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(DF)-SPACES OF TYPE CB(X,E) AND CV(X, E)
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Dedicated to the memory of Professor Gottfried Kothe

Abstract. Some locally convex properties of the spaces CB( X, E) of the bounded continu-
ous functions on a completely regular Hausdorff space X with values in a (DF)-space E are
studied and applied to the (DF)-spaces of type CV(X, E) (e.g., see [5]).
The following are our main results:

1. CB(X,F) isa(DF)-space if and only if E 1s a (DF)-space.

2. For a (DF)-space E,CB(X, E) is quasibarrelled if and only if

either (1) X 1s pseudocompact and E is quasibarrelled

or (i) X is not pseudocompact and the bounded subsets of E are metrizable.
3. If Y C C(X) andifeachv € V is dominated by some v € V N C(X), then

CV(X,E) (resp., CV(X) ®, E) is a (DF)-space if and only if E is a (DF)-space.
4. Let X be alocally compact and o -compact space, V C C(X) and E a (DF)-space.

Then CV(X, E) is quasibarrelled if and only if
(1) E is quasibarrelled and 'V satisfies condition (M, X) or

(ii) the bounded subsets of E are metrizable and V satisfies condition ( D).
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INTRODUCTION

The class of (DF)-spaces (containing all strong duals of Fréchet spaces, but also all (LB)-
spaces) was introduced by A. Grothendieck around 1954. Quite recently, there has been a
rencwed interest in this class; e.g., J. Taskinen [19], [20] gave a negative solution to Grothen-
dieck’s «probléme des topologies» (for tensor products of Fréchet spaces) and to some relaied
problems on (DF)-spaces.

In [4], it is pointed out that the (DF)-spaces are the «right» setting for the so-called «dual
density conditions», dual reformulations of S. Heinrich’s density condition {cf. [3]) which
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are closely related to the important property that all bounded subsets are metrizable. A large
part of [4] is devoted to the study of the locally convex properties of certain vector-valued
sequerice spaces; viz., the space [__( ) of all bounded sequences in a (DF)-space E and,
more generally, (DF)-valued co-echelon spaces K __( E) (or, equivalently, spaces £ ,( A, E)
of the continuous linear mappings from a Kothe echelon space A; mto a (DF)-space E).

Sinice some of the techniques used in [4] also work in the more general context of spaces
of continuous vector-valued functions, we now sect out to extend several theorems of [4] to this
context. We start by investigating the space CB( X, E) of the bounded continuous functions
on a completely regular Hausdorff space X with values in a (DF)-space E and later apply
our results to the more general spaces of type CV (X, E) i.e., to the «projective hulls» of the
weighted inductive limits VC( X, E) (cf. [5] - [9)).

In the first of the four sections of the present article, we derive a «decomposition» lemma
(Lemma 2) for certain absolutely convex subsets of CB(X, E) which will permit direct
«estimates» with the 0-neighborhoods and bounded sets in this space. The proof of this lemma
is based on the «density argument» 3, involving locally finite continuous partitions of unity on
X . In Section 2, we use Lemma 2 to prove (Theorem 5) that CB( X, F) is a (DF)-space if
and only if E is a (DF)-space. For a (DF)-space E , the quasibarrelled spaces CB( X, E) are
then characterized in Theorem 6, and there are two distinct cases: If X is pseudocompact,
CB(X, E) is quasibarrelled if and only if E is, but if X is not pseudocompact, then the
quasibarrelledness of CB( X, E) is equivalent to the metrizability of the bounded subsets of
E (i.e., to the dual density condition (DDC) for E, cf. [4]).

In an appendix to Section 2, we compare CB( X, Ey) and £, (E,CB(X)), where E is
a quasibarrelled locally convex space, as well as the corresponding spaces H™( X, E;) and
Z(E, H*®(X)), where H*(X) denotes the space of the bounded holomorphic functions

on an open subset X of CV(N > 1). In particular, we obtain an example of a space of
bounded holomorphic functions on the open unit disk D of the complex plane with values
in the strong dual of a reflexive Fréchet space which does not have the (DF)-property. (In
view of the fact that H>=°( D) is nota % __ -space, this is a consequence of a recent result of
Defan:-Floret-Taskinen [21]).

In Section 3, we first list several characterizations of the type « CB( X, E) satisfies pro-
perty ( P) if and only if E does». (They follow quite easily from Lemma 2.) We then
proceed to make some remarks on quasibarrelled and barrelled CB( X, E) -spaces, where E
is no longer assumed to be a (DF)-space.

Section 4 turns to the spaces CV (X, E) with values in a (DF)-space E; here V = V (V)
is associated with a decreasing sequence V = (v, ), Of strictly positive continuous wei-

ghts on X . Generalizing Theorem 5, we cstablish the (DF)-property of CV(X,E) and of
CV(X) ®, E (Theorem 13 and Corollary 14) if E is a (DF)-space and if each v € V is

dominated by some ¥ € V N C(X). (The last hypothesis clearly holds if X is locally com-




(DF)-spaces of type CB(X, E) and CV (X, E) 129

pact and o -compact). If E is a (DF)-space and X 1s locally compact and o -compact, we
finally characterize the quasibarrelledness of CV(X,E) (Theorem 16) and again obtain a
dichotomy: The space CV(X , E) is quasibarrelled if and only if (i) F is quasibarrelled and
V satisfies condition ( M, XC) or (ii) the bounded subsets of E are metrizable and V satisfies
condition (D).

Notation. Our notation concerning locally convex spaces (which are always assumed to
be different from {0} and Hausdorff) is quite standard; e.g., see [13] and [14]. For a locally
convex space F, cs( E) denotes the system of all the continuous seminorms on F. If two
locally convex spaces F and F' are topologically isomorphic, we will sometimes abbreviate
this by saying that F' 1s isomorphic to F'.

