# LINEAR TRANSFORMATIONS OF TAUBERIAN TYPE IN NORMED SPACES

R.W. CROSS

Dedicated to the memory of Professor Gottfried M. Köthe

#### 1. INTRODUCTION

Let  $T:D(T)\subset X\to Y$  be a linear transformation where X and Y are normed spaces. We call T Tauberian if  $(T'')^{-1}(Q\widehat{Y}) \subset \widetilde{D}(T)^{\wedge}$  where Q is the quotient map defined on Y''with kernel  $D(T')^{\perp}$ . Bounded Tauberian operators in Banach spaces were studied by Kalton and Wilansky in [KW]. As Gonzalez and Onieva remark in [GO3], these operators appear in summability (see [GW]), factorization of operators [DFJP], [N], preservation of isomorphic properties of Banach spaces [N], the preservation of the closedness of images of closed sets [NR], the equivalence between the Radon-Nikodym property and the Krein-Milman property [S], and generalised Fredholm operators [T], [Y]. Classes of Tauberian operators related to a certain measure of weak compactness are investigated in [AT]. Other recent works are [AG] (which contains the solution of a problem raised in [KW]), [Gon1], [Gon2], [GO1], [GO2], [GO3], and [MP]. The present paper investigates unbounded Tauberian operators. This wider class is a natural object of study in any investigation concerning the second adjoint  $T^{\prime\prime}$  of an unbounded operator, about which little seems to be known. Our main goal is Theorem 3.10 which implies as a corollary the following partial characterisation: Let T' be continuous. Then T is Tauberian if and only if for each bounded subset B of D(T), if TB is relatively  $\sigma(Y, D(T'))$  compact (alternatively, relatively D(T') -seminorm compact) then B is relatively  $\sigma(\tilde{D}(T), D(T)')$  compact. This result contains the well known characterisation [KW; Theorem 3.2] for the classical case. Section 4 provides some examples and further properties of Tauberian operators; thus for example the usual closable ordinary differential operators defined between  $L_p$  spaces (see e.g. [Go1; Ch VI]) and their successive adjoints are all Tauberian (Corollaries 4.6 and 4.7). Section 5 looks at the continuous case.

## 2. PRELIMINARIES

The symbols X,Y,Z,... will denote normed spaces and the class of linear transformations  $T:X\to Y$  will be denoted by L(X,Y). We denote the domain, range and null space of T by D(T),R(T) and N(T) respectively. We call T bounded if T is continuous and D(T)=X. If X is a linear subspace of Y then  $J_X^Y$  denotes the operator in L(X,Y) that is the natural injection of X into Y, and  $Q_X^Y$  denotes the operator in L(Y,Y/X) that is the natural quotient map defined on Y with null space X. We denote the completion of X by  $\tilde{X}$ , and the completion of D(T) by  $\tilde{D}(T)$ . We shall abbreviate  $J_X^{\tilde{X}}$  to  $J_X$  and  $Q_X^{\tilde{X}}$ 

194 R.W. Cross

to  $Q_X$ . The adjoint T' of T is the conjugate of  $TJ_{D(T)}^X$  in the sense of [Gol; II.2.2]. Thus  $T' \in L(Y', D(T)')$  and  $T'' \in L(D(T)'', D(T')')$ . The operator T is called an  $F_+$ -operator ([C1], [C2]) if there exists a finite codimensional subspace E of X for which the restriction  $T|_E$  has a continuous inverse. If X and Y are complete and T is closed then  $T \in F_+ \Leftrightarrow T \in \phi_+$ . In general we have [C2]  $T \in F_+ \Leftrightarrow T' \in \phi_- \Leftrightarrow T'' \in \phi_+$ . The graph of T is the subspace of  $X \times Y$  consisting of the subset  $\{(x, Tx) : x \in D(T)\}$  and is denoted by G(T). We shall write  $||y||_{D(T')}$  for the seminorm  $\sup\{|y'y| : y' \in D(T'), ||y'|| \le 1\}$  ( $y \in Y$ ). We denote by  $B_X$  the unit ball of X ( $x \in X : ||x|| \le 1$ ). Except where stated otherwise, Q will denote the quotient map defined on Y'' with null space  $D(T')^\perp$ . We shall freely identify D(T')' with QY''.

The operator T is called *partially continuous* [CL1] if there exists a finite codimensional subspace E of X for which  $T|_E$  is continuous.

**Proposition 2.1.** If either (i) D(T) is complete or (ii) T is partially continuous, then T' is continuous.

*Proof.* (i) Let D(T) be complete and let  $y'_n \in D(T'), y'_n \to y' \in Y'$ . Since  $T'y'_n \in D(T)'$  and  $\lim y'_n Tx = y' Tx$  for each x in the Banach space D(T), it follows from the uniform boundedness principle that  $y' T' \in D(T)'$ , i.e.  $y' \in D(T')$ . Hence D(T') is closed. Therefore T' is continuous [Gol; II.2.15].

