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1. INTRODUCTION
Let T : D(T) Cc X — Y be a linear transformation where X and Y are normed spaces.

We call T Tauberianif (T")~1(QY) ¢ D(T)" where Q is the quotient map defined on Y
with kernel D(7")+. Bounded Tauberian operators in Banach spaces were studied by Kalton
and Wilansky in [KW]. As Gonzalez and Onieva remark in [GO3], these operators appear in
summability (see [GW]), factorization of operators [DFJP], [N], preservation of isomorphic
properties of Banach spaces [N], the preservation of the closedness of images of closed sets
[NR], the equivalence between the Radon-Nikodym property and the Krein-Milman property
[S], and generalised Fredholm operators [T], [Y]. Classes of Tauberian operators related to a
certain measure of weak compactness are investigated in [AT]. Other recent works are [AG]
(which contains the solution of a problem raised in [KW]), [Gon1], [Gon2], [GO1]}, [GO2],
[GO3], and [MP]. The present paper investigates unbounded Tauberian operators. This wider
class is a natural object of study in any investigation concerning the second adjoint 7" of
an unbounded operator, about which little seems to be known. Our main goal is Theorem
3.10 which implies as a corollary the following partial characterisation: Let T’ be contin-
uous. Then T is Tauberian if and only if for each bounded subset B of D(T'), if TB Iis
relatively o(Y, D(T")) compact (alternatively, relatively D(T') -seminorm compact) then
B isrelatively o( E(T) . D(T)") compact. This result contains the well known characterisa-
tion [KW: Theorem 3.2] for the classical case. Section 4 provides some examples and further
properties of Tauberian operators; thus for example the usual closable ordinary differential

operators defined between LP spaces (see e.2. [Gol; Ch VI]) and their successive adjoints
are all Tauberian (Corollaries 4.6 and 4.7). Section 5 looks at the continuous case.

2. PRELIMINARIES

The symbols X,Y, Z, ... will denote normed spaces and the class of linear transformations
T : X — Y will be denoted by L(X,Y). We denote the domain, range and null space
of T by D(T), R(T) and N(T) respectively. We call T bounded if T' is continuous and
D(T) = X. If X is alinear subspace of ¥ then J}E denotes the operator in L(X,Y") that

is the natural injection of X into Y, and Q% denotes the operator in L(Y,Y/X) that is
the natural quotient map defined on Y with null space X. We denote the completion of X

by X, and the completion of D(T) by D(T). We shall abbreviate J£ to J, and Q%
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to Q. The adjoint T' of T is the conjugate of T'J7 1 in the sense of [Gol; 11.2.2]. Thus
T € L(Y',D(T)) and T" € L(D(T)", D(T")"). The operator T is called an F, -operator
([C1], [C2)) if there exists a finite codimensional subspace E of X for which the restriction
T| has a continuous inverse. If X and Y are complete and T is closed then T € F, <
T € ¢,. Ingeneral wehave [C2] T € F, & T' € ¢_ < T" € ¢,. The graphof T is the
subspace of X xY consisting of the subset {(z,T'z) : z € D(T) } andis denoted by G(T').
We shall write ||y||pcp for the seminorm sup{|y'y| : ' € D(T"),[|y'|| < 1} (y €Y). We
denote by B, the unit ballof X {z € X : ||z|| < 1}. Except where stated otherwise, Q

will denote the quotient map defined on Y with null space D(T")~+. We shall freely identify
D(T" with QY.

The operator T is called partially continuous [CL1] if there exists a finite codimensional
subspace E of X for which T'|z is continuous.

Proposition 2.1. If either (i) D(T) is complete or (ii) T is partially continuous, then T is
CONtinUOUS.

Proof. (i) Let D(T) be complete and let ' € D(T"),y, — ¢ € Y'. Since T'y, €
D(T)’ and lim y. Tz = y'Tz for each z in the Banach space D(T), it follows from the
uniform boundedness principle that ¢'T" € D(T)’, i.e. y' € D(T"). Hence D(T") is closed.
Therefore 7" is continuous [Gol; 11.2.15].

(i) See [CL1]. "

3. TAUBERIAN OPERATORS

The two main results of this section are Theorems 3.7 and 3.10. The latter contains a charac-
terisation of Tauberian operators with continuous adjoint.

Lemma 3.1. G(T") isa o(Y',Y) x o(D(T)',D(T)) closed subset of Y' x D(T)'. In
particular, G(T") is o(D(T)",D(T)") x a( D(T")', D(T")) closed.

