GENERALIZED FOURIER EXPANSIONS FOR ZERO-SOLUTIONS OF SURJECTIVE CONVOLUTION OPERATORS ON $\mathcal{D}'(\mathbb{R})$ AND $\mathcal{D}'_{\omega}(\mathbb{R})$

UWE FRANKEN, REINHOLD MEISE

Dedicated to the memory of Professor Gottfried Köthe

It is well-known that each distribution μ with compact support can be convolved with an arbitrary distribution and that this defines a convolution operator S_u acting on $\mathcal{D}'(\mathbb{R})$. The surjectivity of S_{μ} was characterized by Ehrenpreis [5]. Extending this result, we characterize in the present article the surjectivity of convolution operators on the space $\mathcal{D}'_{\omega}(\mathbb{R})$ of all ω -ultradistributions of Beurling type on $\mathbb R$. This is done in two steps. In the first one we show that $\ker S_{\mu}$ has an absolute basis whenever S_{μ} admits a fundamental solution $\nu \in$ $\mathcal{D}'_{\omega}(\mathbb{R})$. The expansion of an element in $\ker S_{\mu}$ with respect to this basis can be regarded as a generalization of the Fourier expansion of periodic ultradistributions. In the second step we use this sequence space representation together with results of Palamodov [15] and Vogt [17], [18] on the projective limit functor to obtain the desired characterization. It turns out that S_u is surjective if and only if S_u admits a fundamental solution. Hence the elements of $ker S_{\mu}$ admit a generalized Fourier expansion for each surjective convolution operator S_{μ} on $\mathcal{D}'_{\omega}(\mathbb{R})$. Note that this differs from the behavior of convolution operators on the space $\mathcal{E}_{\{\omega\}}(\mathbb{R})$ of ω -ultradifferentiable functions of Roumieu-type, as Braun, Meise and Vogt [4] have shown. Note also that the results of the present article apply to convolution operators on $\mathcal{D}'(\mathbb{R})$, too.

1. PRELIMINARIES

In this preliminary section we introduce most of the notation which will be used in the sequel.

Definition 1.1. A continuous increasing function $\omega : [0, \infty[\to [0, \infty[$ is called a weight function if it satisfies

- (a) there exists $K \in \mathbb{N}$ with $\omega(2t) \leq K(1 + \omega(t))$ for all $t \geq 0$
- $(\beta) \quad \int_0^\infty \frac{\omega(t)}{1+t^2} \, \mathrm{d} \, t < \infty$
- (γ) $\lim_{t\to\infty} \frac{\log t}{\omega(t)} = 0$
- (δ) $\varphi: t \mapsto \omega(e^t)$ is convex.

The Young conjugate $\varphi^* : [0, \infty[\to \mathbb{R} \text{ of } \varphi \text{ is defined by }]$

$$\varphi^*(y) := \sup\{xy - \varphi(x) \mid x \ge 0\}.$$

By abuse of notation we shall write subsequently $\omega(z)$ instead of $\omega(|z|)$ for $z \in \mathbb{C}$.

Definition 1.2. Let ω be a weight function, and let Ω be an open subset of \mathbb{R} . Then we define

 $\mathcal{E}_{\omega}(\Omega):=\Big\{f\in C^{\infty}(\Omega)| \text{ for each compact subset } K \text{ of } \Omega \text{ and each } m\in \mathbb{N}:$

$$p_{K,m}(f) := \sup_{x \in K} \sup_{j \in \mathbb{N}_0} |f^{(j)}(x)| \exp\left(-m\varphi^*\left(\frac{j}{m}\right)\right) < \infty$$

and we endow $\mathcal{E}_{\omega}(\mathbb{R})$ with the Fréchet space topology which is induced by the semi-norms $p_{K,m}$, $K \subset \Omega$, $m \in \mathbb{N}$. The elements of $\mathcal{E}_{\omega}(\mathbb{R})$ are called ω -ultradifferentiable functions of Beurling type.

For $k \in \mathbb{N}$ we set

$$\mathcal{D}_{\omega}[-k,k] := \{ f \in \mathcal{E}_{\omega}(\mathbb{R}) | Supp(f) \subset [-k,k] \},$$

endowed with the induced topology. Finally, we define

$$\mathcal{D}_{\omega}(\mathbb{R}) := \inf_{k \to \infty} \mathcal{D}_{\omega}[-k, k].$$

The elements of $\mathcal{D}_{\omega}(\mathbb{R})'$ are called ω -ultradistribution of Beurling type. $\mathcal{D}_{\omega}(\mathbb{R})'$ will be endowed with the strong topology.

- Remark 1.3. (a) For further details concerning the spaces $\mathcal{D}_{\omega}(\mathbb{R})$ and $\mathcal{E}_{\omega}(\mathbb{R})$ we refer to Braun, Meise and Taylor [3]. In particular it is shown there that $\mathcal{D}_{\omega}(\mathbb{R})$ is an infinite dimensional, complete, nuclear (LF)-space for each weight function ω .
- (b) By [3], 3.4, the spaces $\mathcal{E}_{\omega}(\mathbb{R})$ and $\mathcal{D}_{\omega}(\mathbb{R})$ do not change if we replace ω by σ : $t \mapsto \max(\omega(t) \omega(1), 0)$. Therefore we can and shall assume in the sequel that φ^* is non-negative.
- (c) The function $\omega: t \mapsto log(1+t)$ is not a weight function since 1.1 (γ) is not satisfied. Nevertheless it can be subsumed under the present theory, provided that one uses the right interpretation.

Example 1.4. The following functions $\omega : [0, \infty[\to [0, \infty[$ are examples of weight functions

- (1) $\omega(t) := t^{\alpha}, 0 < \alpha < 1$
- (2) $\omega(t) := (\log(1+t))^{\beta}, \beta > 1$
- (3) $\omega(t) := t(\log(e+t))^{-\beta}, \beta > 1$.

Note that for $\omega(t) = t^{\alpha}$, $0 < \alpha < 1$, the space $\mathcal{E}_{\omega}(\mathbb{R})$ is the Gevrey class $\mathcal{E}^{(d)}(\mathbb{R})$ for $d := \frac{1}{\alpha}$.

The Fourier-Laplace transform on $\mathcal{D}_{\omega}(\mathbb{R})$ 1.5. Let $A(\mathbb{C})$ denote the algebra of all entire functions on \mathbb{C} . For a weight function ω and $k, m \in \mathbb{N}$ we define the Banach space

$$A(\omega,k,m) = \left\{ f \in A(\mathbb{C}) \big| \, \big| \, \big| \, f \, \big| \big|_{k,m} \coloneqq \sup_{z \in \mathbb{C}} \big| f(z) \big| \, \exp(-k \big| Im \, z \big| + m\omega(z)) < \infty \right\}$$

and the (LF)-space

$$A_{\omega} := \{ f \in A(\mathbb{C}) | \text{ there exists } k \in \mathbb{N} \text{ so that for all } m \in \mathbb{N} : || f ||_{k,m} < \infty \}$$

$$= \inf_{k \to \infty} \underset{\leftarrow m}{proj} A(\omega, k, m).$$

By [3], 3.5(1), the Fourier-Laplace transform

$$\mathcal{F}: \mathcal{D}_{\omega}(\mathbb{R}) \to A_{\omega},$$

$$\mathcal{F}(f)[z] := \widehat{f}(z) := \int_{\mathbb{R}} f(t)e^{-itz}dt$$

is a linear topological isomorphism.

Convolution operators on $\mathcal{D}_{\omega}(\mathbb{R})'$ 1.6. Let ω be a weight function. For $\mu \in \mathcal{E}_{\omega}(\mathbb{R})'$ and $f \in \mathcal{E}_{\omega}(\mathbb{R})$ we define the convolution $\mu * f : \mathbb{R} \to \mathbb{C}$ by

$$\mu * f(x) := \langle \mu_y, f(x-y) \rangle.$$

By [3], 6.3, $\mu * f$ is in $\mathcal{E}_{\omega}(\mathbb{R})$. Moreover, by the same reference

$$S_{\mu}: \mathcal{D}_{\omega}(\mathbb{R})' \to \mathcal{D}_{\omega}(\mathbb{R})',$$

defined by

$$S_{\mu}(\nu) := \mu * \nu : \psi \mapsto \langle \nu, \check{\mu} * \psi \rangle, \quad \psi \in \mathcal{D}_{\omega}(\mathbb{R}),$$

where $\langle \check{\mu}, f \rangle = \langle \mu_x, f(-x) \rangle$, is a continuous linear map. S_{μ} is called the convolution operator on $\mathcal{D}_{\omega}(\mathbb{R})'$ which is induced by $\mu \in \mathcal{E}_{\omega}(\mathbb{R})'$. Note that by [3], 6.2, we have $S_{\mu}(f) = \mu * f$ for all $f \in \mathcal{E}_{\omega}(\mathbb{R})$.