(ii) See [CL1].

#### 3. TAUBERIAN OPERATORS

The two main results of this section are Theorems 3.7 and 3.10. The latter contains a characterisation of Tauberian operators with continuous adjoint.

**Lemma 3.1.** G(T') is a  $\sigma(Y',Y) \times \sigma(D(T)',D(T))$  closed subset of  $Y' \times D(T)'$ . In particular, G(T'') is  $\sigma(D(T)'',D(T)') \times \sigma(D(T')',D(T'))$  closed.

*Proof.* Let  $(y'_{\alpha}, T'y'_{\alpha}) \to (y', x')$  (with the appropriate weak\* topologies). Then for  $x \in D(T)$ ,  $|y'Tx| = \lim |T'y'_{\alpha}x| = |x'x| \le ||x'|| \, ||x||$ , so y'T is continuous on D(T), i.e.  $y' \in D(T')$ . Weak\* continuity now gives T'y' = x'.

Lemma 3.2. [La]. The following statements are equivalent.

- (i) T' is continuous
- (ii) D(T') is  $\sigma(Y', \tilde{Y})$  closed
- (iii)  $Q_E J_Y T$  is continuous, where  $E = D(T')_{\perp \tilde{Y}}$ .

*Proof.* Write  $Q = Q_E$ ,  $J = J_Y$ . Since Q is bounded we clearly have (QJT)' = (JT)'Q' = T'Q' where  $D(Q') = [D(T')_{\perp \tilde{Y}}]^{\perp}$ . By [Gol; II.2.8] QJT is continuous if and only if

 $D(T'Q') = [D(T')_{\perp \tilde{Y}}]^{\perp}$  and the right hand side is the  $\sigma(Y', \tilde{Y})$  closure of D(T'). Therefore (ii)  $\iff$  (iii).

For the proof of the equivalence of (i) and (ii) the reader is referred to [La].

We shall include here an independent proof of the case when Y is separable because of its simplicity. Assume Y is separable. Then the  $\sigma(Y', \widetilde{Y})$  topology is metric. Let T' be continuous and let  $(y'_n)$  be a sequence in D(T') such that  $\lim \sigma(Y', \widetilde{Y}) y'_n = y'$ . Then  $T'y'_n$  is bounded and so by Alaoglu's theorem has a  $\sigma(Y', \widetilde{Y})$  convergent subsequence  $T'y'_{n_k} \to x'$  say. By Lemma 3.1,  $y' \in D(T')$ . Thus (i)  $\Rightarrow$  (ii). The converse is trivial by [Gol; loc. cit.].

**Lemma 3.3.** [La]. Let  $S = Q_{D(T')} T$ . Then

- (i) S is closable
- (ii) S'y' = T'y' for  $y' \in D(T')$  and D(S') = D(T')
- (iii) S'' = T''.

Proof. Write  $Q = Q_{D(T')_{\perp}}$ . We have  $S' = T'Q' = T'J_{D(T')_{\perp}^{\perp}}$  and  $D(S') = D(Q') \cap (Q')^{-1}(D(T')) = D(T')_{\perp}^{\perp} \cap D(T') = D(T')$ , proving (ii). But D(T') is a total subspace of  $D(T')_{\perp}^{\perp}$ . Consequently S is closable [Gol; II.2.11], proving (i). Finally,  $S'' \in L(D(T)'', D(T')')$  and for  $y' \in D(T')$  and  $x'' \in D(S'')$  we have x''S'y' = x''T'y' by (ii), whence S'' = T''.

The operator S of Lemma 3.3 corresponds to the «regular contraction» of T, and the subspace  $D(T')_{\perp}$  to the «singularity» of T as defined by G. Köthe in [Ko].

Corollary 3.4. 
$$T'' = (Q_{D(T')_{1Y}} J_Y T)''$$

*Proof.* It is sufficient to observe that  $(J_Y T)' = T'$ .

Proposition 3.5. Let  $(x_{\alpha})$  be a bounded net in D(T) such that  $\sigma(Y, D(T')) - \lim Tx_{\alpha} = O$ . Then the set of  $\sigma(D(T)'', D(T)')$  cluster points of  $(\widehat{x}_{\alpha})$  is a nonempty subset of N(T'').