Proof, Let (y.,T'y.) — (y',z') (with the appropriatc weak™ topologies). Then for x €
D(T),|y'Tz| = lim |T'y, x| = |z'z] < ||z']] ||z]|, so y'T is continuous on D(T), 1.e.
y' € D(T"). Weak* continuity now gives 7"y’ = z’. z

Lemma 3.2. [La]. The following statements are equivalent.
(i) T' is continuous
(ii) D(T") is o(Y',Y) closed
(iii) QgJyT is continuous, where E = D(T"),¢.

Proof, Write Q = Qz, J = Jy. Since Q is bounded we clearly have (QJT)' = (JT)' Q' =
T'Q" where D(Q") = [D(T"),+1+. By [Gol; 11.2.8] QJT is continuous if and only if
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D(T'Q') = [D(T"), 3]+ and the right hand side is the o(Y”,Y) closure of D(T"). There-
fore (i) <> (iii).

For the proof of the equivalence of (i) and (ii) the reader is referred to [La].

We shall include here an independent proof of the case when Y 1s separable because of
its simplicity. Assume Y is separable. Then the J(Y’,i-’) topology is metric. Let 7" be
continuous and let (y!) be asequence in D(T") such that lim o(Y',Y) y. =y'. Then T'y!
is bounded and so by Alaoglu’s theorem has a o(Y”, Y) convergent subsequence 7" y:,* —
say. By Lemma 3.1, ' € D(T"). Thus (i) = (ii). The converse is trivial by [Gol; loc. cit.].=

Lemma 3.3. [La]. Let S = QD(T;MT. Then
(i) S isclosable
(ii) S'y' =T'y for y € D(T') and D(S") = D(T")
(iii) S"=T".
H.mf: Write Q - QE(T’)J_' We have S; — TIQ" - TJJD{T'}JJ: ﬂﬂd D(S,) — D(Q,) M
QY "ND(TH) = Ji')(fif“’)ll N D(T")y = D(T"), proving (ii). But D(T") is a total sub-
space of D(T") f Consequently S is closable [Gol; 11.2.11], proving (i). Finally, 8" €

L(D(T)", D(T")") and for ¢’ € D(T") and =" € D(S") wehave z"S'y = ="T'y’ by (ii),
whence S”" = T". a

The operator S of Lemma 3.3 corresponds to the «regular contraction» of 7', and the
subspace D(T"), to the «singularity» of T" as defined by G. K6the in [Ko].

Corollary 34. 7" = (Q D(T") 15 JyT)"

Proof. 1t is sufficient to observe that (J,.T) = T". | =

Proposition 3.5. Let (z,) be a bounded netin D(T) suchthat o(Y,D(T")) —lim Tz, =
O. Then the set of a(D(T)", D(T)") cluster points of (Z_) is a nonempty subsetof N(T").

Proof. By Lemma 3.3 we may suppose that T is closable and thus that o(Y, D(T")) is
Hausdorff [Gol; loc. cit.]. Since {z_} is a relatively o( L(T)", D(T)") compact set, the
net (z_.) hasa o(D(T)", D(T)") convergent subnet, assumed to be itself, with limit z" €
D(T)" say. But o(D(T")',D(T")) — limT"Z, = Q(o(Y,D(T")) — lim Tz )" = O.
Hence by Lemma 3.1, " € D(T") and T"z" = O, proving that N(T")# 0. The same
argument applied to an arbitrary cluster point z” shows that the set of such cluster points is
contained in N(T"). "

Proposition 3.6. Let E be alinear subspace of D(T) containing D(T). Then the following
statements are equivalent.

(i) N(T"Y C E
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(ii) Every bounded net (z_) in D(T) for which o(Y, D(T")) —limTz_ = O hasa
o( B, D(T)') convergent subnet.

Proof, (i) = (ii): Assume (i) and let (z,) be a bounded net for which o(Y, D( ) —
lim Tz, = O. By proposition 3.5, (Z,) hasasubnet whichis o(D(T') " D(T)") convergent
to some point £ € N(T"). Then z" = T where z € E and (i1) follows.

(ii) = (i): Assume (ii) and let T"z"” = O. Choose a bounded net (z,) in D(T') such
that o(D(T)", D(T)’") —lim T = z". By the weak* continuity of 7", we have o(D(T")',
D(T")) —limT"z_ = O. Hence (T"z,)y" — O(y' € D(T")), whence o(Y,D(T")) —
lim Tz_ = O. By hypothesis, (z,) hasa o( E, D( T')) convergent subnet, which we assume
to be itself. Let o( E, D(T")) — lim x_ = z where z € E. Then 1 = o(D(T)", D(T)') -

Iim Eu= 7' e E. =

Theorem 3.7. Let E be a linear subspace of B(T) containing D(T). Consider the fol-
lowing two statements.

