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1. INTRODUCTION

For a continuous and bounded kernel function ¢ : R™ — €, and a continuous function f
the multivariate sampling series 1s defined by

v ¢ 1 i L n. n
(1) (SHNW === 3 f (57 )eWt-k)  (LER%W ERD)

keZn

In [6] the authors presented some qualitative and quantitative theorems on the approximation
of f € C(R™) by S% f, as well as a few first applications. Some theorems in this respect
to be needed below are assertion (5.2) as well as Theorem 5.1 of Section 5. In the more
theoretical part of this paper two further quantitative theorems are given. The first deals with
the case of product kemnels, namely Theorem 3.1, where univariate theory is used to yield
convergence theorems with rates in an iterative way, together with an application. The second
theorem, Theorem 4.1, is concerned with bandlimited kernels, in which case the convergence
with rates of S% f is compared with and deduced from the approximation behaviour of the
associated singular convolution integral of Fejér’s type. The matter is applied to three concrete
Kernels.

The core of this paper is Section S, devoted to the applications of the general theorems
of [6] to box splines, especially to linear combinations of translates of box splines. Basic
assumptions here are certain conditions upon the sum moments of the kernel ¢. These ap-
plications are true multivariate results which cannot be deduced in any way from unvariate
ones. This part of the paper can also be regarded as a contribution to the theory of multivariate
spline approximation, dealt with from different sides by [3; 5; 12; 13; 13].

Let us finally note that this paper is concerned with direct (Jackson-type) approximation
theorems; inverse (Bernstein-type) theorems are studied in [14].

2. NOTATIONS

As usual, N, N,z denote the sets of all naturals, all non-negative integers, and all inte-
gers, respectively, R, R, , € being the sets of all real, positive real, and complex numbers,
respectively. Let N™ denote the sets of all n-tuples k = (k;,...,k;) of elements from
N;NZ2 z" R" R? are defined analogously. In particular, R™ is the Euclidean n-space
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endowed with the norm ||u]|, := (uf + ...+ u2)'/?, where u = (uy,...,u,),u, ER,y€
{1,...,n}. Thus vectors are given in bold-face. The unit coordinate vector (96;,);.,,7 =
1,...,n, is denoted by e’ . Further, cu := (au,,...,ou ) is the product of u with o €

R,u-v:= E u,v, is the scalar productof u,v € R", but uv := (uyvy,...,u_v )su/yV
=1

denotes the vector of fractions (u;/v;,...,u /v ), and u=' will be used for 1/u. Also,

[u] is the vector ([u;1,[u,0,...,[u,l), where [u,] is the largest integer not bigger

than u,. For u,v € R"u>vifandonlyif u, > v, and u > ¢ for ( € R if and only
it u, > ¢ for 1 < py < n By [a,b] we understand the n-dimensional rectangle of all

vectors u € R™ with a < u < b. Further, standard multi-index notation is used, 1.e., for

ke N ueR" let|k|:=k +...+ k,_ and u¥ := ufl U,
For a function f : R" — €,
5kl ok
DX f = f (k| =17)

_f —
du* 311;1{1 .. Ous

is called an rth-order derivative of f. For Dke?” f we simply write D% f. Let C(R™)
be the space of all uniformly continuous and bounded functions f : R" — €, endowed
with the usual supremum norm || f||5g»ys for 7 € Ny, C"(R7") = {(fe C(R™); D"f ¢

C(R™),|k| = r} is the space of all r-fold continuously differentiable functions.
As a measure of smoothness of a function f € C(R™) the modulus of continuity with
respecto to the rth -order difference is used, namely,

w,(f; 8) := sup{|[(ATH(D)];t ER™,—6 < h < 8},

where § € R?,r € N, and the difference operator A, 1s defined as

r

AIHW) =3 (=) (u)f(t +uh)  (t,h ER%rEN).
u=0

If fe L'(R™), ie., f is an absolutely integrable function over R ™, then its Fourier tran-
sform f” is defined by

fAN(v) = (\/51;)" . f(u)e'i“'?du (veR™).
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The operators (1.1) may be regarded as a discrete version of the singular convolution integral
of Fejér’s type with kernel ¢, namely,

(2.1) (I (L) := (\/27) HW L ft-we(Waydu - (t €R™W €RY).

