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ON DIFFERENT TYPES OF NON-DISTINGUISHED FRECHET SPACES
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Dedicated to the memory of Professor Goltfried Kothe

A Fréchet space F' is called distinguished if its sirong dual F} is barrelled or, equivalently,
bornological. This means that the canonical representation of /' as the (reduced) projective
limit proj,_, F, of Banach spaces F, leads to the representation ind ,_, F, of Fy as the in-
ductive limit of the dual spectrum ( F} ) . Thus, in some sense, distinguishedness of a Fréchet
space prevents some «pathology»; and it may be for that reason that Dicudonné, Schwartz and
Grothendieck introduced this notion. On the other hand, recent examples of Taskinen [11] and
Bonet-Taskinen [7] show that some natural Fréchet spaces of analysis like C4(Q) N L' (Q)
are not distinguished, and hence it appears natural to study the class of the non-distinguished
Fréchet spaces 1n more detail.

The first classical examples of non-distinguished Fréchet spaces are due to Grothendieck-
Kothe and Komura, respectively. The Kodthe-Grothendieck example was an echelon space
A (A) on N x IN. The distinguishedness of A\, (A) in terms of the Kbthe matrix A was
finally characterized by Bierstedt and Bonet [2] based on previous work by Bierstedt and
Meise [3]; see also Vogt [13] for a short proof. This characterization allowed Bastin and
Bonet [1] to show that all non-distinguished echelon spaces A,(A) share the bad behaviour
of the Kbthe-Grothendieck example, that there exists a locally bounded linear form on A ( A);
which 1S not continuous.

Komura’s example of a non-distinguished Fréchet space differs from the previous one: He
exhibited a Fréchet space F' for which each locally bounded linear form on F) is continuous,
but which is nonetheless not distinguished [9]. Not too many examples of this type were
known. (However, see [12] for a related example.)

In this paper, we investigate new examples of non-distinguished Fréchet spaces and de-
termine their type of non-distinguishedness in the above sense. We first concentrate on the
so-called spaces of «Moscatelli-type». In a second part, we consider sequence spaces and
function spaces and, among other things, classify the examples previously given by Bonet
and Taskinen [7]. Although we mainly concentrate here in the presentation and analysis of
examples, we also expect that our study provides a better understanding of non-distinguished
Fréchet spaces.

NOTATIONS AND TERMINOLOGY

Given a dual pair ( E, F'), we denote by o( E, F), u(E, F) and B( E, F) the weak, the
Mackey and the strong topology, respectively. For alocally convex space F, let E* denote its
algebraic dual and E’ its topological dual. % ,( F) will be the filter of all 0-neighbourhoods
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in £ and & ( E) will be the collection of all absolutely convex bounded subsets in E. E
will stand for the set of all locally bounded linear forms on E, i.e.,

E* := {u € E*;u(B) is bounded VB € B(E)}.

Recall that for a metrizable locally convex space E the bomnological topology associated
with S( E’', E) coincides with S( E', E").

Observe that for a Fréchet space E one has (E})' = ( E;)* ifandonly if (E', u( E', E"))
is barrelled or, equivalently, bornological. This property is inherited by complemented sub-
spaces and countable products.

In the original example of Komura, the topology A( E', E) is strictly coarser than u( F',
E") which coincides with S( E', E") , whereas in the Ko6the-Grothendieck example u( E,
E") i1s strictly coarser then 8( E', E").

For the structure theory of locally convex spaces we refer to Kothe [10].

First, we concentrate on Fréchet spaces of Moscatelli type. They were introduced and
studied by Bonet and S. Dierolf [6]. Since we are interested in non distinguished spaces, the
most relevant case occurs when L = 2! i.e., when L' = L% = £°° . Let us recall the definition.

Let ( Xy, ke » (Y, speenw be two sequences of Banach spaces with unit balls A, and
B, , respectively, let f, : Y, — X,(k € IN) be a linear map with dense range such that
fi(B,) C A,. The Fréchet spaces of Moscatelli type associated with £,, f, : ¥, — X, (k €
N) isdefined by F' := proj£, ((Yy)ien, (X, )is,) » Wwhere the linking maps are determined by
f, + Y, — X and the identity in the other coordinates. According to [6], F' is distinguished
if and only if there is n € IN with f, surjective for k > n.