(i) N(T") C E

(ii) Every bounded sequence (x,) in D(T) for which ||Tz,||p¢py — O has a subse-

quence weakly convergent to a point of E.
In general (i) = (ii). If T' is continuous then (ii) = (i).

Proof. (i) = (ii): Assume (i) and let (z_) be a bounded sequence in D(7) such that
Tz, || pcry — O. By proposition 3.6, (z,) has a o( E,D(T)") cluster point z € E. The

same argument applied to arbitrary countable subsets of {z,} shows that {z } is relatively
o( E, D(T)") countably compact, hence relatively o( £, D(T)") sequentially compact, i.e.
(z,) hasa o( E,D(T)") convergent subsequence.

Let T' be continuous. Assume (ii) and let z” € N(T") where ||z"|| = 1. Choose a net
(z,) in Bpp such that o( D(T)", D(T)’) — lim z. = z". Then o(D(T")', D(T")) —
lim 7"z, = O. Let C, = co{z, : v > a}. Write Q; = Qp) ;- We have lim ¢'Q,Jy
Tz, = limy'Tz, = lim Q(Tz )"y = 0 forevery y € D(T") = D(T") 3 = (Q,Y)
(see Lemma 3.2). Since the (Y, D(7")) and D(T") -seminorm closures of the convex set
Q,J,TC, coincides and contain O, there is a sequence (c) in C, for which Q.1 Jy
Tepllpery = sup{|y'Q,JyTcp| © ¥ € Bpm}t = sup{|y'Tcy| : ¥ € Bpiry} = [T
| pery — 0. By (i) (cj) has a subsequence, which we assume 10 be itsclf, which is weakly

convergentto some point ¢, € E. ByLemma3.1,¢, € D(T") and T"c, = O. Nowlet (v,)
be an arbitrary sequence in the set {c, }. Since v, € £ C D(T) there exists a scquence (u,,)

] TH
in D(T) such that ||u, — v,|| < — Then ||Q(Tu )| = ||IT"(u, — v) "] < I - i » 0

since 7" is bounded.
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But [|Q(Tu, )M = sup{|(Tu,)"¥'| : ¥ € Bpepm} = Tl pry - Hence by @), (u,)
has a subsequence (u, ) weakly convergent to u € E' say. Now for ' € D(T),|z'(u, —

!
v)| < |2'(u, — W)+ |2'(v, — u,)| < |2'(u, —w)| + ”i” » 0. Thus o(E,D(T)") —

limv, = u € E. This shows that {c,} is relatively sequentially o( E, D(T)') compact
and hence (by Eberlein’s Theorem, see e.g. [F, Ch 3]) relatively o( E, D(T)') compact.
Therefore (c,) has a o( E, D(T)') convergent subnet, which we assume to be itself. Let
o( E, D(T)')—lim ¢, = c. Weclaimthat ¢ = z". Indeed if W is aclosed convex o( D(T)",
D(T)') neighbourhood of z” we can determine «, such that z_, € W for a > o, and

since W D E: (norm closure) for a > «, we have ¢, € W for o > «,. Consequently
" = ¢. Since ¢ € E, (i) follows. =

Lemma 3.8. Let QY € T"Bppyn. Then y belongs to the o(Y, D(T")) closure of TBpry -

x

Proof, By the weak™ CﬂntiHUit}’ of T”, we have THBD{T)H - T”(B_D(T}Aw*) C T”Bmﬂhw
- Q(TBD(T))*“*‘”* where wx signifies o(D(T")', D(T")). Now let Qy € T" Bp(r». Then

Qv € Q(TBpy)™" and so there is a net (z,) in By with o(D(T')', D(T")) -
lim Q(Tz,—y)" = O. Sofor y' € D(T") wehave Q(T'z, — N =y (Tz,—y) - 0.=

Lemma 3.9. Let E be a linear subspace of f)( T) containing D(T). If N(T") C E and
if Q(TB, )" C T"E, where o = a(Y, D(T")), then (T")~}(QY) C E.

Proof. Assume the given condition holds and let Q¢ = T"z". By Lemma3.8, y € TBy , 0O
T"z" € T"E. Thus T"z" = TZ where z € E, and then 2/ —Z € N(T") C E. Therefore
2" € E. =

Theorem 3.10. Let E be a linear subspace of D(T) containing D(T). Consider the fol-
lowing statements:
(i) (T")"(QY) CE

(ii) For all bounded subsets B of D(T), if TB is relatively o(Y, D(T")) compact
then B is relatively o( E, D(T)") compact

(iii) For all bounded subsets B of D(T), if T B is relatively D(T") -seminorm compact
then B is relatively o( E, D(T)") compact.

