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THE REPRESENTATION THEOREM
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Dedicated to the memory of Professor Gotlfried Kothe

1. INTRODUCTION

Representing the solutions of partial differential equations by integrals over function space has
been done for various problems. In quantum mechanics, Feynman solved the Schroedinger
equation in this way, see [5]. Mark Kac used integrals over Brownian paths to represent solu-
tions of a generalized Fokker-Planck equation with particle birth and death, see [7]. Function
space integrals with respect to Brownian paths have been considered by Wiener, [12] and
Friedricks, [6]. Ito in [8], introduced path descriptions of Markov diffusion processes, sto-
chastic differential equations, with these processes having probability distributions satisfying
generalized Fokker-Planck equations. In the early 60’s, Stratonovich derived a non-linear par-
tial differential driven by stochastic term governing the evolution of the conditional density
of the signal given the observations for the nonlinear filtering problem, see [10]. Controversy
arose over the form of the stochastic driving term in this equation which hinged on the sto-
chastic calculus used. In [1], Bucy proposed a solution to a version of the Stratonovich partial
differential equation valid for the Ito calculus as a function space integral with respect to the
signal process paths. This result was known as the representation theorem. Proofs were given
for the representation theorem in [2], [3] and [9]. Duncan in his thesis, [4], resolved the statis-
tical testing problem for processes using the representation theorem. This theorem was used
to synthesize nonlinear filters with digital computers, see [2]. In this paper, we will derive the
discrete time version of the representation theorem. It 1s interesting to do this, as the details
are less technical than in the continuous time case. Further some interesting connections with
Statistical Mechanics are apparent when this is done. Integrability conditions for systems of
partial differential equations are used to characterize the solution of the nonlinear filtering
problem. In the special case of the linear gaussian filtering problem, this characterization
coincides with the Krein-Bellman equation.

2. THE FILTERING AND DECISION PROBLEM

Let v, be an s-vector valued gaussian discrete time white noise process, thatis Ev, = 0

and Fv v, = rlb the noise process. Let z(n) be a discrete parameter d-vector valued

nm
stochastic process independent of v,, the signal process. Let h : B* — RE° be a measurable
function satisfying E|lh(:1:(n))||2 < oo for all n, h is called the sensor. The observation
process is z(n) = h, + v,, where h, = h(z(n)). Let 2™ be the vector with components 2
for ; < m. There are two problems associated with this model;
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1) The Filtering Problem, estimate z(n) given [2(1)];_, 1, .1 SO as to minimize an
appropriate loss function.

2) The Decision Problem, decide between the hypotheses Hy @ 2(n) = h, + v, and
H, : z(n) = v,, where we assume;

A, : The densities under H, and H, are known twice continuously differentiable func-

tions of z;.
We denote by £ the likelihood ratio,

Py (2")
1 oo 0
( ) 1 le (zﬂ)

where 2(k) = h, + v, and by
(2) hys = Ehy|2"

the condition expectation of the sensor.

Lemma 1.
(3) Fn = B (e

where

- 1
FH, =B [(h2(1) — 5(hy k)]
1=1

. L 1
* denotes that 2™ is fixed and the expectation is over z(.) and 8= —.
T

Proof. The relation between the joint and marginal densities yields,

py (27) i f
4 wn — a — ﬂ; " A"
(4) 1 Dy (2™) 3% (z™) p;;n(z z°)d

or

1 ni_n n 1 o ] ]
pH,(zﬂ) ./-P(E T )P(HI ) = P}{i(z“) /PHI( h )p(:c Ydx

which in tum equals;

(5) f exp(F ) p(z") dz”

The above integral is finite as the integrated is bounded by an almost surcly finite function.
Let g;),, be the conditional expectation of g(z;) given (2(1));-; , when it exists.
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Lemma 2.

(6) hynZT = E*(he®r)

Proof.
- nl.n p(z",2") | ,

(7) hijn = f h.p(z™|2")dz™ = /h (2 dx
BN o [ P
I pH(z — h™) E*(he® )

h 1 ! d 'I"l= 1 -

Remark Equations (7) - (9) hold for arbitrary 7 and n. When E(g(z;)) < oo, itis easily
seen from the above proof that Eﬂﬂ.‘iﬁ"} = E*(g(z,) eﬁn) .

We introduce the innovations process, I, = z(k) — h Klk—1 and assume that;

A, : The o field induced by the innovations I* is identical to that induced by z* for any

k.
Lemma 3.
9% ", R,
(10) “=,B(hk+z h
ol S 9k
fork<n+1.

Proof. This follows by direct computation.
Now using the Lemma, since differentiation can be interchanged with expectation for 2"

F
fixed, in the expression E™( e » ) as 88 7 = e‘%ﬂ is integrable with respet to the measure on
k

™, it follows that;

aigf“ z afhh.l‘“ n
(11) a1 ) _ﬁ(hk|n+ E 6Ik : )gl

i=k+1

Now (11) is a system of partial differential equations for log( #£7), and assuming log(.£7)
is C? then the well known integrability conditions yields.



170 R.S. Bucy

lllll

(12) Paws + D BhiketioPipms + U5 (k) Bk 1850 Pk
k=a+1

T T T maz(a,b T T

(13) = hgjna * Z hlm_l;ahk[ma + U™ (k) hL|k-1;u;bhk|n
k=b+1
ag”n a :

where Tk = 57 and U%(k) = 1 for k > a and 0 otherwise.

k

Notice that E”ni = 1,...,n is the least amount of information necessary to solve the

filtering problem. In the special case where h is a linear function of the state, =, and z, and
v, are gaussian, it is easy to see that;

(14) hy = B(h|L, ..., 1) = E(hll;, ..., L)) + EChylI, ... 1)
where k < n.
Or
ahr,]qu _ 3h1|n
aI,  dI,

for k < . This leads to the Krein-Bellman equation;

maz(l,k)
Ohy,  Ohy, LB 2‘: o, dhjp,
01} o3 imminl k)41 al, JI,

where p(a,b) = 1 if b > a and —1 otherwise.

e

Example. In this linear gaussian case in fact h, ., = C, ,, constants, so that;

Cap — Cb,n = p(a,b) E C;;,uck.b
k=min(a,b)+1

In this case we can evaluate £’} explicitly. Denote by s;, an then

"= Eh*2" (Bz"2"%) 2" = K(K # r)"12% = B(BI + K~1)~1 2™
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where K = E(h™h"™). Now it easy to evaluate &} since;

~jiami2

n _ t.%ﬂ= 1
(15) £l =E"e 2 Fdet(K) /e

- 1 ;1”’“"1;:;14:)—1 _ e
~ det(I + BK) ~ det(I + BK)

(16)

g E (‘zl" ?lﬂn)
€

1=1

(17) " det(I + BK)

plem iy, — 522D
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The log Likelihood ratio log( £’}) is the test statistic to decide the decision problem, see [4].

3. CONCLUSIONS

We derive a new characterization of the discrete time nonlinear filtering under smoothness
assumptions on the densities. In the linear gaussian case these yield well known relations.
It would be interesting to find other cases where £}, the analog of the partition function
in statistical mechanics can be evaluated explicitly. In general, when the free energy, F' =
rlog(£'7) is known, the entropy and the internal energy can be found by differentiation, see

[11].
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