =1 then I( F) is closed.
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Proof. (a) Because of the remark at the end of 2.5 it sufficies to show that I, () C I(F).
To prove this, define p: € — [0, 00[ by p(2) := |Imz|+ w(z) and let

A= {fe A(C)|thereis k € N || f ||;:= sgg|f(z)| exp(—kp(2)) < m}.

Endowed with its natural inductive limit topology, AP 1s a ( DF'N)-algebra which con-
tains A_ as a subalgebra. From 2.4(i) it follows that F' € (Ap)” . Now define IP( F) and
If;c( F') as in 2.5, however with AP instead of A . Then 2.4(11) together with Kelleher and
Taylor [8], Thm. 4.6, implies that I} (F) = IP(F). Now fix f € I, (F) C I} (F)

and note that for each g € A the multiplication map M, : AP — A, Mg(h) = gh, IS
continuous and satisfies M_(IP(F)) C I(F). Hence we get

fo=M,(f) € M (I} (F)) = M,(IP(F)) C M,(IP(F)) C I(F).

T . : o~ . 1 .
Now we apply this to g = @,, where ¢, © = — <p(2), € > 0, for some function
o € D (R) satisfying ¢ > 0 and [g ¢dX = 1. Since it is easy to check that f =

A, —lim_, fo,.,weget f € I(F),which proves (a).

(b) 1t suffices to show I, (F) C I(F). To prove this, fix g € I,,.(F). Then £ is in
A( Q) anditis easy to check that 2.4(ii) and 1.7 together with the maximum principle implies
Lea,.

Proposition 2.7. Let F' = (F,,..., Fy) be an N-tuple of entire functions which satisfies the
conditions 2.4(i) and (ii). If V(F') is aninfinite setthen A,/ I,,.( F) islinearly isomorphic to
Ma,B) , where oo = (|Im ﬂj[);'ebf and f = (w(a;));en and where the sequence (a;);en

counts the elements of V(F') according to their multiplicities (m_ at a € V().

Proof. Fix g, C, D > 0 as in 2.4(ii1) and choosc an enumeration (S;); ¢ Of those components
S of S(F,e,C) which satisfy SNV (F) # @ . Then define the sequence v = (7,);¢n and
5= (8)ene by

v, i= sup |Im z|, 5 1= sup w(z).
z€§; z€S;

Next define for j € N :

r 3

A=(S) =4 fe A (811 fll= sup f(2)] < o0 ¢
Lo

e, o
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EJ- = H C™

€V (F)NS;

. A00 eee { £(K)
pj 1 AT(S) — By pi () = (f (ﬂ))nEV(F)ﬂSj,ﬂc_:k{m,‘

It 15 easy to see that P; 1s surjective. Hence we can endow L with the corresponding
quotient norm, 1.¢.

| wllji=anf{|| £1I; |f € A®(S;), p;(f) =p}, forpe€ E,.

By E we denote the sequence E = (E, || - [|.);en - Then we remark that by the proof
of Meise, Momm and Taylor [11], 3.5 (which 1s almost the same as of Meise, Taylor and Vogt
[13], 2.3) property 1.7(*) also holds for the components S of S(F, g, C) provided that £ and
C are chosen appropriately. From this and 2.4(1) it follows easily that the map

pi A, = K(1,6,E), o(f) = (p,(f1S))

JEN

1s defined linear and continuous and that ker p = [, (F') . To prove the surjectivity of p, fix
p € K(v,0, E). Then there exists £k € N so that for cach [ € IN there exists C, > 0 so

that
W ||,< C)exp (kqj- - 36}-) forall ;7 € N.

By the definition of || - ||, we can choose f; € A®(S;) with p;(f,;) = u; and || f; |[;<
2 || k; ||;- Now define f: S(F,e,C) — C by

- f(z) ifz€S.
f(z) = {U} if 2 € S}(F,E,O) \ Uit O

From 2.4(n) we get foreach [ € IN :
1f(2)| < 2C,eP* exp(Dk|Im 2| — (I — Dk)w(z)) forall z € S(F,¢,C).
Hence f satisfies 2.4(iii). Therefore, Lemma 2.4 implies the existence of g € A, with
p(g) = p. Thus p is surjective. Now the open mapping theorem for ( L F')-spaces together

with ker p = [} _(F') implies

A/ (F) = K(7,6,E).
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Next let n; = dimEj for ; € N and note that by Remark b) to Cor. 3.8 in Meise [9],
there exists [ € IN so that

f:re n; €T (-——l (f;rj + 5;')) < 00.

