ON DIFFERENT TYPES OF NON-DISTINGUISHED FRÉCHET SPACES

J. BONET, S. DIEROLF, C. FERNÁNDEZ

Dedicated to the memory of Professor Gottfried Köthe

A Fréchet space F is called distinguished if its strong dual F_b' is barrelled or, equivalently, bornological. This means that the canonical representation of F as the (reduced) projective limit $\operatorname{proj}_{-n}F_n$ of Banach spaces F_n leads to the representation $\operatorname{ind}_{n-}F_n'$ of F_b' as the inductive limit of the dual spectrum $(F_n')_n$. Thus, in some sense, distinguishedness of a Fréchet space prevents some «pathology»; and it may be for that reason that Dieudonné, Schwartz and Grothendieck introduced this notion. On the other hand, recent examples of Taskinen [11] and Bonet-Taskinen [7] show that some natural Fréchet spaces of analysis like $C^\ell(\Omega) \cap L^1(\Omega)$ are not distinguished, and hence it appears natural to study the class of the non-distinguished Fréchet spaces in more detail.

The first classical examples of non-distinguished Fréchet spaces are due to Grothendieck-Köthe and Komura, respectively. The Köthe-Grothendieck example was an echelon space $\lambda_1(A)$ on $\mathbb{N} \times \mathbb{N}$. The distinguishedness of $\lambda_1(A)$ in terms of the Köthe matrix A was finally characterized by Bierstedt and Bonet [2] based on previous work by Bierstedt and Meise [3]; see also Vogt [13] for a short proof. This characterization allowed Bastin and Bonet [1] to show that all non-distinguished echelon spaces $\lambda_1(A)$ share the bad behaviour of the Köthe-Grothendieck example, that there exists a locally bounded linear form on $\lambda_1(A)_b'$ which is not continuous.

Komura's example of a non-distinguished Fréchet space differs from the previous one: He exhibited a Fréchet space F for which each locally bounded linear form on F_b' is continuous, but which is nonetheless not distinguished [9]. Not too many examples of this type were known. (However, see [12] for a related example.)

In this paper, we investigate new examples of non-distinguished Fréchet spaces and determine their type of non-distinguishedness in the above sense. We first concentrate on the so-called spaces of «Moscatelli-type». In a second part, we consider sequence spaces and function spaces and, among other things, classify the examples previously given by Bonet and Taskinen [7]. Although we mainly concentrate here in the presentation and analysis of examples, we also expect that our study provides a better understanding of non-distinguished Fréchet spaces.

NOTATIONS AND TERMINOLOGY

Given a dual pair (E, F), we denote by $\sigma(E, F)$, $\mu(E, F)$ and $\beta(E, F)$ the weak, the Mackey and the strong topology, respectively. For a locally convex space E, let E^* denote its algebraic dual and E' its topological dual. $\mathcal{U}_0(E)$ will be the filter of all 0-neighbourhoods

in E and $\mathscr{B}(E)$ will be the collection of all absolutely convex bounded subsets in E. $E^{\#}$ will stand for the set of all locally bounded linear forms on E, i.e.,

$$E^{\#} := \{ u \in E^*; u(B) \text{ is bounded } \forall B \in \mathcal{B}(E) \}.$$

Recall that for a metrizable locally convex space E the bornological topology associated with $\beta(E',E)$ coincides with $\beta(E',E'')$.

Observe that for a Fréchet space E one has $(E_b')' = (E_b')^{\#}$ if and only if $(E', \mu(E', E''))$ is barrelled or, equivalently, bornological. This property is inherited by complemented subspaces and countable products.

In the original example of Komura, the topology $\beta(E',E)$ is strictly coarser than $\mu(E',E'')$ which coincides with $\beta(E',E'')$, whereas in the Köthe-Grothendieck example $\mu(E',E'')$ is strictly coarser then $\beta(E',E'')$.

For the structure theory of locally convex spaces we refer to Köthe [10].

First, we concentrate on Fréchet spaces of Moscatelli type. They were introduced and studied by Bonet and S. Dierolf [6]. Since we are interested in non distinguished spaces, the most relevant case occurs when $L=\ell^1$, i.e., when $L'=L^x=\ell^\infty$. Let us recall the definition.

Let $(X_k, r_k)_{k \in \mathbb{N}}$, $(Y_k, s_k)_{k \in \mathbb{N}}$ be two sequences of Banach spaces with unit balls A_k and B_k , respectively, let $f_k: Y_k \to X_k (k \in \mathbb{N})$ be a linear map with dense range such that $f_k(B_k) \subset A_k$. The Fréchet spaces of Moscatelli type associated with $\ell_1, f_k: Y_k \to X_k (k \in \mathbb{N})$ is defined by $F := \operatorname{proj} \ell_1((Y_k)_{k < n}, (X_k)_{k \ge n})$, where the linking maps are determined by $f_n: Y_n \to X_n$ and the identity in the other coordinates. According to [6], F is distinguished if and only if there is $n \in \mathbb{N}$ with f_k surjective for $k \ge n$.

We first characterize those spaces presenting the same pathology as the Köthe-Grothen-dieck example. We give a general lemma whose proof is based on the original argument by Grothendieck. This result shows that Grothendieck's proof for $\lambda_1(A)$ is optimal.

Lemma 1. Let E be a quasibarrelled l.c.s. The following statements are equivalent: (i) $E'' \not\subset (E')^{\#}$,

- (ii) there is a filter $\mathcal F$ in E such that
 - (a) $\forall U \in \mathcal{U}_0(E), \exists \rho_u > 0 : \rho_u U \in \mathcal{F}$
- (b) $\forall B \in \mathcal{B}(E) \exists V_B \text{ closed 0-neighbourhood in } (E, \sigma(E, E')) \text{ such that } E \setminus (B + V_B) \in \mathcal{F}.$

Proof. (i) \Rightarrow (ii) Let $\varphi \in (E')^{\#} \setminus E''$ be given. We put $\mathscr{G} := \{E \cap (\varphi + V^{\sigma(E'^{\#},E')}); V \text{ is an absolutely convex zero neighbourhood in } (E, \sigma(E, E'))\}$. Since $V^{\sigma(E'^{\#},E')} + \varphi$ is a neighbourhood of φ in $(E'^{\#}, \sigma(E'^{\#}, E'))$ and E is dense in this space, \mathscr{G} is a filter basis on E.

Now let $B \in \mathcal{B}(E)$ be given. Since $\varphi \notin \overline{B}^{\sigma(E'',E')}$, there is $W \in \mathcal{W}_0(E'^{\sharp}, \sigma(E'^{\sharp}, E'))$ such that

$$(\varphi + 2W) \cap B = \emptyset.$$

Thus $(\varphi + W) \cap (B + W) = \emptyset$, which proves that

$$(\varphi + W) \cap E \subset E \setminus (B + W)$$

and we may conclude that $E \setminus (B + W) \in \mathcal{G}$.

Now let $U \in \mathcal{U}_0(E)$ be given. Since φ is bounded on U^o , there is $\rho_U > 0$ with $|\varphi(u)| < \rho_U$ for all $u \in U^o$.

