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ORTHONORMAL SETS IN REPRODUCING KERNEL SPACES
AND FUNCTIONAL COMPLETION
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Dedicated to the memory of Professor Gottfried Kéthe

Let f.(z) be a sequence of functions defined on a set §. Suppose the function

K(z,y) =) f(z) £i(V)

makes sense for all points (z,y) in § x S, ie., that for every z the sequence {f,(z)}
18 summable square. Then in a known way the function K(z,y) 1S a positive matrix and
corresponds to a reproducing kernel space # . (S) consisting of functions defined on S.
The question we ask here 1s whether the functions f;(z) form a complete orthonormal system
for that space.

It is easy to see that the answer is a negative one if the functions f; are not linearly in-
dependent over S, since every orthogonal system of functions is linearly independent. We
suppose in the sequel, therefore, that the system of function f,(z) is linearly independent.

In the special case that the system of functions is finite it turns out that it indeed is a
complete orthonormal set; the problem is trickier in the infinite dimensional case.

If there are only N functions f.(z),+ = 1,2,..., N linearly independent over § we
consider the space of all linear combinations

N

9(z) = ) o,fi(z)

1=|

N
and introduce the quadratic norm defined by ||g||* = E a;|*. For this space of functions

i=1
the point evaluations L _(g) = g(x) are linear, hence continuous, and there exists a unique
element K_ in the space such that g(x) = (g, K_). Thus our space 1s a reproducing kernel
space, and by the definition of the norm, the f;(z) are a complete orthonormal set. We
can accordingly compute the associated kernel function using that orthonormal set and the
kernel turns out to be our initial K (z,y). Hence the f,(z) are indeed an orthonormal set in
H . (S), as desired.
A more computational argument can also be given in the finite dimensional case. Since
the f;(z) are linearly independent, an elementary lemma in linear algebra guaranteees the
existence of N points z,,2,,...,z, In S such that the matrix

F;'_;‘ = f,-(Ij)
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IS non-singular. Let H ;, be the inverse of F'; since

K(z)=K(z,2)) =Y fil(2)fi(z;) =)  Fy;fil2)
K K

we have E ﬁjij = f,, and by an easy calculation (f_,f ) = 6 __ ie., the f, are
j

orthonormal.
Before pursuing our argument for the gencral case it is worthwhile to recall some ele-

mentary facts concemning reproducing kernel spaces. Every such space 1s obtained from a
mapping x of S into a Hilbert space #

ﬁ;:m—akl

which gives rise to a kemnel function K(z,y) = (ky, k.). There is a corresponding linear

map <* of S# into # , (S), aspace of functions on S,

" f - f() = (fLky).

The space # (S) is the reproducing kernel space associaied with the kernel function
K(z,y). [1] The norm is the norm of the quotient # /.4~ where .4 is the null space of
k¥, a space necessarily closed. The mapping x* is an isometry if and only if .#is trivial.

A special case arises in the study of functional completion. Here we suppose that we are
given a pre-Hilbert space A#'(S) of functions defined on S such that the evaluation func-
tionals 7 are continuous. Here, as before, L_(f) = f(z), and of course these functionals
admit a continuous extension to the (abstract) completion #*. On #* L _ is represented
by an eiement K_. Thus we have a map < of S into & and an associated kerel function
K(z,y). Now the map x* of #" into # (S) is or is not an isometry.

If x* is an isometry, it is clear that the initial S#(S) was simply a dense subspace of
# (S) and has the same norm as that space. The reproducing kernel space is the functional
completion of #(S).

If «* 1s not an isometry it has a null space. Thus there exists a non-trivial element g in
F* such that (g, K_) = 0 for all z. This g is the limit of a sequence g_ in H#'(S) such
that g_(z) converges to 0 for all z, although the norms ||g, || are bounded away from 0. The
space #(S) now appears as a dense subspace of # ,(S) but the initial norm on #'(S)
is not the norm induced on it by the reproducing kernel space; the norm is that of a quotient.
In this case no functional completion of S#'(.S) can exist.

These considerations make it fairly clear how we are to proceed 1n the general case of our
problem. We form the space #(S) consisting of finiie linear combinations of the functions
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f;(z) and note that the representation of such a finite linear combination

g(z) = E ﬂ;‘fi(fﬂ)

g

1s unique, owing to the linear independence of the f.(z). We again introduce the quadratic

norm
lglf* = llailf?
i

and now #( S) appears as a pre-Hilbert space. The valuations L, are continuous linear func-
tionals on %#(.S) because of the hypothesis that the sequence { f,(z)} is summable square.
With the norm just introduced, the f; are a complete orthonormal set in the (abstract) com-
pletion % of %#(S). Now, either $#(S) has a functional completion or it does not.

If #(S) has a functional completion then the mapping x* from % to # ,(S) is an
isometry, and the orthonormal set f; maps into an orthonormal set in the reproducing kemel
space.

If 9(S) has no functional completion the mapping <* is not an isometry, and so the
image of the complete orthonormal set f, cannot be itself an orthonormal set. It follows that
the functions f,(z) are not an orthonormal set in the space # ,(S).

We see that the f.(x) are an orthonormal set in the reproducing kernel space if and only
if the map «<* has a trivial null-space. We are therefore able to state a final criterion.

Theorem. The functions f,(x) form a complete orthonormal set in # ((S) if and only if,
for every sequence {b;} summable square the function B(z) = Y b; f,(x) is identically

zero on S only when every coefficient b; vanishes.

Note that the criterion given in the theorem is a slight strengthening of the hypothesis of 1i-
near independence. Note also that our argument applies equally well in the finite-dimensional
case.

It is still not clear as io whether or not the case when the initial functions are not an ortho-
normal set actually occurs. A moment’s thought convinces us that it happens just as often
as separable spaces #'(S) occur which have no functional completion. For suppose that
# (S) is a separable pre-Hilbert space with continuous evaluation functional L_ which has
no functional completion. By the Gram-Schmidt process we can construct an orthonormal set
f; in Z(S) which is complete in the abstract completion. #*. Let #(.S) be the subspace of
finite linear combinations of the f,; it is easy to see that this space has no functional comple-
tion either since it contains a Cauchy sequence converging pointwise to 0 not converging to 0
in norm. It follows that the f;(z) are not an orthonormal set in the corresponding reproducing
kernel space, although the kernel function is indeed given by the formula

K(z,9) =) f(z)fi(v).
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The standard example of a functional pre-Hilbert space having no functional completion was

given by Aronszajn. [2] For this purpose we consider the reproducing kernel space # (D)
consisting of functions analytic in the unit disk D = [z : |2|] < 1] which are integrable
square; the norm is of course the usual L2(D) norm. A convenient complete orthonormal
set in the space is given by the functions

+ 1
f.(z) =‘/nw :* n=0,1,2,...

and the corresponding kernel function is

1

Bz w) = o2

For S we select a sequence {z_} in D with |z | converging so rapidly to 1 that a non-trivial
Blaschke product B( z) vanishing on S exists. Hence there exists a sequence of polynomials

p,(2z) converging to B(z) in K 2:( D) which converges pointwise on S to 0. For #(.S) we

take the space of all polynomials restricted to S in the norm of #*( D). Manifestly %#(S)
has no functional completion and the associated reproducing kemel space # . (S) has a
different (and smaller) norm than that of %#(S). The f_ (z) are not an orthonormai set in
# . (S) although the kernel function for that space is the restriction of K (2,w) to S x §.
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