Then (i) = (ii) = (iii). If T' is continuous then all three statements are equivalent.

Proof, (i) = (ii): Assume (i), let B C D(T) be bounded and let 7'B be relatively o(Y,
D(T")) compact. Let (z,) beanetin B. Then (Z,) hasa o(D(T)", D(T)’) convergent
subnet, which we assume to be (7)) itself. Write " = o(I(T)", D(T)') — lim z,,. The
net (T'z_) has a subnet (assumed to be itself) which is o(Y, D(T")) convergent to some
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point y € Y. We have (T"z )y’ — y'y(y' € D(T")). Hence by Lemma 3.1, 2" € D(T")
and T"z" = Qy. Condition (i) now gives z" = 7 where z € E proving that (z_) has a
o(Y, D(T')) convergent subnet.

(ii) = (iii): This implication follows trivially on comparing topologies.

Now let 7" be continuous and assume (iii). Write D = D(T"),¢,Q; = Qp,J = Jy
and S = Q,JT. Then § is continous by Lemmas 3.2 and 3.3, and §" = (JT)" = T" by
Lemma 3.3. Let Q,Jy € SBy (where y € Y') and choose a sequence (z,) in Bppm
with Sz, — Q,Jy. Then ||Tz, — y||pir = sup{ly'(JTz, —Jy+ D)|: ¢y € D(T")} =
1Sz, —Q,Jy|| — 0. Hence {T'z,} isrelatively D(T") -seminorm compact. By (iii) {x, } is
relatively o( E, D(T)') compact and hence relatively o( E, D(T)’) sequentially compact.
Hence there exists ¢ € By and a subsequence (:zznk) which is o( E, D(T)") convergent to

z. Then §"Z = Q(Q,Jy)". This shows that Q(SB%) C §"(E). Lemma 3.2 and 3.3 show
that o(Q,JY, D(T")) is the weak topology of Q,JY (the range space of §'). Since the

norm and weak closures of SB coincide, we have Q(SBy)" C S"( E) (where o denote
o(Q,JY, D(T")). The above sequential argument also shows that condition (it) of Theorem

3.7 is satisfied for the operator S, whence N(S") C E. Hence by Lemma 3.9 and (ii) of
Lemma 3.3, (T”)‘I(Qf}) CE. o

Corollary 3.11. Let T be Tauberian and let B be a bounded subset of D(T') for which T B

is relatively weakly compact. Then B is relatively n(f XY compact.

4. EXAMPLES AND FURTHER PROPERTIES OF TAUBERIAN OPERATORS

As an immediate consequence of Theorem 3.7 we have:

Proposition 4.1. If T' is Tauberian then N(T) is reflexive.

Proposition 4.2. Let v(T) > 0. Then N(T) is reflexive if and only if N(T") = N(TN.
Proof. Since v(T) > 0 we have (sce e.g. [CL2]):

N(T") = R(THLPD" = (N(T)LPT)LDMD" = N(T)". Now N(T) is reflexive if and
only if N(T)" = N(T)" = N(T"). "

It is well known that bounded ¢, -operators in Banach spaces are Tauberian. The connec-
tion between F, -operators and Tauberian operators in the general sense will now be investi-

gated.
We prove the generalization of [KW; Thcorem 4.2] for F, -operators:

Theorem 4.3. Let T be Tauberian. The following are equivalent
(i) T € F,
(ii) T\ € F, for all subspaces R of D(T') with reflexive completion.
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Proof, The implication (i) = (ii) is trivial. To prove (1) = (1), assume 7' ¢ F . By [Gol;
III 1.9] there exists an infinite dimensional subspace W of D(T") for which T'/W is pre-

compact. Hence J, T By, is a relatively compact subset of Y. By Theorem 3.10, By, is

relatively ::r(f)( T),D(T)") compact, hence relatively n(ﬁ, W' compact. Thus W is re-
flexive and hence by (ii) T'|,, € F,. Butthen T'|,, cannot be precompact since W is infinite
dimensional. Therefore (11) = (1). o

The normed space X will be called very irrefiexive (VIR) if X contains no infinite di-
mensional subspace with reflexive completion.

Corollary 4.4. Let D(T') be VIR. Then

T Tauberian = T € F,.
Recall [Kat] the definition v(T) = sup{y : ||T'z]| > vd(z,N(T)) for z € D(T)}.
Theorem 4.5. Let T € F, and v(T') > 0. Then T' is Tauberian.