If pe€ L'(R™) with ¢(0) = 1, then {I3 }werr is a family of bounded linear operators

oo

from C(R™) into itself, with opcrator norm (V27 ““/ lp(u)|du, satisfying

—00

Jim |16 f = flerny =0 (f € C(R™M),

i.e., the family {I% } defines a strong approximation process on C(R™). Here W — oo
means that each component of W tends to infinity.

In some cases it is possible to compare the approximation behaviour of the discrete ope-
rators S& f of (1.1) with that of the integral Iy, f above (see Theorem 4.1). In Section 4 the
following particular kernels will be considered, namely, the Fejér kernel

L [sin(t/2) )\
(2.2) F (t) := VL E ( t}./}z ) (t e R™),
the kernel of de 1a Vallée Poussin
(2 .3) 9 () := (\% njljsin(t;/Z)éin(%}ﬂ) (t €R™).
and the kernel of Bochner-Riesz
(2.4) bI(t) = 270 (v + D|It]; " I, (IEl)  (t €R™)

for y > (n—1)/2,J, being the Bessel function of order A. Since these kernels will be used
in the univariate case as well, the index n indicates the dimension of the variable t.
Whereas Fejér’s and de la Vallée Poussin’s kernel are n fold products of the corresponding
univariate versions, the Bochner Riesz kernel is of radial type, i.e., it depends only on ||t]|, .
The essential property of all three is the fact that they belong to the class B, i.e., to the class
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of all functions g € L'(R™) which are entire functions of exponential type =. This can be
seen from their respective Fourier transforms (sce [7, p. 516; 23; 24, p. 255; 18; 19, p. 109)),

n - ,
F:(V) = HFF(Uj)! F{H‘(f) - { &L, Kl <1,
j=1

0, 1€l > 1
n 1, €] < 1
Av) =T 90w, 9 =12- 1<El<2,
j=1 0, €| > 2

(1= (VIR vl <1

SAYA -
()7 (V) {o, V]l > 1

3. CONVERGENCE THEOREMS WITH RATES FOR PRODUCT KERNELS

In case that the kernel ¢ of the generalized sampling series (1.1) is of product type, i.e.,
p(t) =I179,(8,),9; being univariate kernels satisfying the usual assumptions, assertions
concerning the rate of approximation can be derived from univariate theory in an iterative
way. The absolute (sum)-moment of p : R™ — € of order r € N, needed below, is

defined by

(3.1) m,(p) = max sup (t — k) p(t —Kk)|.
1 ftER“(\/E_ﬂ)“kgz:nl I
Theorem 3.1. Let ¢,...,¥, € C(R"') be such that mo(¥;) < oo and Ly zY;((—k) =

v2mforall( e R, 1 < j < m Then for o(t) = H 11,!)(t) € C(R™),t € R", there
holds

1%, f — fllc(m<E HmM) 15% £ — Flloare

j=1 m=1

m7)

Here S;'i*%_ f denotes the univariate sampling operator with kernel 4, applied to f considered

as a function of its j -th variable.

Proof. By definition of ¢ we may write

0= 01 e 3 {1 () o e
%50 = 0= | ==z 3V (w ) = SO § LT 9n Pt = k)

keZ*
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1 ~ [ k; k,
(\/2_ﬂ"' E E{ f(tl,...,tj_l,ﬁ,...,w)

keZ» j=1

i

k.. k o\ |
.f (thw' 1}1V51:'*':§§F) P:[Iﬁp (HV t )

Jj+1 n

P~

< (mﬂ_HElw(Wt-k)l

j=1 m—lk cZ
E k;
Sllp ul,-;;,u.’"_],ﬁ}uj+1,.--,un
"‘[.a"]ER“_1 kEZ Y

—f(uli...,uj_l,tj, }+1:---:uﬂ)}¢j(wjtj — kj)‘:

u ;, being defined as w;; i= (Uy, .00, U g, Uy, ,u_). This gives the desired estimate.