We claim that for any absolutely convex and $\sigma(E,E')$ -closed elements U_1,\ldots,U_n of $\mathscr{U}_0(E)$ and for any $V\in\mathscr{S}$ we have

$$\left(\bigcap_{k=1}^n 2\,\rho_{U_k}U_k\right)\cap V\neq\emptyset.$$

Clearly V can be written as $V=(\varphi+W)\cap E$ with W in $\mathscr{U}_0((E'^\sharp,\sigma(E'^\sharp,E')))$, and we may assume without loss of generality that W is $\sigma(E'^\sharp,E')$ -open. Hence $\varphi+W$ is a neighbourhood of φ in $(E'^\sharp,\sigma(E'^\sharp,E'))$. On the other hand, $2\rho_{U_j}\overline{U}_j^{\sigma(E'^\sharp,E')}$ is a neighbourhood of φ in $(E'^\sharp,\beta(E'^\sharp,E'))$. Therefore,

$$(\varphi + W) \cap \left(\bigcap_{1 \leq j \leq n} 2 \rho_{U_j} \overline{U}_j^{\sigma(E'^*, E')}\right) \neq \emptyset,$$

and this set is a neighbourhood of φ in $(E'^{\#}, \beta(E'^{\#}, E'))$. Assume that

$$(\varphi+W)\cap E\cap \left(\bigcap_{1\leq j\leq n}2\,\rho_{U_j}U_j\right)=\emptyset\,.$$

 $(\varphi+W)\cap E$ is a convex, open set in E with the relative $\sigma(E'^{\sharp},E')$ - topology, i.e., in $(E,\sigma(E,E'))$ and $\bigcap_{1\leq j\leq n}2\,\rho_{U_j}U_j$ is convex and $\sigma(E,E')$ -closed. Using Hahn-Banach's separation theorem, we find f in E' such that

$$\left| \int_{1 \le j \le n} 2 \rho_{U_j} U_j \right| \le 1$$

$$|f_{\left|(\varphi+W)\cap E}|>1$$

We extend f by density to a continuous linear form $\tilde{f}:(E'^{\sharp},\sigma(E'^{\sharp},E'))\to \mathbb{K}$, hence

$$\left| \widetilde{f} \left(\bigcap_{1 \leq j \leq n} \rho_{U_{j}} U_{j} \right)^{ooE'^{\sharp}} \right| \leq \frac{1}{2},$$

$$\left| \widetilde{f} \left| \overline{(\varphi + W) \cap E} \sigma(E'^{\sharp}, E') \right| \geq 1.$$

Since E is $\sigma(E'^{\#}, E')$ -dense and W is $\sigma(E'^{\#}, E')$ -open, $\overline{(\varphi + W) \cap E}^{\sigma(E'^{\#}, E')} = (\varphi + W)$. On the other hand, as all the U_{i}^{o} are $\sigma(E', E)$ -compact,

$$\bigcap_{1 \leq j \leq n} \rho_{U_j} \overline{U}_j^{\sigma(E'^\#, E')} = \bigcap_{1 \leq j \leq n} \rho_{U_j} U_j^{ooE'^\#} = \left(\bigcup_{1 \leq j \leq n} \frac{1}{\rho_{U_j}} U_j^o \right)^{oE'^\#} = \left(\bigcap_{1 \leq j \leq n} \frac{1}{\rho_{U_j}} U_j^o \right)^{oE'^\#} = \left(\bigcap_{1 \leq j \leq n} \rho_{U_j} U_j \right)^{ooE'^\#}$$

Therefore

$$|\tilde{f}| \bigcap_{1 \le j \le n} \rho_{U_j} \overline{U}_j^{\sigma(E'',E')}| \le \frac{1}{2},$$

$$|\tilde{f}|_{(W+\varphi)} \ge 1$$

which contradicts the fact that

$$(\varphi+W)\cap\left(\bigcap_{1\leq j\leq n}\rho_{U_j}\overline{U}_j^{\sigma(E''',E')}\right)\neq\emptyset.$$

Thus the claim is proved. Now we put

$$\mathscr{F} \coloneqq \left\{ V \cap \left(\bigcap_{1 \leq j \leq n} 2 \, \rho_{U_j} U_j \right) : V \in \mathscr{G}, U_j \in \mathscr{U}_0(E), 1 \leq j \leq n, n \in \mathbb{N} \right\} \; .$$

Then \mathcal{F} is a filter basis on E satisfying (a) and (b).

(ii) \Rightarrow (i) Let \mathscr{W} be an ultrafilter finer than \mathscr{F} . Since every $f \in E'$ belongs to the polar of some $U \in \mathscr{U}_0(E)$, it follows that $\{f(u): u \in \rho_U U\}$ is bounded in \mathbb{K} and, consequently, $\mathscr{W}(f)$ converges in \mathbb{K} . Therefore \mathscr{W} converges in $\sigma(E'^*, E')$ to some $\varphi \in E'^*$. Since $|\varphi|_{U^o}| \leq \rho_U$ for all $U \in \mathscr{U}_0(E)$ and E is quasibarrelled, the linear form φ is in E'^{\sharp} .

On the other hand $\varphi \notin E$ ". In fact, assume φ is in E". Then there exists $B \in \mathscr{B}(E)$ such that $\varphi \in \overline{B}^{\sigma(E^{\text{\tiny{"}}},E')}$. Whence

$$\left(\varphi + \frac{1}{2}V_B^{\infty}\right) \cap \left(E \setminus \left(B + V_B\right)\right) \neq \emptyset$$

and $\varphi \in B + \frac{1}{2}V_B^{oo}$. Let $x \in E \setminus (B + V_B)$, $x \in \varphi + \frac{1}{2}V_B^{oo}$ be given. Then

$$x \in \left(B + \frac{1}{2} V_B^\infty + \frac{1}{2} V_B^\infty\right) \cap E \subset \left(B + V_B^\infty\right) \cap E.$$

Therefore $x \in (B + V_B^{\infty}) \cap E = B + V_B$, a contradiction.

Proposition 2. Let F be the Fréchet space of Moscatelli type associated with ℓ_1 , $f_k: Y_k: \to X_k (k \in \mathbb{N})$.

Suppose that for all $k \in \mathbb{N}$ there exists a sequence $(u_{kj})_{j \in \mathbb{N}}$ in X'_k such that $r'_k(u_{kj}) = 1$ for all $j \in \mathbb{N}$ and $\lim_{j \to \infty} s'_k(f^t_k(u_{kj})) = 0$ (i.e., F is not distinguished). Moreover, we assume that for every $n \in \mathbb{N}$

$$\{x \in Y_k | r_k(f_k(x)) \le 1, |u_{kj}(f_k(x))| \ge 1, 1 \le j \le n\} \neq \emptyset.$$

Then $F'' \not\subseteq F'^{\#}$.

Proof. It is enough to construct a filter basis on F satisfying (a), (b) of Lemma 1. Given $n \in \mathbb{N}$ and $(j_k)_{k \in \mathbb{N}} \in \mathbb{N}^{\mathbb{N}}$ we put $M(n,(j_k)_{k \geq n}) := \bigcup_{k \geq n} \{(x\delta_{k\ell})_{\ell \in \mathbb{N}}; x \in Y_k, r_k(f_k(x)) = 1 \text{ and } |u_{kj}(f_k(x))| \geq 1, 1 \leq j \leq j_k\}$. Then

$$\{M(n,(j_k)_{k>n}): n \in \mathbb{N}, (j_k)_{k>n} \in \mathbb{N}^{\mathbb{N}}\}$$

is a filter basis \mathcal{F} on F. Next we will check that \mathcal{F} satisfies (a) and (b).