In the sequel, X will always denote a completely regular Hausdorltf space and E alocally
convex space. [_( E) denotes the space of all the bounded sequences in £ with the uniform
topology. CB(X, E) is the space of all the bounded continuous functions from X into E,
endowed with the topology of uniform convergence on X . (In particular, if X = N with the
discrete topology, we clearly have CB(X,E) =1 _(E).) If A isasubset of F, we put

CB(X,A) :={f € CB(X, E); f(X) C A}.

We will also let C( X, F) denote the space of all the continuous functions f : X — E. If
E is the field of real or complex scalars, we drop it from our notation and write CB( X)) and
C(X) (as well as CV (X)), but we will also use the notation CB(X,[0,1]) in this case.

1. GENERALITIES, BASIC LEMMA

In this section, some facts of a more technical nature are established which we will need in
the proof of our main results in Section 2.

Remark 1. (a) CB(X) and E are always topologically isomorphic to complemented sub-
spaces of CB(X, E).

(b) If X is not pseudocompact, then l__( E) is also topologically isomorphic to a com-
plemented subspace of CB( X, E).

Proof. 1t is only necessary to show (b). Since X 1s not pseudocompact, 1t 18 easy to construct
a sequence (z,), . C X and asequence (p,),.n C CB(X, [0, 1]) with p_(z,) =1
for every m € IN such that the supports of the functions ¢_ ar¢ mutually disjoint and locally
finite (cf. [17], II. 11.9), Then one can check directly that

(Pf)(z) =) ¢, (2)f(z,) for feCB(X,E) and z€X
n=1
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defines a continuous linear projection P on CB(X, E) with range isomorphic to I (E). =

Recall that, by a result of M. and S. Krein (cf. [17],IV.1.1), CB(X) is separable if and
only if X is compact and metrizable. Thus clearly, for a compact metrizable X, [ cannot
be isomorphic to a (complemented) subspace of CB(X).

Lemma 2. For an arbitrary absolutely convex O-neighborhood U in E, for a finite number
of absolutely convex bounded subsets By, ...,B,(n € N) of E and for any given € > 0,
we have

CB (X,U+ 3 B#) C(1+e)CB(X,U)+ Y CB(X,By).
k=1 k=1

This is our main lemma for the proof of which we first need an auxiliary result. The proof of
3 is rather standard (e.g., cf. M. Rome [16], Théoréme 3.5).

Density argument 3. Forevery f € CB(X,E),p € cs( E) and € > 0, there are a locally
finite continuous partition of unity (p;);c; on X and a subset (m}-)jE ; of X such that

Sggp (f(m) - ij-(m)f($}+)) < E.

JjelJ

Proof of 3.
z~y <> p(f(z)— f(y)=0

clearly defines an equivalence relation on X, and Az, = p(f(x) — f(y)) yields a
metric on X/ ~ which makes the canonical mapping 7 : X — (X / ~,d) continuous. Now
(X/ ~,d) is paracompact, and thus we can find a locally finite continuous partition of unity
(¥;)jes ON (X/ ~,d) which is subordinate to the open cover

{ne X/~ d(&n) <g/3}, Ce€X/~.

We can assume that each ¢, 1is different from zero, and for every j € J, we can choose

z; € X with Z; € supp ;. To conclude, it is now enough to note that

sup p (f(z) -5, w)(m)f(mj)) <2¢/3
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since (4, o m);.; obviously is a locally finite continuous partition of unity on .X. E

We remark that for a given f € CB(X, E), the function g : X — F,
g(z) = Eje 7 p;{z) f(z;) for z € X, which appears in the previous result, will in gene-

ral not be an element of the tensor product CB(X) ® E (nor an element of its closure in
CB(X,E)).
Proof of Lemma 2. We denote by p the Minkowski functional of U. For € > 0 and a fixed

feCB(X,U+) ;_, B,), weapply the density argument 3 to find a locally finite continuous
partition of unity (;);c, on X and a subset (z;);¢; of X such that

(%) supp | f(z) =) p(z)f(z) | <e.

zeX jed

Since f € CB(X,E), the function g : = — ZjE..T p;(z) f(z;) also belongs to
CB(X, E), and (*) implies f — g € eCB(X,U). By hypothesis we have

f(z) € U+ Y ;. By foreach j € J, and hence f(z;) = u;+ ) }_; b ; with u; € U and
by ; € B,,1 < k< n Ifweput go(z) := E;‘EJ p;(T)u; and g, (z) := E;‘EJ’ ©;(z) by ;

forall z € X, thenclearly g, € C(X,E),9, € CB(X,E),k=1,...,n,and g =), o 9
whence also g, € CB(X, E). Thus we obtain g, € CB(X,U) and g, € CB(X, B;),

1 < k < n, and finally

f=(F-9+Y g=0+(f—9)+Y g, €(1+e)CB(X,U)+ ) CB(X,B)).
k=0 k=1 k=1

In Remark 4 (below) we list some other «formulae» which can be derived in a similar way.
But, to do this, we first introduce the following additional nofation: For any subset A of FE,

let

PCB(X,A) = {g € CB(X,E);g(z) = )  p,(z)a; forall z€X,
JEJ

where (a;);c; C A and (@;);e; is a locally finite continuous partition of unity on X }.

Remark 4. The following assertions are true:
(a) If Dy,...,D, C E are absolutely convex sets which are all bounded except for at

most one, then

PCB (xz Dk) - i PCB(X,D,).
k=1

k=1
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(b) For every absolutely convex bounded subset B of E,
(i) PCB(X, B) isabounded subset of CB(X, E),
(ii) PCB(X,B) = PCB(X,B) and
(iii) CB(X,B) = CB(X,B) = CB(X,B) = PCB(X,B).
(c) If B C E is absolutely convex bounded and U an absolutely convex neighborhood
of 0 in E, then

CB(X,U+B)=CB(X,U)+ CB(X,B).

2. (DF)-SPACES OF TYPE CB(X, E)

Our first theorem is one of the main results of this article. It provides an affirmative answer
to the question [14], 13.8.3 (and generalizes a theorem of S. Dierolf [12] for [ ( E)).