Since $\mathcal{D}_{\omega}(\mathbb{R})$ is reflexive by [3], 5.6, the adjoint S^t_{μ} of S_{μ} can be regarded as a continuous linear operator on $\mathcal{D}_{\omega}(\mathbb{R})$. It is easy to check that on A_{ω} , defined in 1.5, we have

$$\mathcal{F} \circ S^t_{\mu} \circ \mathcal{F}^{-1} = M_{\widetilde{\mu}},$$

where $M_{\widetilde{\mu}}:A_{\omega}\to A_{\omega}$ denotes the operator of multiplication by the function $\widetilde{\mu}$ which is defined by

$$\widetilde{\mu}(z) := \langle \mu_x, e^{ixz} \rangle, \quad z \in \mathbb{C}.$$

By $\widehat{\mu}$ we denote the function $\widehat{\mu}: z \mapsto \widetilde{\mu}(-z)$. Then $\widetilde{\mu}$ and $\widehat{\mu}$ are entire functions on \mathbb{C} and there exist $m \in \mathbb{N}$ and C > 0 so that

(2)
$$|\widetilde{\mu}(z)| \leq C \exp(m|Im z| + m\omega(z))$$
 for all $z \in \mathbb{C}$.

Next note that by [3], 5.6, $\mathcal{D}_{\omega}(\mathbb{R})'$ is a complete nuclear space. Hence $\ker S_{\mu}$ has these properties, too. By Schwartz [16], p. 43, this implies that $(\ker S_{\mu})'$, the strong dual of $\ker S_{\mu}$, is ultrabornological. By the reflexivity of $\mathcal{D}_{\omega}(\mathbb{R})$ we can identify $(\mathcal{D}_{\omega}(\mathbb{R})')'$ with $\mathcal{D}_{\omega}(\mathbb{R})$. Then the restriction map

$$\rho: \mathcal{D}_{\omega}(\mathbb{R}) = (\mathcal{D}_{\omega}(\mathbb{R})')' \to (\ker S_{\mu})'$$

is continuous and surjective by the theorem of Hahn-Banach. Hence the open mapping theorem implies

(3)
$$(\ker S_{\mu})' \cong \mathcal{D}_{\omega}(\mathbb{R})/\ker \rho \cong \mathcal{D}_{\omega}(\mathbb{R})/(\ker S_{\mu})^{\perp}.$$

Since $\mathcal{D}_{\omega}(\mathbb{R})$ is reflexive, $(\ker S_{\mu})^{\perp}$ equals the closure imS_{μ}^{t} . Hence (1) and (3) imply

$$(\ker S_{\mu})' \cong A_{\omega}/\overline{\widetilde{\mu}A_{\omega}},$$

where the isomorphism is induced by the map $\Phi := \rho \circ \mathcal{F}^{-1}$. Note that the theorem of Hahn-Banach implies

(5)
$$\begin{cases} \text{A subset } G \text{ of } (\ker S_{\mu})' \text{ is equicontinuous if and only if there exist } k \in \mathbb{N} \\ \text{and a bounded set } M \text{ in } \underset{\leftarrow m}{proj} A(\omega, k, m) \subset A_{\omega} \text{ so that } G = \Phi(M). \end{cases}$$

We want to characterize those $\mu \in \mathcal{E}_{\omega}(\mathbb{R})'$ for which the convolution operator S_{μ} is surjective on $\mathcal{D}_{\omega}(\mathbb{R})'$. A necessary condition for the surjectivity of S_{μ} is obviously that the equation

$$S_{\mu}(\nu) = \mu * \nu = \delta$$

has a solution $\nu \in \mathcal{D}_{\omega}(\mathbb{R})'$, i.e. that S_{μ} admits a fundamental solution ν . This property of S_{μ} was characterized already by Braun, Meise and Vogt [4], 2.7. From there and from the diameter estimates obtained in the proof of Meise, Taylor and Vogt [13], 2.3, we know:

Proposition 1.7. Let ω be a weight function and let $\mu \in \mathcal{E}_{\omega}(\mathbb{R})'$ be given. Then S_{μ} admits a fundamental solution $\nu \in \mathcal{D}_{\omega}(\mathbb{R})'$ if and only if $\widetilde{\mu}$ is slowly decreasing in the following sense: there exist positive numbers ε , C and D such that on each component S of the set

$$S(\widetilde{\mu}, \varepsilon, C) := \{ z \in \mathbb{C} \mid |\widetilde{\mu}(z)| < \varepsilon \exp(-C|Im z| - C\omega(z)) \}$$

we have

$$\sup_{z \in S} (|Im z| + \omega(z)) \le D \left(1 + \inf_{z \in S} (|Im z| + \omega(z)) \right).$$

If $\widetilde{\mu}$ is slowly decreasing then one can choose ε , C and D in such a way that

$$\sup_{z \in S} \omega(z) \le D \left(1 + \inf_{z \in S} \omega(z) \right)$$

holds for each component S of the set $S(\widetilde{\mu}, \varepsilon, C)$.

In the next section we will show that $ker S_{\mu}$ has an absolute basis, whenever S_{μ} admits a fundamental solution. In doing this we shall use certain sequence spaces which we introduce now.

Definition 1.8. Let α and β be sequences in $[0,\infty[$ with $\lim_{j\to\infty}\beta_j=\infty$ and let $\mathbb{E}=(E_j,||\cdot||_j)_{j\in\mathbb{N}}$ be a sequence of finite dimensional normed spaces. For $k,m\in\mathbb{N}$ we introduce the Banach spaces

$$\lambda(k, m, \mathbb{E}) := \left\{ x \in \prod_{j \in \mathbb{N}} E_j | \parallel x \parallel_{k,m} := \sum_{j=1}^{\infty} \parallel x_j \parallel_j \exp(k\alpha_j - m\beta_j) < \infty \right\}$$

$$K(k,m,\mathbb{E}) := \left\{ x \in \prod_{j \in \mathbb{N}} E_j | \ ||| \ x \ |||_{k,m} := \sup_{j \in \mathbb{N}} || \ x_j \ ||_j \ exp\left(-k\alpha_j + m\beta_j\right) < \infty \right\}$$

and we define

$$\lambda(\alpha, \beta, \mathbb{E}) := \underset{\leftarrow k}{proj \ ind} \ \lambda(k, m, \mathbb{E})$$

$$K(\alpha, \beta, \mathbb{E}) := \inf_{m \to \infty} \operatorname{proj} K(k, m, \mathbb{E})$$

If $\mathbf{E} = (\mathbb{C}, |\cdot|)_{j \in \mathbb{N}}$ then we write $\lambda(\alpha, \beta)$, $\lambda(k, m)$ etc. instead.

The proof of Meise [9], 1.6, also applies to the present sequence spaces and gives:

Proposition 1.9. For α , β and \mathbf{E} as in 1.8, the following holds:

- (1) $\lambda(\alpha, \beta, \mathbf{E})$ is a complete Schwartz space
- (2) $\lambda(\alpha, \beta, \mathbf{E})'$, the strong dual of $\lambda(\alpha, \beta, \mathbf{E})$, can be identified with $K(\alpha, \beta, \mathbf{E}')$, where $\mathbf{E}' = (E'_j, ||\cdot||'_j)_{j \in \mathbb{N}}$.
- (3) With respect to the duality in (2), a set $M \subset K(\alpha, \beta, \mathbb{E}')$ is equicontinuous if and only if there exists $k \in \mathbb{N}$ so that

$$\sup_{y \in M} \sup_{j \in \mathbb{N}} ||y_j||_j' \exp(-k\alpha_j + m\beta_j) < \infty \text{ for all } m \in \mathbb{N}.$$

Also, the proof of Lemma 1.7 in Meise [9] gives:

Lemma 1.10. For α, β and \mathbf{E} as in 1.8 assume $1 \leq n_j := \dim E_j$ for all $j \in \mathbb{N}$. Then the condition

(*) there exists
$$l \in \mathbb{N}$$
 such that $\sup_{j \in \mathbb{N}} n_j \exp(-l(\alpha_j + \beta_j)) < \infty$

implies

$$\lambda(\alpha, \beta, \mathbb{E}) \cong \lambda(\gamma, \delta)$$
 and $K(\alpha, \beta, \mathbb{E}) \cong K(\gamma, \delta)$,

where the sequence γ (resp. δ) is obtained from α (resp. β) by repeating α_j (resp. β_j) n_j times.

2. GENERALIZED FOURIER EXPANSION

In this section let ω always denote a fixed weight function. We will show that for each convolution operator S_{μ} on $\mathcal{D}_{\omega}(\mathbb{R})'$ which admits a fundamental solution, $\ker S_{\mu}$ admits an absolute basis of exponential solutions. With respect to this basis $\ker S_{\mu}$ is isomorphic to a suitable sequence space $\lambda(\alpha,\beta)$, whenever $\ker S_{\mu}$ is infinite dimensional. The idea of proof for this is the same as in Meise [10], however, some modifications are needed. In particular we use a result of Braun and Meise [2] to overcome the difficulty that the function $z\mapsto |Im z|-m\omega(z)$ is not subharmonic in general. The proof of the main result is prepared by several lemmas.