(a) It is enough to see that

$$\forall \sigma > 0 \ \forall n \in \mathbb{N} \ \left(\prod_{k < n} \sigma B_k \times \prod_{k \ge n} Y_k \right) \cap F \ \text{and}$$

$$F \cap \left\{ \left(y_k \right)_{k \in \mathbb{N}} \in \prod_{k \in \mathbb{N}} Y_k : \sum_{k \in \mathbb{N}} r_k \left(f_k \left(y_k \right) \right) \le 1 \right\}$$

belong to \mathcal{F} .

For the first one, we observe that given $m \ge n$ and $(y_k)_{k \in \mathbb{N}} \in M(m,(j_k)_{k \ge m})$, $y_k = 0$, $1 \le k < n$, hence

$$(y_k)_{k \in \mathbb{N}} \in \left(\prod_{k < n} \sigma B \times \prod_{k \ge n} Y_k\right) \cap F.$$

For the second type of zero-neighbourhoods, we take $(j_k)_{k\in\mathbb{N}}$ arbitrary. Given y in $M(1,(j_k)_{k\in\mathbb{N}})$, we find $k\in\mathbb{N}$ such that $y=(x\delta_{k\ell})_{\ell\in\mathbb{N}}$ with $r_k(f_k(x))\leq 1$, hence $y\in F\cap\{(z_k)_{k\in\mathbb{N}}:\sum_{k\in\mathbb{N}}r_k(f_k(z_k))\leq 1\}$.

To check condition (b), we have to show that for every $B \in \mathscr{B}(E)$ there is a closed zero-neighbourhood V_B in $\sigma(F, F')$ such that $F \setminus (B + V_B)$ is in \mathscr{F} .

Given B bounded in F, we find a sequence of positive real numbers, $(\lambda_k)_{k\in\mathbb{N}}$, such that

$$\sup \{s_k(y_k) : y = (y_k)_{k \in \mathbb{N}} \in B\} \le \lambda_k \text{ for all } k \in \mathbb{N}.$$

Since $\lim_{j\to\infty} s_k'(f_k^t(u_{kj})) = 0$ for all $k \in \mathbb{N}$, there is $j_k \in \mathbb{N}$ such that

$$s_k'(f_k^t(u_{kj})) < \frac{1}{4\,\lambda_k} \text{ for all } j \geq j_k \text{ and all } k \in \mathbb{N}\,.$$

We define $v:=(2\,u_{kj_k})_{k\in\mathbb{N}}\in\ell_\infty((X_k',r_k')_{k\in\mathbb{N}})\subset F'$, and we put $V_B=\{v\}^o$. Then V_B is a closed zero-neighbourhood in $\sigma(F,F')$. We will see that $F\setminus (B+V_B)\in \mathscr{F}$. Let $y\in M(1,(j_k)_{k\in\mathbb{N}})$ be given. Then, there is $k\in\mathbb{N}$ such that $y=(\delta_{k\ell}x)_{\ell\in\mathbb{N}}$, where $x\in Y_k$, $r_k(f_k(x))=1$ and $|u_{kj}(f_k(x))|\geq 1$, $j\leq j\leq j_k$. If we assume $y\in B+V_B$, then y=b+w, with $b\in B$, $w\in V_B$, and we may suppose $b_\ell=0$, $w_\ell=0$ for all $\ell\neq k$. Then

$$\begin{aligned} 2 &\leq |v_k(f_k(x))| = |v_k(f_k(b_k + w_k))| \leq \\ &\leq 2|u_{kj_k}(f_k(b_k))| + |v_k(f_k(w_k))| \leq 1 + 2\frac{2}{4\lambda_k}\lambda_k = \frac{3}{2}, \end{aligned}$$

a contradiction. Therefore

$$M(1,(j_k)_{k\in\mathbb{N}})\cap (B+V_B)=\emptyset$$

and we are done.

Corollary 3. Let F be a Fréchet space of Moscatelli type associated with ℓ_1 , $f_k: Y_k \to X_k (k \in \mathbb{N})$. In each of the following cases there is a linear form $f: F'_b \to \mathbb{K}$ bounded on the bounded sets but not continuous:

- (1) $Y_k = \ell_1(a_k)$, $X_k = \ell_1$, $\lim_{i \to \infty} a_k(i) = \infty$, $f_k : Y_k \to X_k$ the canonical injection,
- (2) $Y_k = c_o(a_k)$, $X_k = \ell_1$, $\sum_{i \in \mathbb{N}} a_k(i)^{-1} \le 1$, $f_k : Y_k \to X_k$ the canonical injection,
- (3) $Y_k = L^p[0,1]$, $X_k = L^1[0,1]$, $1 , <math>f_k : Y_k \to X_k$ the canonical injection.

Moreover, $E = C(\mathbb{R}) \cap L^1(\mathbb{R})$ is also of the same type because it contains a complemented subspace of type (2) (cf. [11]).

Proof. It is enough to see that the hypothesis in Proposition 2 holds:

(a) We have $(Y_k,s_k)=\ell_1(a_k)$, $(X_k,r_k)=\ell_1$, with $\lim_{i\to\infty}a_k(i)=\infty$. Then $(X_k',r_k')=\ell_\infty$, $(Y_k',s_k')=\ell_\infty(v_k)$, where $v_k=a_k^{-1}$. We put $u_{kj}=((0)_{i< j}),(1)_{i\geq j})\in \ell_\infty=(1,0)$. Hence $r_k'(u_{kj})=1 \ \forall j\in \mathbb{N}$ and $\lim_{j\to\infty}s_k'(u_{kj})=0$. Moreover, for all $n\in \mathbb{N}$

$${x \in Y_k : r_k(x) = 1, |u_{kj}(x)| \ge 1, 1 \le j \le n} \supset {e_i : i > n}$$

- (b) We may take u_{kj} as in (a).
- (c) Now, we have $(Y_k, s_k) = L^p[0, 1]$, $(X_k, r_k) = L^1[0, 1]$. Then $X'_k = L^\infty[0, 1]$, $Y'_k = L^q[0, 1](p^{-1} + q^{-1} = 1)$.

We select $\alpha_k > 0 (k \in \mathbb{N})$ with $\sum_{\ell=1}^{\infty} \alpha_{\ell} < 1$, and a sequence of intervals $\{J_{\ell}\}_{\ell \in \mathbb{N}}$ such that $J_{\ell} \subset [0,1]$, $J_{\ell} \cap J_{\ell'} = \emptyset$ if $\ell \neq \ell'$ and $\mu(J_{\ell}) = \alpha_{\ell}$. We put

$$u_{kj} = \sum_{\ell=1}^{\infty} \chi_{J_{\ell}} \in L^{\infty}[0,1], \text{ and } r'_{k}(u_{kj}) = \text{ess sup } |\sum_{\ell=j}^{\infty} \chi_{J_{\ell}}| = 1$$

but

$$s_k'\left(u_{kj}\right) = \left[\int_0^1 |u_{kj}|^q\right]^{1/q} = \left(\sum_{\ell=j}^\infty \int_0^1 \chi_{J_\ell}^q\right)^{1/q} = \left(\sum_{\ell=j}^\infty \alpha_\ell\right)^{1/q}$$

and this tends to zero. Hence

$$\{x \in L^p[0,1]; r_k(x) = 1, |u_{kj}(x)| \ge 1, 1 \le j \le n\} \supset \{\alpha_\ell^{-1} \chi_{J_\ell}; \ell > n\}.$$