Proof. By Lemma 3.3 we may suppose that T is closable and thus that  $\sigma(Y,D(T'))$  is Hausdorff [Gol; loc. cit.]. Since  $\{\widehat{x}_{\alpha}\}$  is a relatively  $\sigma(D(T)'',D(T)')$  compact set, the net  $(\widehat{x}_{\alpha})$  has a  $\sigma(D(T)'',D(T)')$  convergent subnet, assumed to be itself, with limit  $x'' \in D(T)''$  say. But  $\sigma(D(T')',D(T')) - \lim T''\widehat{x}_{\alpha} = Q(\sigma(Y,D(T')) - \lim Tx_{\alpha})^{\wedge} = O$ . Hence by Lemma 3.1,  $x'' \in D(T'')$  and T''x'' = O, proving that  $N(T'') \neq \emptyset$ . The same argument applied to an arbitrary cluster point x'' shows that the set of such cluster points is contained in N(T'').

**Proposition 3.6.** Let E be a linear subspace of  $\widetilde{D}(T)$  containing D(T). Then the following statements are equivalent:

(i) 
$$N(T'') \subset \widehat{E}$$

- (ii) Every bounded net  $(x_{\alpha})$  in D(T) for which  $\sigma(Y, D(T')) \lim Tx_{\alpha} = O$  has a  $\sigma(E, D(T)')$  convergent subnet.
- *Proof.* (i)  $\Rightarrow$  (ii): Assume (i) and let  $(x_{\alpha})$  be a bounded net for which  $\sigma(Y, D(T')) \lim Tx_{\alpha} = O$ . By proposition 3.5,  $(\widehat{x}_{\alpha})$  has a subnet which is  $\sigma(D(T)'', D(T)')$  convergent to some point  $x'' \in N(T'')$ . Then  $x'' = \widehat{x}$  where  $x \in E$  and (ii) follows.
- (ii)  $\Rightarrow$  (i): Assume (ii) and let T''x'' = O. Choose a bounded net  $(x_{\alpha})$  in D(T) such that  $\sigma(D(T)'', D(T)') \lim \widehat{x}_{\alpha} = x''$ . By the weak\* continuity of T'', we have  $\sigma(D(T')', D(T')) \lim T''\widehat{x}_{\alpha} = O$ . Hence  $(T''\widehat{x}_{\alpha})y' \to O(y' \in D(T'))$ , whence  $\sigma(Y, D(T')) \lim Tx_{\alpha} = O$ . By hypothesis,  $(x_{\alpha})$  has a  $\sigma(E, D(T'))$  convergent subnet, which we assume to be itself. Let  $\sigma(E, D(T')) \lim x_{\alpha} = x$  where  $x \in E$ . Then  $\widehat{x} = \sigma(D(T)'', D(T)') \lim \widehat{x}_{\alpha} = x'' \in \widehat{E}$ .

**Theorem 3.7.** Let E be a linear subspace of  $\widetilde{D}(T)$  containing D(T). Consider the following two statements:

- (i)  $N(T'') \subset \widehat{E}$
- (ii) Every bounded sequence  $(x_n)$  in D(T) for which  $||Tx_n||_{D(T')} \to 0$  has a subsequence weakly convergent to a point of E.

In general (i)  $\Rightarrow$  (ii). If T' is continuous then (ii)  $\Rightarrow$  (i).

*Proof.* (i)  $\Rightarrow$  (ii): Assume (i) and let  $(x_n)$  be a bounded sequence in D(T) such that  $||Tx_n||_{D(T')} \to 0$ . By proposition 3.6,  $(x_n)$  has a  $\sigma(E,D(T)')$  cluster point  $x \in E$ . The same argument applied to arbitrary countable subsets of  $\{x_n\}$  shows that  $\{x_n\}$  is relatively  $\sigma(E,D(T)')$  countably compact, hence relatively  $\sigma(E,D(T)')$  sequentially compact, i.e.  $(x_n)$  has a  $\sigma(E,D(T)')$  convergent subsequence.