It is known that the univariate Fejér-kernel F, of (2.2) and de la Vallée Poussin-kemnel
d, of (2.3) satisfy the assumptions of Theorem 3.1 upon the 1, and that there hold (cf. [8,

Section4.2;9;25) for fe C(R), 0 <a< 1,0 << 1,r € Ny,

1Sy f — fllery = @(W™) (W — 00) <= w(f;8) = (%) (§— 0+),

Sptf = fllary = @W™) (W — 00) <= w(Hf;8) =_C§i(5) (6 — O4+),

S f = fllowy = @WF) (W — 00) <= w,(f7;6) = O() (6§ - 04+),

where H f denotes the Hilbert transform or conjugate function of f in the sense of [1, p. 128].
If H f f denotes the one dimensional Hilbert transform applied to f € C(R ™) considered as
a function of the 7 -th variable, then one has by Theorem 3.1,

Lemma 3.2. a)If for f € C(R™") there exist constanis a; € (0,1]1,1 < j < m, such that

£t + he) — £()]|grny = @(A™%) (h —.0)

in case 0 <a; < 1, and

[(H, £)(t + he?) — (H, /) (D lgrn = Ch™) (b —0)
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incase a; = 1, then there exists a constant C > 0 such that

(3.2) 155 ~ fllomn < CY W, ™.
j=1

b) Let g € C(R™) be such that its partial derivative D"g € C(R") exists for some
r = (r,...,r,) € NG, and let there exist constants j3; € (0,1]1,0 < 5 < 1 such that

|| D% g(t + he()) — D”»“g(t)“cm.) = @(h~ %) forall 1 < j < n. Then there is a constant
C > 0 with

n —w—ﬁ~
(3.3) 1Sw g — gllorny <CY W, 77
j=1

A different application of Theorem 3.1 arises when using the following linear combinations of
translates of univariate B -splines M_, which can be defined in terms of their inverse Fourier
transform as (see [8, Section 4.3})

_ * /sinv/2 TEW{ )

Forre N,r > 2 letb
(Vandermonde type)

(r=D/2] | 1\ (29 1
(3.4) (-1)/ E bprpz'?:(Mn) (0) (j=0,1,...}|[ > ]])
p=0

Then

uro M = 0,1,...,r — 1 be the unique solutions of the linear system

[(r-1)/2]
1
(3.5) 9O =b, MO+ 5 > b AM((+p) + M((-w} (CER)
p=1

is a polynomial spline of degree » — 1, having support in the compact interval [—1/2 —(r—
1)/2,7/2+ (r — 1) /2], satisfying the assumptions of Theorem 3.1, as well as

(3.6) 1S% £ = fllory < Kyw, (Fi W™ (fFECR);W > 0),

(3.7) ”SI%Q —gllem) < KZW_THQ(T)”C(R) (ge C'(R); W >0)
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for some constants K, K, > 0O, independent of f,g and W . Estimate (3.7) 1s also valid if
only ¢g'™ but not g itself is bounded.

Particular examples of kernels constructed according to (3.4)/(3.5) are given by

P, () = M,(Q),

5

1
¥3(Q) = TM3(Q) — g{Ms(¢+ D + My (¢ - D),

s 1
¥4(Q) = g My(O) — =AM (C+ D+ My(C— D}

Lemma 3.3. Let v € IN" with r; > 2. Suppose that p(t) = H;;lqbrj(t}-) fort € R",
the 1,{:1,}, defined as in (3.4)/(3.5). Then there exist constants K, K, > 0 such that for all
WeR? feC(R™ andall g e C(R™) with D'g € C(R"),

(38) ”S‘E’f""fHC(R"] f‘; Kl 2 Sup wrj(f(ul,...,uj_l,-,uj,rl,...,un);f«{f}_]),

J=1 Y eR™!