Theorem 5. CB(X, E) is a (DF)-space (resp., a (gDF)-space) if and only if E is a (DF)-
(resp., (gDF )-) space. |

Proof. The necessity is obvious because F is isomorphic to a complemented subspace of
CB(X, E). To prove that the condition is also sufficient, we fix a fundamental sequence
(B,)en Of closed absolutely convex bounded subsets of F. It is easy to see that
(CB(X,B,)),n forms a fundamental sequence of bounded sets in CB( X, E).

We first suppose that E is a (DF)-space and also fix a sequence (V) .n of closed ab-
solutely convex 0-neighborhoods in CB(X, E) such that V := N, V, is bornivorous.

Then for every n € N, there is &, > 0 with ¢, CB(X,B,) C 2~™ 'V, and there also

exists an absolutely convex O-neighborhood U, in E with CB(X,U,) C 274V We
set W, = U, + 3 4. &B;,n=1,2,.... Clearly, each W, is an absolutely convex 0-
neighborhood in E, and it easily follows from the definition of W that W := N W, is
bornivorous. Since E is a (DF)-space, W must be a 0-neighborhood in E. From Lemma 2,

we now obtain

CB(X,W,) C2CB(X,U,)+ Y §CB(X,B) C27'V,+» 27V YV,
k=1 k=1

and consequently

CB(X,W)C [|CB(X,W,)C [|V.=V.
neN nelN

Thus, CB( X, F) is a (DF)-space.
Suppose next that E is a (gDF)-space and that the sequence (B,), . satisfies
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2B, C B, foreachn € N. Inviewof [13], 12.3.1, if we want to prove that CB( X, E) is
a (gDF)-space, it is enough to show the following: Givenany sequence (U, ), Of absolutely
convex O-neighborhoods in F, the set

V= () (CB(X,B,) + CB(X,U,))

nelN

is again a neighborhood of 0 in CB( X, E) . Take (U,),.n as above and set

U:=[)(B,+27'U,);
neN

then U is a O-neighborhood in the (gDF)-space E. By Lemma 2, we get

CB(X,U) c (| CB(X,B,+27'U,) c () (CB(X,B,) + CB(X,U,)) =V,
nelN

nceIN

and the proof is complete. | .

The characterization of the quasibarrelled (DF)-spaces of type CB( X, E) leads to an
interesting dichotomy.

Theorem 6. Let E denote a (DF)-space. Then CB( X, E) is quasibarrelled if and only if
one of the following conditions (i) and (ii) is satisfied.:

(i) X ispseudocompact and E is quasibarrelled,

(ii) X is not pseudocompact and every bounded subset of E is metrizable.

Proof. Let CB( X, E) be a quasibarrelled. Then E must be quasibarrelled because it is iso-
morphic to a complemented subspace of CB( X, E). Moreover, if X is not pseudocompact,
we deduce from Remark 1.(b) that [__( E) must be quasibarrelled too, which by [4], Theorem
1.5.(a) is equivalent to the condition that every bounded subset of E is metrizable.

Conversely, each of the conditions (i) and (ii) is sufficient. First, if (ii) is satisfied, it is
a direct matter to check that also every bounded subset of CB(X, F) is metrizable. But
CB(X, E) is a (DF)-space by Theorem 5. Thus, the conclusion follows from a classical
result of Grothendieck (e.g., see [14], 8.3.13.(i1)).

It remains to show that (i) implies the quasibarrelledness of CB( X, E). We need the

following

Lemma 7. Let f(X) be precompact in E for each f € CB(X,E). (This hypothesis cer-
tainly holds if X is pseudocompact, but it is also satisfied if each bounded subset of E is

precompact.)
Then for any bounded set B C CB(X, E), there is a bounded set C C CB(X) @ E

(with the induced topology) with B C C.
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Proof. 1. We fix p € cs(E) and € > 0. For given f € CB(X, FE), the set f(X) I8
precompact in E. Hence there exists a finite subset {z,,...,z;} of X such that

J
f(X) | J{e € B;p(f(z;) —e) <}
j=1

Forj=1,...,J and z € X, weset ¥;(z) := sup{e — p(f(z;) — f(z)),0} and observe
that, obviously, Z;L] 1/)}.(5) > 0 for each z € X. Thus, the functions

Shet Vi

P; -

form a finite continuous partition of unity on X with

J J .
supp | f(z) =Y 9;(2) f(z;) | <sup o (0)p(f(2) — f(z;)) <e.
j=1

IEX IE.K }=1

2. In this way, with every f € CB(X, E),p € cs(E) and € > 0, we have associated a
finite continuous partition of unity {¢,,...,¢,;} on X and asubset {z,,...,z;} of X such

J
that sup p( f(z) — E(tp}- ® f(z;))(z)) <e. The conclusion now follows from the remark

IE.X J=1

that for every bounded set B in CB(X, E),

C:={) v;®f(z;):{1,---, s} is a finite continuous partition

e,
(-

of unity on X,{z,,...,z;} C X and f € B}

is a bounded subset of CB( X, E) with B C C. 2

We can now finish the proof of Theorem 6. 1f (i) is satisfied, we may apply Lemma 7 from
which it follows, in particular, that CB(X) ® E is dense in CB( X, E). (Actually, this last
fact is well-kquasibarrelledn and can e.g. be found in [2].) Moreover, CB(X, E) induces the
e -tensor product topology on CB(X) ® E (again, see [2]). But CB(X) 15 a Z . -Space,
and we deduce from [14], 11.5.10 that CB(X) ®, E is quasibarrelled. Hence CB(X, E)
must also be quasibarrelled (cf. [13], 11.3.1.(e)), B
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For every quasibarrelled (DF)-space E and every compact space K, CB(K, E)
(= C(K, E) with the uniform topology) is quasibarrelled by a result of Mendoza (cf. [18],
[V. 6.8). On the other hand, according to [3] (also see [4]), there exist even strong duals E
of reflexive Fréchet spaces with the property that [_ ( E) is not quasibarrelled. If E denotes
such a space, then certainly [__( F) cannot be isomorphic to a complemented subspace of
CB(K,FE).