Next, we give examples of non-distinguished Fréchet spaces of Moscatelli type with the same behaviour as Komura's example. Before we go on, let us introduce some notations. Let f be the Fréchet space of Moscatelli type with respect to ℓ_1 , $f_k: (Y_k, s_k) \to (X_k, r_k)$ ($k \in \mathbb{N}$), where f_k has dense range. Then for all $k \in \mathbb{N}$, the transpose $f_k^t: (X_k', r_k') \to (Y_k', s_k')$ is injective and maps the unit ball A_k' of (X_k', r_k') into the unit ball B_k' of (Y_k', s_k') . Thus we may form the (LB)-space of Moscatelli type with respect to ℓ_∞ , $(Y_k', s_k')_{k \in \mathbb{N}}$. $(X_k', r_k')_{k \in \mathbb{N}}$, $E := \operatorname{ind} E_n$, where $E_n := \ell_\infty((Y_k')_{k < n}, (X_k')_{k \ge n})$ and we may also consider the projective limit $E = \operatorname{ind} \ell_\infty((Y_k')_{k < n}, (X_k')_{k \ge n})$. Given $\delta > 0$ and $\epsilon_k > 0 (k \in \mathbb{N})$, the inductive limit $E = \operatorname{ind} \ell_\infty((Y_k')_{k < n}, (X_k')_{k \ge n})$. Given $\delta > 0$ and $\epsilon_k > 0 (k \in \mathbb{N})$, the

Minkowski functional of $\varepsilon_k B_k' + \delta A_k'$ is denoted by $p_{\varepsilon_k,\delta}$ and it is a norm on Y_k' equivalent to s_k' . Then \check{E} is the projective limit

$$\check{E} := \bigcap_{\delta, (\varepsilon_k)} \ell_{\infty}((X_k, p_{\varepsilon_k, \delta})_{k \in \mathbb{N}}).$$

The (LB)-space F is continuously injected in \check{E} and \check{E} is a complete (DF)-space. Since in this case E is regular, E and \check{E} coincide algebraically. A basis of 0-neighbourhoods of \check{E} is given by the sets

$$\left(\prod_{k\in\mathbb{N}}\varepsilon_k B_k' + \delta \mathcal{B}_1\right) \cap \check{E}\varepsilon_k > 0, \delta > 0$$

where \mathcal{B}_1 is the unit ball of E_1 .

Proposition 4. Let F, E and \check{E} be as before. The following conditions are equivalent:

- (i) $E' = (\check{E})'$,
- (ii) $\forall g \in E_1'$, $g|_{\bigoplus_{k \in \mathbb{N}} Y_k'} = 0$, $\exists \varepsilon_k > 0 (k \in \mathbb{N})$ such that g is bounded on

$$\left(\prod_{k\in\mathbb{N}}\varepsilon_kB_k'\right)\cap E_1.$$

Proof. (ii) \Rightarrow (i). Fix $f \in E'$. Since E and \check{E} induce the same topology on $\bigoplus_{k \in \mathbb{N}} Y'_k$ (cf. [5, 3.]), $f|_{\bigoplus_{k \in \mathbb{N}} Y'_k}$ is continuous for the topology induced by \check{E} . Applying Hahn-Banach's extension theorem, there is $h : \check{E} \to \mathbb{K}$ linear and continuous such that $h|_{\bigoplus_{k \in \mathbb{N}} Y'_k} = f|_{\bigoplus_{k \in \mathbb{N}} Y'_k}$. Now, f = (f - h) + h. We have $g := (f - h)|_{E_1} \subset E'_1$, $g|_{\bigoplus_{k \in \mathbb{N}} Y'_k} = 0$. By condition (ii), there are $\varepsilon_k > 0$ ($k \in \mathbb{N}$) such that $|g(x)| \leq 2^{-1}$ for every $x \in (\prod_{k \in \mathbb{N}} \varepsilon_k B'_k) \cap E_1$. On the other hand, there is $\delta > 0$ such that $|g(x)| \leq 2^{-1}$ if $x \in \delta \prod_{k \in \mathbb{N}} A'_k$.

Now $U:=(\prod_{k\in\mathbb{N}}\varepsilon_kB_k'+\delta\prod_{k\in\mathbb{N}}A_k')\cap E$ is a zero-neighbourhood in \check{E} . Moreover, if $x\in U$, there is $n\in\mathbb{N}$ with $x\in E_n$, hence x=y+z, $y\in \oplus_{k=1}^{n-1}Y_k'$, $z\in E_1$, $z_k=0$, $1\leq k< n$. Then

$$(f-h)(x) = (f-h)(y+z) = (f-h)(y) + (f-h)(z) = g(z).$$

But $z_k = 0$, $1 \le k < n$, $z_k \in \varepsilon_k B_k' + \delta A_k'$, $k \ge n$. Thus $|g(z)| \le 1$. Consequently, $|(f-h)(x)| \le 1$, hence, f-h is also \check{E} -continuous and we obtain $f \in \check{E}'$.

(i) \Rightarrow (ii) Given $g \in E_1'$ with $g|_{\bigoplus_{k \in \mathbb{N}} Y_k'} = 0$, we define $f : E \to \mathbb{K}$ by f(x+y) = g(x), $\forall x \in E_1$, $\forall y \in \bigoplus_{k \in \mathbb{N}} Y_k'$. f is well defined. In fact, if x' + y' = x + y, $x, x' \in E_1$, $y, y' \in \bigoplus_{k \in \mathbb{N}} Y_k'$, it follows g(x) = g(x'). Certainly, f is linear. Since $f|_{\bigoplus_{k \in \mathbb{N}} Y_k'} = 0$, $f|_{E_1} \in E_1' \in E_1'$, and E has the quotient topology with respect to the mapping

$$\psi: E_1 \times \bigoplus_{k \in \mathbb{N}} Y'_k \to E, \ \psi(x, y) = x + y,$$

it follows that $f \in E'$. By (i), there is $\varepsilon_k > 0 (k \in \mathbb{N})$ and there is $\delta > 0$ such that f is bounded on $(\prod_{k \in \mathbb{N}} \varepsilon_k B'_k + \delta \prod_{k \in \mathbb{N}} A'_k) \cap E$. Therefore, f is bounded on $(\prod_{k \in \mathbb{N}} \varepsilon_k B'_k) \cap E_1$. But $f|_{E_1} = g$. Thus, g is bounded on $(\prod_{k \in \mathbb{N}} \varepsilon_k B'_k) \cap E_1$.

Remark 5. Given $1 , and <math>0 < a \le 1$, there are b, c, 0 < b < 1, 0 < c < 1, such that $b^p + c^p = 1$ and b + ac > 1.

We take $b = 1/(1+a^q)^{1/p} (p^{-1}+q^{-1}=1)$ and $c = a^{1/p-1}/(1+a^q)^{1/p}$. Hence $b^p+c^p=1$ and $b+ca=(1+a^q)/(1+a^q)^p=(1+a^q)^{1-1/p}>1$.

Next, we give a lemma inspired by the original example of Komura.

Lemma 6. Let $(Y_k, s_k)_{k \in \mathbb{N}}$ be a sequence of Banach spaces. Suppose there is $1 such that for each <math>k \in \mathbb{N}$ there exists a net $(P_i^k)_{i \in I_k}$ of projections on Y_k with norm not greater than I and finite dimensional range such that $(P_i^k y)_{i \in I_k}$ tends to y for all $y \in Y_k$, and satisfying $s_k(y)^p \le s_k(P_i^k y)^p + s_k((I - P_i^k)y)^p \ \forall y \in Y_k$, $\forall i \in I_k$. If $f \in \ell_\infty((Y_k, s_k)_{k \in \mathbb{N}})'$, $f \neq 0$, vanishes on $\bigoplus_{k \in \mathbb{N}} Y_k$, then for all $k \in \mathbb{N}$ there is $i(k) \in I_k$ such that $f((y_k)_{k \in \mathbb{N}}) = f((P_{i(k)}^k y_k)_{k \in \mathbb{N}}) \ \forall y = (y_k)_{k \in \mathbb{N}} \in \ell_\infty((Y_k, s_k)_{k \in \mathbb{N}})$.