Lemma 2.1. Assume that $f \in C(\mathbb{R})$ satisfies $Supp(f) \subset [-A, A]$ for some A > 0 and

$$\int_{\mathbb{R}} |\widehat{f}(t)| \exp(K\omega(t)) dt < \infty,$$

where K is the constant appearing in 1.1 (α). Then for each $\varepsilon > 0$ there exists $g \in \mathcal{D}_{\omega}(\mathbb{R})$ with $Supp(g) \subset [-A, A]$ such that

$$\int_{\mathbb{R}} |\widehat{f}(t) - \widehat{g}(t)| \exp(\omega(t)) dt \leq \varepsilon.$$

Proof. Let $\varepsilon > 0$ be given. By the hypothesis on f we can choose C > 0 so that

$$\int_{2|t|>C} |\widehat{f}(t)| \exp(K\omega(t)) dt \leq \frac{\varepsilon e^{-K}}{6}.$$

For q>1, let f_q denote the function $x\mapsto f(qx)$. Since f_q converges to f uniformly on $\mathbb R$ as q tends to 1, we can find 1< p<2 so that

$$\int_{\mathbb{R}} |f(x) - f_p(x)| \mathrm{d}x \le \frac{\varepsilon e^{-\omega(C)}}{6C}.$$

Next note that by Braun, Meise and Taylor [3], 2.6, for each $0 < \delta < 1$ there exists $h_{\delta} \in \mathcal{D}_{\omega}(\mathbb{R})$ satisfying

$$h_\delta \geq 0$$
, $Supp(h_\delta) \subset [-\delta, \delta]$ and $\int_{\mathbb{R}} h_\delta(x) dx = 1$.

Since $\lim_{\delta\downarrow 0} \widehat{h}_{\delta}(x) = 1$ for all $x\in\mathbb{R}$, we can choose $0<\eta< A(1-p^{-1})$ so that

$$\int_{\mathbb{R}} |\widehat{f}(t)| \left(1 - \widehat{h}_{\eta}(t)\right) | \exp(\omega(t)) dt \leq \frac{\varepsilon}{3}.$$

Now define $g:=f_p*h_\eta$ and note that g is in $\mathcal{D}_\omega[-A,A]$. Moreover, the following estimate holds:

$$\begin{split} \int_{\mathbb{R}} \mid \widehat{f}(t) - \widehat{g}(t) \mid \exp(\omega(t)) \, \mathrm{d} \, t = \\ &= \int_{\mathbb{R}} \mid \widehat{f}(t) - \widehat{f}(t) \widehat{h}_{\eta}(t) + \widehat{f}(t) \widehat{h}_{\eta}(t) - \widehat{f}_{p}(t) \widehat{h}_{\eta}(t) \mid \exp(\omega(t)) \, \mathrm{d} \, t \leq \\ &\leq \int_{\mathbb{R}} \mid \widehat{f}(t) (1 - \widehat{h}_{\eta}(t)) \mid \exp(\omega(t)) \, \mathrm{d} \, t + \int_{\mathbb{R}} \mid \widehat{f}(t) - \widehat{f}_{p}(t) \mid \exp(\omega(t)) \, \mathrm{d} \, t \leq \\ &\leq \frac{\varepsilon}{3} + \int_{|t| \leq C} \mid \widehat{f}(t) - \widehat{f}_{p}(t) \mid \exp(\omega(t)) \, \mathrm{d} \, t + \int_{|t| \geq C} \mid \widehat{f}(t) \mid \exp(\omega(t)) \, \mathrm{d} \, t + \\ &+ \int_{|t| \geq C} \mid \widehat{f}_{p}(t) \mid \exp(\omega(t)) \, \mathrm{d} \, t \leq \\ &\leq \frac{\varepsilon}{3} + 2 \, C e^{\omega(C)} \sup_{t \in \mathbb{R}} \mid (\widehat{f} - \widehat{f}_{p})(t) \mid + \int_{|t| \geq C} \mid \widehat{f}(t) \mid \exp(\omega(t)) \, \mathrm{d} \, t + \\ &+ \int_{p|t| \geq C} \mid \widehat{f}(t) \mid \exp(\omega(pt)) \, \mathrm{d} \, t \leq \\ &\leq \frac{\varepsilon}{3} + 2 \, C e^{\omega(C)} \int_{\mathbb{R}} \mid f(x) - f_{p}(x) \mid \mathrm{d} \, x + 2 \, e^{K} \int_{2|t| \geq C} \mid \widehat{f}(t) \mid \exp(K\omega(t)) \, \mathrm{d} \, t \leq \\ &\leq \varepsilon. \end{split}$$

Definition 2.2. For A, B > 0 define the Hilbert space

$$L_{A,B} := \left\{ f \in L^2_{loc}(\mathbb{C}) | \ \| \ f \ \|_{A,B}^2 := \int_{\mathbb{C}} \left\{ |f(z)| \ exp(-A|Im \ z| + B\omega(z)) \right\}^2 \mathrm{d} \ \lambda(z) < \infty \right\}$$

where λ denotes the Lebesgue measure on $\mathbb{C} = \mathbb{R}^2$.

Moreover, we define the Fréchet space

$$L_A := proj L_{Am}$$
.

Lemma 2.3. For each A > 0 and each bounded set M in L_A there exists a bounded set Q in L_{2A} such that for each $u \in M$ there exists $v \in Q$ with $\overline{\partial}v = u$ in the distributional sense.

Proof. For A, B > 0 and $K \ge 1$ as in $1.1(\alpha)$ we let

$$Y_{2A,B} := \left\{ f \in L_{2A,B} / \overline{\partial} f \in L_{A,2KB} \right\}$$

and we endow $Y_{2A,B}$ with the graph norm

$$|f|_{2A,B} := ||f||_{2A,B} + ||\overline{\partial}f||_{A,2KB}, \qquad f \in Y_{2A,B}.$$

Then $Y_{2A,B}$ is a Banach space and we claim that

(1)
$$\overline{\partial}: Y_{2A,B} \to L_{A,2KB}$$
 is surjective for all $A, B > 0$.

To prove this, we recall from Braun and Meise [2], Prop. 5, that there exist a subharmonic function $u: \mathbb{C} \to \mathbb{R}$ and C > 0 so that for all $z \in \mathbb{C}$ we have

$$-C - K \frac{2B}{A} \omega(Rez) \le u(z) \le |Im z| - \frac{2B}{A} \omega(z).$$

Now define $v: z \mapsto Au(z) + A|Im z|, z \in \mathbb{C}$, and note that

(2)
$$A|Im z| - 2KB\omega(z) - AC \le v(z) \le 2A|Im z| - 2B\omega(z)$$

holds for all $z \in \mathbb{C}$. Since ω satisfies $1.1(\gamma)$, we can choose D>0 so that

(3)
$$\log(1+|z|^2) \le B\omega(z) + D \quad \text{for all } z \in \mathbb{C}.$$

Next let $f \in L_{A,2KB}$ be given. Then (2) implies

(4)
$$\int [|f(z)| exp(-v(z))]^2 d\lambda(z) \le exp(2AC) ||f||_{A,2KB}^2.$$

Since v is subharmonic on $\mathbb C$, Hörmander [6], 4.4.2, implies the existence of $g\in L^2_{loc}$ ($\mathbb C$) so that $\overline{\partial} g=f$ in the distributional sense and

$$\int_{\mathbb{C}} \left[|g(z)| \frac{exp(-v(z))}{1+|z|^2} \right]^2 d\lambda(z) \le \int_{\mathbb{C}} \left[|f(z)| exp(-v(z)) \right]^2 d\lambda(z).$$

Because of (2), (3) and (4), this implies

$$||g||_{2A,B}^2 \le exp(2D + 2AC) ||f||_{A,2KB}^2 < \infty.$$

Consequently, g is in $L_{2A,B}$ and the proof of (1) is complete. For A>0 and $n\in\mathbb{N}$ we now define

$$W_{2A,n}:=\left\{f\in A(\mathbb{C})|\ \|\ f\ \|_{2A,n}<\infty\right\}=\left\{f\in L_{2A,n}|\overline{\partial}f=0\right\}.$$
 Then W so that we can consider the projective spectrum

Then $W_{2A,n+1} \subset W_{2A,n}$, so that we can consider the projective spectrum $(W_{2A,n}, \iota_{n+1}^n)_{n \in \mathbb{N}}$ with inclusion maps (see 3.1 for the notation). It is easy to see that this spectrum is equivalent to the spectrum $(A(\omega, 2A, n), j_{n+1}^n)_{n \in \mathbb{N}}$, again with inclusion maps. From Braun, Meise and Taylor [3], 3.3, it follows that this projective spectrum is equivalent to the spectrum $(\mathcal{D}_{2A,n}, \kappa_{n+1}^n)$, where

$$\mathcal{D}_{2A,n}:=\{f\in C({\rm I\!R})|\ Supp(f)\subset [-2A,2A]\ \text{and}$$

$$||\ f\ ||_n:=\int_{{\rm I\!R}}|\widehat{f}(t)|exp(n\omega(t)){\rm d}\, t<\infty\}.$$

and where κ_{n+1}^n denotes the corresponding inclusion map. From these equivalences and Lemma 2.1 we get:

For each $j \in \mathbb{N}$ there exists $k \in \mathbb{N}$, k > j, so that $\underset{\leftarrow n}{proj} W_{2A,n}$ is dense in $W_{2A,k}$ with respect to the topology induced by $W_{2A,j}$.