In [4], Theorem 1.5.(b), the bornological (DF)-spaces [__( E) had also been characterized
by the «strong dual density condition (SDDC)» for E. But a characterization of the borno-
logical spaces CB(X, E), E a (DF)-space, similar to the one in Theorem 6 does not seem
to be available at this moment: Clearly, for a (DF)-space E,CB(X, E) bornological im-
plies E bomological, and if X is not pseudocompact, then E must satisfy (SDDC) in view
of Remark 1.(b) and [4], Theorem 1.5.(b). In the converse direction, we can only conclude
the following: If E is a quasicomplete bornological (DF)-space such that for every absolu-
tely convex compact subset K of E, there is a disk B C FE such that K is contained and
compact in Eg and if each function f € CB(X, E) has precompact range, then [2] im-
plies CB(X, E) = CB(X)eE, and this space is bornological by [14], Proposition 11.5.13.
However, using our present methods which involve the density argument 3, and hence closu-
res of absolutely convex sets, we are not able to prove (along the lines of the direct proof of
(1) = (3’) in Theorem 1.4 of [3]) that CB(X, E) must be bornological for any (DF)-space
E with (§SDDC).

APPENDIX

As S. Dierolf [12], proof of Proposition 5.14 showed, the spaces [_(I,E;) and
Z(E,l_(I)) are topologically isomorphic whenever E is a quasibarrelled locally convex
space and ] an arbitrary index set. The canonical topological isomorphism ©
Z(E,l_(I)) = 1(I,E,) is given by

O(T) :=(§,0T),.,; for TeF (B (D),

where 6. : f — f(1) denotes the projection of [ () onto its 1 -th coordinate; the image of
an element F' = ( F(1)),.; of [ (I, E}) under ' : [ (I, EB)) — & (E,[,(I)) has the

form
T=0"1(F), T(e) = ((F(i))(e)),,; for e€E.

(A generalization of this result to vector-valued co-echelon spaces K (I, E;) was establi-
shed in [4], Proposition 2.13.(a).)

The corresponding topological isomorphism with «[_ » replaced by « C B » is not true in
general; i.e., it is not possible to generalize the full extent of S. Dierolf’s result from bounded
sequences to bounded continuous functions. However, a part remains valid in our case.
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Proposition A. If E is quasibarrelled, CB( X, E,) is topologically isomorphic to a sub-
space of Z,(E,CB(X)). The canonical isomorphism A of CB(X, E}) into
Z\(E,CB(X)) isdefined by

[A(F)](e) iz — (F(z))(e) for e€E,

but it is not surjective in general (even if X is compact).

Proof. A is the restriction of 8 ' : |_(X, E}) — &, (E,l_(X)) to the topological sub-
space CB(X, E;) of I (X, Ey}). Itonly takes a short glance to verify that A (CB(X, E}))
1s contained in the topological subspace 2" ( E,CB( X)) of £, ( E,[_(X)); hence the first
(positive) part of the proposition.

Tosee that A : CB(X,E;) — £,(E,CB(X)) is not surjective in general, we take
E = CB(X) and note that the image of the identity (inclusion) € &, (CB(X),l (X))
under © is nothing but (6,),.x € | (X,CB(X);). Thus, the only possible preimage of
id spxy € Z(CB(X),CB(X)) under A is the mapping

A:z—6,6(f)=f(z) for feCB(X),

of X into CB(X);. But A : X — CB(X), is continuous if and only if the unit ball
CB(X), of CB(X) is equicontinuous on X, and clearly, the last property does not hold
for many compact spaces X ,e.g. X = [0, 1]. a

On the other hand, if we replace the bounded continuous functions by the bounded ho-
lomorphic functions; i.e., CB(X) by H*®(X) (where X is an open subset of C*) and
CB(X, E}) by H®(X, E;), then the situation improves again, and we end up with the full
topological isomorphism as in the [__ -case.

Proposition B. Let X denote an open subsetof CN (N >1) and E a quasicomplete (quasi-)
barrelled space. Then H™( X, E}) is topologically isomorphic to & (E, H*(X)).

Proof. For A as in the proof of the preceding proposition, it is obvious from the definition of
the vector-valued (weakly) holomorphic functions that A maps

H*(X, E;) C CB(X, E}) into the topological subspace &, ( E, H*(X)) of
Z(E,CB(X)). Itremains to show the equality A (H*(X, E})) = £Z(E, H®(X)), and
it clearly suffices to prove & (Z(E, H*(X))) C H®(X, E}).

Fixing T € Z(E,H*(X)), wehave ©(T) : z — 6, o T. Since for arbitrary e € FE
the function z — (& (T)(2))(e) = (T(e))(z) belongs to H*°(X), the mapping & (T)
is (weakly) holomorphic into (say) E.; i.e., E' with the Mackey topology 7 = 7(E', E).
But since E is quasicomplete, E! and E; have the same bounded sets and hence the same
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holomorphic functions (e.g., see Grothendieck [22], p. 40). We conclude that ©(T) 1s holo-
morphic from X into E; and thus an element of H*( X, E}). a

From the point of view of Banach space theory, there is a big difference between (the
C(K) -space) CB(X) = C(BX) and, say, H*(D), where D denotes the open uait disk
in the complex plane: Viz., H®(D) is not even a & __ -space (see Pelczynski [23]). Inte-
restingly enough, this difference is reflected in the locally convex properties of CB( X, E)
and H*(D, E) for (DF)-spaces E (or even for strong duals E of Fréchet spaces).

Proposition C. For some reflexive Fréchet space E, H*(D,E)) = & ,(E,H®(D)) is
not a (DF )-space.

Proof. (The result is a consequence of a recent theorem in [21]; the authors thank Andreas
Defant and Klaus Floret for conversations on this subject).