We first characterize those spaces presenting the same pathology as the Kothe-Grothen-
dieck example. We give a general lemma whose proof is based on the original argument by
Grothendieck. This result shows that Grothendieck’s proof for A\, ( A) is optimal.

Lemma 1. Let E be a quasibarrelled l.c.s. The following statements are equivalent:
(i) E" ¢ (EH*,
(ii) there is a filter % in E such that

(a) YU € % 4(FE),3p, >0: p U € F

(b) VB € H(FE) 3Vy closed 0-neighbourhood in (E,o( E, E")) such that E\ (B +
Vy) € #.
Proof. (i) = (ii) Let ¢ € (E")* \ E" be given. We put &= {E N (p + V”{H**E}); V
is an absolutely convex zero neighbourhood in (E,o(E, E'))}. Since VIE"E) 4 o isa
neighbourhood of ¢ in ( E* o(E*,E")) and F is dense in this space, & is a filter basis

on F.
Now let B € #H(E) be given. Since p ¢ B° " 77 thercis W € % (E* o(E*,

E") such that
(p+2W)NB=0.
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Thus (p+ WY N (B + W) = @, which proves that
(p+W)NECE\(B+W)

and we may conclude that E\ (B+ W) € &.
Now let U € % ,(E) be given. Since p is bounded on U®°, there is p;, > 0 with

o(u)| < py forall u € U°.
We claim that for any absolutely convex and o( E, E')- closed elements U,,...,U_ of

% ,(E) and for any V € & we have

(m ZF’U,IU.E) NV#D.
k=1

Clearly V can be written as V = (p + W) N E with W in % ,((E™*, o(E™*, E"))),

and we may assume without loss of generality that W is o( E™, E')- open. Hence ¢ +

W is a neighbourhood of ¢ in (E™* o(E™, E’)). On the other hand, ZpUIHU?(E"’E) is a

neighbourhood of ¢ in (E™*, B( E™  E")) . Therefore,

—a( E™* E)
(e+wW)n| () 2py,U; 0
1<j<n

and this set is a neighbourhood of ¢ in (E*, B(E™* | E')) . Assume that
(p+WYNEN| () 2p,U

(¢ + W) N E is a convex, open set in E with the relative o( E'* | E') - topology, i.e., in
(E,oc(E,E")) and ﬂlg{HZ Py Uj is convex and o( E, E')-closed. Using Hahn-Banach’s

separation theorem, we find f in E’ such that

<1
|f‘ ﬂ ZpUJ.UjI_

1<j<n

o+ wynE!>!
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We extend f by density to a continuous linear form £ : (E* o(E™* E')) — K , hence

- 1
If GGEJ#I ﬂ E'i

I () oY

1<j<n

[ﬂ(w A BB EN 2 1.

Since E is o( B, E')-dense and W is o( E'* | E")-open, (p + W) N EU(E}*’E’) = (p+

W) . On the other hand, as all the U? are o( E', E)-compact,

oE™

D,
o
S
H
%
3
]
D,
s
S
S
8
1
I
-
-3
I

1<j<n 1<j<n 1<i<n PU;

D’( E:}E] ﬂEm ﬂﬂEv’

I
—
—
—
S
.
]
)
o
S
=

Therefore
~ —o(E* F) 1
| | U_;,l' | g _2_1
ﬂ Pu,
1<j<n
|f|(W+ ©) > 1

which contradicts the fact that

—a( E™ E)
(p+w)n | () U, 4 0.

1<;j<n

Thus the claim 1s proved. Now we put

A
Il
<
2
)
o
©
~

}_U}. ZVE?,UjE%U(E),lgjgﬂineN

Then % is a filter basis on FE' satisfying (a) and (b).
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(ii) = (i) Let # be an ultrafilter finer than . Since every f € E’ belongs to the polar of
some U € % ,( E) , it follows that { f(u) : u € p,U} is bounded in K and, consequently,
#( f) converges in K . Therefore # converges in o( E™*, E') to some ¢ € E™. Since
0|yl < py forall U € % ,( E) and E is quasibarrelled, the linear form ¢ is in E™ |

On the other hand ¢ € E". In fact, assume ¢ is in E". Then there exists B € F(F)

such that ¢ € EU(E“’EJ) . Whence

(04 5V5) 0 (B\(B+75)) 70

and p € B+ ;Vg°. Letz € E\(B+ Vp), z € p + 5 V2 be given. Then

1

zE(B+2

1
Ve + §V§°>WEC (B+VE)NE.

Therefore z € (B + Vg°) N E = B + Vy, a contradiction. - n

Proposition 2. Let F' be the Fréchet space of Moscatelli type associatedwith £, , f, 1 Y, :—
X (ke N).