Moreover, $\underset{\leftarrow n}{proj} W_{2A,n}$ is isomorphic to $\underset{\leftarrow n}{proj} \mathcal{D}_{2A,n} = \mathcal{D}_{\omega}[-2A,2A]$ and hence a nuclear Fréchet space by [3], 3.6. In particular, we have

(6)
$$\underset{\leftarrow n}{proj} W_{2A,n}$$
 is quasinormable.

Now note that by (1) we have for each $n \in \mathbb{N}$ the exact sequence of Banach spaces

(7)
$$0 \to W_{2A,n} \hookrightarrow Y_{2A,n} \xrightarrow{\overline{\partial}} L_{A,2Kn} \to 0.$$

From this and (5) it follows by Komatsu [7], 1.3, that

$$0 \longrightarrow \underset{\leftarrow n}{proj} \ W_{2A,n} \hookrightarrow \underset{\leftarrow n}{proj} \ Y_{2A,n} \xrightarrow{\overline{\partial}} L_A \longrightarrow 0$$

is an exact sequence of Fréchet spaces. Therefore, (6) and Merzon [14], Thm. 2, implies that for each bounded set M in L_A there exists a bounded set Q in $\underset{\leftarrow n}{proj} Y_{2A,n}$ with $\overline{\partial}(Q) = M$. Since $\underset{\leftarrow n}{proj} Y_{2A,n}$ is continuously embedded in L_{2A} , the proof is complete.

Remark. Lemma 2.3 remains true for $\omega: t \mapsto log(1+t)$. The only change in the proof is that 2.3(1) holds for all B which are sufficiently large.

Lemma 2.4. (Semi-local to global interpolation). Let $F = (F_1, ..., F_N)$ be an N-tuple of entire functions which satisfy

- (i) there exist A_0 , $B_0 > 0$ with $\sup_{1 \le j \le N} \sup_{z \in \mathbb{C}} |F_j(z)| exp(-A_0(|Im z| + \omega(z))) \le B_0$.
 - (ii) there exist positive numbers ε , C, D such that for each component S of the set

$$S(F,\varepsilon,C) := \left\{ z \in \mathbb{C} \left| \left(\sum_{j=1}^N |F_j(z)|^2 \right)^{1/2} < \varepsilon \exp(-C(|Im \ z| + \omega(z))) \right\} \right\}$$

we have

$$\sup_{z \in S} (|Im z| + \omega(z)) \le D \left(1 + \inf_{z \in S} (|Im z| + \omega(z)) \right).$$

Furthermore, let Q be a set of holomorphic functions defined on $S(F, \varepsilon, C)$ which satisfies

(iii) there exist $A_1 > 0$ such that for each $m \in \mathbb{N}$ there exists $B_m > 0$:

$$\sup_{f \in Q} \sup_{z \in S(F,\varepsilon,C)} |f(z)| exp(-A_1 |Im z| + m\omega(z)) \le B_m.$$

Then there exist $0 < \varepsilon_1 < \varepsilon$, $C_1 > C$, M > 0 and a sequence $(E_m)_{m \in \mathbb{N}}$ of positive numbers, such that the following holds:

For each $f\in Q$ there exists $g\in A(\mathbb C)$ and $\alpha_j\in A(S(F,\varepsilon_1,C_1))$ for $1\leq j\leq N$, such that

$$g(z) = f(z) + \sum_{j=1}^{N} \alpha_j(z) F_j(z) \text{ for all } z \in S(F, \varepsilon_1, C_1)$$

and

$$\sup_{z \in \mathbb{C}} |g(z)| \exp(-M|Im z| + m\omega(z)) \le E_m \text{ for each } m \in \mathbb{N}.$$

Proof. From (ii) it follows (see Berenstein and Taylor [1], p. 120) that we can find $0 < \varepsilon_1 < \varepsilon$, $C_1 > C$, A, B > 0 and $\chi \in C^{\infty}(\mathbb{C})$ with $Supp(\chi) \subset S(F, \varepsilon, C)$ and $0 \le \chi \le 1$ so that

(1)
$$\chi|_{S(F,\varepsilon_1,C_1)} \equiv 1$$
, $|\overline{\partial}\chi(z)| \leq B \exp(A(|Im z| + \omega(z)))$ for all $z \in \mathbb{C}$.

Next fix $f \in Q$. Then χf is in $C^{\infty}(\mathbb{C})$ and $\overline{\partial}(\chi f) = (\overline{\partial}\chi)f$. Moreover, (1) implies that for $1 \le j \le N$

$$v_j^f := -\overline{F}_j \left(\sum_{k=1}^N |F_k|^2 \right)^{-1} \overline{\partial}(\chi f)$$

is in $C^{\infty}(\mathbb{C})$ and that

$$Supp(v_j^f) \subset S(F, \varepsilon, C) \setminus S(F, \varepsilon_1, C_1).$$

From the hypothesis and (1) we get:

$$|v_j^f| \le B_m B_0 B \frac{1}{\varepsilon^2} exp\left((A + A_0 + A_1 + 2C) |Im z| + (A + A_0 + 2C - m)\omega(z) \right)$$

for all $m \in \mathbb{N}$, $z \in \mathbb{C}$, $1 \le j \le N$ and all $f \in Q$. This shows that

$$P := \left\{ v_j^f | f \in Q, \quad 1 \le j \le N \right\}$$

is a bounded set in L_S , $S:=A+A_0+A_1+2C$. By Lemma 2.3 we can choose a bounded set R in L_{2S} so that for each $f\in Q$ and $1\leq j\leq N$ there exists $v_j^f\in R$ satisfying $\overline{\partial} u_j^f=v_j^f$. Since P is contained in $C^\infty(\mathbb{C})$, u_j^f is in $C^\infty(\mathbb{C})$ for all $f\in Q$, $1\leq j\leq N$. For $f\in Q$ we now define

(2)
$$g^f := \chi f + \sum_{j=1}^N u_j^f F_j$$
 and $\alpha_j^f := u_j^f |_{S(F, \varepsilon_1, C_1)}, \quad 1 \le j \le N.$

Then $g^f \in A(\mathbb{C})$ and $\alpha_j^f \in A(S(F, \varepsilon_1, C_1))$ for $1 \leq j \leq N$, since

$$\overline{\partial} g^f = \overline{\partial} (\chi f) + \sum_{j=1}^N \left(\overline{\partial} u_j^f \right) F_j = \overline{\partial} (\chi f) - \left(\sum_{j=1}^N \overline{F}_j F_j \overline{\partial} (\chi f) \right) \left(\sum_{j=1}^N |F_k|^2 \right)^{-1} = 0$$

and

$$\overline{\partial}\alpha_j^f=\overline{\partial}u_j^f\big|_{S(F,\varepsilon_1,C_1)}=\upsilon_j^f\big|_{S(F,\varepsilon_1,C_1)}=0\,.$$

This proves the first assertion. The second one follows by standard arguments from (2), (i), (ii) and the fact that P is bounded in L_{2S} .

In order to apply Lemma 2.4, we introduce the following notation.

Notation 2.5. For an N-tuple $F = (F_1, \dots, F_N)$ of entire functions let

$$V(F):=\left\{z\in\mathbb{C}\left|F_{j}(z)=0\text{ for }1\leq j\leq N\right.\right\}.$$

For $a \in V(F)$ we define $m_{\alpha} := \min_{1 \le j \le N} ord F_j(a)$, where ord f(a) denotes the zero-order of f at a. Then we let

$$I_{l\infty}(F) := \{ f \in A_{\omega} | ord f(a) \ge m_{\alpha} \text{ for all } a \in V(F) \},$$

$$I(F):=\left\{f\in A_{\omega}|f=\sum_{j=1}^Ng_jF_j,g_j\in A_{\omega}\text{ for }1\leq j\leq N\right\}.$$

It is easy to see that I(F) and $I_{loc}(F)$ are ideals in A_{ω} satisfying $I(F) \subset I_{loc}(F)$ and that $I_{loc}(F)$ is closed.

Proposition 2.6. Assume that $F = (F_1, ..., F_N) \in A(\mathbb{C})^N$ satisfies the conditions (i) and (ii) in 2.4. Then we have:

(a)
$$\overline{I(F)} = I_{loc}(F)$$

(b) If N = 1 then I(F) is closed.