Let T' be continuous. Assume (ii) and let  $x'' \in N(T'')$  where ||x''|| = 1. Choose a net  $(x_{\alpha})$  in  $B_{D(T)}$  such that  $\sigma(D(T)'', D(T)') - \lim \widehat{x}_{\alpha} = x''$ . Then  $\sigma(D(T')', D(T')) - \lim T''\widehat{x}_{\alpha} = O$ . Let  $C_{\alpha} = co\{x_{\gamma} : \gamma \geq \alpha\}$ . Write  $Q_1 = Q_{D(T')_{\perp \widehat{Y}}}$ . We have  $\lim y'Q_1J_Y$   $Tx_{\alpha} = \lim y'Tx_{\alpha} = \lim Q(Tx_{\alpha})^{\wedge}y' = 0$  for every  $y' \in D(T') = D(T')_{\perp \widehat{Y}}^{\perp} = (Q_1\widetilde{Y})'$  (see Lemma 3.2). Since the  $\sigma(Y, D(T'))$  and D(T')-seminorm closures of the convex set  $Q_1J_YTC_{\alpha}$  coincides and contain O, there is a sequence  $(c_{\alpha}^n)$  in  $C_{\alpha}$  for which  $\|Q_1J_YTc_{\alpha}^n\|_{D(T')} = \sup\{|y'Q_1J_YTc_{\alpha}^n| : y' \in B_{D(T')}\} = \sup\{|y'Tc_{\alpha}^n| : y' \in B_{D(T')}\} = \|Tc_{\alpha}^n\|_{D(T')} \to 0$ . By (ii)  $(c_{\alpha}^n)$  has a subsequence, which we assume to be itself, which is weakly convergent to some point  $c_{\alpha} \in E$ . By Lemma 3.1,  $\widehat{c}_{\alpha} \in D(T'')$  and  $T''\widehat{c}_{\alpha} = O$ . Now let  $(v_n)$  be an arbitrary sequence in the set  $\{c_{\alpha}\}$ . Since  $v_n \in E \subset \widetilde{D}(T)$  there exists a sequence  $(u_n)$  in D(T) such that  $||u_n-v_n|| \leq \frac{1}{n}$ . Then  $||Q(Tu_n)^{\wedge}|| = ||T''(u_n-v_n)^{\wedge}|| \leq \frac{||T''||}{n} \to 0$  since T'' is bounded.

But  $||Q(Tu_n)^{\wedge}|| = \sup\{|(Tu_n)^{\wedge}y'| : y' \in B_{D(T')}\} = ||Tu_n||_{D(T')}$ . Hence by (ii),  $(u_n)$  has a subsequence  $(u_{n_k})$  weakly convergent to  $u \in E$  say. Now for  $x' \in D(T)', |x'(u_n - v_n)| \le |x'(u_n - u)| + |x'(v_n - u_n)| \le |x'(u_n - u)| + \frac{||x'||}{n} \to 0$ . Thus  $\sigma(E, D(T)') - \lim v_n = u \in E$ . This shows that  $\{c_\alpha\}$  is relatively sequentially  $\sigma(E, D(T)')$  compact and hence (by Eberlein's Theorem, see e.g. [F, Ch 3]) relatively  $\sigma(E, D(T)')$  compact. Therefore  $(c_\alpha)$  has a  $\sigma(E, D(T)')$  convergent subnet, which we assume to be itself. Let  $\sigma(E, D(T)') - \lim c_\alpha = c$ . We claim that  $\widehat{c} = x''$ . Indeed if W is a closed convex  $\sigma(D(T)'', D(T)')$  neighbourhood of x'' we can determine  $\alpha_0$  such that  $\widehat{x}_\alpha \in W$  for  $\alpha \geq \alpha_0$ , and since  $W \supset \overline{C}_\alpha^{\wedge}$  (norm closure) for  $\alpha \geq \alpha_0$  we have  $\widehat{c}_\alpha \in W$  for  $\alpha \geq \alpha_0$ . Consequently  $x'' = \widehat{c}$ . Since  $c \in E$ , (i) follows.

Lemma 3.8. Let  $Q\widehat{y} \in T''B_{D(T)''}$ . Then y belongs to the  $\sigma(Y, D(T'))$  closure of  $TB_{D(T)}$ .

Proof. By the weak\* continuity of T'', we have  $T''B_{D(T)''} = T''(\overline{B_{D(T)}}^{w*}) \subset \overline{T''B_{D(T)}}^{w*}$  =  $\overline{Q(TB_{D(T)})}^{w*}$  where w\* signifies  $\sigma(D(T')',D(T'))$ . Now let  $Q\widehat{y} \in T''B_{D(T)''}$ . Then  $Q\widehat{y} \in \overline{Q(TB_{D(T)})}^{w*}$  and so there is a net  $(x_{\alpha})$  in  $B_{D(T)}$  with  $\sigma(D(T')',D(T')) - \overline{Q(Tx_{\alpha}-y)} = O$ . So for  $y' \in D(T')$  we have  $Q(Tx_{\alpha}-y)^{\wedge}y' = y'(Tx_{\alpha}-y) \to 0$ .

Lemma 3.9. Let E be a linear subspace of  $\widetilde{D}(T)$  containing D(T). If  $N(T'') \subset \widehat{E}$  and if  $Q(\overline{TB_X}^{\sigma})^{\wedge} \subset T''\widehat{E}$ , where  $\sigma = \sigma(Y, D(T'))$ , then  $(T'')^{-1}(Q\widehat{Y}) \subset \widehat{E}$ .