Suppose that for all k € N there exists a sequence (uy;)cn in X ¢ Such that rj:(uﬁj) = 1
forall j € N and lim._,__ 3| ( f}é(ukj)) = 0 (i.e., F is not distinguished). Moreover, we

J o0

assume that for every n € IN

{:L' EYkI‘T‘k(fk(I)) <1, |“k_,'(fk($))l >1,1<7< “}7{@-

Then F" ¢ F"* .

Proof. 1t is enough to construct a filter basis on F' satisfying (a), (b) of Lemma 1. Given n €
N al’ld (-;k)kEN - NN wEe pU[ M(ﬂ’(-?k)kzﬂ) = Ukzﬂ{(ﬂ:aﬁ)zen; T € Ykg Tk(fk(m)) =
1 and |uy;(fy(2))| > 1,1 < j < j,}. Then

{M(n, (i ksn) i PE N, (G, ENT'}

is a filter basis % on F'. Next we will check that 94 satisfies (a) and (b).
(a) It is enough to see that

Yo >0VYneN (HakaHYk) N F and

k<n k>n

- ™

F 3 (U)ken € HY::: ETJ: (fe(we)) <1¢

- kEN kEN -
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belong to %.
For the first one, we observe that given m > nand (y)en € M(m, (7 )ksm) » ¥, =0,
1 < k < n,hence

(Vi) ken € (H 0B x H Yk) N F.

k<n k>n
For the second type of zero-neighbourhoods, we take (j,),cn arbitrary. Given y in
M(1,(Jien) » we find £ € N such that y = (z6)pen With 7. (fi(z)) < 1, hence

ye Fn {(zk)kEN . Ek{_—'N Tj;(fk(zk)) < 1}
To check condition (b), we have to show that for every B € F(FE) there is a closed

zero-neighbourhood Vy in o( F, F') such that F'\ (B + Vy) isin #.
Given B bounded in /', we find a sequence of positive real numbers, (A, ), » Such that

sup{s,(y,) : ¥ = (¥ )ken € B} <A forall k € N.
Since lim,_, ‘S;:(ff:(ukj)) = (0 forall k € N, thereis j, € N such that

SL(fE(ukj)) < Zfl}: for all ;j > j, and all k € N.

We define v := (2uy; Jiew € L (X, " kew) C F',and we put Vg = {v}°. Then
Vg is a closed zero-neighbourhood in o( F, F') . We will see that F' \ (B + V) € %,
Lety € M(1,(J ) en) be given. Then, there is & € N such that y = (6,,7),. , Where
z €Y, n(fi{z)) =1 and |u,;(fi(z))| > 1, <J < J. Ifweassume y € B + Vjp,
then y = b+ w, with b € B, w € Vg, and we may suppose b, = 0, w, = 0 forall £ # k.
Then

2 < |“k(fk($))| = I”k(fk(bk + ’wk))l <
3

2
< zlukjk(fk(bk))l + I'Uk(fk(wk))’ <1+ zm;\k = E:

a contradiction. Therefore
M(1,(Jihen) N(B+Vp) =D

and we are done. &

Corollary 3. Let F' be a Fréchet space of Moscatelli type associated with £,, f, . Y, —
X, (k € N). Ineach of the following cases there is a linear form f . Fy — K bounded on

the bounded sets but not continuous:
(1) Y, =2,(a,), X, =4, im,_ _a,(1) =00, f, : Y, — X, the canonical injection,

(2) Yy=c,(a,), X, =4y, Y ien ax(D ' L 1, f 1 Y, — X, the canonical injection,
(3) Y, = LP[0,1], X, = L'[0,1], 1 < p< o0, f; : Y, — X, the canonical injection.
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Moreover, E = C(R) N L'(R) is also of the same type because it contains a comple-
mented subspace of type (2) (cf. [11]).