Proof. (a) Because of the remark at the end of 2.5 it sufficies to show that $I_{loc}(F) \subset \overline{I(F)}$. To prove this, define $p: \mathbb{C} \to [0, \infty[$ by $p(z) := |Imz| + \omega(z)$ and let

$$A_p := \left\{ f \in A(\mathbb{C}) \mid \text{there is } k \in \mathbb{N} : \mid \mid f \mid \mid_k := \sup_{z \in \mathbb{C}} |f(z)| \exp(-kp(z)) < \infty \right\}.$$

Endowed with its natural inductive limit topology, A_p is a (DFN)-algebra which contains A_ω as a subalgebra. From 2.4(i) it follows that $F \in (A_p)^N$. Now define $I^p(F)$ and $I^p_{loc}(F)$ as in 2.5, however with A_p instead of A_ω . Then 2.4(ii) together with Kelleher and Taylor [8], Thm. 4.6, implies that $I^p_{loc}(F) = \overline{I^p(F)}$. Now fix $f \in I_{loc}(F) \subset I^p_{loc}(F)$ and note that for each $g \in A_\omega$ the multiplication map $M_g : A_p \to A_\omega$, $M_g(h) := gh$, is continuous and satisfies $M_g(I^p(F)) \subset I(F)$. Hence we get

$$fg=M_g(f)\in M_g(I^p_{loc}(F))=M_g(\overline{I^p(F)})\subset \overline{M_g(I^p(F))}\subset \overline{I(F)}.$$

Now we apply this to $g = \widehat{\varphi}_{\varepsilon}$, where $\varphi_{\varepsilon} : x \mapsto \frac{1}{\varepsilon} \varphi(\frac{x}{\varepsilon})$, $\varepsilon > 0$, for some function $\varphi \in \mathcal{D}_{\omega}(\mathbb{R})$ satisfying $\varphi \geq 0$ and $\int_{\mathbb{R}} \varphi d\lambda = 1$. Since it is easy to check that $f = A_{\omega} - \lim_{\varepsilon \downarrow 0} f \widehat{\varphi}_{\varepsilon}$, we get $f \in \overline{I(F)}$, which proves (a).

(b) It suffices to show $I_{loc}(F) \subset I(F)$. To prove this, fix $g \in I_{loc}(F)$. Then $\frac{f}{F}$ is in $A(\mathbb{C})$ and it is easy to check that 2.4(ii) and 1.7 together with the maximum principle implies $\frac{f}{F} \in A_{\omega}$.

Proposition 2.7. Let $F = (F_1, \ldots, F_N)$ be an N-tuple of entire functions which satisfies the conditions 2.4(i) and (ii). If V(F) is an infinite set then $A_{\omega}/I_{loc}(F)$ is linearly isomorphic to $\lambda(\alpha, \beta)'$, where $\alpha = (|Im \ a_j|)_{j \in \mathbb{N}}$ and $\beta = (\omega(a_j))_{j \in \mathbb{N}}$ and where the sequence $(a_j)_{j \in \mathbb{N}}$ counts the elements of V(F) according to their multiplicities $(m_a \ at \ a \in V(F))$.

Proof. Fix ε , C, D>0 as in 2.4(ii) and choose an enumeration $(S_j)_{j\in\mathbb{N}}$ of those components S of $S(F,\varepsilon,C)$ which satisfy $S\cap V(F)\neq\emptyset$. Then define the sequence $\gamma=(\gamma_j)_{j\in\mathbb{N}}$ and $\delta=(\delta_j)_{j\in\mathbb{N}}$ by

$$\gamma_j := \sup_{z \in S_j} |Im z|, \quad \delta_j := \sup_{z \in S_j} \omega(z).$$

Next define for $j \in \mathbb{N}$:

$$A^{\infty}(S_j) := \left\{ f \in A\left(S_j\right) | \mid \mid f \mid \mid_j := \sup_{z \in S_j} |f(z)| < \infty \right\}$$

$$E_j := \prod_{\alpha \in V(F) \cap S_j} \mathbb{C}^{m_\alpha}$$

$$\rho_j:A^\infty(S_j)\to E_j,\quad \rho_j(f):=\left(f^{(k)}(a)\right)_{a\in V(F)\cap S_j,0\leq k< m_a}.$$

It is easy to see that ρ_j is surjective. Hence we can endow E_j with the corresponding quotient norm, i.e.

$$||\mu||_{j} := inf\{||f||_{j} | f \in A^{\infty}(S_{j}), \quad \rho_{j}(f) = \mu\}, \quad \text{for } \mu \in E_{j}.$$

By \mathbb{E} we denote the sequence $\mathbb{E} = (E_j, ||\cdot||_j)_{j \in \mathbb{N}}$. Then we remark that by the proof of Meise, Momm and Taylor [11], 3.5 (which is almost the same as of Meise, Taylor and Vogt [13], 2.3) property 1.7(*) also holds for the components S of $S(F, \varepsilon, C)$ provided that ε and C are chosen appropriately. From this and 2.4(i) it follows easily that the map

$$\rho: A_{\omega} \to K(\gamma, \delta, \mathbb{E}), \quad \rho(f) := \left(\rho_j(f|S_j)\right)_{j \in \mathbb{N}}$$

is defined linear and continuous and that $\ker \rho = I_{loc}(F)$. To prove the surjectivity of ρ , fix $\mu \in K(\gamma, \delta, \mathbb{E})$. Then there exists $k \in \mathbb{N}$ so that for each $l \in \mathbb{N}$ there exists $C_l > 0$ so that

$$||\mu_j||_j \le C_l \exp\left(k\gamma_j - l\delta_j\right)$$
 for all $j \in \mathbb{N}$.

By the definition of $\|\cdot\|_j$ we can choose $f_j \in A^{\infty}(S_j)$ with $\rho_j(f_j) = \mu_j$ and $\|f_j\|_j \le 2 \|\mu_j\|_j$. Now define $f: S(F, \varepsilon, C) \to \mathbb{C}$ by

$$f(z) := \begin{cases} f_j(z) & \text{if } z \in S_j \\ 0 & \text{if } z \in S(F, \varepsilon, C) \setminus \bigcup_{k=1}^{\infty} S_k. \end{cases}$$

From 2.4(ii) we get for each $l \in \mathbb{N}$:

$$|f(z)| \le 2C_l e^{Dk} \exp(Dk|Im z| - (l - Dk)\omega(z))$$
 for all $z \in S(F, \varepsilon, C)$.

Hence f satisfies 2.4(iii). Therefore, Lemma 2.4 implies the existence of $g \in A_{\omega}$ with $\rho(g) = \mu$. Thus ρ is surjective. Now the open mapping theorem for (LF)-spaces together with $\ker \rho = I_{loc}(F)$ implies

$$A_{\omega}/I_{loc}(F) \cong K(\gamma, \delta, \mathbb{E}).$$

Next let $n_j := dim E_j$ for $j \in \mathbb{N}$ and note that by Remark b) to Cor. 3.8 in Meise [9], there exists $l \in \mathbb{N}$ so that

$$\sup_{j\in\mathbb{N}} n_j \exp\left(-l\left(\gamma_j + \delta_j\right)\right) < \infty.$$

Hence Lemma 1.10 and Lemma 1.9 imply

$$A_{\omega}/I_{loc}(F) \cong K(\gamma, \delta, \mathbb{E}) = \lambda(\gamma, \delta, \mathbb{E}')' = \lambda(\overline{\gamma}, \overline{\delta})',$$

where $\overline{\gamma}$ (resp. $\overline{\delta}$) is obtained by repeating γ_j (resp. δ_j) n_j -times. Now the conclusion follows easily from this and 2.4(ii) together with the definition of γ and δ .

Remark 2.8. If we identify in Proposition 2.7 the quotient $A_{\omega}/I_{l\infty}(F)$ with $\lambda(\alpha,\beta)'$ then a set G in $\lambda(\alpha,\beta)'$ is equicontinuous if and only if there exist $k \in \mathbb{N}$ and a bounded set M in $\underset{\leftarrow m}{proj} A(\omega,k,m)$ so that $G = \rho(M)$. This follows from the characterization in 1.9(3) and the proof of Proposition 2.7 together with Lemma 2.4.