Hence Lemma 1.10 and Lemma 1.9 imply
AT (F) ¥ K(4,6 E) = X7, E") = \(7,8),

where 7 (resp. &) is obtained by repeating v, (resp. 6J-) nj--times. Now the conclusion
follows easily from this and 2.4(ii) together with the definition of v and §.

Remark 2.8. If we identify in Proposition 2.7 the quotient A_/I, (F) with A(«, )’ then
aset G in A\(«, B)' is equicontinuous if and only if there exist £k € N and a bounded set M
in proj A(w, k, m) sothat G = p( M) . This follows from the characterization in 1.9(3) and

the proof of Proposition 2.7 together with Lemma 2.4.

Exponential solutions 2.9, For a € € and k € N, we define
€k T (iz)ke'**, z €R.

It is easy to check that e, is in & (R) for each weight function w. Now fix w and
u € &, (R)'. Then the elements of

span {Eﬂ_kiu ceV(p), 0<k< mu}

are called exponential solutions of the convolution operator S, . This notation is justified by
the following identity which is a consequence of the definitions and remarks in 1.6:

S, (ea ) (2] = (py, €, 1 (z = ) = (p,, (i(z — y)) *e*7V)

* k . C
Y (}_)(iz)*'-’em(#u, (—iy)e)

7=0

kK .
=Ecymwwwmhu
7=0

J
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Thecrem 2.10. Let S , be a convolution operator on D (R Y which admits a fundamental
solution and assume that ker S is infinite dimensional. Then ker S, admits an absolute
basis of exponential solutions, with respect to which ker S, is isomorphic to X(a, ) , where
a = (|Im ﬂjl)jEN and B = (w(a,));en and where the sequence (a;);cn counts the zeros

of u with multiplicities.

Proof. By 1.6(2) we know that F' := p satisfics condition 2.4(1). Since SM admits a fun-
damental solution, Proposition 1.7 shows that F' also satisfies condition 2.4(i1). Therefore
Proposition 2.7 together with 1.6(4) and Proposition 2.6 implies that for F' = ;4 we have the

following isomorphisms

(ker 8) = A, JBA, = Ayl Lin(B) = XMa, )"

Morecover, 1.7(5) and Remark 2.8 imply that the resulting isomorphism induces a bijection
between the equicontinuous sets in ( ker S“)’ and the equicontinuous scts in A\(«, 8)'. Hence

it is the adjoint of an isomorphism ® bctween ker S, and Ma, B). If one computes P :
Ma,B) — ker S, explicitly (see the proof of Meise, Schwerdtfeger and Taylor [12], 2.6),

then it follows that @ maps the canonical basis vectors of A( «, #) 1nto exponential solutions.
More generally one can prove (using [12], 2.4):

Theorem 2.11. Let Sul e ,.S‘”H be convolution operators on D, (R ) and assume that F' =
(ly,..., hy) satisfies the conditions 2.4(i) and 2.4(ii). If ﬂ;il ker S, isinfinite dimensio-
]
nal then r“if":-_ ker Sﬂ_ = ker( Sjul R .S’”H) admits an absolute basis of exponential solutions
‘ J

with respect to which ker(S, ,..., .S'”N) is isomorphic to M a, B) , where a = (|Im a|).cn
and B = (w(a;)),cn and where the sequence (a;).. counts V(iy,...,dy) with multi-

plicities.

Remark 2.12. Theorem 2.10 and Theorem 2.11 also hold for D'(R ) instead of D] (R) as
their proofs show.

3. SURJECTIVITY OF CONVOLUTION OPERATORS ON D_(R)’

Following the arguments in section 3 of Braun, Meise and Vogt [4] we use results of Palamo-
dov [15] and Vogt [17], [18] together with Theorem 2.10 to show that a convolution operator
SF acts sufjectively on D_(R)’ if and only if Su admits a fundamental solution. To do this,
we recall the following notions concerning projective spectra from Vogt [17], [18].

Projective Spectra 3.1. (1) A sequence X = (X, 5,1 )en Of linear spaces X and
lincar maps .7, , : X ,; — X, is called a projective spectrum. We define .7 for n < m by

n+ 1

noe n o ._ 0 m—1
Ly = 1(1}:" and . =" o...0 7" for m > m.
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(2) For a projective spectrum X = (X, ), We define the linear spaces Proj° X
and Proj' X by

Proj°X := {(:1:,,,)“EN € [ X,lemi(2py) =3, forall ne N}
neN y

Projl X (H X ) /B(X),

where

r.

B(X) :=<(a,)en € H X, | there is (b,),en € H X with
\ neN neEN

'ﬁ

a, =4, (b ,,)—b forall neN ».