Proof. 1t is enough to see that the hypothesis in Proposition 2 holds:

(@) We have (Y,,s,) = £,(a.), (X4,7) = £, with lim, | a,(4) = oo. Then
(Xt, 7)) = £y, (Y,8}) = £,(v,), where v, = a;' . Weput u,; = ((0);.;),(1);,) €
l, = X} Hence ri(u,;) = 1V € N and lim;_, _ 8;(u,;) = 0. Moreover, forall n € N

{zeY,in(r) =1,|u ()| 21,1 <7< npD{e 1> n}

(b) We may take Uy; as in (a).

(¢) Now, we have (Y}, s,) = LP[0,1], (X,,r,) = L'[0,1]. Then X; = L*°[0,1],
Y, = LI[0, 1(p~ P+ ¢ =1).

We select oo, > 0(k € N) with 3,2, o, < 1, and a sequence of intervals {J,},. such
that "‘TE C [01 1] R an‘ff — @ Iff#EI and ,Ur(..rg) — ﬂ-’z. WEpUl

oo oo
Ug; = Exf.: € L*=[0,1], and 7 (u;;) = ess sup IEXIJ =1
£=1 £=j

but
1 1/q oo 1 0o
(o) = [[ ] = ([ ot) = (e

and this tends to zero. Hence

{z € LP[0, 1)1 (z) = 1,]u,(2)| > 1,1 < j < n} D {ag x,,;£ > n}.

Next, we give examples of non-distinguished Fréchet spaces of Moscatelli type with the
same behaviour as Komura’s example. Before we go on, let us introduce some notations. Let
f be the Fréchet space of Moscatelli type with respectto £, , f, : (Y}, 8,) — (X, mp)(k €
N),where f, has dense range. Then forall k € N, the transpose f; : (X, 7)) — (Y, si)
is injective and maps the unit ball A} of (X}, r},) into the unit ball By of (Y}, s;) . Thus we
may form the ( L B) -space of Moscatelli type with respectto £, (Y}, *‘-"'L)kem A XKy T ken 5
E:=ind E_ ,where E_:=£2_({Y)ien» (Xi)i>,) and we may also consider the projective

limit B associated to E. We recall from [3] the definition of the projective hull E of the
inductive limit E = ind £_((Y{)rcp> (Xi)ksn) - Given 8§ > 0 and g, > O(k € N), the
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Minkowski functional of g, B} + 64} is denoted by p, , and it is a norm on Y, equivalent

to s;. Then E is the projective limit

E = ﬂ Em((xk:pghﬁ)kgﬁ)*
6,(€p)

b

The (L B)-space F' is continuously injected m £ and E isa complete ( DF')-space.
Since in this case F 1sregular, £ and E coincide algebraically. A basis of 0 -neighbourhoods
of E is given by the sets

(H e, B, + 6ﬁ1) NEe >0,6>0
keIN

where %, is the unit ball of F, .

Proposition 4. Let F', E and E be as before. The following conditions are equivalent:
(i) B'=(E),
(ii) Vg € Ey, g|mkm}f; =0, Je, > 0(k € IN) such that g is bounded on

(H EkBL) NE,.

kEiN

Proof. (ii)=> (i). Fix f € E'. Since E and F induce the same topology on @, Y} (cf.

(5,3.1), f I%EHF; is continuous for the topology induced by E. Applying Hahn-Banach'’s

extension theorem, there is h : E — IK linear and continuous such that h|$kEH y: = f Deen ¥
Now, f=(f—h)+ h. Wehave g := (f — h)|E1 C Ej, glf‘ﬁuml’; = (. By condition (i1),
there are £, > 0(k € IN) such that |g(z)| < 27! forevery z € ([[;en €xBi) N E; . On
the other hand, there is § > 0 such that |g(z)| < 27" if z € 6 [[,on Ak-

Now U = ([liew €xBi + 6 ] [xemw Ak) N E is a zero-neighbourhood in E. Moreover,

if r € U,thereis ne N with z € E_, hence z = y+ 2z, y €O, Y, z€ E, 2 =0,
1 < k < n. Then

(f=h)(z)=(f=h)(y+2)=(f—-h)(y +(f—h)(2) =g(2).