Proof. We may assume without loss of generality that ||f||=1. For each $r \in \mathbb{N}$ we determine $u^r = (u_k^r)_{k \in \mathbb{N}} \in \ell^{\infty}((Y_k, s_k)_{k \in \mathbb{N}})$ with $||u^r|| = \sup_{k \in \mathbb{N}} s_k(u_k^r) \leq 1$ and $f(u^r) > 1 - \frac{1}{r}$. For each $k \in \mathbb{N}$ we determine $i(k) \in I_k$ such that for $i \in I_k$, $i \geq i(k)$

$$s_k(u_k^r - P_i^k u_k^r) < \frac{1}{k}$$
, for $r = 1, 2, ..., k$;

in particular,

$$s_k(u_k^r - P_{i(k)}^r u_k^r) < \frac{1}{k}, \text{ for } r = 1, 2, \dots, k.$$

Suppose there is $v=(v_k)_{k\in\mathbb{N}}\in\ell^\infty((Y_k,s_k)_{k\in\mathbb{N}})$ such that $\sup_{k\in\mathbb{N}}s_k(v_k)=1$, $P_{i(k)}^kv_k=0$, $\forall k\in\mathbb{N}$, and a:=f(v)>0. Certainly, $0< a\leq 1$. We define for every $r\in\mathbb{N}$

$$w^r := (P_{i(k)}^k u_k^r)_{k \in \mathbb{N}}, y^r := ((0)_{k \le r}, (u_k^r)_{k > r})$$

$$z^r := ((0)_{k < r}, (w_k^r)_{k > r}).$$

Since $s_k(w_k^r) = s_k(P_{i(k)}^k u_k^r) \le ||P_{i(k)}^k|| s_k(u_k^r) \le 1$ for all $k \in \mathbb{N}$, it follows that w^r, y^r, z^r belong to the unit ball of $\ell^\infty((Y_k, s_k)_{k \in \mathbb{N}})$ for all $r \in \mathbb{N}$. Moreover, since f vanishes on $\bigoplus_{k \in \mathbb{N}} Y_k$ we have

$$|f(u^{r} - w^{r})| = |f(y^{r} - z^{r})| \le ||z^{r} - y^{r}|| = \sup_{k > r} s_{k}(u_{k}^{r} - w_{k}^{r}) =$$

$$= \sup_{k > r} s_{k}(u_{k}^{r} - P_{i(k)}^{k}u_{k}^{r}) \le \frac{1}{r+1} < \frac{1}{r}.$$

Consequently, $1 \ge f(w^r) \ge f(u^r) - |f(w^r - u^r)| \ge 1 - \frac{2}{r}$. Whence $\lim_{r \to \infty} f(w^r) = 1$.

Now, given a = f(v) > 0, $0 < a \le 1$, we find 0 < b < 1, 0 < c < 1 with b + ca > 1, $b^p + c^p = 1$. Then $\lim_{r \to \infty} f(bw^r + cv) = b + ac > 1$. But $s_k (bw_k^r + cv_k)^p \le s_k (P_{i(k)}^k (w_k^r b + cv_k))^p + s_k ((I - P_{i(k)}^k) (bw_k^r + cv_k))^p = b^p s_k (w_k^r)^p + c^p s_k (v_k)^p \le b^p + c^p \le 1$, a contradiction.

Proposition 7. Let $(Y_k, s_k)_{k \in \mathbb{N}}$, $(X_k, r_k)_{k \in \mathbb{N}}$ be two sequences of Banach spaces such that

- (a) $Y_k \subset X_k, B_k := \{ y \in Y_k; s_k(y) \le 1 \} \subset \{ x \in X_k; r_k(x) \le 1 \} =: A_k, \forall k \in \mathbb{N} ,$
- (b) $\exists p > 1 \ \forall k \in \mathbb{N}$ there exists a net $(P_i^k)_{i \in I_k}$ of continuous projections of norm not greater than 1 on (Y_k, s_k) such that
- (b.1) $(P_i^k y)_{i \in I_k}$ converges to y for all $y \in Y_k$,
- $(b.2) \ \ s_k(y)^p \le s_k(P_i^k y)^p + s_k((I P_i^k) y)^p, \ \forall y \in Y_k, \ \forall i \in I_k,$
- (b.3) $P_i^k: (Y_k, r_k) \to (Y_k, r_k)$ is continuous $\forall i \in I_k$,
- (c) Y_k is not a topological subspace of X_k , for all $k \in \mathbb{N}$.

Let $E_n := \ell^{\infty}((X_k, r_k)_{k < n}, (Y_k, s_k)_{k \ge n})$, $E = \text{ind } E_n$ be the (LB)-space of Moscatelli type associated with ℓ^{∞} , $(X_k, r_k)_{k \in \mathbb{N}}$ and $(Y_k, s_k)_{k \in \mathbb{N}}$, and let \check{E} denote the projective hull of E. Then E and \check{E} do not coincide topologically, but they have the same dual.

Proof. It is known by [5] that E and \check{E} do not coincide topologically. According to Proposition 4, it is enough to show that for every continuous linear form g on E'_1 , vanishing on $\bigoplus_{k\in\mathbb{N}}Y_k$, there is $\varepsilon_k>0$ ($k\in\mathbb{N}$) such that g is bounded on $(\prod_{k\in\mathbb{N}}\varepsilon_kA_k)\cap E_1$. Now, given such a g, we may apply Lemma 6 to obtain a sequence $(i(k))_{k\in\mathbb{N}}$ such that $g((y_k)_{k\in\mathbb{N}})=g((P^k_{i(k)}y_k)_{k\in\mathbb{N}})$, $\forall (y_k)_{k\in\mathbb{N}}\in\ell^\infty((Y_k,s_k)_{k\in\mathbb{N}})$. Since $P^k_{i(k)}(Y_k)$ is a finite dimensional subspace of Y_k , we can find $M_k>0$ such that $s_k(P^k_{i(k)}y)\leq M_kr_k(P^k_{i(k)}y)$ for all $y\in Y_k$ ($k\in\mathbb{N}$). Using (b.3), we find $C_k>0$ ($k\in\mathbb{N}$) such that $r_k(P^k_{i(k)}y)\leq C_kr_k(y)$ for all $y\in Y_k$. We put $\varepsilon_k:=1/C_kM_k$ ($k\in\mathbb{N}$). Given $x\in(\prod_{k\in\mathbb{N}}\varepsilon_kA_k)\cap E_1$, we have that

$$s_k(P_{i(k)}^k x_k) \le M_k r_k(P_{i(k)}^k x_k) \le M_k C_k r_k(x_k) \le 1$$
,

hence $(P_{i(k)}^k x_k)_{k \in \mathbb{N}} \in (\prod_{k \in \mathbb{N}} B_k) \cap E_1$, and therefore there is M > 0 such that

$$|g((P_{i(k)}^k x_k)_{k \in \mathbb{N}})| \le M.$$

Finally, we apply Lemma 6 to obtain

$$|g((x_k)_{k \in \mathbb{N}})| = |g((P_{i(k)}^k x_k)_{k \in \mathbb{N}})| \le M$$

which finishes the proof.