T

-

(3) For projective spectra X' = (X, ,¢h,,) and Y =(Y,,eh, ;) amap® : X —» Y isa
sequence i ¢ Xy — Y, of lincar maps which satisfies for all n € N :

k(n) < k(n+ 1) and @l oufim ) = ji, okl .

For m > k(n) we put ol = gy © K

(4) Let the maps ¢ : X — Y and ‘P 1 Y — Z be defined by (ppy)en and
(¥ltm Inen - Then their composition ¥ o O : X — Z is defined by Xk(in) = Yim ©

I(n)
Prcitn) -

(5) Twomaps @, : X — ) defined by (0i)pen and (Y, )oen rESPECtively, are
called equivalent, if for cach n € N there exists m(n) > max(k(n),l(n)) with
Cra(w) = Ym(m -

(6) Two projective spectra X and Y are called equivalent, if there exist maps @ : X —
Yand ¥ : )Y — X such that @ o ¥ is equivalent to 1dy, = (jg, )y @and ¥ o @ 1s
equivalent to 1d, = (t7,1 )pen -

Example 3.2. Let w be a fixed weight function.
(1) Forne N we let

D.(R,]—nnl) :={veD,(R)|Suppr C R\] —n,nl}.
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Then D) (R, ] — n,n[) is a closed lincar subspace of D, (R) . Hence, we can define
D, :=D,(R)/D,(R,] —n,nl).

By ¢, : D/, (R) — D, we denote the corresponding quotient map. Note that D, is a
(DF N)-space, since D, can also be described as

D, =D, [—m,m]/(D_(R,] — n,n[) ND,[—m,m]),

for each m > n. This follows from the fact that D] (R) and hence D] is ultrabornologic
by [3], 5.6, while the second quotient 1s a ( DF N)-space. It i1s easy to check that for each
n € IN the map

— D

D ny bme1 (Qpey (V) 1= ¢, (V)

n+ 1 ntl

1s well-defined, continuous and linear,

Let D, denote the projective spectrum (D, , 7, ), en Of (DFN)-spaces.

(2) From the definition in (1) it follows easily that the map Q : D, (R)' — [[,.n Dh >
Q(v) = (g,(v)),en induces a linear bijection between D (R )’ and ij“DL.

(3) Proj'D., =0. |

To see this, let (a,),cn € [[.en P, be given. By the definition of D] we can choose
v, € D ,(R) witha =¢q (v,) foreachne N. Ifwelet b := g ( ;‘;11 v;) then the
definitions 1n (1) imply

n n—]
l’:+1 (bml)_bn=qn Zuj_zuj =qn(vn)=ﬂ'n

for each n € IN . Hence (a,),n is in B(D,) , which implies B(D,)) = [[,..n D -
(4) For u € £, (R)' with Supp(u) Cl — k, k[ for some k € N we define the map
S, D, =D, by S, = (05 )N Where op,, : D ., — D, is defined by

0%k (s (1)) = g, (u*v), v EDL(R).

Because of Supp(u*v) C Supp(u) + Supp(v) , this i1s a reasonable definition. Obviou-
sly, o, . 18 a continuous linear map.

(5) For p and k as in (4), define the projective spectrum K(w, u) = (K, ,17,1),cn DY
K_=0 and ,,, =0 for 1 <n< k andfor n> k by

' ot

K,:={v €D,or* (1) =0}, %y =y |Kpy
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Furthermore, we define J : K(w,u) — D, by J = (J}),en » Where j7 ¢ K, — D,
denotes the inclusion map.
(6) For u € £,(R)’ assume that S, admits a fundamental solution and that ker Su 1S

infinite dimensional. Let the sequences a and 8 be defined as in Theorem 2.10. Using the
notation from 1.8 we then let

(@, B) := ind \(k,m), k€N

and we denote by 1§, : M\, q(a, 8) — X(a,B) the obvious inclusion map. Moreover, we
denote the projective spectrum (A, («, ), "Ll)keﬂ of ( DF'S)-sequence spaces by A («a,

B) .
If u € £ ,(R)’ satisfies the hypothesis of 3.2(6) then Theorem 2.10 shows that ker S,

is linearly isomorphic to Proj° A («, 8) . On the other hand it is easy to check that ker S,

is linearly isomorphic to Proj°K(w, ). It is not quite evident that the projective spectra
K(w, ) and A («, B) are equivalent. However, this is the case by the following lemma, the
proof of which is an adaptation of the one of Braun, Meise and Vogt [4], 3.6.

Lemma 3.3. Assume that the convolution operator S, on D, (R ) admits a fundamental
solution and that ker S, is infinite dimensional. Then the projective spectra K(w,p) and

A(a, B) are equivalent.