(3.9) ISwg — 9”0{12*) < K, E W}_ i'-||J!:3"r*"§*‘|<::(11f"}-
7=1

The modulus of continuity above is the one-dimensional modulus as applied fo f as a function
of the j -th variable. The proof follows by Theorem 3.1 and (3.6)/(3.7).

4. CONVERGENCE THEOREMS WITH RATES FOR BANDLIMITED KERNELS
It is known in the univariate case that the approximation error of the generalized sampling
series (1.1) can be estimated from above and below by the error of the associated singular
convolution integral (2.1) (see [8, Section 4.2; 20; 21; 25]). Let us state the multivariate
version. Its proof will not be given as it can be taken over almost verbatim, using standard
multiindex notation.

Theorem 4.1. Let o € B with o(0) = 1. There exist contants ¢,,c, > 0, depending
only on @, such that

el f = fllow»y < IISWf = fllown < elllwf = fllgrn (f € C(R™); W € RY).

This theorem allows one to transfer practically all known results concernend with the approxi-

mation by convolution integrals to general sampling series.
Let us apply it in particular to the kernels ¢ equal to F,, 9. and b} defined in (2.2), (2.3),

(2.4), respectively. In case of Corollary 4.2 below we choose the vectors W and & such that
all of their components are equal; so these vectors will be identified with their components

W and o, respectively.
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Corollary 4.2. a) For f € C(R"),p = F_and 0 < a < 1 the following two assertions
are equivalent:

(1) 1S f = fllow» = E(W™) (W — 00),

(11) wy (f38) = &(8%) (6 —0+).

b)For f € C(R"),p =49 ,r € Ny and 0 < a < 1 the following two statements are
equivalent:

(1) ISw f — fllgw» = (W) (W — 00),
(ii) f € C"(R™) andforall j € N, |j| = r there holds

w, (D f;8) = @(8%) (&5 — 0+).

The proof follows by Theorem 4.1 and the fact that the corresponding results are true for the
n-dimensional singular convolution integrals Ij;, f with Fejér’s and de la Vallée Poussin’s
kernel, respectively. The implications (i) = (ii) for the two convolution integrals can be
shown iteratively using one dimensional results (cf. [22; 7, p. 149; 23]). The converse
implications are proved as in the univariate casc noting that F, and 4, are entire functions
of exponential type m, (cf. [7, p. 148] for the one dimensional proof, and [19, Chapter 3] for

the properties of entire functions of exponential type).

Corollary4.3. Let f € C(R™), 0 :=b1,7v > (n+3)/2 and 0 < a < 2. The following
statements are equivalent:

(1) 1SW f = fllown = (W 1% (W — o0),

(1) wy (f38) =&(|[8]l7)  ([a]l, — 0).

For the proof one makes use of Theorem 4.1 and the following lemma.

Lemma 4.4. For f € C(R™),p := b1,y > (n+3)/2 and 0 < o < 2 the following
statements are equivalent:

(1) [ Iw f — fllorm = A(||W[9) (W — 00),
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(i) wy (f3 8) =&(||8])  (]|8]l — 0.

Proof. Since b is symmetric with respect to the origin, i.e., bJ(u) = bJ(—u) for u € R",
one has for arbitrary t € R" (c¢f. [7 p. 142]),

1 n
P — ‘ — — W
(I £ () f(t)liz(m)“}uﬁﬁfnlf(t w) + f(t+u) = 2 f(1) [p(Wu) du

u u

=2(\/%“/H|f<t—w)+f(t+w) 2 £(t)|o(u)du

u

1 ‘ ~11| o
< 3 [ (i) etwdn < MW [ [mlcwas.

This gives the implication (ii) = (i), since the latter integral is finite in view of v > (n+3) /2.
For the converse one may again proceed as in the univariate case, b} being an entire function
of exponential type.

Observe that the investigations of the approximation theoretical behaviour of muitivariate
convolution integrals having radial kernels, such as b7, are not truly multidimensional; they
can be reduced to the univariate case using polar coordinates. However, this remark does not
apply to multivariate convolutions sums.