*Proof.* Assume the given condition holds and let  $Q\widehat{y} = T''x''$ . By Lemma 3.8,  $y \in \overline{TB_X}^{\sigma}$ , so  $T''x'' \in T''\widehat{E}$ . Thus  $T''x'' = T\widehat{x}$  where  $x \in E$ , and then  $x'' - \widehat{x} \in N(T'') \subset \widehat{E}$ . Therefore  $x'' \in \widehat{E}$ .

**Theorem 3.10.** Let E be a linear subspace of  $\tilde{D}(T)$  containing D(T). Consider the following statements:

- (i)  $(T'')^{-1}(Q\widehat{Y}) \subset \widehat{E}$
- (ii) For all bounded subsets B of D(T), if TB is relatively  $\sigma(Y, D(T'))$  compact then B is relatively  $\sigma(E, D(T)')$  compact
- (iii) For all bounded subsets B of D(T), if TB is relatively D(T')-seminorm compact then B is relatively  $\sigma(E, D(T)')$  compact.
  - Then  $(i) \Rightarrow (ii) \Rightarrow (iii)$ . If T' is continuous then all three statements are equivalent.

*Proof.* (i)  $\Rightarrow$  (ii): Assume (i), let  $B \subset D(T)$  be bounded and let TB be relatively  $\sigma(Y, D(T'))$  compact. Let  $(x_{\alpha})$  be a net in B. Then  $(\widehat{x}_{\alpha})$  has a  $\sigma(D(T)'', D(T)')$  convergent subnet, which we assume to be  $(\widehat{x}_{\alpha})$  itself. Write  $x'' = \sigma(D(T)'', D(T)') - \lim \widehat{x}_{\alpha}$ . The net  $(Tx_{\alpha})$  has a subnet (assumed to be itself) which is  $\sigma(Y, D(T'))$  convergent to some

198 R.W. Cross

point  $y \in Y$ . We have  $(T''x_{\alpha})y' \to y'y(y' \in D(T'))$ . Hence by Lemma 3.1,  $x'' \in D(T'')$  and  $T''x'' = Q\widehat{y}$ . Condition (i) now gives  $x'' = \widehat{x}$  where  $x \in E$  proving that  $(x_{\alpha})$  has a  $\sigma(Y, D(T'))$  convergent subnet.

(ii) ⇒ (iii): This implication follows trivially on comparing topologies.

Now let T' be continuous and assume (iii). Write  $D=D(T')_{\perp \tilde{Y}}, Q_1=Q_D, J=J_Y$  and  $S=Q_1JT$ . Then S is continous by Lemmas 3.2 and 3.3, and S''=(JT)''=T'' by Lemma 3.3. Let  $Q_1Jy\in \overline{SB_X}$  (where  $y\in Y$ ) and choose a sequence  $(x_n)$  in  $B_{D(T)}$  with  $Sx_n\to Q_1Jy$ . Then  $||Tx_n-y||_{D(T')}=\sup\{|y'(JTx_n-Jy+D)|:y'\in D(T')\}=||Sx_n-Q_1Jy||\to 0$ . Hence  $\{Tx_n\}$  is relatively D(T')-seminorm compact. By (iii)  $\{x_n\}$  is relatively  $\sigma(E,D(T)')$  compact and hence relatively  $\sigma(E,D(T)')$  sequentially compact. Hence there exists  $x\in B_E$  and a subsequence  $(x_n)$  which is  $\sigma(E,D(T)')$  convergent to x. Then  $S''\hat{x}=Q(Q_1Jy)^{\wedge}$ . This shows that  $Q(\overline{SB}_X^{\wedge})\subset S''(\widehat{E})$ . Lemma 3.2 and 3.3 show that  $\sigma(Q_1JY,D(T'))$  is the weak topology of  $Q_1JY$  (the range space of S). Since the norm and weak closures of  $SB_X$  coincide, we have  $Q(\overline{SB}_X^{\sigma})^{\wedge}\subset S''(\widehat{E})$  (where  $\sigma$  denote  $\sigma(Q_1JY,D(T'))$ ). The above sequential argument also shows that condition (ii) of Theorem 3.7 is satisfied for the operator S, whence  $N(S'')\subset \widehat{E}$ . Hence by Lemma 3.9 and (ii) of Lemma 3.3,  $(T'')^{-1}(Q\widehat{Y})\subset \widehat{E}$ .

Corollary 3.11. Let T be Tauberian and let B be a bounded subset of D(T) for which TB is relatively weakly compact. Then B is relatively  $\sigma(\tilde{X}, X')$  compact.

# 4. EXAMPLES AND FURTHER PROPERTIES OF TAUBERIAN OPERATORS

As an immediate consequence of Theorem 3.7 we have:

**Proposition 4.1.** If T is Tauberian then  $\widetilde{N}(T)$  is reflexive.

**Proposition 4.2.** Let  $\gamma(T) > 0$ . Then  $\tilde{N}(T)$  is reflexive if and only if  $N(T'') = \tilde{N}(T)^{\wedge}$ .

