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A SHORT PROOF OF ALEXANDROV-FENCHEL’S INEQUALITY
G.EWALD

In memoriam my teacher Golfttried Kothe

1. INTRODUCTION

More than half a century ago Alexandrov [1] and Fenchel [8] proved a generalization of
Minkowski’s inequalities on volume and surface area of convex bodies: Let K, L, K,,...,
K__, beconvex bodiesin R™,and let V(-,...,-) denote mixed volume. Then

(AF) V(K,L,K,....,K, ))>*>V(K,K,K,,...., K, .)V(L,L,K,,...,K, ,)

(For proofs see also Busemann [4], and Leichtweiss [9]).

New interest in (AF) has been stimulated recently, partly by the discovery of its equiv-
alence with the Hodge inequality in case of compact projective toric varieties (see Teissier
[13], Khovanskij in Burago-Zalgaller [3]).

The problem of characterizing equality in (AF) is still unsolved, though progress has been
made during the last five years by R. Schneider ([10], [11], [12]), E. Tondorf, and the author
(151, [6], [7]). The method we have introduced hereby 1n [5] has meanwhiie turned out to
be applicable to a short and relatively elementary proof of (AF); we present it in this note.
We are hopeful 1t will also contributed to a better understanding of (AF) and open problems
connected with the inequality.

2. EXPLANATION OF METHOD AND FACTS USED

The basic idea of our method can be explained as follows. Let P be an n-dimensional poly-
tope in R™(n > 2), and let B be the unit ball of R™. The Minkowski sum P+ B («parallel
body» of P) can be decomposed as follows (compare Figure 1 for P a cube in R?): Let
p( -) denote the nearest point map which assigns to each z € P + B its nearest point on P,
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The polytope P itself i1s the «inner» partof P+ B; its volume1s V(P) = V(P,..., P).
If @ isavertex of P, —a+ p~'(a) is a sector of B, the outer angle of P in a. The union of

such sets 1s B.

If F is afacet of P, thatis,an (n— 1) -dimensional face of P,p~}( F") is a prism above
F' whose volume equals the (n — 1) -dimensional volume of F. The union of these sets has
volume O( P) , the surface area measure of P which 1s easily seen to satisfy

nV(B,P,...,P,) = O(P).

In a similar way we may characterize (:) v(B,...,B,P,...,P), P occuring k umes, as

the total volume of all «wedges» p~! ( F(*¥) over the k-dimensional faces F¥ of P.
Let a € relint F'® (relative interior point). Then B = p~!(a) is the outer angle of

P in F® By v.(-) we denote i-dimensional volume; so we have

Vip ' (F®)) = v,_, (Opw) - v (F¥),

and

(1) (”) V(B,....,B,P,....,P) = Y v (Opw) v (F¥),

k k fixed

where B occurs n— k times.

Formula (1) can be generalized in such a way that B is replaced by an arbitrary convex
body C. We choose 0 € C. All above arguments can be applied (which is technically carried
outin [5]). In particular, the outer angle © 4, is replaced by an outer angle BE{ » With respect

to C and the choice of O in C. So (1) remains valid if we set C for B and Bﬁh for B, .

Now we set P = A\ K, + ...+ A K, for convex polytopes K,,..., K, and any nonne-
gative real numbers A\, ..., A,. Then by Minkowski’s formula on polynomial expansion of
mixed volumes and by comparing coefficients we find (v.(-, ..., ) denoting 1-dimensional

mixed volume):

(2) (”)V(G,...,G, Kioo K = Y v, (850 v (FP .. F(®)

K k fixed

where

8 ~(k a(k (K *
F® = F® 4 40 FEY  FY afaceof K, i=1,...,k
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Ifin (AF)V(K,K,K,,...,.K_,)=0o0or V(L,L,K,;,...,K_ _,) = 0, there is nothing
to prove. So let both terms be # 0.

By a homothety of L we can arrange V(K,K,K,,..., K, ,) = V(L,L K,,...,
K. _,).

The validity of (AF') remains invariant under the homothety. It 1s not difficult to show
(see [5]), that (AF) is then equivalent to

(3) D [0 (8f%) — 20, (8fnn) — 2v,(Bfws) IW(F™? ... F57) >0

The side condition V(K , K, K,,..., K, ,)=V(L,L,K,,..., K, ,) canbe expressed as

(4) Y [0 (Bfn) — 1 (Bfwr)Iu(F{™ ... Fi) =

The summations in (3), (4) may be restricted to all F{"2 which are edge sum faces of P,

that is, are such that each F;(“_ZJ contains a line segment s, where

dim(s;+...+38_,)=n—2.

In all other case v(F{™2 ... F{"2y =
We make also use of Lhrcc classical facts about convex bodies:

(a) Finitely many convex bodies K, ..., K_ canalways simultaneously be approximated

by n-dimensional convex polytopes K{‘j e, K,E”, respectively, such that K}’D,...,Kf}
are, for the same 1, strictly combinatorially isomorphic, that is, have 1somorphic boundary
complexes and the same outer normals in facets.

(b) Let A, B be convex bodies in R? which have a common width (that is, possess pairs
of parallel supporting lines with the same distance and all parallel to each other). Then (see
Bonnesen-Fenchel [2], p. 99):

2v,(A,B) — v,(A) —v,(B) > 0.