But 2, = 0,1 < k< n, 2 €¢B,+8A,, k>n. Thus |[g(2)| < 1. Consequently,
I(f — h)(z)| < 1,hence, f— h isalso E-continuous and we obtain f € E'.
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(i) = (ii) Given g € E| with g|$kmy; =0,wedefine f: F — K by f(z+y) =g(x),
Vr € E|, Yy € @ nY;- f is well defined. In fact, if ' + ¢ = z+ y, z,2" € B,
v,y € $EENY£* it follows g(z) = g(z'). Certainly, f is linear. Since fl%ten‘i".-f = 0,
fl B, € E] € F;,and F has the quotient topology with respect to the mapping

Y B X @kENYé — F Y(xz,y) =x+y,

it follows that f € E'. By (i), thereis ¢, > 0(k € N) and there is § > 0 such that f is
bounded on (][, .n €x Bk + 0 [ [xen 4A%) N E. Therefore, f is boundedon (], €:B) N
E,. But f|g =g. Thus, g is bounded on (J],cn €4By) N E; . o

Remark 5. Given 1 < p< oo,and 0 < a < 1,thereare b,c, 0 < b< 1,0 <c< 1,
suchthat b+ P =1 and b+ ac > 1.
Wetake b= 1/(1+a) /P (p~t4+¢~' = 1) and ¢ = o*/P~1 /(1+a9) /P Hence bP+cP = 1

and b+ca=(1+a")/(1+a)P=(14+an)!"1/P> 1.
Next, we give a lemma inspired by the original example of Komura.

Lemma 6. Let (Y, s, )N be asequence of Banach spaces. Suppose there is 1 < p < oo

such that for each k € IN there exists a net (Pf) of projections on Y, with norm not

i€l,
greater than I and finite dimensional range such that (ny)l-E I, tends to y forall y € Y,

and satisfying s,(y)? < s (PFy)? + s,((I — PHy)P Yy e Y,, Vi€ I,.
If f €8 ((Ye, S )en)' s f# 0, vanishes on @Yy, thenforall k € N thereis i(k) €

I, such that f((yp)ren) = f((ﬁ%k) Vidken) YU = (Udeen € Zool{( Yy, Splren) -

Proof, We may assume without loss of generality that || f ||= 1. Foreach r € N we
determine v = (u})en € 2°((Yi, s )ken) With || u” ||= sup, o sp(up) < 1 and

flu") > 1~ % Foreach £ € IN we determine i(k) € [, suchthatfor: € I, 1 > 1(k)

1
Sk(uL—Pqu < T forr=1,2, ... k;

in particular,

1 .
Sk(UE—P&MME) "‘:: I:"! fﬂf?‘: 1,2,...:ki

Suppose there 18 v = (v )eny € £7°((Y}, sp)pen) such that sup, .y sp(vy) = 1,
Piove = 0,Vk € N,and a := f(v) > 0. Certainly, 0 < a < 1. We define for

every r € IN

w = (P pubien» ¥ 1= ((0rey, (Up) ks )
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2" = ((U)kgr: (w;)g}r) .

Since s(w}) = s (Pfyup) <|| Piy |l sp(up) < 1 forall k € N, it follows that
w”,y", 2" belong to the unit ball of £°((Y,, s;) ) forall r € N . Moreover, since f
vanishes on @, Y, we have

If(u" —w)|=|fy =2 |27 =¥ ||= sup sp(ul — wp) =
>T

1 1
< —.

= sup s, (ul — P%  ul) <
P ol = P S 57 <7

k>r

Consequently, 1 > f(w") > f(u") — |f(w"—u")| > 1 — % Whence lim f(w") = 1.

=00

Now, given a = f(v) > 0,0 <a < 1l,wefind0 < b < 1,0 < c < 1 with
b+ca>1,bP+cP=1.Thenlim___ f(bw”™+ cv) = b+ ac > 1. But s,(bwy + cv )P <

s, (P (wib+cv))P+ s, ((I—Pfy) (bwi+cv,))P = bPs (wp)P+cPs(v )P < PP+ < 1,

a contradiction.

Proposition 7. Let (Y, sp)ren » (Xi, Tedken be two sequences of Banach spaces such that
(@) Y, CX,,B,:={yeY,s(y) <1}C{zeXin(z) <1}=14, VkeN,
(b) dp > 1Vk € N there exists a net (,F’,f‘),iE I, of continuous projections of norm not greater
than 1 on (Y,,s,) such that
(b.1) (P‘-ky)l-gk converges to y forall y € Y},
(b.2) s, (y)P < s, (PFy)P+ s,((I — PHy)?.Vy €Y, Vie I,
(b.3) PF:(Y,,r,) — (Y, 7,) iscontinuous Vi € I,
(c) Y, is not a topological subspace of X ,forall k € N .