*Proof.* Since  $\gamma(T) > 0$  we have (see e.g. [CL2]):

 $N(T'')=R(T')^{\perp D(T)''}=(N(T)^{\perp D(T')})^{\perp D(T)''}=N(T)''$ . Now  $\tilde{N}(T)$  is reflexive if and only if  $\tilde{N}(T)^{\wedge}=N(T)''=N(T'')$ .

It is well known that bounded  $\phi_+$  -operators in Banach spaces are Tauberian. The connection between  $F_+$  -operators and Tauberian operators in the general sense will now be investigated.

We prove the generalization of [KW; Theorem 4.2] for  $F_+$ -operators:

**Theorem 4.3.** Let T be Tauberian. The following are equivalent

- (i)  $T \in F_+$
- (ii)  $T|_R \in F_+$  for all subspaces R of D(T) with reflexive completion.

Proof. The implication (i)  $\Rightarrow$  (ii) is trivial. To prove (ii)  $\Rightarrow$  (i), assume  $T \notin F_+$ . By [Gol; III 1.9] there exists an infinite dimensional subspace W of D(T) for which T/W is precompact. Hence  $J_YTB_W$  is a relatively compact subset of  $\widetilde{Y}$ . By Theorem 3.10,  $B_W$  is relatively  $\sigma(\widetilde{D}(T),D(T)')$  compact, hence relatively  $\sigma(\widetilde{W},W')$  compact. Thus  $\widetilde{W}$  is reflexive and hence by (ii)  $T|_W \in F_+$ . But then  $T|_W$  cannot be precompact since W is infinite dimensional. Therefore (ii)  $\Rightarrow$  (i).

The normed space X will be called *very irreflexive* (VIR) if X contains no infinite dimensional subspace with reflexive completion.

Corollary 4.4. Let D(T) be VIR. Then

$$T \ Tauberian \Rightarrow T \in F_{\perp}$$
.

Recall [Kat] the definition  $\gamma(T) = \sup\{\gamma : ||Tx|| \ge \gamma d(x, N(T)) \text{ for } x \in D(T)\}.$ 

**Theorem 4.5.** Let  $T \in F_+$  and  $\gamma(T) > 0$ . Then T is Tauberian.

*Proof.* Denoting  $\sigma(D(T')', DT')$  by  $\sigma$  we shall verify that

$$R(T'') \subset \overline{Q(R(T)^{\wedge})}^{\sigma}$$

Let  $x'' \in D(T'')$  and let  $(x_{\alpha})$  be a net in D(T) such that  $\sigma(D(T)'', D(T)') - \lim \widehat{x}_{\alpha} = x''$ . Then  $\sigma - \lim T''\widehat{x} = T''x''$  by weak\* continuity and (1) follows. We next verify that

(2) 
$$\overline{Q(R(T)^{\wedge})}^{\sigma} = Q(R(T)^{\perp \perp}).$$

Let  $z' \in \overline{Q(R(T)^{\wedge})}^{\sigma}(=Q(R(T)^{\wedge})^{\perp})$ . Choose  $y'' \in Y''$  such that z' = Qy''. For  $y' \in R(T)^{\perp} = N(T') \subset D(T')$  we have y''y' = z'y' = 0 since  $y' \in (Q(R(T)^{\wedge})_{\perp})$ . Thus  $y'' \in R(T)^{\perp \perp}$  whence  $z' \in QR(T)^{\perp \perp}$ . Now suppose that  $y'' \in R(T)^{\perp \perp}$  and let  $y' \in (Q(R(T)^{\wedge}))_{\perp}$ . Then  $y \in R(T) \Rightarrow y'y = \widehat{y}y' = (Q\widehat{y})y' = 0$ . Thus  $y' \in R(T)^{\perp}$ . Then (Qy'')y' = y''y' = 0 (since  $y' \in D(T')$ ). Therefore  $Qy'' \in (Q(R(T)^{\wedge}))^{\perp}_{\perp} = \overline{Q(R(T)^{\wedge})}^{\sigma}$  and (2) is established. Next we show that

(3) 
$$Q\widehat{y} \in R(T'') \Rightarrow y \in \overline{R(T)}.$$

Assume  $Q\widehat{y} \in R(T'')$ . By (1) and (2) there exists  $y'' \in R(T)^{\perp \perp}$  for which  $\widehat{y} - y'' \in D(T')^{\perp}$ . Then  $y' \in R(T)^{\perp} = N(T') \Rightarrow 0 = \widehat{y}y' - y''y' = y'y$ . Thus  $y \in R(T)^{\perp}_{\perp} = \overline{R(T)}$  proving (3).