The following is easily obtained by direct calculation:

(c) (AF) is true for K, L if and only if it is true for K, = (1 — A) K + AL and
K,'=(1-p)K+pL,0<A<pu<l, instead of K, L, respectively.
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3. PROOF OF THE INEQUALITY

Let KO 1O K .. K'Y according to (a) be strictly combinatorially isomorphic and
have limits K, L, K,,..., K__,, respectively, for 1 — oo. In the following we hold 1 fixed.

Accordingt to (c) we replace K@ L) by K[V, KV, respectively. We can write again K :=

KL= KO K, == K j=1,...,n~2, and assume V(K,K,K,,..., K, ;) =
V(L,L,K,,...,K__5) > 0. Let, furthermore, 0 € (relintL ). Now we choose gy — A > 0

so small that the following becomes true:

(d) Given any two facets Fy, F, of K, L, respectively, with the same outer normal u
there exists a ray p, emanating from 0 which cuts Fg and F, in relative interior points,

Let now u, v be ouler facet normals of P := K, + ...+ K__, such that the two facets
intersect in an (n— 2) -face F. Since K,,..., K _, arestrictly combinatorially isomorphic,
F' 1s always an edge sum face. Let mp, be the projection parallel to aff F' (affine hull) onto the
2-dimensional subspace E of R™ perpendicular to aff F. In E we obtain the sets 8 f L
as bounded by m.(p,) = p,, 7p(p,) = p,, and pairs of line segments which are projections
of facets of K, I, respectively (Figure 2). Let the first pair of those line segments intersect
in g, , the second in ¢, . Up to a translation of I, we can assume that either

. L h" . . . L
(I) gx hesoutside O5 , and ¢, lies outside B
or onc of the rclations

(1) qp € relint O ¢, € relint B
1S truc (Figure 2a, b).
Because of strict combinatorial isomorphy we have:

K L _ K+L
BF +9.F‘ - BF

Figure 2.
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Therefore, by (b),
(5) v (Bf ") —2vu,(8F) —2v,(8f) =2v,(85,8f) —v,(8)) —v,(8L) >0,

provided ®F 8% have acommon widih. In situation (I) a common width exists if we choose
the approximating sequences { K (¥} etc. such that the angie between p,, p, becomes small
enough so that the line through O parallel to the line g, g, 1s a supporting line of 8;? and
eL.

In case (II) we proceed as follows, where ¢, € relint 9}‘: is assumed. If g — X is

sufficiently small there exists aline g in E which scparates properly g, from all other vertices
of mp( K) and g; from all other verticesof mp(L). Let Ag, A, be the triangles which g cuts

off from 8 X 8% respectively. Referring back to K L we find triangles Ay, A, o
such that

(6) A = (1 =XN)Axw + Mo, Ap=(1=p)dge + pldoe

(see Figure 3). Then m5'(g) is a hyperplane H which cuts off the (n - 2)-faces
17 (gx), 75 (g;) from K, L, respectively.

We note that no other set 8 5 | or 8%, is affected by there cutting offs (since P, K, L are
strictly combinatorially isomorphic).

Let © 4, 6L be the pentagons obtained from © X, © L by cutting off g, g, , respectively.
As in (I) we may assume the parallel line of g through O to be a supporting Iine of é;‘-’ and

L
&L

Figure 3

Figure 3.
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So we have shown that (5) is valid for the pairs 8, 8% in case (J) and for 8 % 6L in
case (II). Let K, [, be the polytopes obtained from K, L, respectively, after all cuttings offs

in cases (I1) have been carried out. Then (3) is valid for K, L.

We wish to establish also (4) for K, L. For this purpose we make use of arelative freedom
in choosing the cutting hyperplane H introduced above. Whenever situation (II) occurs for
some pair 8, 8% q, € reling 85, the left side of (4) attains after the cut a negative value

o= —[v(Ag) — v(A)Ju(F™P L F)

In order to compensate o we look for an appropriate pair 8, 8" K ;. We have found one

if a situation (I) occurs: If A — 4 is a small enough, a line g exist which strictly separates g,
and ¢, from the other vertices of 8,82, respectively. We can choose g such that for the
triangles ZK,EL cut off from 9;", Blé', respectively, satisfy [u(ﬂH) —U(EL)]u( FI(“_E) e
FEEZ}) = «.

Then the left side of (4) increases by —a so that equality 1n (4) 1s established.

If no pair 8% 8% according to (I) exists, there is a pair satisfying g, € relint 87
where g 1s defined analogously to g, otherwise (4) were violated for K, L. Then the

compensation is achicved in an obvious fashion. So (AF) is shown for K, L.

g

Let g, be the maximal heightof all triangles A, A, A, A, occuring above inestablishing
(3). g, can, by appropriate choice of A — u, be made arbitrarily small. Since 0 < A < 1
and 0 < u < 1, there exists a constant ¢ such that the maximal hights of the triangles

o ———

A, By, A, Ao, Temain below c-g, . Therefore, the validity of (AF) for K, L implies
(AF) for K = K{" L = K", and hence for arbitrary convex bodies K, L.

I 9L

2/

O
Figure 4.
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