Corollary 8. Let F be the Frechét space of Moscatelli type with respect to ℓ_1 , $f_k: (Y_k, s_k) \to (X_k, r_k)(k \in \mathbb{N})$. Suppose that the sequences $(X'_k, r'_k)_{k \in \mathbb{N}}$, $(Y'_k, s'_k)_{k \in \mathbb{N}}$ satisfy conditions (a), (b), (c) in 7, identifying $f_k^t: X'_k \to Y'_k$ with the injection. Then F is not distinguished, but every locally bounded linear form on F'_b is continuous.

Proof. Let E be the (LB)-space of Moscatelli type with respect to ℓ^{∞} , $(Y'_k, s'_k)_{k \in \mathbb{N}}$ and $(X'_k, r'_k)_{k \in \mathbb{N}}$, and let \check{E} denote its projective hull. According to [6], F'_b and \check{E} coincide topologically and E is the bornological space associated to F'_b . Then we may apply Proposition 7 to conclude that E and \check{E} do not coincide topologically, but E and \check{E} have the same dual. Consequently, F is not distinguished, but every locally bounded linear form on F'_b is continuous.

Corollary 9. Let F be the Fréchet space of Moscatelli type with respect to ℓ^1 , $f_k: (Y_k, s_k) \to (X_k, r_k)$. If either

- (i) $Y_k = \ell_p$, $X_k = \ell_q$, $1 \le p < q < \infty$ and f_k is the injection, or
- (ii) $Y_k = \ell_p(a_k)$, $X_k = \ell_p$, $1 , <math>\lim_{i \to \infty} a_k(i) = \infty$, and f_k is the injection, then F is not distinguished, but every linear form on F_b' , which is locally bounded, is continuous.

Now we deal with sequence spaces and function spaces. We first extend the original example of Komura to a wider setting of sequence spaces. For notations we refer to [4].

Proposition 10. Let A be a Köthe matrix on an index set I such that $\lambda_1(A)$ is not distinguished. Then, there is a partition $(I_k)_{k\in\mathbb{N}}$ of I such that for every 1 the space

$$\mu_p(A) := \left\{ (x_i)_{i \in I}; p_n(x) := \sum_{k \in \mathbb{N}} \left(\sum_{i \in I_k} a_n(i) |x_i|^p \right)^{1/p} < \infty, \ \forall n \in \mathbb{N} \right\}$$

endowed with the topology defined by the seminorms $(p_n)_{n\in\mathbb{N}}$ is not distinguished and every locally bounded linear form on $\mu_p(A)_b'$ is continuous.

Proof. Without loss of generality, we may assume that a_1 is identically 1. Since $\lambda_1(A)$ is not distinguished, according to [1], there is a decreasing sequence $(J_k)_{k\in\mathbb{N}}$ of subsets of J, with $J_1=I$, such that for all $k\in\mathbb{N}$

(i)
$$\varepsilon_k := \inf_{i \in J_k} v_k(i) > 0;$$
 (ii) $\inf_{i \in J_k} v_{k+1}(i) = 0$,

where $v_k(i) := a_k(i)^{-1}$.

We put $I_k := J_k \setminus J_{k+1}$. Then $(I_k)_{k \in \mathbb{N}}$ is a partition of I and

$$\inf \{v_k(i); i \in I_k\} \ge \varepsilon_k > 0; \inf \{v_{k+1}(i); i \in I_k\} = 0$$

for all $k \in \mathbb{N}$. Now, we define a Köthe matrix on I , $B = (b_n)_{n \in \mathbb{N}}$, as follows

$$b_n(i) := \begin{cases} a_n(i) & \text{if } i \in I_k, k < n \\ 1 & \text{if } i \in I_k, k \ge n \end{cases}$$

and we will see that $\mu_p(A)$ is topologically isomorphic to $\mu_p(B)$, where

$$\mu_p(B) := \left\{ (x_i)_{i \in I}; q_n((x_i)_{i \in I}) := \sum_{k \in \mathbb{N}} \left(\sum_{i \in I_k} b_n(i) \left| x(i) \right|^p \right)^{1/p} < \infty, \; \forall n \in \mathbb{N} \right\} \; .$$

In fact, the two spaces coincide algebraically also. Since $b_n \leq a_n \ \forall n \in \mathbb{N}$, one obviously has $\mu_p(A) \subset \mu_p(B)$ continuously. On the other hand, given $x = (x_i)_{i \in I}$ in $\mu_p(B)$ and $n \in \mathbb{N}$, since

$$\sup \left\{ a_n(i) : i \in \bigcup_{k \ge n} I_k \right\} = \varepsilon_n^{-1} < \infty,$$

we have

$$\begin{split} &\sum_{k=1}^{\infty} \left(\sum_{i \in I_k} a_n(i) \left| x_i \right|^p \right)^{1/p} = \sum_{k=1}^{n-1} \left(\sum_{i \in I_k} a_n(i) \left| x_i \right|^p \right)^{1/p} + \sum_{k=n}^{\infty} \left(\sum_{i \in I_k} a_n(i) \left| x_i \right|^p \right)^{1/p} \leq \\ &\leq \sum_{k=1}^{n-1} \left(\sum_{i \in I_k} b_n(i) \left| x_i \right|^p \right)^{1/p} + \frac{1}{\varepsilon_n^{1/p}} \sum_{k=1}^{\infty} \left(\sum_{i \in I_k} \left| x_i \right|^p \right)^{1/p} \leq \max \left(1, \frac{1}{\varepsilon_n^{1/p}} \right) q_n(x) < \infty, \end{split}$$

which proves that $\mu_p(B) \subset \mu_p(A)$ continuously.

Thus, we may work with $\mu_p(B)$ instead of $\mu_p(A)$. Its dual, $\mu_p(B)'$, coincides algebraically with its α -dual $\mu_p(B)^\times := \{(x_i)_{i \in I}; \ \exists n \in \mathbb{N} : \sup_{k \in \mathbb{N}} \ (\sum_{i \in I_k} \frac{1}{b_n(i)} |x_i|^q)^{1/q} < \infty \}$ $(p^{-1} + q^{-1} = 1)$, and the bornological space associated with $\mu_p(B)_b'$ is the corresponding co-echelon space. The topology on $\mu_p(B)_b'$ is given by the sets

$$B_{\overline{v}} := \left\{ (x_i)_{i \in I} \in \mu_p(B)'; \sup_k \left(\sum_{i \in I_k} \overline{v}(i) |x_i|^q \right)^{1/q} \le 1 \right\},$$

where $\overline{v} \in \lambda_{\infty}(B)_+$, i.e., $\sup_{i \in I} \overline{v}(i) b_n(i) =: C_n < \infty$.

We first show that $\mu_p(B)$ is not distinguished. If it were, the set

$$C := \bigcup_{n \in \mathbb{N}} \left\{ (x_i)_{i \in I} : \sup_k \left(\sum_{i \in I_k} \frac{1}{b_k(i)} |x_i|^q \right)^{1/q} \le 1 \right\}$$

would contain a set of the form $B_{\overline{v}}$ for some $\overline{v} \in \lambda_{\infty}(B)_+$. Since $\inf \{\frac{1}{b_{k+1}(i)} : i \in I_k\} = 0$, we may find $i_k \in I_k$ such that $\overline{v}(i_k)$ is arbitrarily small. We may take $\widetilde{x}_{i_k} \in \mathbb{K}$ with $2 < \widetilde{x}_{i_k} < 3$ and $\overline{v}(i_k)\widetilde{x}_{i_k} < 1$. Now $x = (x_i)_{i \in I}$, defined by $x_i := \widetilde{x}_{i_k}$ if $i = i_k$ and 0 otherwise, clearly belongs to $B_{\overline{v}}$, but it does not belong to C, since $x_{i_k} > 2b_k(i_k)$ for all $k \in \mathbb{N}$.