As remarked in Section 2,  $T \in F_+ \iff T'' \in \phi_+$ . In particular N(T'') is finite dimensional. Let P be a bounded projection defined on D(T'') with range N(T'') and let S = I - P where I is the identity on D(T''). Write  $W = (T''|_{R(S)})^{-1}$ . By the Closed Graph Theorem, W is continuous. Suppose that  $T''x'' = Q\widehat{y}$ , where  $y \in Y$ . We have  $T''Sx'' = T''(x'' - Px'') = Q\widehat{y}$  and Sx'' = WT''Sx''. Hence  $Sx'' \in W(Q\widehat{Y}) \subset WQ(\overline{R(T)})^{\wedge}$  (by (3))  $\subset \overline{WQR(T)}^{\wedge}$  (by the continuity of Q and W)  $= \overline{WT''D(T)}^{\wedge} = \overline{WT''SD(T)}^{\wedge} + \overline{WT''PD(T)}^{\wedge} = \overline{WT''SD(T)}^{\wedge} = \overline{SD(T)}^{\wedge} \subset S\widetilde{D}(T)^{\wedge}$  (since S is idempotent and open). Since  $\gamma(T) > 0$  we have  $N(T'') = R(T')^{\perp D(T)''} = (N(T)^{\perp D(T)''})^{\perp D(T)''} = N(T)^{\vee} = N(T)^{\wedge}$  (see e.g. [CL2]). Consequently  $x'' \in N(T)^{\wedge} + S\widetilde{D}(T)^{\wedge}$ . Thus  $x'' = S\widehat{x} + \widehat{n}$  where  $x \in \widetilde{D}(T)$  and  $n \in N(T)$ . But  $P\widehat{x} \in N(T'') = N(T)^{\wedge}$ . So  $x'' = \widehat{x} + \widehat{n} - P\widehat{x} \in \widetilde{D}(T)^{\wedge} + N(T)^{\wedge} \subset \widetilde{D}(T)^{\wedge}$  as required.

The proof of statements (1) - (3) above are due to A.I. Gouveia.

**Corollary 4.6.** Let X,Y be Banach spaces and T a closed operator. Then  $T \in \phi_+ \Rightarrow T$  is Tauberian.

Corollary 4.7. Let  $T \in F_+$  with codim  $\overline{R(T)} < \infty$ . Then T' and T'' are Tauberian.

**Proof.** Indeed T' (and hence T'') is Fredholm by [C3; Proposition 3.3]. Hence the result by Corollary 4.6.

It is well known [KW] that in the classical case an operator with closed range is Tauberian if and only if its null space is reflexive. For the general case we have:

**Proposition 4.8.** Let R(T) be  $\sigma(Y, D(T'))$  closed. The following are equivalent:

- (i) T is Tauberian
- (ii)  $N(T'') \subset \tilde{D}(T)^{\wedge}$ .

*Proof.* We have (i)  $\Rightarrow$  (ii) trivially.

Next assume (ii). Let  $T''x'' = Q\widehat{y}$ . Write  $\sigma = \sigma(Y, D(T'))$ . Then  $y \in \overline{TB_X}^{\sigma} \subset R(T)$  by Lemma 3.8. So  $y = Tx(\exists x \in D(T))$ . Then  $T''(x'' - \widehat{x}) = O$  whence  $x'' - \widehat{x} \in N(T'') \subset \widetilde{D}(T)$ . Hence  $x'' \in \widetilde{D}(T)^{\wedge}$ . Therefore (ii)  $\Rightarrow$  (i).

Corollary 4.9. Let  $\gamma(T) > 0$  and let R(T) be  $\sigma(Y, D(T'))$  closed, then T is Tauberian if and only if  $\tilde{N}(T)$  is reflexive.

Proof. Combine Proposition 4.1, 4.2 and 4.8.

### 5. SPECIAL CASE: CONTINUOUS OPERATORS IN NORMED SPACES

Let T be continuous and let  $\tilde{T}$  denote the closure of  $J_Y^{-1}TJ_X$ , i.e. the continuous extension to  $\tilde{D}(T)$  of T regarded as an element of  $L(\tilde{X},\tilde{Y})$ . With the natural identification of the isometric spaces X' and  $\tilde{X}'$ , we have  $\tilde{T}'=T'$ .

**Proposition 5.1.** Let T be continuous. Then T is Tauberian if and only if  $\widetilde{T}$  is Tauberian.

**Proof.** Immediate from 
$$\tilde{D}(\tilde{T}) = D(\tilde{T}) = \tilde{D}(T)$$
 and  $T'' = \tilde{T}''$ .

**Proposition 5.2.** If T is continuous then  $T \in F_+ \Rightarrow T$  is Tauberian.

*Proof.* Immediate from Proposition 5.1 upon observing that  $T \in F_+ \Rightarrow \tilde{T} \in \phi_+$ .