Exponential solutions 2.9. For $a \in \mathbb{C}$ and $k \in \mathbb{N}_0$ we define

$$e_{a,k}: x \mapsto (ix)^k e^{ixa}, \quad x \in \mathbb{R}.$$

It is easy to check that $e_{a,k}$ is in $\mathcal{E}_{\omega}(\mathbb{R})$ for each weight function ω . Now fix ω and $\mu \in \mathcal{E}_{\omega}(\mathbb{R})'$. Then the elements of

$$span \ \Big\{ e_{a,k} \big| a \in V(\widehat{\mu}) \,, \quad 0 \le k < m_a \Big\}$$

are called exponential solutions of the convolution operator S_{μ} . This notation is justified by the following identity which is a consequence of the definitions and remarks in 1.6:

$$\begin{split} S_{\mu}(e_{a,k})[x] &= \left\langle \mu_{y}, e_{a,k}(x-y) \right\rangle = \left\langle \mu_{y}, (i(x-y))^{k} e^{i(x-y)a} \right\rangle \\ &= \sum_{j=0}^{k} \binom{k}{j} (ix)^{k-j} e^{ixa} \left\langle \mu_{y}, (-iy)^{j} e^{-iya} \right\rangle \\ &= \sum_{j=0}^{k} \binom{k}{j} (ix)^{k-j} e^{ixa} \widehat{\mu}^{(j)}(a) = 0 \,. \end{split}$$

Theorem 2.10. Let S_{μ} be a convolution operator on $\mathcal{D}_{\omega}(\mathbb{R})'$ which admits a fundamental solution and assume that $\ker S_{\mu}$ is infinite dimensional. Then $\ker S_{\mu}$ admits an absolute basis of exponential solutions, with respect to which $\ker S_{\mu}$ is isomorphic to $\lambda(\alpha,\beta)$, where $\alpha = (|\operatorname{Im} \alpha_j|)_{j \in \mathbb{N}}$ and $\beta = (\omega(\alpha_j))_{j \in \mathbb{N}}$ and where the sequence $(\alpha_j)_{j \in \mathbb{N}}$ counts the zeros of $\widetilde{\mu}$ with multiplicities.

Proof. By 1.6(2) we know that $F:=\widetilde{\mu}$ satisfies condition 2.4(i). Since S_{μ} admits a fundamental solution, Proposition 1.7 shows that F also satisfies condition 2.4(ii). Therefore Proposition 2.7 together with 1.6(4) and Proposition 2.6 implies that for $F=\widetilde{\mu}$ we have the following isomorphisms

$$(\ker S_{\mu})' \cong A_{\omega}/\overline{\widetilde{\mu}A_{\mu}} = A_{\omega}/I_{loc}(\widetilde{\mu}) \cong \lambda(\alpha,\beta)'.$$

Moreover, 1.7(5) and Remark 2.8 imply that the resulting isomorphism induces a bijection between the equicontinuous sets in $(\ker S_{\mu})'$ and the equicontinuous sets in $\lambda(\alpha,\beta)'$. Hence it is the adjoint of an isomorphism Φ between $\ker S_{\mu}$ and $\lambda(\alpha,\beta)$. If one computes Φ : $\lambda(\alpha,\beta) \to \ker S_{\mu}$ explicitly (see the proof of Meise, Schwerdtfeger and Taylor [12], 2.6), then it follows that Φ maps the canonical basis vectors of $\lambda(\alpha,\beta)$ into exponential solutions. More generally one can prove (using [12], 2.4):

Theorem 2.11. Let $S_{\mu_1},\ldots,S_{\mu_N}$ be convolution operators on $\mathcal{D}'_{\omega}(\mathbb{R})$ and assume that $F=(\widetilde{\mu}_1,\ldots,\widetilde{\mu}_N)$ satisfies the conditions 2.4(i) and 2.4(ii). If $\bigcap_{j=1}^N \ker S_{\mu_j}$ is infinite dimensional then $\bigcap_{j=1}^N \ker S_{\mu_j} = \ker(S_{\mu_1},\ldots,S_{\mu_N})$ admits an absolute basis of exponential solutions with respect to which $\ker(S_{\mu_1},\ldots,S_{\mu_N})$ is isomorphic to $\lambda(\alpha,\beta)$, where $\alpha=(|Im\ a_j|)_{j\in\mathbb{N}}$ and $\beta=(\omega(a_j))_{j\in\mathbb{N}}$ and where the sequence $(a_j)_{j\in\mathbb{N}}$ counts $V(\widetilde{\mu}_1,\ldots,\widetilde{\mu}_N)$ with multiplicities.

Remark 2.12. Theorem 2.10 and Theorem 2.11 also hold for $\mathcal{D}'(\mathbb{R})$ instead of $\mathcal{D}'_{\omega}(\mathbb{R})$ as their proofs show.

3. SURJECTIVITY OF CONVOLUTION OPERATORS ON $\mathcal{D}_{\omega}(\mathbb{R})'$

Following the arguments in section 3 of Braun, Meise and Vogt [4] we use results of Palamodov [15] and Vogt [17], [18] together with Theorem 2.10 to show that a convolution operator S_{μ} acts sufjectively on $\mathcal{D}_{\omega}(\mathbb{R})'$ if and only if S_{μ} admits a fundamental solution. To do this, we recall the following notions concerning projective spectra from Vogt [17], [18].

Projective Spectra 3.1. (1) A sequence $X = (X_n, \iota_{n+1}^n)_{n \in \mathbb{N}}$ of linear spaces X_n and linear maps $\iota_{n+1}^n : X_{n+1} \to X_n$ is called a projective spectrum. We define ι_m^n for $n \leq m$ by $\iota_n^n := id_{X_n}$ and $\iota_m^n := \iota_{n+1}^n \circ \ldots \circ \iota_m^{m-1}$ for m > n.

(2) For a projective spectrum $\mathcal{X} = (X_n, \iota_{n+1}^n)_{n \in \mathbb{N}}$ we define the linear spaces $Proj^0 \mathcal{X}$ and $Proj^1 \mathcal{X}$ by

$$\begin{split} &Proj^{0}\mathcal{X} := \left\{ (x_{n})_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} X_{n} \big| \ \iota_{n+1}^{n}(x_{n+1}) = x_{n} \ \text{ for all } \ n \in \mathbb{N} \right\} \\ &Proj^{1}\mathcal{X} := \left(\prod_{n \in \mathbb{N}} X_{n} \right) / B(X), \end{split}$$

where

$$B(X):=\left\{(a_n)_{n\in\mathbb{N}}\in\prod_{n\in\mathbb{N}}X_n|\text{ there is }(b_n)_{n\in\mathbb{N}}\in\prod_{n\in\mathbb{N}}X_n\text{ with}\right.$$

$$a_n=\iota_{n+1}^n(b_{n+1})-b_n\text{ for all }n\in\mathbb{N}\right\}.$$

(3) For projective spectra $\mathcal{X}=(X_n,\iota_{n+1}^n)$ and $\mathcal{Y}=(Y_n,\iota_{n+1}^n)$ a map $\Phi:\mathcal{X}\to\mathcal{Y}$ is a sequence $\varphi_{k(n)}^n:X_{k(n)}\to\mathcal{Y}_n$ of linear maps which satisfies for all $n\in\mathbb{N}$:

$$k(n) \le k(n+1)$$
 and $\varphi_{k(n)}^n \circ \iota_{k(n+1)}^{k(n)} = j_{n+1}^n \circ \varphi_{k(n+1)}^{n+1}$.

For $m \geq k(n)$ we put $\varphi_m^n := \varphi_{k(n)}^n \circ \iota_m^{k(n)}$.

- (4) Let the maps $\Phi: \mathcal{X} \to \mathcal{Y}$ and $\Psi: \mathcal{Y} \to \mathcal{Z}$ be defined by $(\varphi_{k(n)}^n)_{n \in \mathbb{N}}$ and $(\psi_{l(n)}^n)_{n \in \mathbb{N}}$. Then their composition $\Psi \circ \Phi: \mathcal{X} \to \mathcal{Z}$ is defined by $\chi_{k(l(n))}^n := \psi_{l(n)}^n \circ \varphi_{k(l(n))}^{l(n)}$.
- (5) Two maps $\Phi, \Psi : \mathcal{X} \to \mathcal{Y}$ defined by $(\varphi_{k(n)}^n)_{n \in \mathbb{N}}$ and $(\psi_{l(n)}^n)_{n \in \mathbb{N}}$ respectively, are called equivalent, if for each $n \in \mathbb{N}$ there exists $m(n) \ge \max(k(n), l(n))$ with

$$\varphi_{m(n)}^n = \psi_{m(n)}^n.$$

(6) Two projective spectra \mathcal{X} and \mathcal{Y} are called equivalent, if there exist maps $\Phi: \mathcal{X} \to \mathcal{Y}$ and $\Psi: \mathcal{Y} \to \mathcal{X}$ such that $\Phi \circ \Psi$ is equivalent to $id_{\mathcal{Y}} := (j_{n+1}^n)_{n \in \mathbb{N}}$ and $\Psi \circ \Phi$ is equivalent to $id_{\mathcal{X}} := (\iota_{n+1}^n)_{n \in \mathbb{N}}$.

Example 3.2. Let ω be a fixed weight function.