Proof. Denoting o( D(T")', DT")) by o we shall verify that

(1) R(T"y c QCR(TYN’

Let £ € D(T") andlet (z_) beanetin D(T) suchthat o(D(T)", D(T)")—limz = z".
Then o — lim 7"z = T"z" by weak* continuity and (1) follows. We next verify that

(2) Q(R(THYN = Q(R(T)™).

Let 2/ € Q(R(T)N) (= Q(R{T)M1{). Choose y" € Y” such that 2/ = Qy". For ¢/ €
R(T)* = N(T") C D(T') we have "y’ = 2'y' = 0 since ¢y’ € (Q(R(T)"),. Thus
v € R(T)*+ whence 2/ € QR(T)*+. Now suppose that y" € R(T)** and let ¢/ €
(Q(R(THYM),. Then y € R(T) = y'y = 9y’ = (Q¥)y' = 0. Thus y’ € R(T)*. Then

(Qy"y' = y"y =0 (since y' € D(T")). Therefore Qy" € (Q(R(T)M)1 = Q(R(THYN
and (2) is established. Next we show that

(3) Qv e R(T" =y € R(T).

Assume QF € R(T"). By (1) and (2) there exists y” € R(T)*+ for which y—y" € D(T")*.

Then ¢ € R(T)L = N(T") = 0= 3y — ¢y = ¢'y. Thus y € R(T)i = R(T) proving
(3).
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As remarked in Section 2, T € F, <= T" € ¢,. In particular N(T") is finite
dimensional. Let P be a bounded projection defined on D(T") with range N(T") and
let S = I — P where I is the identity on D(T"). Writt W = (T"|g)~". By the
Closed Graph Theorem, W is continuous. Suppose that T"z" = Qy, where y € Y. We
have T"Sz" = T"(z" — Pz") = Qy and Sz" = WT"Sz". Hence Sz" € W( QY) C
WQ(R(TY)" (by (3)) € WQR(T)A (by the continuity of Q and W) = WT"D(T)N =
WT'SD(TYA+ WI"PD(T)~ = WI"SD(T)A = SD(T)N ¢ SD(T)* (since S is
idempotent and open). Since 4(T) > 0 we have N(T") = R(T)PT" =
(N(T)LDTYYLD(D" = N(T)" = N(T)" (see e.g. [CL2]). Consequently z"" € N(T)" +
SD(T)A. Thus =" = ST+ n where z € D(T) and n € N(T). But Pz € N(T") =
N(T)A. So z" = T+ 7 — P € D(T)M+ N(T) C D(T)" as required. .

The proof of statements (1) - (3) above are due to A.lL. Gouveia.

Corollary 4.6. Let X,Y be Banach spaces and T a closed operator. Then T € ¢, = T' is
Tauberian.

Corollary 4.7. Let T € F, with codim R(T) < co. Then T" and T" are Tauberian.

Proof. Indeed T" (and hence T") is Fredholm by [C3; Proposition 3.3]. Hence the result by
Corollary 4.6. | :

It is well known [KW] that in the classical case an operator with closed range is Taubernan
if and only if its null space is reflexive. For the general case we have:

Proposition 4.8. Let R(T) be o(Y,D(T")) closed. The following are equivalent:
(i) T is Tauberian
(ii) N(T") C D(T)".

Proof. We have (1) = (11) trivially.

Next assume (ii). Let T"z" = Qy. Write 0 = o(Y,D(T")). Then y € TBy C R(T)
by Lemma 3.8. So y = Tz(3z € D(T)). Then T'(z" — ) = O whence 2" — T €
N(T") C D(T). Hence =" € D(T)". Thereforfe (i) = (i). .

Corollary 4.9. Let v(T) > 0 and let R(T) be o(Y, D( T")) closed. then T is Tauberian
if and only if N(T) is reflexive.

Proof. Combine Proposition 4.1, 4.2 and 4.8. &
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S. SPECIAL CASE: CONTINUOUS OPERATORS IN NORMED SPACES
Let T be continuous and let 7' denote the closure of Jy' TJy, i.e. the continuous extension
to 5( T) of T regarded as an element of L(X , Y). With the natural identification of the

isometric spaces X' and X', we have 7' = T".
Proposition 5.1. Let T' be continuous. Then T is Tauberian if and only if T is Tauberian.

Proof, Immediate from D(T) = D(T) = D(T) and T" = T". .

Proposition 5.2. If T is continuous then T' € F, = T is Tauberian.

Proof. Immediate from Proposition 5.1 upon observingthat T € F, = T € ¢, . o

Corollary 5.3. Let T' be continuous and let D(T) be VIR. Then T is Tauberian if and only
if T € F,.

Proof. Combine Proposition 5.2 with Corollary 4.4. =
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