Note di Matematica Vol. X, Suppl. n. 1, 243-249(1990)

A SHORT PROOF OF ALEXANDROV-FENCHEL'S INEQUALITY G. EWALD

In memoriam my teacher Gottfried Köthe

1. INTRODUCTION

More than half a century ago Alexandrov [1] and Fenchel [8] proved a generalization of Minkowski's inequalities on volume and surface area of convex bodies: Let $K, L, K_1, \ldots, K_{n-2}$ be convex bodies in \mathbb{R}^n , and let $V(\cdot, \ldots, \cdot)$ denote mixed volume. Then

$$(AF) \quad V(K, L, K_1, \dots, K_{n-2})^2 \ge V(K, K, K_1, \dots, K_{n-2}) V(L, L, K_1, \dots, K_{n-2})$$

(For proofs see also Busemann [4], and Leichtweiss [9]).

New interest in (AF) has been stimulated recently, partly by the discovery of its equivalence with the Hodge inequality in case of compact projective toric varieties (see Teissier [13], Khovanskij in Burago-Zalgaller [3]).

The problem of characterizing equality in (AF) is still unsolved, though progress has been made during the last five years by R. Schneider ([10], [11], [12]), E. Tondorf, and the author ([5], [6], [7]). The method we have introduced hereby in [5] has meanwhile turned out to be applicable to a short and relatively elementary proof of (AF); we present it in this note. We are hopeful it will also contributed to a better understanding of (AF) and open problems connected with the inequality.

2. EXPLANATION OF METHOD AND FACTS USED

The basic idea of our method can be explained as follows. Let P be an n-dimensional polytope in $\mathbb{R}^n (n \ge 2)$, and let B be the unit ball of \mathbb{R}^n . The Minkowski sum P + B («parallel body» of P) can be decomposed as follows (compare Figure 1 for P a cube in \mathbb{R}^3): Let $p(\cdot)$ denote the nearest point map which assigns to each $x \in P + B$ its nearest point on P.

Figure 1.

244

The polytope P itself is the «inner» part of P + B; its volume is V(P) = V(P, ..., P). If a is a vertex of P, $-a + p^{-1}(a)$ is a sector of B, the outer angle of P in a. The union of such sets is B.

If F is a facet of P, that is, an (n-1)-dimensional face of $P, p^{-1}(F)$ is a prism above F whose volume equals the (n-1)-dimensional volume of F. The union of these sets has volume O(P), the surface area measure of P which is easily seen to satisfy

$$nV(B, P, \ldots, P,) = O(P).$$

In a similar way we may characterize $\binom{n}{k}V(B, \ldots, B, P, \ldots, P)$, P occuring k times, as the total volume of all «wedges» $p^{-1}(F^{(k)})$ over the k-dimensional faces $F^{(k)}$ of P. Let $a \in \text{relint } F^{(k)}$ (relative interior point). Then $\Theta_{F^{(k)}} := p^{-1}(a)$ is the outer angle of P in $F^{(k)}$. By $v_i(\cdot)$ we denote *i*-dimensional volume; so we have

$$V(p^{-1}(F^{(k)})) = v_{n-k}(\Theta_{F^{(k)}}) \cdot v_k(F^{(k)}),$$

and

(1)
$$\binom{n}{k} V(B,\ldots,B,P,\ldots,P) = \sum_{k \text{ fixed}} v_{n-k}(\Theta_{F^{(k)}}) \cdot v_k(F^{(k)}),$$

where B occurs n - k times.

Formula (1) can be generalized in such a way that B is replaced by an arbitrary convex body C. We choose $0 \in C$. All above arguments can be applied (which is technically carried out in [5]). In particular, the outer angle $\Theta_{F^{(k)}}$ is replaced by an outer angle $\Theta_{F^{(k)}}^{C}$ with respect to C and the choice of 0 in C. So (1) remains valid if we set C for B and $\Theta_{F^{(k)}}^{C}$ for $\Theta_{F^{(k)}}$.