Let E, 1= 2°(( Xy, " )kenr (Yi, Sp)ksn) » £ =ind E be the (LB)-space of Moscatelli
type associated with £, (X, 7 )ien and (Y, 83 )ien » and let E denote the projective hull
of E. Then E and E do not coincide topologically, but they have the same dual.

Proof. It is known by [5] that £ and E do not coincide topologically. According to Pro-
position 4, it is enough to show that for every continuous linear form g on E: , vanishing

on &,.nY;, there is g, > 0(k € N) such that g is bounded on (I lien €648) N E,.
Now, given such a g, we may apply Lemma 6 to obtain a sequence (4(k) ), Such that
g((Ypren) = Q((P;"Ek}yk)kew) , V(e € (Y, Sk )keN) - Since P{h)(yh) 1S a finite
dimensional subspace of Y, , we can find M, > 0 such that s,( Pifk)y) < Mkrk(P{‘Ek} y) for

ally € Y,(k € N). Using (b.3), wefind C, > 0 (k € IN) suchthat Tk(Pi?k}y) < Ciri(y)
forally € Y,. Weput g, := 1/C M, (k € N). Given z € (][,cn &A,) N E;, we have
that

Sk('Pijlc(k}Ik) < Mkrk(PijEk)I-k) < MCyri(zy) < 1,
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hence (P T )ien € (Iken Bi) N E;, and therefore thereis M > 0 such that

9(( Py Teen) | € M.

Finally, we apply Lemma 6 to obtain

9((zker) | = 190 Py Teren) | < M

which finishes the proof. o

Corollary 8. Let F' be the Frechét space of Moscatelli type with respectto £,, f, . (Y}, s;)
— (X,,7.)(k € IN). Suppose that the sequences (X, )ren» (Yi, Sidien Satisfy condi-

tions (a), (b), (¢) in 7, identifying ffz : X, — Y, with the injection. Then F' is not distingui-
shed, but every locally bounded linear form on Fy is continuous.

Proof. Let E be the (L B)-space of Moscatelli type with respect to £, (Y}, s ),pn and

(Xi, ") een » and let E denote its projective hull. According to [6], F} and E coincide
topologically and E is the bornological space associated to F} . Then we may apply Proposi-

tion 7 to conclude that E and F do not coincide topologically, but E and E have the same
dual. Consequently, F' is not distinguished, but every locally bounded linear form on Fj is
continuous. .

Corollary 9. Let F' be the Fréchet space of Moscatelli type with respect to ', f (Y, s,)
— (_Xk, *rk) . If either

(i) Yy =£,, X = £,, 1 <p<g<oo and f, is the injection, or

(ii) Yy =£,(ay), X, =£,, 1 <p<oo,lim_, a, (i) =00,and f, is theinjection, then

F is not distinguished, but every linear form on F, , which is locally bounded, is continuous.

Now we deal with sequence spaces and function spaces. We first extend the original exam-
ple of Komura to a wider setting of sequence spaces. For notations we refer to [4].

Proposition 10. Let A be a Kéthe matrix on an index set I such that X (A) is not distin-
guished. Then, there is a partition (I.).cn of 1 such that for every 1 < p < oo the space

l,fp h

po(A) 1= 3 (e Pa(z) 1= E Eﬂn(iﬂmilp < oo, Vne N ;

keN \iel,

endowed with the topology defined by the seminorms (p,), . IS not distinguished and every
locally bounded linear form on “p(A)E: IS continuous.



160 . J. Bonet, S. Dierolf, C. Fernandez

Proof. Without loss of generality, we may assume that a, is identically 1. Since A, (A) is
not distinguished, according to [1], there is a decreasing sequence (J,), .y Of subsets of J,
with J, = I, such that forall £ € N