5. CONVERGENCE THEOREMS FOR BOX SPLINES

5.1. Properties of box splines; convergence theorems

In [6] it was shown that if for a function ¢ € C(IR™) the moment m, () (cf. (3.1)) is finite,
where the convergence of the infinite series is uniform on compact sets, and

(5.1) Y p(t—k)=1 (teR",

1
(V2m* 5.

then S%, is a bounded linear operator from C(R™) into itself with operator norm mg (),
and

(5.2) im ||S5f—fll.=0  (f€C(R™).

W —co

In this section it will be shown that this result can be applied to certain box splines, first
introduced in [3] (for their properties see [4; 5; 15; 16; 17; 10, Chapter 2; 2, §13]). The
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following definition is appropriate: Let A be an n x m-matrix with column vectors A €
z"\{0},u=1,2,...,m, and rk(A) = n. The box spline M, is then defined via

(5.3) [ Myt = [ g(Adx (g€ OR™)

1 1" : _ .
Q™ = [ 5 2] being the m -dimensional unit cube. Since M , is defined only a.e. by

(5.3), it is assumed that M, is continuous whenever possible. It follows that
(5.4) M,(t) >0 (teR™), supp(My,) = AQ™,

in particular, M, has compact support. If p = p(A) is the largest integer for which all

submatrices generated from A by deleting p columns have rank n, then M, € CPH(R™).

Further, the M , are piecewise polynomials, i.e., polynomial splines of (total) degree m — n.
Basic here is that the Fourier transform of M, is given by

1 -
MZ(v) = Hsin{: —Ev a,,
(V2m)™ 2 2m = ol

(5.5)

1 - v-A
= SINC - (v eR"),
(1 32 "?I') 7 H ( 2 T ) )
a,, denoting the entries of A. For further properties of the M, see the linerature cited above.

Thus, if p(A) > 1 and p(t) := (\/ﬂ)“Mﬂ(t), then ¢ € C(R™") has compact support,
and p*(0) = 1,0N27k) = 0 for k € z"\ {0}; the latter hold since the entries of A
are integers and rk( A) = n. By [6, La. 3.2] this is equivalent to (5.1); the conditions upon
mq () are satisfied automatically as ¢ has compact support. So (5.2) holds for this ¢, 1.e.,

Corollary 5.1. For o(t) = (V2m)"M ,(t) one has for each f € C(RT"),

_ 1 k
(5.6) Jim (m“wt_;EAme(W)MA(Wt k) — f(t) . 0.
Example 1. Choose integers m; > 2 for j = 1,2,...,n Definean nxm-matrix A = (a,,)
by a,, := 1 provided Z/7'm; < v < £ m;, and a,, := 0 otherwise, i.e.,
I ... 1.0 .. 0 ... 0 ... 0y
0O ... 01 ... 1 ...0 ...0

(5.7) e .

0 ... 0 1
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then {(V2m)"M  J1N(v) = H;Ll(.sinc(vj/%r))mf. Now (sinc(-/2m))" is just the Fourier
transform of the univariate B-spline M_ of degree r — 1. Hence by the uniqueness the-

orem for Fourier transforms, M ,(t) is now a product kernel, namely, (V2m)"M ,(t) =
H;Ll Mmj.(tj) , 1 € R™.

5.2. Convergence theorems with rates for box splines

As seen in Example 1, the box spline is a multivariate generalization of the univariate
B -spline. As observed in the univariate case, there hold convergence theorems with rates for
certain linear combinations of translates of such B -splines. These results can be transferred
by Lemma 3.3 to the multivariate setting in the case of the product of such linear combinations.
In particular, the ¢ in Lemma 3.3 can be chosen as a spline of degree n(r — 1) for which
the corresponding generalized sampling series approximates a function g € C"(R™) with
rate @(W~"). Our aim now is to generalize these results to more general box splines, even
to such of degree r — 1. For this purpose we need the following theorem established in [6].