Now we set $P = \lambda_1 K_1 + \ldots + \lambda_k K_k$ for convex polytopes K_1, \ldots, K_k and any nonnegative real numbers $\lambda_1, \ldots, \lambda_k$. Then by Minkowski's formula on polynomial expansion of mixed volumes and by comparing coefficients we find $(v_i(\cdot, \ldots, \cdot)$ denoting *i*-dimensional mixed volume):

(2)
$$\binom{n}{k} V(C, \dots, C, K_1, \dots, K_k) = \sum_{k \text{ fixed}} v_{n-k} (\Theta_{F^{(k)}}^C) v_k (F_1^{(k)}, \dots, F_k^{(k)})$$

where

$$F^{(k)} = \lambda_1 F_1^{(k)} + \ldots + \lambda_k F_k^{(k)}, \quad F_i^{(k)} \quad a \ face \ of \quad K_i, \quad i = 1, \ldots, k.$$

A short proof of Alexandrov-Fenchel's inequality

If in $(AF)V(K, K, K_1, \dots, K_{n-2}) = 0$ or $V(L, L, K_1, \dots, K_{n-2}) = 0$, there is nothing to prove. So let both terms be $\neq 0$.

By a homothety of L we can arrange $V(K, K, K_1, \dots, K_{n-2}) = V(L, L, K_1, \dots, K_{n-2})$.

The validity of (AF) remains invariant under the homothety. It is not difficult to show (see [5]), that (AF) is then equivalent to

(3)
$$\sum \left[v_2(\Theta_{F^{(n-2)}}^{K+L}) - 2v_2(\Theta_{F^{(n-2)}}^{k}) - 2v_2(\Theta_{F^{(n-2)}}^{L}) \right] v(F_1^{(n-2)}, \dots, F_{n-2}^{(n-2)}) \ge 0$$

The side condition $V(K, K, K_1, \dots, K_{n-2}) = V(L, L, K_1, \dots, K_{n-2})$ can be expressed as

(4)
$$\sum \left[v_2(\Theta_{F^{(n-2)}}^k) - v_2(\Theta_{F^{(n-2)}}^L) \right] v(F_1^{(n-2)}, \dots, F_{n-2}^{(n-2)}) = 0$$

The summations in (3), (4) may be restricted to all $F^{(n-2)}$ which are edge sum faces of P, that is, are such that each $F_i^{(n-2)}$ contains a line segment s_i where

$$\dim(s_1 + \ldots + s_{n-2}) = n - 2.$$

In all other case $v(F_1^{(n-2)}, ..., F_{n-2}^{(n-2)}) = 0$.

We make also use of three classical facts about convex bodies:

(a) Finitely many convex bodies K_1, \ldots, K_r can always simultaneously be approximated by *n*-dimensional convex polytopes $K_1^{(i)}, \ldots, K_r^{(i)}$, respectively, such that $K_1^{(i)}, \ldots, K_r^{(i)}$ are, for the same *i*, strictly combinatorially isomorphic, that is, have isomorphic boundary complexes and the same outer normals in facets.

(b) Let A, B be convex bodies in \mathbb{R}^2 which have a common width (that is, possess pairs of parallel supporting lines with the same distance and all parallel to each other). Then (see Bonnesen-Fenchel [2], p. 99):

$$2v_2(A,B) - v_2(A) - v_2(B) \ge 0.$$

The following is easily obtained by direct calculation:

(c) (AF) is true for K, L if and only if it is true for $K_{\lambda} := (1 - \lambda)K + \lambda L$ and $K_{\mu} := (1 - \mu)K + \mu L, 0 < \lambda < \mu < 1$, instead of K, L, respectively.

3. PROOF OF THE INEQUALITY

Let $K^{(i)}, L^{(i)}, K_1^{(i)}, \ldots, K_{n-2}^{(i)}$ according to (a) be strictly combinatorially isomorphic and have limits $K, L, K_1, \ldots, K_{n-2}$, respectively, for $i \to \infty$. In the following we hold *i* fixed. Accordingt to (c) we replace $K^{(i)}, L^{(i)}$ by $K_{\lambda}^{(i)}, K_{\mu}^{(i)}$, respectively. We can write again $K := K_{\lambda}^{(i)}, L := K_{\mu}^{(i)}, K_j := K_j^{(i)}, j = 1, \ldots, n-2$, and assume $V(K, K, K_1, \ldots, K_{n-2}) = V(L, L, K_1, \ldots, K_{n-2}) > 0$. Let, furthermore, $0 \in (\operatorname{relint} L)$. Now we choose $\mu - \lambda > 0$ so small that the following becomes true:

(d) Given any two facets F_K , F_L of K, L, respectively, with the same outer normal u there exists a ray ρ_u emanating from 0 which cuts F_K and F_L in relative interior points.