. = inf . 0: e ) =0
(1) &, }2-& v (1) > (11) }EI& Vi, (%)

where v, (1) := a, (1) 7" .
Weput I, := J, \ J,,q. Then (I,),cp is a partition of I and

inf {v,(1);i € I,} > &, > 0;inf {v,,,(4);i € [,} = 0

for all £k € N . Now, we define a Kothe matrix on I, B = (b,),cp » as follows

b . ﬂ“(i) lfiejk,k{ﬂ
(=1 ificl,, k>n

and we will see that p(A) is topologically isomorphic to p ( B) , where

1/p

.U'F.(B) = (I{){Ej;qn((mi){gf) = E Ebﬂ(i) I-T(i)lp < oo, Vne N

keN \ iel,

In fact, the two spaces coincide algebraically also. Since b, < a, Vn € N, one obviously
has ,u,P(A) C ,up(B) continuously. On the other hand, given x = (z;);c; in p (B) and
n € N, since

sup < a,(1) : 1€ UI,:}=E;1 < 00,

\ k>n
we have
- I/r /e l/p
D] DIFCIA D 31 DILRCIEY IR 91 § ERCIETA I
k=1 \iel, k=1 \i€l, k=n \ i€l,
1 1/p R 1/p ,
O DXL A Upz Y lzlP | < max (1, w) g, () < 00,
k=1 \i€l, En " k=1 \i€l, En

which proves that p (B) C p,(A) continuously.
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Thus, we may work with ”‘p( B) instead of j;JLF,,(A) . Its dual, ,u,p( B)', coincides algebrai-

cally with its a-dual p,(B)™ := {(z;);c;s In€ N 1 sup,n (D ier ﬁjﬁ]mir’)”q < 00}
(p~' + ¢~ = 1), and the bornological space associated with x_(B); is the corresponding
co-echelon space. The topology on u_( B)y is given by the sets

1/q

Byi= 1 (Z)ier € 4y(B)'s sup Y uzf] <1p,

iel,

where v € A (B), ,1.e.,sup;;v(1)b, (1) =: C, < 0.
We first show that HF(B) 1s not distinguished. If it were, the set

1/q

1
C = )icr i SU —|z,|* <1
ﬂg (I)EI p Ebk(l)l I —

ko \iel,

would contain a set of the form B; for some v € A__(B), . Since inf{m 1€} =0,

we may find 1, € I, such that v(s,) is arbitrarily small. We may take z; € K with

bk

2 <z; <3 andv(ip)z; < 1.Now z = (z,);, defined by z; :
otherwise, clearly belongs to B-, but it does not belong to C, since T; > 2b,(1,) forall

ke IN.
Now we take a locally bounded linear form f ¥ 0 on pp(B)g. Then, if e, is the element

of »Up( B)* whose coordinates are all equal to zero except the 1-th which 1s equal to one, we
have that the family ( f(e;));c; belongs to p ( B), whence ( f(e;));c; € (pp(B);)’, and
obviously
f = (f(eg))gg + f— (f(ﬂg)),:g'
Therefore, it is enough to show that g := f — ( f(e;));c; belongs to (pF(B)b’)’ . Since g
is continuous on the co-echelon space ,u,P( B)* (provided with the inductive topology), and

b, is identically 1, we have that the restriction of g to £°((£%( ) )yen) 1S continuous, and it
clearly vanishes on @, n£(I;) . Applying Lemma 6, we get Vk € NJX, C I, finite such
that

Q(((I:{){Efk)kgﬂ) =g Z T;€; =g E T.e; for all

el keN VEXs keN

(T:)ier = ((Ii)ief,,)keﬂ € £7((E (1) Dgen) -
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We will see that there is ¥ € A _(B), suchthatv(s) > 1,Vie X, (k€ N). Weput

C,:=sup{b,(1);1€ X,k e N}.
Since b_(1) = 1 forall 1 € I, with k > n, we have that C_ is finite and C, > 1. Then

.. C,
v = 2

forall1 € X, (k€ N).
Next, we prove that g is bounded on B;. In fact, given = = ((Z;);c; Jken € By, there is

n € N such that
(((O){Ejk)};qn: ((mi),'g;*)kzﬂ) € fﬁ((ﬁ(fk))kgm):

hence

9((((0){51'#)#{“: ((Ii)iEI,,.)kt_b-n)) = g(((((})igjt)kqn): ((I;‘){Exk);;gﬂ))s

but the restriction of g t0 £2°((£9(I;))ien) 18 continuous. Therefore, there is M > 0 with
lg(y)| < M for all y in the unit ball of £*°((£9(1,) )yen) - Moreover, since v(1) > 1Vi €
X, Vk € N ,and since for (z,);.; € By, (((0);c1 decn» ((Z)iex, Jisn) Delongs to the unit
ball of £*°((29(1;) )yen) » WE have

lg((m{)fgf)l <M.