Now we take a locally bounded linear form $f \neq 0$ on $\mu_p(B)_b'$. Then, if e_i is the element of $\mu_p(B)^\times$ whose coordinates are all equal to zero except the i-th which is equal to one, we have that the family $(f(e_i))_{i \in I}$ belongs to $\mu_p(B)$, whence $(f(e_i))_{i \in I} \in (\mu_p(B)_b')'$, and obviously

$$f = (f(e_i))_{i \in I} + f - (f(e_i))_{i \in I}.$$

Therefore, it is enough to show that $g:=f-(f(e_i))_{i\in I}$ belongs to $(\mu_p(B)_b')'$. Since g is continuous on the co-echelon space $\mu_p(B)^\times$ (provided with the inductive topology), and b_1 is identically 1, we have that the restriction of g to $\ell^\infty((\ell^q(I_k))_{k\in\mathbb{N}})$ is continuous, and it clearly vanishes on $\bigoplus_{k\in\mathbb{N}}\ell^q(I_k)$. Applying Lemma 6, we get $\forall k\in\mathbb{N}\exists X_k\subset I_k$ finite such that

$$\begin{split} g(((x_i)_{i\in I_k})_{k\in\mathbb{N}}) &= g\left(\left(\sum_{i\in I_k} x_i e_i\right)_{k\in\mathbb{N}}\right) = g\left(\left(\sum_{i\in X_k} x_i e_i\right)_{k\in\mathbb{N}}\right) \quad \text{for all} \\ (x_i)_{i\in I} &= ((x_i)_{i\in I_k})_{k\in\mathbb{N}} \in \ell^\infty((\ell^q(I_k))_{k\in\mathbb{N}}). \end{split}$$

We will see that there is $\overline{v} \in \lambda_{\infty}(B)_+$ such that $\overline{v}(i) \geq 1$, $\forall i \in X_k (k \in \mathbb{N})$. We put

$$C_n := \sup\{b_n(i); i \in X_k, k \in \mathbb{N}\}.$$

Since $b_n(i) = 1$ for all $i \in I_k$ with $k \ge n$, we have that C_n is finite and $C_n \ge 1$. Then

$$\overline{v}(i) = \inf_{n \in \mathbb{N}} \frac{C_n}{b_n(i)} \ge 1$$

for all $i \in X_k (k \in \mathbb{N})$.

Next, we prove that g is bounded on $B_{\overline{v}}$. In fact, given $x = ((x_i)_{i \in I_k})_{k \in \mathbb{N}} \in B_{\overline{v}}$, there is $n \in \mathbb{N}$ such that

$$(((0)_{i \in I_k})_{k < n}, ((x_i)_{i \in I_k})_{k \ge n}) \in \ell^{\infty}((\ell^q(I_k))_{k \in \mathbb{N}}),$$

hence

$$g((((0)_{i \in I_k})_{k < n}, ((x_i)_{i \in I_k})_{k \ge n})) = g((((0)_{i \in I_k})_{k < n}), ((x_i)_{i \in X_k})_{k \ge n})),$$

but the restriction of g to $\ell^\infty((\ell^q(I_k))_{k\in\mathbb{N}})$ is continuous. Therefore, there is M>0 with $|g(y)|\leq M$ for all y in the unit ball of $\ell^\infty((\ell^q(I_k))_{k\in\mathbb{N}})$. Moreover, since $\overline{v}(i)\geq 1 \ \forall i\in X_k$, $\forall k\in\mathbb{N}$, and since for $(x_i)_{i\in I}\in B_{\overline{v}}$, $(((0)_{i\in I_k})_{k< n},((x_i)_{i\in X_k})_{k\geq n})$ belongs to the unit ball of $\ell^\infty((\ell^q(I_k))_{k\in\mathbb{N}})$, we have

$$|g((x_i)_{i\in I})|\leq M.$$

Now we prove that for the example of Bonet and Taskinen [7] mentioned in the introduction there is even a non-continuous locally bounded linear form on the strong dual.

Let Ω be a non-void open subset of \mathbb{R}^m . Given $\ell \in \mathbb{N}_0 \cup \{\infty\}$, $\ell \geq t$ we define $C^\ell(\Omega) \cap H^{t,1}(\Omega)$ as the Fréchet space intersection of the Fréchet space $C^\ell(\Omega)$ and the Banach Sobolev space $H^{t,1}(\Omega)$, endowed with the natural intersection topology. The completeness of $C^\ell(\Omega) \cap H^{t,1}(\Omega)$ easily follows from the fact that both spaces in the intersection are continuously injected in the Fréchet space $L^1_{loc}(\Omega)$. Since $\ell \geq t$ we have

$$C^{\ell}(\Omega) \cap H^{t,p}(\Omega) = \{ f \in C^{\ell}(\Omega); f^{(\alpha)} \in L^1(\Omega) \ \forall |\alpha| \le t \}$$

and its locally convex topology is defined by the sequence of seminorms

$$\begin{split} q_0(f) &:= \max_{|\alpha| \leq t} \int_{\Omega} |f^{(\alpha)}|, \\ q_k(f) &:= \max_{|\alpha| \leq \ell} \max_{x \in L_k} |f^{(\alpha)}(x)| \text{ if } \ell \in \mathbb{N}_0, \\ q_k(f) &:= \max_{|\alpha| \leq k+1} \max_{x \in L_k} |f^{(\alpha)}(x)| \text{ if } \ell = \infty, \end{split}$$

where $(L_k)_{k\in\mathbb{N}}$ is a fundamental sequence of compact subsets in Ω with $L_k\subset L_{k+1}^o$.

Proposition 11. There is a non-continuous locally bounded linear form on

$$(C^{\ell}(\Omega) \cap H^{t,1}(\Omega))_b'$$

Proof. We take $g \in \mathcal{D}([0,1]^m)$ with $\int_{\mathbb{R}^m} |D_1^t g| = 1$ and put $\varepsilon := [\max_{|\alpha| \le t} \int_{\mathbb{R}^m} |g^{(\alpha)}|]^{-1}$ > 0, $D := 2\varepsilon^{-1} > 0$.

For each $k \in \mathbb{N}$, we select $(I_{k,n})_{n \in \mathbb{N}}$, where $I_{k,n}$ is a compact cube contained in $L_{k+1}^o \setminus L_k$ so that they are pairwise disjoint and $\mu(I_{k,n}) \leq 1/(D2^{k+n}n)$.

For arbitrary $k,n\in\mathbb{N}$, let $\varphi_{k,n}(x)=a_{k,n}x+b_{k,n}$, $a_{k,n}\in\mathbb{R}$, $b_{k,n}\in\mathbb{R}^m$, be such that $\varphi_{k,m}([0,1]^m)=I_{k,m}$. Now, we define $f_{k,n}:=C_{k,n}g\circ\varphi_{k,n}^{-1}$ with $C_{k,n}>0$ such that $q_0(f_{k,n})=1$. For every $k,n\in\mathbb{N}$, there is a mesurable mapping $h_{k,n}$ on $I_{k,n}$ such that

$$D_1^t f_{k,n}(y) = h_{k,n}(y) |D_1^t f_{k,n}(y)| \text{ with } |h_{k,n}(y)| = 1.$$

Given $n \in \mathbb{N}$, $(n_j)_{j \in \mathbb{N}} \in \mathbb{N}^{\mathbb{N}}$, we put $M(k, (n_j)_{j \in \mathbb{N}}) := \{f_{\ell,r} : r \ge n_\ell, \ell \ge k\}$.