(1) For $n \in \mathbb{N}$ we let

$$\mathcal{D}'_{\omega}(\mathbb{R},]-n,n[):=\{\nu\in\mathcal{D}'_{\omega}(\mathbb{R})|Supp\ \nu\subset\mathbb{R}\setminus]-n,n[\}.$$

Then $\mathcal{D}'_{\omega}(\mathbb{R},]-n, n[)$ is a closed linear subspace of $\mathcal{D}'_{\omega}(\mathbb{R})$. Hence, we can define

$$\mathcal{D}'_n := \mathcal{D}'_{\omega}(\mathbb{R})/\mathcal{D}'_{\omega}(\mathbb{R},] - n, n[).$$

By $q_n: \mathcal{D}_{\omega}'(\mathbb{R}) \to \mathcal{D}_n'$ we denote the corresponding quotient map. Note that \mathcal{D}_n' is a (DFN)-space, since \mathcal{D}_n' can also be described as

$$\mathcal{D}'_n = \mathcal{D}'_{\omega}[-m, m]/(\mathcal{D}'_{\omega}(\mathbb{R},]-n, n[) \cap \mathcal{D}'_{\omega}[-m, m]),$$

for each m > n. This follows from the fact that $\mathcal{D}'_{\omega}(\mathbb{R})$ and hence \mathcal{D}'_n is ultrabornologic by [3], 5.6, while the second quotient is a (DFN)-space. It is easy to check that for each $n \in \mathbb{N}$ the map

$$\iota_{n+1}^n: \mathcal{D}'_{n+1} \to \mathcal{D}'_n, \quad \iota_{n+1}^n(q_{n+1}(\nu)) := q_n(\nu)$$

is well-defined, continuous and linear.

Let \mathcal{D}'_{ω} denote the projective spectrum $(\mathcal{D}'_n, \iota^n_{n+1})_{n \in \mathbb{N}}$ of (DFN)-spaces.

- (2) From the definition in (1) it follows easily that the map $Q: \mathcal{D}_{\omega}(\mathbb{R})' \to \prod_{n \in \mathbb{N}} \mathcal{D}'_n$, $Q(\nu) := (q_n(\nu))_{n \in \mathbb{N}}$ induces a linear bijection between $\mathcal{D}_{\omega}(\mathbb{R})'$ and $Proj^0 \mathcal{D}'_{\omega}$.
 - (3) $Proj^1 \mathcal{D}'_{\omega} = 0$.

To see this, let $(a_n)_{n\in\mathbb{N}}\in\prod_{n\in\mathbb{N}}\mathcal{D}'_n$ be given. By the definition of \mathcal{D}'_n we can choose $\nu_n\in\mathcal{D}_{\omega}(\mathbb{R})'$ with $a_n=q_n(\nu_n)$ for each $n\in\mathbb{N}$. If we let $b_n:=q_n(\sum_{j=1}^{n-1}\nu_j)$ then the definitions in (1) imply

$$\iota_{n+1}^{n} (b_{n+1}) - b_{n} = q_{n} \left(\sum_{j=1}^{n} \nu_{j} - \sum_{j=1}^{n-1} \nu_{j} \right) = q_{n} (\nu_{n}) = a_{n}$$

for each $n \in \mathbb{N}$. Hence $(a_n)_{n \in \mathbb{N}}$ is in $B(\mathcal{D}'_{\omega})$, which implies $B(\mathcal{D}'_{\omega}) = \prod_{n \in \mathbb{N}} \mathcal{D}'_n$.

(4) For $\mu \in \mathcal{E}_{\omega}(\mathbb{R})'$ with $Supp(\mu) \subset]-k, k[$ for some $k \in \mathbb{N}$ we define the map $S_{\mu}: \mathcal{D}'_{\omega} \to \mathcal{D}'_{\omega}$ by $S_{\mu} = (\sigma^n_{n+k})_{n \in \mathbb{N}}$, where $\sigma^n_{n+k}: \mathcal{D}'_{n+k} \to \mathcal{D}'_n$ is defined by

$$\sigma_{n+k}^n\left(q_{n+k}(\nu)\right)=q_n(\mu*\nu), \quad \nu\in\mathcal{D}'_{\omega}(\mathbb{R}).$$

Because of $Supp(\mu * \nu) \subset Supp(\mu) + Supp(\nu)$, this is a reasonable definition. Obviously, σ_{n+k}^n is a continuous linear map.

(5) For μ and k as in (4), define the projective spectrum $\mathcal{K}(\omega,\mu) := (K_n, i_{n+1}^n)_{n \in \mathbb{N}}$ by $K_n = 0$ and $i_{n+1}^n = 0$ for $1 \le n \le k$ and for n > k by

$$K_n := \{ \nu \in \mathcal{D}'_n | \sigma_n^{n-k}(\nu) = 0 \}, \quad i_{n+1}^n = \iota_{n+1}^n | K_{n+1}.$$

Furthermore, we define $J: \mathcal{K}(\omega,\mu) \to \mathcal{D}'_{\omega}$ by $J=(j^n_n)_{n\in\mathbb{N}}$, where $j^n_n: K_n \to \mathcal{D}'_n$ denotes the inclusion map.

(6) For $\mu \in \mathcal{E}_{\omega}(\mathbb{R})'$ assume that S_{μ} admits a fundamental solution and that $\ker S_{\mu}$ is infinite dimensional. Let the sequences α and β be defined as in Theorem 2.10. Using the notation from 1.8 we then let

$$\lambda_k(\alpha,\beta) := \inf_{m \to} \lambda(k,m), \quad k \in \mathbb{N}$$

and we denote by ι_{k+1}^k : $\lambda_{k+1}(\alpha,\beta) \to \lambda_k(\alpha,\beta)$ the obvious inclusion map. Moreover, we denote the projective spectrum $(\lambda_k(\alpha,\beta),\iota_{k+1}^k)_{k\in\mathbb{N}}$ of (DFS)-sequence spaces by $\Lambda(\alpha,\beta)$.

If $\mu \in \mathcal{E}_{\omega}(\mathbb{R})'$ satisfies the hypothesis of 3.2(6) then Theorem 2.10 shows that $\ker S_{\mu}$ is linearly isomorphic to $Proj^0 \Lambda(\alpha, \beta)$. On the other hand it is easy to check that $\ker S_{\mu}$ is linearly isomorphic to $Proj^0 \mathcal{K}(\omega, \mu)$. It is not quite evident that the projective spectra $\mathcal{K}(\omega, \mu)$ and $\Lambda(\alpha, \beta)$ are equivalent. However, this is the case by the following lemma, the proof of which is an adaptation of the one of Braun, Meise and Vogt [4], 3.6.

Lemma 3.3. Assume that the convolution operator S_{μ} on $\mathcal{D}_{\omega}(\mathbb{R})'$ admits a fundamental solution and that $\ker S_{\mu}$ is infinite dimensional. Then the projective spectra $\mathcal{K}(\omega,\mu)$ and $\Lambda(\alpha,\beta)$ are equivalent.

Proof. Assume that $Supp(\mu) \subset]-k, k[$ for some $k \in \mathbb{N}$ and let the projective spectrum $\mathcal{X}=(X_n,\xi_{n+1}^n)_{n\in\mathbb{N}}$ be defined in the following way: $X_0=0$ and $\xi_{n+1}^n=0$ for $1\leq n\leq k$ and

$$X_n := \overline{q_n(\ker S_n)}^{\mathcal{D}'_n} \subset K_n$$
 and $\xi_{n+1}^n := i_{n+1}^n | X_{n+1}$ for $n > k$.

We claim that $\mathcal X$ and $\mathcal K(\omega,\mu)$ are equivalent. By the definition of $\mathcal X$ this follows from

(*) For each $l \in \mathbb{N}$ with l > k there exists $m \in \mathbb{N}$, m > l so that $\mathbf{i}_m^l(K_m) \subset X_l$.

To prove this, note that by [3], 6.2, and by Braun, Meise and Vogt [4], 2.7, the hypothesis implies that S_{μ} maps $\mathcal{E}_{\omega}(\mathbb{R})$ onto $\mathcal{E}_{\omega}(\mathbb{R})$. Therefore, Meise, Taylor and Vogt [13], 3.8, shows that for each $\rho > 0$ there exists $r = r(\rho) > \rho$ such that for each $R \geq r + k$ and each $g \in \mathcal{E}_{\omega}(\mathbb{R})$ satisfying $S_{\mu}(g)|[-R,R] \equiv 0$ we have

$$g(x) = \sum_{j=1}^{\infty} \lambda_j e_j(x)$$
 for all $x \in [-\rho, \rho]$,

where the series converges in $\mathcal{E}_{\omega}(]-\rho,\rho[)$ and where $e_{j}\in\ker S_{\mu}$ for all $j\in\mathbb{N}$.