Proof. Assume that Supp(u) C] — k, k[ for some k € IN and let the projective spectrum
X = (X,, €01 )en bedefined in the following way: Xy =0 and {7, =0 for 1 <n<k

»Sn+l

and

X, =g, (kerS) ~C K, and £, =i, |X,,, for n>k

n+ 1

We claim that X and X(w, ) are equivalent. By the definition of X’ this follows from

(x)  For each [ € N with [ > k there exists m € N, m > [ so that if,n( K. ) CX,.

To prove this, note that by [3], 6.2, and by Braun, Meise and Vogt [4], 2.7, the hypothesis
implies that S, maps & ,(R) onto £,(R). Therefore, Meise, Taylor and Vogt [13], 3.8,

shows that for each p > 0 there exists r = r(p) > p such that for each R > r+ k and each
g € &,(R) satstying SF(Q)I[—R, R] = 0 we have

glx) = E k}-ej(m) for all z € [—p, pl,
j=1

where the series converges in £ (] — p, p[) and where e; € ker .S’u forall j € IN.
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Now fix [ € N, put p := [+ 2, choose r = r(p) according to the above and choose
m € N, m >r+2k+ 1. Nextchoose x € D [—1,1] with x > Oandfﬂxd,\

1 and define x, € D (R) by x.(z) := EX(E) for 0 < e < 1. Then fix v € K,
choose 7 € D, (R) with ¢ (7) = v and choose a zero-neighbourhood U in D; arbitrarily.
Since 7x x, tends to 7 in D! (R) as ¢ tends to zero, we can choose 0 < € < 1 so that

q,(T*x,) — 1t (v) € U . Next note that S, (T _mekm—g) =0 since v isin K_ . Hence
we have S (7* x. )|(_grg =0 for R:=m —k —1 > r+ k. Therefore, we get from the

above
T x.(z) = ) Ae;(z) forall z € [—1—1,1+1],

where the series converges in € (] — {— 1,1+ 1[). Consequently, we can choose n € N
so large that

1
DLT*FXe ™ E'\JEJ € '2_
J=1
Since z;‘:l Aje; is in ker S, we have shown that (*) holds. Knowing that X* and

K(w, ) are equivalent, the proof can now be completed as the one of Braun, Meise and Vogt
[4], 3.6.

Theorem 3.4. Let w be a weight function and let u € £ ,(R)', p # 0, be given. Then the

following assertions are equivalent:
(1) S, :D,(R) — D,(R)" is surjective
(2) S, admits a fundamental solution.

Proof. It 1s obvious that (1) implies (2). To show the converse implication, assume that S,

admits a fundamental solution. Then we choose £ € N with Supp(u) CJ] — k, k[ and note
that

~wt k n
0 > K, ™D, ™D -0
1s an ¢xact sequence for each n € IN . Hence
J ot Su
0 - K(w,u)—-D,—-D,6 —0

1$ an exact sequence of projective spectra. Consequently, we get from Palamodov [15], p
542, (see also Vogt [17], 1.5) the exactness of the following sequence:

0 5’0 .
" 0 — Proj°kK(w,p) L Proj®D. 2 Proj°D, %
* 1 s!

—  Proj'K(w, p) 5 PTGJ'IDL — PT{J}’IDL — 0.
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By 3.2(2) we can identify Proj°D! with D! (R). If we do this then SE coincides with
S, . By 3.2(3) we have Proj'D! = 0. Hence (*) gives the exact sequence

S
0 — ker S,u — DL—-'?'DL — PT{J}'IK:(L:J,;L) — 0.

If kerS, is infinite dimensional then we get from Lemma 3.3 and Vogt [18], 1.4, that

Proj'K(w, ) = Proj'A(a, B) . By Yogt[17],4.3(i) and 4.2 we have Proj'A(a,B8) = 0.
Hence S, is surjective. If kerS, 1s finitc dimensional then it is easily seen that Pmﬁ}C

(w,p) =0.

Remark 3.5. In Theorem 2.10 the hypothesis «5, admits a fundamental solution» can be
replaced by « Su 1S surjective».

Added in proof. Note that Thm. 2.7 above extends Prop. 2.4 and Thm. 2.6 of I. Ciora-
nescu: Convolution equations in w-ultradistribution spaces, Rev. Roum. Math. Pures et
Appl. 25 (1980), 719-737. Note also that S. Abdullah: Convolution equations in Beurling’s
distributions, Acta Math. Hung 52 (1988), 7-20, has characterized by different methods the
surjective convolution operators on D (R"), where D, (R™") is defined in the sense of
Beurling-Bjorck (see [4], 8.4 (2)).
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