Theorem 5.2. Let ¢ € C(R™) be such that m_(p) < oo for some r € N . If, additionally,
(5.1) holds and the moments

(5.8) E (t —k)Yp(t —k)=0

1
(V2m)™ KeZn

forallt e R™ j € Ng with0 < |j| <, then

D n
(59 1|s&g—g|tcgmf<w>§_j" oy (g ecrrmiw >0,
(5.10) 184 f = fllo < Mw (£; W) (f€C(R™); W >0).

Now, if ¢ is a finite linear combination of translates of a box spline, then ¢ compact support
so that m_( ) is finite automatically, and conditions (5.1) and (5.8) are, by [6, Lemma 3.2],
equivalent to

0, kez\{0
(5.11) D2 7k) = 4 W0 (0 < il < 7).
89, k=0

Next to the multivariate counterpart of the results of (3.4) - (3.7).
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Theorem 5.3. Let rm € N,r > 2 m > n+r— 1, and A be an n X m-matrix with

column vectors A, € Z"\ {0}, and p(A) > r — 1. Furthermore, let b, , with p € G =

{p EN|pl=0,2,...,2 |[

r— 1

ﬂ } be solutions of the linear system

(5.12) (~DBL N by, uY =DV (—’—,.,,—) 0) (veG,)
B €G, M

if there exist any. Then

1
(5.13) P4,,() 1= bo, My(t) + = Y by AM(t+ p) + My(t — p))
1 €G,\{0}

is a polynomial spline of degree m — m with compact support, (r — 2) times continuously
differentiable, and satisfying the assumptions of Theorem 5.2. In particular, the estimates

(5.9) and (5.10) hold for p(t) = p, (t).

Proof. The assertions regarding polynomial degree, smoothness and support foliow from the
corresponding properties of M ,. Concerning (5.1) and (5.8), we just have to verify (5.11).
Indeed, consider the Fourier transform of ¢, ., namely,

(5.14) O (V) = MA(YV) {bo,+ ) by, COS(ps - V) ¢ = MA(YV)p(V).
1 €G,\{0)

Then by (5.12) there results
|
e b =

s €G,

DYp(0) = (=DI¥I2 ¥ b, u¥ =D" (ﬁ)({l) (v €eG,\{0)}).
}£ €G,\{0)

If |[v| < r,v € N} \ G,, then |v| is odd, and DY p_(0) = 0 = D¥ (1/M7%)(0), since
M is symmetric in the origin by (5.5). So for j € N, [j| < 7 we have by the Leibniz rule

1 v -V 1
> (J)pmop (@)<U>

0wy ™7

Dph(0) = E (i)D”Mﬁ(U)DJ'"p(O) =

0<w<]

1
= D‘l (MEM_JQ) (0) = (Sjﬂ.
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Hence (5.11) follows for k = 0.
To show that Dy, (27k) = 0 forall k € z*\ {0},j € N§,0 < [j| < r, we will

show that 27k ,k # 0, is an r-fold zero of M#%. This would yield (5.11) in view of (5.14).
Now, by (5.5),

ME(Z‘;‘TI{) =

1 .
(m)nnmm(k A)).

=1

Here sinc(k -AJ.) = (0 ifandonly if k -Aﬂé (0 because the entries of A are integers. Since

p(A) > r—1, for fixed k € " \ {0} therc is at least one column A. among the first

I
m — (r — 1) columns of A such that k - A; # 0. Dcleting this one there is again a column

A; among the first m — (r — 1) columns of the remaining matrix for which k - A; #0.

This method yields at least r such columns of A, so that 2xk is an r-fold zero of M%. Thus
(5.11) is verified for k # 0, and the proof is complete.

As will have been observed, the existence of solutions of the linear system (5.12) 1S postu-
lated in Theorem 5.3. In fact, the authors assume that it would be quite difficult to establish the
existence and uniqueness of solutions of (5.12) (Y. However, this is easier for the following,
icss elegant linear combination of translates of a box spline. It will be stated for completeness.