=

Now we prove that for the example of Bonet and Taskinen [7] mentioned 1n the introduc-
tion there is even a non-continuous locally bounded linear form on the strong dual.

Let  be a non-void open subset of R™. Given £ € N U {oo}, £ > t we define
C{ Q) N H4'(Q) as the Fréchet space intersection of the Fréchet space C% Q) and the
Banach Sobolev space H! (), endowed with the natural intersection topology. The com-
pleteness of C(Q)YNHY(Q) easily follows from the fact that both spaces in the intersection
are continuously injected in the Fréchet space L{x(Q) . Since £ >t we have

CHQ) N HYP(Q) = {f € CHQ); f¥ € L'(Q) V|a| <t}

and its locally convex topology is defined by the sequence of seminorms

20 (f) := max /; 17,

|| <t

(a) *
'= max max if 2€ Ny,

¢ (a) - —
= max max )| if £ = oo,
qk(f) la|<k+1 zEL, If ( )I

where (L, );cn 18 a fundamental sequence of compact subsets in £ with L, C Ly, .
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Proposition 11. There is a non-continuous locally bounded linear form on

(CHQ) N H" (Q));.

Proof. We take g € Z([0,1]™) with [gm |Dig|=1 and put & := [max,; [g=|g'?[]~

>0,D:=2e"">0.
For each k € N, we select (I} ,),cn » Where I, . is a compact cube contained in Lg, ; \

< 1/(D2%"n).

L, so that they are pairwise disjoint and p(1 )
For arbitrary k,n € N, let p, (z) = o, , 2+ b,,,0,, €E R, b, € R™, be such

that p, . ([0,11™) = I, ... Now, we define f, . := C g0 Prn With G, > 0 such that

qo(fr,) =1.Forevery k,ne N ,thereis a mesurable mapping h, . on I, . such that

Dj fenly) = hy () IDifk,n(yH with |h, ()] =1

Given n€ N, (n));cn € N&, weput M(k,(n));en) = {fo, 1 7 > 15, £ > k}.

Then {M(k,(n;);en) 1 k € N, (n);en € NN} isafilter basis in C4(Q)NHY (Q).

Since g4 (f,,) = 1, VL, r € N ,itis clear that M (k, (n;);en) 1s contained in the semi-
unit ball of g, . Moreover, supp f,, C Lg,, \ L,,hence q,(f,,) =0 forall £ > k and for

all r € N. Hence, M(k, (”j);'eﬂ) is contained in the semi-unit ball corresponding to g, .
Thus, condition (ii) (a) in Lemma 1 holds.

Now, we take a bounded set B in C4(Q) N HY'(Q). Then, we find A\, > 0 such that
q.(f) <X, forall f € B andforall Kk € N,. Wechoose j, € IN with Je 2 2p1(kEN)
and put

u(f) :=D }“5‘ f (Df Fhee.

keN z;ﬂk

Since |u( f)| < go(f) , we havethat u € (CHQ)NH" (Q))'; we will see that u € B°.
In fact, given f € B,

w(HI <D S ulhp swp DI <D Y g < 1.

keN ‘E:}j.i: Ik.-f keIN E:’}k J

whence u € B°.
We put Vy = z{u}° = {2u}°. Wehave B+ Vg C {u}°+ 7{u}° C >{u}°. We claim
that
M(1,(Gren) C F\ (B + Vg), where F = CY(Q) N H*'(Q).
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In fact, given f, , with £ > 7., u( f, ¢) > 2 because

DC‘: !]akilm_t
u(f):D/(D*f Yh =Df Dt f, | = —k _
k ” 1k g) g ful 1 fk el 20 (Fy o)
- DCylard™ = = De =2

Max o cp Gy gl o ™1 fgm [9¢] = max, o fgm 99}

Assume M(1, (Jien)N(B+Vyg) # @ . Then, thereis f, , € M (1, (;‘k)keﬂ)ﬁ%{u}“,
hence there is £ > 7, such that f, , € 3 {u}°. Therefore,

3

2 < ﬂ(fk,g) < 5

a contradiction. This yields condition (ii) (b) of Lemma 1, and an application of this Lemma
allows to conclude. B
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Added in proof. V. B. Moscatelli communicated to the authors that all the spaces C4(Q) N
H%'(Q) which appear in Proposition 11 are of Moscatelli type.
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