Let now u, v be outer facet normals of $P := K_1 + \ldots + K_{n-2}$ such that the two facets intersect in an (n-2)-face F. Since K_1, \ldots, K_{n-2} are strictly combinatorially isomorphic, F is always an edge sum face. Let π_F be the projection parallel to aff F (affine hull) onto the 2-dimensional subspace E of \mathbb{R}^n perpendicular to aff F. In E we obtain the sets Θ_F^K, Θ_F^L as bounded by $\pi_F(\rho_u) = \rho_u, \pi_F(\rho_v) = \rho_v$, and pairs of line segments which are projections of facets of K, L, respectively (Figure 2). Let the first pair of those line segments intersect in q_K , the second in q_L . Up to a translation of L we can assume that either

(1) lies outside
$$\Theta K$$
 and this outside Θk

(1) q_K lies outside Θ_F^A , and q_L lies outside Θ_F^B or one of the relations

(II) $q_K \in \text{relint } \Theta_F^K, q_L \in \text{relint } \Theta_F^L$

is true (Figure 2a, b).

Because of strict combinatorial isomorphy we have:

A short proof of Alexandrov-Fenchel's inequality

Therefore, by (b),

(5)
$$v_2(\Theta_F^{K+L}) - 2v_2(\Theta_F^K) - 2v_2(\Theta_F^L) = 2v_2(\Theta_F^K, \Theta_F^L) - v_2(\Theta_F^K) - v_2(\Theta_F^L) \ge 0$$
,

provided Θ_F^K , Θ_F^L have a common width. In situation (I) a common width exists if we choose the approximating sequences $\{K^{(i)}\}$ etc. such that the angle between ρ_u, ρ_v becomes small enough so that the line through 0 parallel to the line $q_K q_L$ is a supporting line of Θ_F^K and Θ_F^L .

In case (II) we proceed as follows, where $q_{L} \in \text{relint } \Theta_{F}^{K}$ is assumed. If $\mu - \lambda$ is sufficiently small there exists a line g in E which separates properly q_K from all other vertices of $\pi_F(K)$ and q_L from all other vertices of $\pi_F(L)$. Let Δ_K, Δ_L be the triangles which g cuts off from Θ_F^K , Θ_F^L , respectively. Referring back to $K^{(i)}$, $L^{(i)}$ we find triangles $\Delta_{K^{(i)}}, \Delta_{L^{(i)}}$ such that

(6)
$$\Delta_K = (1 - \lambda) \Delta_{K^{(i)}} + \lambda \Delta_{L^{(i)}}, \quad \Delta_L = (1 - \mu) \Delta_{K^{(i)}} + \mu \Delta_{L^{(i)}}$$

(see Figure 3). Then $\pi_F^{-1}(g)$ is a hyperplane H which cuts off the (n-2)-faces $\pi_F^{-1}(q_K), \pi_F^{-1}(q_L)$ from K, L, respectively.

We note that no other set Θ_F^K , or Θ_F^L , is affected by there cutting offs (since P, K, L are strictly combinatorially isomorphic).

Let $\check{\Theta}_{F}^{K}$, $\check{\Theta}_{F}^{L}$ be the pentagons obtained from Θ_{F}^{K} , Θ_{F}^{L} by cutting off q_{K} , q_{L} , respectively. As in (I) we may assume the parallel line of g through 0 to be a supporting line of $\check{\Theta}_{F}^{K}$ and $\check{\Theta}_{F}^{L}$.

Figure 3.

So we have shown that (5) is valid for the pairs Θ_F^K , Θ_F^L in case (I) and for $\check{\Theta}_F^K$, $\check{\Theta}_F^L$ in case (II). Let \check{K} , \check{L} be the polytopes obtained from K, L, respectively, after all cuttings offs in cases (II) have been carried out. Then (3) is valid for \check{K} , \check{L} .