It is well-kquasibarrelledn that H*°( D) is a dual Banach space; let I denote a Ba-
nach space such that F] = H*®(D). Since H®(D) is nota & -space, it follows that
F cannot be a %, -space. Thus, by Defant-Floret-Taskinen [21], 1.3 Corollary, there exi-
sts a reflexive Fréchet space E such that %, (F, E;) is not a (DF)-space. But transposi-
tion of mappings induces a topological isomorphism of &£, (F, E;) and 2 (E, H*(D)).
(This last isomorphism can be proved in a direct way. Alternatively, see the discussion in
Jarchow [13], Section 15.3 and use F;, = ind nEEIE-" where (U,), . denotes a decreasing

basis of O-neighborhoods in E, to deduce the algebraic equality Z'(F, Ey) = Z(F, E ;)
and hence K (F, E}) = Z(E, H*(D)). Then the topological isomorphism £, ( F, E}) =
Z\(E, H®(D)) is obvious.) B

We finish this appendix by pointing out that Proposition B can also serve to demon-
strate that the space H*®( X, E;) of vector-valued functions is quite different from the cor-
responding e-product H®(X)e( E}) in many cases: Viz,, if E is a Banach space, then
H>®(X)e(E};) is isometrically isomorphic to the space C(E, H*(X)) of all compact ope-
rators from E into H*(X) (under the operator norm).

3. SOME ADDITIONAL REMARKS ON RELATED PROPERTIES

At the beginning of this section, we list some easy characterizations of the following type:
«CB(X, E) satisfies property (P) if and only if F docs».

E.g., this trivially holds for normability, metrizability and (quasi-, sequential, local) com-
pleteness. Next, it is easily checked that such an equivalence is also true for the property
that the bounded subsets are metrizable (see the proof of Theorem 6), for the existence of
a fundamental sequence of bounded sets, for the countable neighborhood property (i.e., for
every sequence (p,)..n C cs(F), there arc p € cs( E) and positive numbers A_, for
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n=1,2,..., suchthat p. < C_ p for each n) and for the countable boundedness property
(1.e., for every sequence ( B,), . Of bounded sets in F, thereare A, > 0,n=1,2,...,
with U, .y A, B, bounded in F). Moreover, using the M. and S. Krein characterization of
the separable CB(X) -spaces, one can verify directly that CB( X, E) is separable (resp.,
seminorm separable) if and only if X is compact and metrizable and E' is separable (resp.,
seminorm separable).

As an example of how easily our basic Lemma 2 applies to deduce another such charac-
terization, we state:

Proposition 8. The space CB( X, F) is quasinormable if and only if F is quasinormable.

Proof. By 1.(a), only the sufficiency needs a proof. Given any O-neighborhood W in
CB(X, E), there is an absolutely convex O-neighborhood U in E with CB(X,U) C W.
By hypothesis, we find an absolutely convex 0-neighborhood V' 1n E such that for every
e > 0, there is an absolutely convex bounded set B in E with V C B + 2~ 'eU. From
Lemma 2, we quastbarrelled get

CB(X,V) CCB(X,B+27'¢U) CeCB(X,U) + CB(X,B) C eW + CB(X,B),

which completes the proof. o

In the rest of this section, we add some remarks on quasibarrelled and barrelled spaces
of type CB(X, F), where E is an arbitrary locally convex space (i.e., not necessarily a

(DF)-space).

Proposition 9. We assume that every f € CB(X, E) has precompact range in E . If X is
infinite, then CB(X, E) is quasibarrelled if and only if E is quasibarrelled and its strong

dual E, satisfies property (B) of Pietsch [15].

Proof. By Lemma 7 (and [14], 8.3.24), CB( X, E) is quasibarrelled 1f and only if the tensor
product CB(X) ®, E is quasibarrelled. The conclusion quasibarrelled follows from [14],

11.5.10. E

Note that if the space CB(X, E) is quasibarrelled, then CB( K, E) = C(K, E) must
also be quasibarrelled for every compact K C X. Indeed, if K 1§ an arbitrary compact subset
of X, the restriction f — f|ff defines a linear map R, : CB(X, F) — C(K, E) whichis

open and has dense range (ct. [10]).

Let us quasibarrelled turn to the barrelled CB( X, F) -spaces. We first recall that, accor-
ding to a result of Mendoza (cf. [18], IV.7.9), for any compact and infinite space X = K, the
space CB(X, E) = C(K,E) is barrelled if and only if F is barrelled and E; has Pietsch’s
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property (B) (see [15]). There are essentially two ways to obtain results on the barrelled-
ness of CB(X, E) : On one hand, observe that CB(X, E) is locally complete for every
locally complete space E and that every locally complete quasibarrelled space is barrelled.
Hence Theorem 6 and Proposition 9 have obvious consequences for barrelled spaces of type
CB(X, E) if E is, in addition, assumed to be locally complete. On the other hand, one can
also generalize a trick of Defant-Govaerts [11] to obtain a partial result without any comple-
teness assumption.

Lemma 10. If (F,),.n is an increasing closed cover of X, then for every barrel T in
CB(X, E) and every bounded subset B of E, there exists a natural number m such that
the set {f € CB(X,E); f=0 on F, and f(X) C B} isabsorbed by T .

Proof. If this is not the case, then for every n € N, thereis f, € CB(X, E) with f, =0
on . and f (X) C B, but f, ¢ 2°"T. quasibarrelled the series ) .2, c,f, is Cauchy
in CB(X, E) forevery c= (c,), . intheunitballof [;, and } 72, ¢, f () reducestoa
finite sum for every = € X. At this point, clearly, (27" f,), must be a null sequence in the
space CB(X, E), and the set C := {} 2, 27 "¢, f,; ¢ € I} with ||¢]|; < 1} is absolutely
convex and compact in CB(X, E). Therefore, C is absorbed by 7°. As a consequence,
there is » > 0 with C C »T and thus 27*f, € T for each n € IN. This is the desired

contradiction. E

Proposition 11. Let X be a metrizable locally compact and o-compact space. Then
CB(X, E) is barrelled if and only if CB(X, E) is quasibarrelled and E is barrelled.