Then $\{M(k,(n_j)_{j\in\mathbb{N}}):k\in\mathbb{N},(n_j)_{j\in\mathbb{N}}\in\mathbb{N}^{\mathbb{N}}\}$ is a filter basis in $C^{\ell}(\Omega)\cap H^{t,1}(\Omega)$.

Since $q_0(f_{\ell,r})=1$, $\forall \ell,r\in \mathbb{N}$, it is clear that $M(k,(n_j)_{j\in \mathbb{N}})$ is contained in the semi-unit ball of q_0 . Moreover, supp $f_{\ell,r}\subset L^o_{\ell+1}\setminus L_\ell$, hence $q_k(f_{\ell,r})=0$ for all $\ell\geq k$ and for all $r\in \mathbb{N}$. Hence, $M(k,(n_j)_{j\in \mathbb{N}})$ is contained in the semi-unit ball corresponding to q_k . Thus, condition (ii) (a) in Lemma 1 holds.

Now, we take a bounded set B in $C^{\ell}(\Omega) \cap H^{t,1}(\Omega)$. Then, we find $\lambda_k > 0$ such that $q_k(f) \leq \lambda_k$ for all $f \in B$ and for all $k \in \mathbb{N}_0$. We choose $j_k \in \mathbb{N}$ with $j_k \geq \lambda_{k+1} (k \in \mathbb{N})$ and put

$$u(f) := D \sum_{k \in \mathbb{N}} \sum_{\ell \geq j_k} \int_{I_{k,\ell}} (D_1^t f) h_{k,\ell}.$$

Since $|u(f)| \le q_0(f)$, we have that $u \in (C^{\ell}(\Omega) \cap H^{t,1}(\Omega))'$; we will see that $u \in B^o$. In fact, given $f \in B$,

$$|u(f)| \leq D \sum_{k \in \mathbb{N}} \sum_{\ell \geq j_k} \mu(I_{k,\ell}) \sup_{I_{k,\ell}} |D_1^t f(x)| \leq D \sum_{k \in \mathbb{N}} \sum_{\ell \geq j_k} \frac{1}{D2^{\ell + k} j_k} \lambda_{k+1} \leq 1,$$

whence $u \in B^o$.

We put $V_B=\frac{1}{2}\{u\}^o=\{2\,u\}^o$. We have $B+V_B\subset\{u\}^o+\frac{1}{2}\{u\}^o\subset\frac{3}{2}\{u\}^o$. We claim that

$$M(1,(j_k)_{k\in\mathbb{N}})\subset F\setminus (B+V_B)$$
, where $F=C^{\ell}(\Omega)\cap H^{t,1}(\Omega)$.

In fact, given $f_{k\ell}$ with $\ell \geq j_k$, $u(f_{k\ell}) \geq 2$ because

$$\begin{split} u(f_{k,\ell}) &= D \int_{I_{k,\ell}} (D_1^t f_{k,\ell}) \, h_{k,\ell} = D \int_{I_{k,\ell}} |D_1^t f_{k,\ell}| = \frac{D C_{k,\ell} |a_{k,\ell}|^{m-t}}{q_0(f_{k,\ell})} = \\ &= \frac{D C_{k,\ell} |a_{k,\ell}|^{m-t}}{\max_{|\alpha| \leq t} C_{k,\ell} |\alpha_{k,\ell}|^{m-|\alpha|} \int_{\mathbb{R}^m} |g^{(\alpha)}|} \geq \frac{D}{\max_{|\alpha| \leq t} \int_{\mathbb{R}^m} |g^{(\alpha)}|} = D\varepsilon = 2 \,. \end{split}$$

Assume $M(1,(j_k)_{k\in\mathbb{N}})\cap (B+V_B)\neq\emptyset$. Then, there is $f_{k,\ell}\in M(1,(j_k)_{k\in\mathbb{N}})\cap \frac{3}{2}\{u\}^o$, hence there is $\ell\geq j_k$ such that $f_{k,\ell}\in\frac{3}{2}\{u\}^o$. Therefore,

$$2 \leq u(f_{k,\ell}) \leq \frac{3}{2}$$

a contradiction. This yields condition (ii) (b) of Lemma 1, and an application of this Lemma allows to conclude.

Acknowledgement. This research was partially supported by DGICYT and DAAD Accion Integrada conv. 1989 HA-001.

Added in proof. V. B. Moscatelli communicated to the authors that all the spaces $C^{\ell}(\Omega) \cap H^{t,1}(\Omega)$ which appear in Proposition 11 are of Moscatelli type.

REFERENCES

- [1] F. Bastin, J. Bonet, Locally bounded non-continuous linear forms on strong duals of non-distinguished Köthe echelon spaces, Proc. A.M.S. 108 (1990), 769-774.
- [2] K. D. BIERSTEDT, J. BONET, Stefan Heinrich's density condition for Fréchet spaces and the characterization of the distinguished Köthe echelon spaces, Math. Nachr. 135 (1988), 149-180.
- [3] K. D. BIERSTEDT, R. MEISE, Distinguished echelon spaces and projective descriptions of weighted inductive limits of type VC(X), in: Aspects of Mathematics and its Applications, Elsevier Sci. Publ., North-Holland Math. Library, (1986), 169-226.
- [4] K. D. BIERSTEDT, R. MEISE, W. H. SUMMERS, Köthe sets and Köthe sequence spaces, in: Functional Analysis, Holomorphy and Approximation Theory, North-Holland Math. Studies 135, (1982), 27-91.
- [5] J. BONET, S. DIEROLF, On LB-spaces of Moscatelly type, Doğa Turk. J. Math. 13 (1990), 9-33.
- [6] J. Bonet, S. Dierolf, Fréchet spaces of Moscatelly type, Rev. Matem. Univ. Complutense Madrid 2 (1989), no. suplementario 77-92.
- [7] J. Bonet, J. Taskinen, Non-distinguished Fréchet function spaces, Bull. Soc. Roy. Sci. Liège 58 (1989), 483-490.
- [8] A. GROTHENDIECK, Sur les spaces (F) et (DF), Summa Brasil. Math. 3 (1954), 57-112.
- [9] Y. Komura, Some examples of linear topological spaces, Math. Ann. 153 (1962), 150-162.
- [10] G. KÖTHE, Topological Vector Spaces I and II, Springer-Verlag, Berlin, Heidelberg, New York, (1969) and (1979).
- [11] J. TASKINEN, Examples of non-distinguished Fréchet spaces, Ann. Acad. Sci. Fenn. serie A.I.14 (1989), 75-88.
- [12] M. VALDIVIA, Topics in Locally Convex Spaces, North-Holland Math. Studies 67, Amsterdam, New York, Oxford, (1982).
- [13] D. Vogt, Distinguished Köthe spaces, Math. Z. 202 (1989), 143-146.

Received June 29, 1990
in revised form December 13, 1990
J. Bonet
Dept. Matemática Aplicada
Universidad Politécnica
C. de Vera
E-46071 Valencia
Spain

C. Fernández
Dept. Análisis Matemático
Universidad de Valencia
Dr. Moliner s/n
E-46100 Burjassot
Spain

S. Dierolf FB IV Mathematik Universität Trier Postfach 3825 D-5500 Trier Germany