We wish to establish also (4) for \check{K} , \check{L} . For this purpose we make use of a relative freedom in choosing the cutting hyperplane H introduced above. Whenever situation (II) occurs for some pair Θ_F^K , Θ_F^L , $q_L \in$ reling Θ_F^K , the left side of (4) attains after the cut a negative value

$$\alpha := -[v(\Delta_K) - v(\Delta_L)]v(F_1^{(n-2)}, \dots, F_{n-2}^{(n-2)})$$

In order to compensate α we look for an appropriate pair $\Theta_{\tilde{F}}^{K}$, $\Theta^{L}K_{\tilde{F}}$. We have found one if a situation (I) occurs: If $\lambda - \mu$ is a small enough, a line \tilde{g} exist which strictly separates q_{K} and q_{L} from the other vertices of $\Theta_{\tilde{F}}^{K}$, $\Theta_{\tilde{F}}^{L}$, respectively. We can choose \tilde{g} such that for the triangles $\tilde{\Delta}_{K}$, $\tilde{\Delta}_{L}$ cut off from Θ_{F}^{K} , Θ_{F}^{L} , respectively, satisfy $[v(\tilde{\Delta}_{K}) - v(\tilde{\Delta}_{L})]v(F_{1}^{(n-2)}, \ldots, F_{n-2}^{(n-2)}) = \alpha$.

Then the left side of (4) increases by $-\alpha$ so that equality in (4) is established.

If no pair $\Theta_{\tilde{F}}^{K}$, $\Theta_{\tilde{F}}^{L}$ according to (I) exists, there is a pair satisfying $\tilde{q}_{K} \in \text{relint } \Theta_{\tilde{K}}^{F}$, where \tilde{q}_{K} is defined analogously to q_{K} ; otherwise (4) were violated for K, L. Then the

compensation is achieved in an obvious fashion. So (AF) is shown for K, L.

Let ε_0 be the maximal height of all triangles $\Delta_K, \Delta_F, \widetilde{\Delta}, \widetilde{\Delta}_L$ occuring above in establishing (3). ε_0 can, by appropriate choice of $\lambda - \mu$, be made arbitrarily small. Since $0 < \lambda < 1$ and $0 < \mu < 1$, there exists a constant c such that the maximal hights of the triangles $\Delta_{K^{(i)}}, \Delta_{L^{(i)}}, \widetilde{\Delta}_{K^{(i)}}, \widetilde{\Delta}_{L^{(i)}}$, remain below $c \cdot \varepsilon_0$. Therefore, the validity of (AF) for \breve{K}, \breve{L} implies (AF) for $K = K_{\lambda}^{(i)}, L = K_{\mu}^{(i)}$, and hence for arbitrary convex bodies K, L.

Figure 4.

REFERENCES

- A.D. ALEXANDROV, Neue Ungleichungen zwischen den gemischten Volumina und ihren Anwendungen, Math. Sbomik, N.S. 2 (1937), 1205-1238.
- [2] T. BONNESEN, W. FENCHEL, Theorie der konvexen Körper, Springer Berlin 1934.
- [3] I.D. BURAGO, V.A. ZALGALLER, Geometric inequalities, Springer Berlin etc. 1988.
- [4] H. BUSEMANN, Convex Surfaces, N.Y. 1958.
- [5] G. EWALD, On the equality case in Alexandrov-Fenchel's inequality for convex bodies, Geom. Dedicata 28 (1988), 213-220.
- [6] G. EWALD, On the equality case in Alexandrov-Fenchel's inequality for convex bodies, (to appear).
- [7] G. EWALD, E. TONDORF, A contribution to equality in Alexandrov-Fenchel's inequality, (to appear).
- [8] W. FENCHEL, Inégalité quatratiques entre les volumes mixtes des corps convexes, C.R. Acad. Sci. Paris 203 (1936), 647-650.
- [9] K. LEICHTWEISS, Konvexe Mengen, Springer Berlin etc. 1980.
- [10] R. SCHNEIDER, On the Alexandrov-Fenchel inequality, Discrete Geometry and Convexity, Ann. N.U. Acad. Sci. 440 (1985), 132-141.
- [11] R. SCHNEIDER, On the Alexandrov-Fenchel inequality involving zonoids, Geom. Dedicata 27 (1988), 113-126.
- [12] R. SCHNEIDER, On the Alexandrov-Fenchel inequality for convex bodies, Results in Mathematics 17 (1990), 287-295.
- [13] B. TEISSIER, Bonnesen-Type Inequalities in Algebraic Geometry I. Introduction to the problem, in: Proc. Seminar on Differential Geometry. Princeton, N.J. (1982), 85-105.

Received December 17, 1990 Günter Ewald Ruhr - Universität Bochum Institut für Mathematik Universitätstrasse 150 D-4630 Bochum 1 Germany