Proof. If X is compact, the proposition is a consequence of the results of Mendoza (quoted
above). If X is not compact, we assume that F is barrelled and CB( X, E) is quasibarrelled,
and we fix abarrel T in CB(X, E). Itis enough to prove that 7' must be bornivorous. Thus,
we also fix an absolutely convex bounded subset B of E, and we want to show that 7" absorbs

CB(X,B).
By hypothesis on X , there is an increasing sequence ( K ) .y Of compact subsets of X

with K, C K?,, forevery nand X = U, K,. By Lemma 10, we can pick n, € N such

n+ 1

that 7" absorbs {f € CB(X, E); f=0 on K and f(X) C B}.

At this point, let us denote by p the restriction map from X to K . Since K o is a closed
subset of the metrizable space X, the Arens-Borsuk-Dugundji theorem yields a continuous
linear extension map A : C(K, ,E) — C(X,E) with (Af)(X) C T'(f(K,)) for
every f € C(K,_,FE). From po A =id, weobtain CB(X, E) = A(C(K, ,E)) &ker p
algebraically and topologically. quasibarrelled F' := A(C(K, ' E)) is a (complemented)
subspace of CB(X, E) isomorphic to C( Knu - E). But the last space is barrelled by the
result of Mendoza: therefore the barrel T N F C F is a O-neighborhood in F' and hence
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absorbs the bounded set (A o p)(CB(X, B)). On the other hand, we note that for every
f € CB(X,B), the function ( A o p)(f) takes its values in the set I"(f(Kﬂﬂ)) C B so

that
(d —Aop)(CB(X,B)) C2{feCB(X,FE); f=0on Kﬂﬂ and f(X) C B}.

It follows that T" absorbs (id — A o p)(CB(X, B)), and since we have seen before that T'
absorbs (A o p)(CB(X, B)), too, the conclusion is immediate. =

From Remark 1.(b) and from our considerations in Scction 2, it should be clear that the
space [__( E) is very important in the study of the locally convex properties of CB( X, E).
Similarly, it is quite obvious that the space c, ( £) is esscntial for the study of C( X, E) with
the comipact-open topology. We close this section with a remark on the interplay between the
quasibasrelledness of the spaces [_(F) and c,(E).

Proposition 12. If [__( E) is quasibarrelled, then cy( E) must be quasibarrelied, too, but
the converse does not hold.

Proof. I,(z) = (z;,...,7,,0,0,...) forevery z = (z,),c.n € l(F) defines a conti-
nuous lincar mapping I, : [_(FE) — ¢y (F) forevery k € N. Fix abornivorous barrel T' 1n

co( EY). Let us first show that T = {z el _(E); I,z €T foreach k € N } is a bornivorous
barrel 1n [_( E).

Of course, T = MNien {x '(T) is a closed absolutely convex subset of [_( F). But T is
also beinivorous: Let C denote a bounded setin [ (E). Then there is an absolutely convex
bounded set B C E with

CC{zx=(z,) €l _(E);z, € Bforall ne€ N}

We set
Co ={z=(z,), €cy(E);z, € Bforall n€ N}.
Since (, is a bounded subset of ¢, ( E), we can find » > 0 with G, C rT, and it easily

follows that C C 7T
From the hypothesis we quasibarrelled conclude that 7' 1s a O-neighborhood in [ ( E),

and hence there exists a O-neighborhood U in £ with
W={zx=(z) €l (E);z, €eUforal ne N} CT.
At this point, it suffices to observe that
Wy, ={z=(z,), €Ecy(E);z, €U forall n€ N}

is contained in 7.
On the other hand, the examples in [3] and [4] (cf. also the remark after the end of the

proof of Theorem 6 above) serve to show that the converse implication is false. 5
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4. APPLICATIONS TO WEIGHTED INDUCTIVE LIMITS OF SPACES OF
VECTOR-VALUED CONTINUOUS FUNCTIONS

As it was mentioned in the introduction, one of the original aims of our investigations was to
extend the results in [4], Section 2 from co-echelon sequence spaces to weighted inductive
limits of spaces of continuous (DF)-valued functions and to their «projective hulls». To this
purpose, Theorems 5 and 6 were needed.

In the present section, we fix a decreasing sequence V = (v,),n Of strictly positive

continuous functions on X. V = V (V) denotes the maximal Nachbin family associated
with V; viz.,

— : : vz
V = {v : X — R, upper semicontinuous; for each n € IN,sup (2) < 00}
TeX Un(m)
= {v > O upper semicontinuous; there are o, > 0,n=1,2,..., with ¥ < irif o, v, On
x}.

For each n € IN, we first put

Cv (X,E) = {f € C(X, E); (v, f)(X) bounded in E},
C(v,)o(X,E) :={f € C(X, E); for each p € cs(E),po (v, f)

vanishes at infinity on X },

both endowed with the locally convex topology generated by the system of seminorms

Gu,5(f) 1= WD v, (D)P(f(2)),  f € Cv,(X, E) and p € cs(E).
TE

Then the weighted inductive limits are defined by

VO(X,FE) :=1ind Cv, (X, F) and V,C(X, E) :=1ind C(v,)e(X, E).

Finally, the «projective hulls» of these inductive limits are the spaces

CV(X,E) := {f € C(X,E); for each 7 € V,(vf)(X) is bounded in E},
C?B(X, E):={feC(X,E),; foreach v € V and each, p € cs( E), the function

p o (vf) vanishes at infinity on X }

with the weighted topology given by all the seminorms g , for v € V and p € cs(E).
If E is the field of real or complex scalars, we again omit it from the notation and write

Cv (X),VC(X),CV(X) et.
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Clearly, each space Cv_( X, F),n€ N, is canonically isomorphic to CB(X, E) . Hence
our topological results in Sections 2 and 3 have direct corollaries (which we will not state here)
for Cv, (X, E) as well as for VC(X, E) = ind Cv (X, E). (For more consequences,
mainly of Theorem 5, 1n this context compare already [6], Sections 1 and 3, where, quite
often, the hypothesis was made that each Cv, (X, E) is a (DF)-space.) We directly turn to

the spaces of type CV (X, E). According to [9], 1.6 and 1.10, if X is normal or if every
weight ¥ € V is dominated by some ¥ € V N C(X) (which happens, for instance, if X is
locally compact and o -compact), then CV (X, E) is a (DF)-space for every normed space
E . quasibarrelled we extend the second case of this result to more general range spaces E
by adapting the proof of [4], Proposition 2.3.(a).