Now fix $l \in \mathbb{N}$, put $\rho := l+2$, choose $r = r(\rho)$ according to the above and choose $m \in \mathbb{N}$, $m \geq r+2k+1$. Next choose $\chi \in \mathcal{D}_{\omega}[-1,1]$ with $\chi \geq 0$ and $\int_{\mathbb{R}} \chi d\lambda = 1$ and define $\chi_{\varepsilon} \in \mathcal{D}_{\omega}(\mathbb{R})$ by $\chi_{\varepsilon}(x) := \frac{1}{\varepsilon} \chi(\frac{x}{\varepsilon})$ for $0 < \varepsilon < 1$. Then fix $\nu \in K_m$, choose $\tau \in \mathcal{D}_{\omega}'(\mathbb{R})$ with $q_m(\tau) = \nu$ and choose a zero-neighbourhood U in \mathcal{D}_l' arbitrarily. Since $\tau * \chi_{\varepsilon}$ tends to τ in $\mathcal{D}_{\omega}'(\mathbb{R})$ as ε tends to zero, we can choose $0 < \varepsilon < 1$ so that $q_l(\tau * \chi_{\varepsilon}) - \mathbf{i}_m^l(\nu) \in \frac{1}{2}U$. Next note that $S_{\mu}(\tau)|_{[-m+k,m-k]} \equiv 0$ since ν is in K_m . Hence we have $S_{\mu}(\tau * \chi_{\varepsilon})|_{[-R,R]} \equiv 0$ for $R := m-k-1 \geq r+k$. Therefore, we get from the above

$$\tau * \chi_{\varepsilon}(x) = \sum_{j=1}^{\infty} \lambda_{j} e_{j}(x) \text{ for all } x \in [-l-1, l+1],$$

where the series converges in $\mathcal{E}_{\omega}(]-l-1,l+1[)$. Consequently, we can choose $n\in\mathbb{N}$ so large that

$$q_l\left(\tau*\chi_{\varepsilon}-\sum_{j=1}^n\lambda_je_j\right)\in\frac{1}{2}U.$$

Since $\sum_{j=1}^{n} \lambda_{j} e_{j}$ is in $\ker S_{\mu}$, we have shown that (*) holds. Knowing that \mathcal{X} and $\mathcal{K}(\omega,\mu)$ are equivalent, the proof can now be completed as the one of Braun, Meise and Vogt [4], 3.6.

Theorem 3.4. Let ω be a weight function and let $\mu \in \mathcal{E}_{\omega}(\mathbb{R})'$, $\mu \neq 0$, be given. Then the following assertions are equivalent:

- (1) $S_{\mu}: \mathcal{D}_{\omega}(\mathbb{R})' \to \mathcal{D}_{\omega}(\mathbb{R})'$ is surjective
- (2) S_{μ} admits a fundamental solution.

Proof. It is obvious that (1) implies (2). To show the converse implication, assume that S_{μ} admits a fundamental solution. Then we choose $k \in \mathbb{N}$ with $Supp(\mu) \subset]-k, k[$ and note that

$$0 \to K_{n+k} \stackrel{j_{n+k}^{n+k}}{\longrightarrow} \mathcal{D}'_{n+k} \stackrel{\sigma_{n+k}^n}{\longrightarrow} \mathcal{D}'_n \to 0$$

is an exact sequence for each $n \in \mathbb{N}$. Hence

$$0 \to \mathcal{K}(\omega,\mu) \xrightarrow{J} \mathcal{D}'_{\omega} \xrightarrow{S_{\mu}} \mathcal{D}'_{\omega} \to 0$$

is an exact sequence of projective spectra. Consequently, we get from Palamodov [15], p. 542, (see also Vogt [17], 1.5) the exactness of the following sequence:

$$(*) \qquad 0 \longrightarrow Proj^{0}\mathcal{K}(\omega,\mu) \xrightarrow{J^{0}} Proj^{0}\mathcal{D}'_{\omega} \xrightarrow{S^{0}_{\mu}} Proj^{0}\mathcal{D}'_{\omega} \xrightarrow{\delta^{\bullet}}$$

$$\longrightarrow Proj^{1}\mathcal{K}(\omega,\mu) \xrightarrow{J^{1}} Proj^{1}\mathcal{D}'_{\omega} \xrightarrow{S^{1}_{\mu}} Proj^{1}\mathcal{D}'_{\omega} \longrightarrow 0.$$

By 3.2(2) we can identify $Proj^0\mathcal{D}'_n$ with $\mathcal{D}'_{\omega}(\mathbb{R})$. If we do this then S^0_{μ} coincides with S_{μ} . By 3.2(3) we have $Proj^1\mathcal{D}'_{\omega}=0$. Hence (*) gives the exact sequence

$$0 \to \ker S_{\mu} \to \mathcal{D}'_{\omega} \xrightarrow{S_{\mu}} \mathcal{D}'_{\omega} \to \operatorname{Proj}^{1} \mathcal{K}(\omega, \mu) \to 0.$$

If $kerS_{\mu}$ is infinite dimensional then we get from Lemma 3.3 and Vogt [18], 1.4, that $Proj^1\mathcal{K}(\omega,\mu)=Proj^1\Lambda\left(\alpha,\beta\right)$. By Vogt [17], 4.3(i) and 4.2 we have $Proj^1\Lambda\left(\alpha,\beta\right)=0$. Hence S_{μ} is surjective. If $kerS_{\mu}$ is finite dimensional then it is easily seen that $Proj^1\mathcal{K}\left(\omega,\mu\right)=0$.

Remark 3.5. In Theorem 2.10 the hypothesis ${}^{\circ}S_{\mu}$ admits a fundamental solution» can be replaced by ${}^{\circ}S_{\mu}$ is surjective».

Added in proof. Note that Thm. 2.7 above extends Prop. 2.4 and Thm. 2.6 of I. Cioranescu: Convolution equations in ω -ultradistribution spaces, Rev. Roum. Math. Pures et Appl. 25 (1980), 719-737. Note also that S. Abdullah: Convolution equations in Beurling's distributions, Acta Math. Hung 52 (1988), 7-20, has characterized by different methods the surjective convolution operators on $\mathcal{D}'_{\omega}(\mathbb{R}^n)$, where $\mathcal{D}_{\omega}(\mathbb{R}^n)$ is defined in the sense of Beurling-Björck (see [4], 8.4 (2)).

REFERENCES

- [1] C. A. BERENSTEIN, B. A. TAYLOR, A new look at interpolation theory for entire functions of one variable, Advances in Math. 33 (1979), 109-143.
- [2] R. W. Braun, R. Meise, Generalized Fourier expansions for zero-solutions of surjective convolution operators on D_{ω}(R)', Arch. Math. 55 (1990), 55-63.
- [3] R. W. Braun, R. Meise, B. A. Taylor, Ultradifferentiable functions and Fourier analysis, Result. Math. 17 (1990), 206-237.
- [4] R. W. Braun, R. Meise, D. Vogt, Existence of fundamental solutions and surjectivity of convolution operators on classes of ultra-differentiable functions, Proc. London Math. Soc., 61 (1990), 344-370.
- [5] L. EHRENPREIS, Solutions of some problems of division IV, Amer. J. Math. 82 (1960), 522-588.
- [6] L. HÖRMANDER, An introduction to complex analysis in several variables, Van Nostrand, Princeton N. J. 1967.
- [7] H. Komatsu, Ultradistributions I: Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo Sect. IA 20 (1973), 25-105.
- [8] J. J. KELLEHER, B. A. TAYLOR, Closed ideals in locally convex algebras of entire functions J. reine angew. Math. 225 (1972), 190-209.
- [9] R. MEISE, Sequence space representations for (DFN)-algebras of entire functions modulo closed ideals, J. reine angew. Math. 363 (1985), 59-95.
- [10] R. Meise, Sequence space representations for zero-solutions of convolution equations on ultradifferentiable functions of Roumieu type, Studia Math. 92 (1989), 211-230.
- [11] R. Meise, S. Momm, B. A. Taylor, Splitting of slowly decreasing ideals in weighted algebras of entire functions, in: «Complex analysis II» (ed. C. A. Berenstein), LNM 1276, Springer, Berlin (1987), 229-252.
- [12] R. Meise, K. Schwerdtfeger, B. A. Taylor, Kernels of slowly decreasing convolution operators, Doga, Tr. J. Math. 10 (1986), 176-197.
- [13] R. MEISE, B. A. TAYLOR, D. VOGT, Equivalence of slowly decreasing conditions and local Fourier expansions, Indiana Univ. Math. J. 36 (1987), 729-756.
- [14] A. E. MERZON, On the covering of bounded sets in locally convex spaces, Functional Anal. Appl. 6 (1973), 335-336.
- [15] V. P. PALAMODOV, The projective limit functor in the category of linear topological spaces, Math. USSR-Sbornik 4 (1968), 529-559.
- [16] L. Schwartz, Théorie des distributions à valeurs vectorielles, Ann. Inst. Fourier (Grenoble) 7 (1957), 1-142.
- [17] D. Vogt, Lectures on projective spectra of (DF)-spaces, AG Funktional-analysis Düsserdolf/Wuppertal, 1987.
- [18] D. Vogt, Topics on projective spectra of (LB)-spaces, in «Advances in the theory of Fréchet spaces», 11-27 (ed. T. Terzioglu) NATO ASI Ser. C 287 Kluwer (1989).

UNIVERSITA' STUDI DI LECCE
FAC. DI SCIENZE DPT. MATEMATICO
N. di inventario 2433 2437
Red. Nuovi Inventari DPR 371/82 buone
di carico n. 14 del 1902
foglio n.

Received July 6, 1990
U. Franken, R. Meise
Mathematisches Institut
Heinrich-Heine-Universität
Universitätsstr. 1
D-4000 Düsseldorf
Germany