Theorem 5.4. Letr m, A be given asinTheorem 5.3, and let b, _, up € N g with |u| < 7y =
20 (r — 1) /2] be the unique solutions of the linear system (Vandermond type)

L * 1 n
(5.15) (-DIM N by ¥ = DY <m>(0) (veNG; v < 7).
0<|BI<r, A

Then

¥ 1 *
0y, (t) 1= by, M,y(t) + > E b AMu(t + p) — My(t — p)}
0<|phl<r,

is a polynomial spline of degree m — n with compact support, (r — 2) times continuously
differentiable, and satisfying the assumptions of Theorem 5.2. In particular, the estimates
(5.9) and (5.10) hold for p(t) = ¢} (t).

The proof is similar to that of Theorem 5.3; concerning the existence and uniqueness of
the b;,r see, e.g., [11].

(1) The authors would like to thank Dr. R.A. Lorentz (Birlinghoven, St. Augustin) and their colleague Professor W.
Plesken (Aachen) for useful correspondence and discussion conceming this question.
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Above we have forced the uniqueness of the solutions b}, by requiring more conditions

than necessary. In fact, we only need, instead of (5.15),

1
(—1I¥V2 E b;hp" = DH¥ (m) (0) (v e Ng,|v| < 7y, |v]| even).
0<|f|<ro A

Note also that the choice of the translation vectors g was arbitrarty; the g in (5.12) could
just as well be replaced by /2 or more general vectors for which there exist solutions of the
associated linear system.

Example 2. With the choice m = n+ r — 1, A given by

1 2 3 m
(5.16) A=11 4 9 ... m* |,
\1 211.--1 311.—1 mn—l/

the methods of Theorems 5.3 and 5.4 yield polynomial splines of degree r — 1 satisfying the
assumptions of Theorem 5.2.

Example 3. Another possibility for the choice of A is the following: For a non-singular nx n-
matrix B with column vectors inz™ \ {0}, let B, := (BB ... B) be an r-fold repetition of
B. Since p(B,) = r — 1, this matrix satisfies the assumptions of Theorems 5.3 and 5.4 as
well. If, in particular,

1 O U\
| 0 1 ... 0
(5.17) B=FE:=1 1,
0 0 .. 1/

then My (t) = (V2m)"*II%, M,(%,), and Theorems 5.3 and 5.4 yield two types of linear

combinations of translates of this product kernel satisfying the estimates (5.9) and (5.10).

In cases like the last one, if M/} is symmetric in each variable, ie., if M}(vy,...,
uj_l,vj,ujﬂ,...,un) = MP(vy,... ,uj‘_l,—vj,uj”,...,uﬂ),l < j < m, there is a third
possibility for constructing such linear combinations, using a linear system even simpler than

(5.12).
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Theorem 5.5, Let r,m, A be given as in Theorem 5.3 such that, additionally, M} is sym-
metric in each variable. Further, let {:Frﬁ:?r p€ H ={pecNi0<|p<rtr =

[(r — 1) /21, be the unique solutions of the linear system

(5.18) (—1)VI E Curpzu = D%V (%) (0) (veH).
pBEH, 4
Then
(5.19) Xar(1) = co Ma(t) +27% 3 e > Mu(t+(p)

ped \{0} Ce{-1,1)

is a polynomial spline of degree m — m with compact support, (r — 2) times continuously
differentiable, again satisfying the estimates (3.9) and (5.10) for p(t) = x 4 . (t).