Theorem 13. If every v € V is dominated by a continuous weight v € V, then CV (X, E)
isa(DF)-space (resp., a (gDF)-space) if and onlyif E is a (DF)-space (resp., a (gDF )-space).

Proof. This time, 1t takes a moment’s thought to check that E is isomorphic to a complemen-
ted subspace of CV (X, E). (Utilize VY ¢ C(X) and V > 0). But then one direction of the
equivalence is clear.

To show the converse, we assume first that £ is a (DF)-space. By [8], Theorem 8,
CV (X, E) coincides with VC(X, E) algebraically, the two spaces have the same bounded
sets, and the inductive imit VCO(X, F) = ind, Cv (X, F) is regular. Hence CV(X,E)
clearly has a fundamental sequence of bounded sets. Thus, we fix a sequence (W, ),y of

closed absolutely convex 0-neighborhood in CV (X, E) such that W := N, W, is bomni-
vorous and must then prove that W is a 0-neighborhood.

Since, obviously, Cv_( X, E) is isomorphic to CB(X, E), we may apply Theorem 5
to conclude that Cv (X, F) is a (DF)-space. Utilizing this fact, we can proceed as in [4],
proof of Proposition 2.3.(a) to obtain A\, > 0,4, > 0,w, € VNC(X),k=1,2,..., and
p € cs( F) such that

(1) {f € CV(X,E); sup w0 (2)p(f(z)) <1} C272W,,
TE

(2) {feCv (X ,E);sup X v (z)p(f(z)) <1} c2 W
zeX
At this point, setting

U, := {f € CV(X, E); sup 7 (2)p(f(2)) <1}
IE

we claimthat U, C W, where k € N 1s fixed.,
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To prepare the proof of this claim, we also fix f € U, and note that

Fy = {z € X; p,W(z)p(f(z)) < 27%} and

Fi={z € X;p, w0, (2)p(f(z)) >27"}

are disjoint zero zets of continuous functions on X ; hence thereis ¥ € CB(X, [0, 1]) with
Yz =0 and ¢, = 1. Next, welet Q := X \ w, ' (0) and introduce

Z) ={z€Q;p,w(z) <3v,(z)/2} and

Z] = {z € Q;\v;(z) <37, (x)/2} for j =1,... Kk,

as well as

Yo ={ze€eQ;pw(z) <2v,(z)}and

Y} ={z € Q;}.jvj(:l:) <2y (x)}for j=1,...k
and finally Zﬁ = Q\ Y, for j = 0,1,...,k. By definition, Zf and Z%
(7 =0,..., k) arezerosets of continuous functions on €2 with €2 = Uf=DZf and Z{'ﬁzg =0

for each j. Therefore (see the proofs of Proposition 5.8 and of Corollary 6.6.(1) in [7]), we
can construct ¢ € C(Q),7=0,...,k, with 0 < p; < 1’{’9-?1“\53' = (0 and Efzﬂ p; =1
on$2. Forj=0,1,...,k, wequasibarrclled define ¥; by gf)j(:u'") '= ‘l,l)(:t:)gaj(m) for x € Q2
and wj(:r) =0forre X\Q = E;l({)). As F, is a neighborhood Dfﬁgl({}) in X, each
1,bj- belongs to C(X), and we have ¢ = Z;‘LD P, on X

At this point, it 1s a direct matter (procecding as in the proof of [4], Proposition 2.3.(a)) to
verify that by (1), ¥, f (resp., (1 —14) f) 1sanelementof 2 ~ 1 W, (resp.,of 23 W, ) and that
%, f belongs to Cv (X, E) and, because of (2), satisfies ¢, f € 2-U*2W c 2-U*2w,

for j = 1,..., k. Utilizing the decomposition

k
f=wof+ ) $f+(1-9)f
7j=1

we end up with f € W, which proves our claim.
Once the inclusion U, C W, is established for every k, we define v := sup,.n v, and

check that 7 € V. quasibarrelled,

U :={f € CV(X,E); sugi(m)p(f(fﬂ)) <1}
IE
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is a O-neighborhood in CV (X, E) . But we clearly have U C U, for each k, and hence the
inclusion U C Ny Uy C Ny Wy = W holds, and the proof for the (DF)-case is complete.
In the case of a (gDF)-space E, one can proceed in a similar way. B

Utilizing the canonical topological isomorphism of CV(X) ®, F with a subspace of
CV (X, E) (cf. [2]) and repeating the proof of 13, except that the use of Theorem 5 is quasi-
barrelled replaced by an application of the result (e.g., see [14], 11.5.11) that CB(X) ®_  E
has the (DF)-property (resp., the (gDF)-property) for each (DF)- (resp., (gDF)-) space F, we
can also deduce:

Corollary 14. Ifeach v € V is dominated by some v € V N C(X), then CV(X) ®, E is
a (DF )-space (resp., a (gDF)-space) if and only if E is a (DF)-space (resp., a (gDF )-space).

For the purpose of comparison, let us recall the following result from [8]:
If X 1is Iocally compact, then E (DF) (resp., (gDF)) implies that each of the spaces
Vo O(X) ®, E, CT’“D(X) ®, E,VyC(X, FE) and C—I}’_U(X, E) has the same property.

We finish by analyzing the quasibarrelledness of the (DF)-spaces CV (X, E) and
CV(X) ®, E incase X is locally compact and o -compact, fixing an increasing sequence

K = (K,),,n Of compactsubsets of X with K, C K, foreachm and X = U, nK,,.
It would certainly be possible to formulate some partial results in a more general setting, but
at this moment we present a full characterization under the above hypothesis on X .

Let us recall the following definition (ct. [7] or [3]).