**Corollary 5.3.** Let T be continuous and let D(T) be VIR. Then T is Tauberian if and only if  $T \in F_+$ .

*Proof.* Combine Proposition 5.2 with Corollary 4.4.

202 R.W. Cross

#### REFERENCES

[AG] T. ALVAREZ, M. GONZALEZ, Some examplex of Tauberian operators, Proc. Amer. Math. Soc. III (1991), 1023-1027.

- [AT] K. ASTALA, H.O. TYLLI, Seminorms related to weak compactness and to Tauberian operators, Math. Proc. Cambridge Phil. Soc. 107 (1990), 367-375.
- [C1] R.W. CROSS, Some norm related functions of unbounded linear operators, Math. Z. 199 (1988), 285-302
- [C2] R.W. CRoss, Unbounded linear operators of upper semi-Fredholm type in normed spaces, Portugal Math. 47 (1990), 61-79.
- [C3] R.W. CROSS, On the perturbation of unbounded linear operators with topologically complemented ranges, J. Funct. Anal. 92 (1990), 468-473.
- [CL1] R.W. Cross, L.E. Labuschagne, Partially continuous and semicontinuous linear operators, Expo. Math. 7 (1989), 189-191.
- [CL2] R.W. CROSS, L.E. LABUSCHAGNE, Characterisations of operators of lower semi-Fredholm type in normed linear spaces, Preprint.
- [DJFP] W.J. DAVIS, T. FIGIEL, W.B. JOHNSON, A. PELCZYNSKI, Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311-327.
  - [F] K. FLORET, Weakly compact sets, Lecture Notes in Mathematics 801, Springer, Berlin, 1980.
  - [Gol] S. GOLDBERG, Unbounded linear operators, McGraw-Hill, New York, 1966.
- [Gon1] M. GONZALEZ, An operator ideal associated to Tauberian operators, Preprint.
- [Gon2] M. GONZALEZ, Ideal semigroups associated to an operator ideal, Preprint.
- [GO1] M. Gonzalez, V.M. Onieva, Semi-Fredholm operators and semigroups associated with some classical operator ideals, Proc. R. Acad. 88A (1988), 35-38.
- [GO2] M. Gonzalez, V.M. Onieva, Semi-Fredholm operators and semigroups associated with some classical operator ideals II, Proc. R. Acad. 88A (1988), 119-124.
- [GO3] M. GONZALEZ, V.M. ONIEVA, Characterisations of Tauberian operators and other semigroups of operators, Proc. Amer. Math. Soc. 108 (1990), 399-405.
- [GW] D.J.H. GARLING, A. WILANSKY, On a summability theorem of Berg, Crawford and Whitley, Math. Proc. Cambridge Phil. Soc. 71 (1972), 495-497.
- [KW] N. KALTON, A. WILANSKY, Tauberian operators in Banach spaces, Proc. Amer. Math. Soc. 57 (1976), 251-255.
- [Kat] T. Kato, Perturbation Theory for linear operators, 2nd ed., Springer-Verlag, New York, 1976.
- [Ko] G. KÖTHE, General Linear Transformations of Locally Convex Spaces, Math. Annalen 159 (1965), 309-328.
- [La] L.E. LABUSCHAGNE, Characterisations of partially continuous, strictly cosingular and  $\phi_-$ -operators, Glasgow Math. J. (to appear).
- [MP] J. MARTINEZ-MAURICA, T. PELLON, Non-Archimedean Tauberian operators, Proceedings of the conference on p-adic analysis, Hengelhoef 1986, 101-111.
  - [N] R. Neidinger, Properties of Tauberian operators on Banach spaces, PhD Thesis, Univ. Texas, 1984.
- [NR] R.D. Neidinger, H.P. Rosenthal, Norm-attainment of linear functionals on subspaces and characterisations of Tauberian operators, Pacific J. Math. 118 (1985), 215-228.
  - [S] W. Schachermayer, For a Banach space isomorphic to its square the Radon-Nikodym property and the Krein-Milman property are equivalent, Studia Math. 81 (1985) 329-339.
  - [T] D.G. TACON, Generalised semi-Fredholm transformations, J. Austral. Math. Soc. A34 (1983), 60-70.
  - [Y] K.W. YANG, The generalised Fredholm operators, Trans. Amer. Math. Soc. 219 (1976), 313-326.

Received March 14, 1990 R.W. Cross Department of Mathematics University of Cape Town Private Bag Rondebosch 7700 South Africa