Proof. Conceming the existence and uniqueness of the Cy,r NOLE that (5.18) is also of Van-
dermond type and see €.g. [11]. Again we need just show that x , . satisfies (5.11). As above,

XA (V) = MA(Y) 3¢, +27% > o > exp ((—idp) - V)
BEHN{0}  (ef-1,1)n

=M£(v) Cor + E cu,Hms(mug = Mj(v)q(v).
BEH\{0} A=1 |

As in the proof of Theorem 5.3, 2wk is again an r-fold zero of M7} for all k # 0, so that
D'x’,(27k) =0 forall 0 < [j| < ry, k # 0. Further, there holds

1
Q(o) = E C“r = (M_j;) (0):

JEH,

and forj =2v,ve H \ {0},

DIg(0) = D*Yq(0) = (=1)¥I ¥~ ¢, u®¥ = D (%) (0).
BEH\{0} A

If j € N is not of the form j = 2w, i.e., j has at least one odd entry, then Dig(0) =0 =
DI( 1/M%)(0) because M} is symmetric in each variable. Thus Dig(0) = D-'(l/(Mj)({l)
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forj € NJ,0 < |j| € r—1; (5.11) now follows by the same argument as in the proof of

Theorem 5.3.
In case A = E_, defined via (5.17), we have at least three methods for constructing linear

combinations of translates of M, = M satisfying (5.9) and (5.10). First we can take the

product kernel o (t) := T1, 4, (¢,),t € R", and 4, as in Section 3. The second method
gives the kernel ¢ , . of Theorem 5.3, and the third the kernel x 4 . of Theorem 5.5. In case
r = 2 and arbitrary n € IN these different methods yield the same kernel, namely,

0, (1) = a2 (1) = x4, (1) = (V2m) "M, (t) = [[ My(2)) (t €R™).
j=1
Forn= 3,r = 3,4 these kernels read

3
5 1
o3 (1) =[] {4—M3(tj) — M, (1 + 1) + My (2 — 1)}}

j=1

19 1
0a3(t) = (V2m)’ {EMﬂ(t) — 5 {M4(t+(2,0,0)) + My(t = (2,0,0))
+M,(t+(0,2,0)) + M,(t —(0,2,0))+

S M, (t+(0,0,2)) + M,(t - (0,0,2))}}

1
X43(1) = (V2Zm)? {}Mﬂ(t) — S {M,(E+(1,0,0)) + My(t — (1,0,0))
+My(t+(0,1,0)) + My(t — (0,1,0)+

+M,(t+(0,0,1)) + M, (t — (0,0,1))}}
(4 1

pa(t) = H{EM'*“J) - g{l"ﬂ(i}- + 1) + My (¢, - 1)}}
j=1

oaa(t) = (VZT)? {gm(t) — o (Ma(t+(2,0,00) + My(t = (2,0,0)
+M4(t+(0,2,0) + My(t = (0,2,0)+

+M,(t+(0,0,2)) + M,(t - (0,0,2))}}
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1
Xa4(t) = (V2 {ZMA(t) — ={M(t+(1,0,0)) + My(t - (1,0,0))
+Mu(t+(0,1,00) + My(t - (0,1,0)+

+M,(t+(0,0,1)) + M,(t -—(0,0,1))}}.

All of these examples are polynomial splines of degree n(r — 1). Observe that whereas the
kernels o5, p, are of product type, none of the p, ., X 4 , are so.

Let us conclude with some examples of linear splines, so splines of minimal degree, in
two dimensions. These can be obtained by considering any of the two matrices,

1 0 1 1 1 1
A= B= .
0O 1 1 0 1 -1
Both satisfy the assumptions of Theorem 5.3. Further, B satisfies the assumptions of Theorem
5.5 as well. One has

9

0. (8) = 2w{§MA(t) — (Mt + (1,1) + Myt = (1,1)))

-—gla—{MA(t +(2,0)) + M,(t —(2,0))+

+M,(t+(0,2)) + M,(t — (0,2))}}

53

1
0, (1) = 2 {;@MB(U — 53 {Mp(t +(2,00) + Mg(t - (2,0))

_%{Mﬂ(t +(0,2)) + Mg(t — (0,2))}}

1
Xp, (1) = 2 {%Mﬂ(t) - S{Mp(t+(1,0) + My(t = (1,0)))

—-1—12-*{1’%3(t +(0,1)) + Mg(t — (0, 1))}-} :

It would of course be possible to give concrete examples of linear splines in arbitrary dimen-
sions by using matrices of this type. One may also employ A of (5.16) withm = n+ 1.
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