Definition 15. The sequence V = (v,), is said to satisfy condition (D) if there as an increa-
sing sequence J = (X ), .n Of subsets of X such that

(N,J) foreach m € IN, thereis n_ > m with ianExmuk(z)/u%(:c) > 0 for k=
n +1,n_+2, ... and

(M,J) foreachn€ N andeachsubset Y of X with Y N(X\X, )#0 forall m € N,
there exists ' = #'(n,Y) > n with inf - v](y) /v, (y) = 0.

Obviously, condition ( N, ) is always satisfied, and hence condition (D) for the sequence

K=(K,),en amounts to
(M, K) foreach n € IN and each subset ¥ of X which is not relatively compact, there

exists m > n with iﬂfyeyvm(y)/vn(y) =0.

Theorem 16. Let X denote a locally compact and o-compact space (with an increasing
sequence K = (K,),.cn Of compact subsets such that we have K, C K., for each m
and X = U, N K,,) and E a (DF)-space. Then CV (X, E) is quasibarrelled if and only if

(i) E is quasibarrelled and V = (v,), satisfies condition ( M, K) for the sequence
K=(K,),, or
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(ii) the bounded subsets of E are metrizable and V = (v,), satisfies condition (D).

Proof, 1. Sufficiency. We first assume that (1) is satisfied. Condition ( M, ) clearly implies
that CV(X, E) and OVG(X . E) coincide algebraically (and topologically), cf. [7], Propo-
sition 5.3. But from [8], we obtain that CVD (X, E) 1s quasibarrelled for every quasibarrelled
(DF)-space FE.

Suppose quasibarrelled that (ii) is satisfied. Without loss of generality, we may assume that
each X is closed in X (just replace J = (X, ), by (X,,),, and use the continuity of the
functions v, ) and that any function f : X — R, with fl X, continuous for all m € N must

already be continuous on X (replace (X)), ..n by (X, U K ), N, If necessary). Then,
by [S], Theorem 4.6, CV(X,E) = VC(X, E) holds topologically. Since every «step»
Cv, (X, E) of VC(X, E) is isomorphic to CB(X, E), we quasibarrelled apply Theorem
6 to obtain the quasibarrelledness of CV (X, E).

2. Conversely, if CV (X, E) is quasibarrelled, then both CV(X) and F must be quasi-
barrelled since they are isomorphic to complemented subspaces of CV (X, E). By [5], Co-
rollary 4.10, CV (X ) must then even be bornological, and we apply Bastin [1] to conclude
that V = (v,),n Satisfies condition (D) for some increasing sequence J = (X, ), N Of
(closed) subsets of X, where we can take n_ = m in condition (N,J) form =1,2,....

From [S], Theorem 5.7, it quasibarrelled follows that the bounded subsets of CV(X) are
metrizable, and a look at the proof of Proposition 5.5.(a) in [5] shows that we may assume
without loss of generality that the sequence X = (X ) N With X = U_ X = satisfies

X cXx?, foreachmeN.

m+ 1

If X is compact for each m, (X, ), forms a basis of the compact sets in X , and thus
(M, J) implies (M, K), whence (i) holds. It remains to consider the case that from some
index m > 2 on, the sets X, _, fail to be compact, and we fix m for the rest of the proof.
Renumbering the sequence ( K ), if necessary (and proceeding by induction), we can then

find points y; € X, _, N(KY;\ K;), andsince X, _, C X, we can also choose functions
p; € CB(X,[0,1]) with p,(y,) = 1 and

supp o, C X, N(Ko  \K) N{z € X;v,(z) <2v,(y))}, 1=1,2,...
At this point, we define w: N — R, \ {0} by w(1) :=v,_(y,) foreach : € N and let
I (w,E) = {e=(e);en € E"; (w(i)e,); is bounded in E},

endowed with the topology given by the seminorms g, (e) = Sup;en w(1)p(e,;) for each

e = (€;);en, Where p € cs(E). We next define the mapping P : CV(X,E) — [ (w, E)
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by [P(f)](3) = f(y;) forall+ € N and f € CV (X, E); P is indeed a well-defined,
linear and continuous mapping since it is possible to choose T € V with v, <vonX_ (cf
[7], Remark 3.9), and hence for each p € cs(E) and f € CV(X, E),

gp(P(f)) = sup w()p([P(f)](4)) =

{7

= sup v () P(f(y;)) < Sup vy p(f(y;)) < gg,(f).

We also let Q : I (w,E) — CV(X,E),[Q(e)l(z) := 3 ;.n v;(x)e; for an arbitrary
e = (e);en € l.(w, E). In fact, by definition the functions y, have supports C K},

K;,,1+=1,2,..., and hence Q(e) clearly belongsto C(X, E) foreverye € [_(w, E). We
claim that Q takes its values in CV (X, E) and is a continuous linear mapping of L.(w, E)
into CV(X, E).

To establish this claim, fix ¥ € V and p € cs(E). There is C > 0 with v < Cv_.
For e = (e;);cn € lo(w, E) and any z € X, v(z)p([Q(e)](z)) is O or coincides with
v(z)p;(z)p(e;) forsome 1+ € IN, where z € supp y,. In this second case we get

v(2)p([Q(e)](z)) < Cv, (2)p(e;) < 2Cv,(y,)p(e;) = 2Cw(4)p(e;),

whence ¢; (Q(e)) < 2Cq,(e).
But observe that P o Q) 1s the identity on [__(w, E) and that the last space is isomorphic
to I_(E). Therefore |_( E) is isomorphic to a complemented subspace of CV (X, E), and

hence must be quasibarrelled, too. From [4], Theorem 1.5.(a), we now conclude that the
bounded subsets of E are metrizable; i.e., (i1) holds. 3

Theorem 16 should be compared with the following obvious consequence of [S], Corollary
4.7, Bastin [1] and [14], 11.5.10.

Proposition 17. Let X be a locally compact and o-compact space and E a (DF )-space.
Then CV(X) R, E is quasibarrelled if and only if V satisfies condition (D) and E is qua-
sibarrelled.

Finally, we note that it is possible to extend Theorem 16 to the case of a locally compact
and paracompact space X (since each such space is the topological sum of locally compact
and o -compact spaces). We leave the details to the reader.
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