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0. INTRODUCTION

For ordinary strong homology theories on compact metrizable spaces a clusteraxiom is part
of the detinition (cf. [71). In case of generalized homology theories on compacta the validity
of a clusteraxiom is still of importance for the corresponding extension theorems (cf. [3]).

A dtrong (generalized) homology thcory h, on a more general category of topological
spaces K (cf. definition 1.2) is also defined by means of some kind of continuity property
(the so-called chain continuity or c-continuity, cf. [2] or definition 1.1. of this paper). Unlike
the clusteraxiom (definition 2.1) this c-continuity is depending on a subcategory P ¢ K of
«good spaces» (e.9. the category of polyhcdra of all AN Rs). For the pair K = compacta,
P = compact AN Rs, a strong homology theory h_ is characterized by the validity of a
strong excision axiom, a clusteraxiom and prescribed A, |P (cf. [2] theorems 4.1).

This is not any more true in general. In the present paper we establish a proof of the
assertion that under a mild assumption on the spaces of P every strong homology theory
satisfies a clusteraxiom (theorem 2.2). The proof is surprisingly involved from the conceptua
as well as from the technical point of view. This is the subject of §4 - § 6.

I do not know of any example going bcyond the category of compacta where a converse
holds (i.e. where c-continuity and a clustcraxiom turn out to be equivalent). Even for compact
spaces this problem is open.

In § 3 we include an assertion about the extcnsion of g chain functor given on 3 category
P over alarger category K . Thisis done although this assertion (theorem 3.3) is not needed
fora proof of the main theorcm 2.2, because it is a good example for dealing with problems
of homology theories through chain functors.

In §7 we give an example that even ordinary strong homology rel. to a category of compact
AN Rs fails to be additive nor does it admit compact carriers.

Some facts and conventions about categorics of topological spaces, as well as about chain
functors are relegated to an appendix § 8. In spite of this, the reader i assumed to be familiar
with the more extensive treatment of this material in [1]. We are exclusively dealing with
the concept of strong homology defned in definition 1.2. There is (for ordinai-y homology
theories) another one defined in [5], [8]. We will briefly retum-to thisin § 1 remark 6) resp.
§ 2 remark 3).

1. STRONG HOMOLOGY THEORIES:
A homology theory h, = {h,,d, n € Z } on a category of topological spaces K ¢ Top
is a series of functors h, : K> — Ab,n e Z, K* the category of pairs associated with
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K, together with a natural transformation g, : h, — h,_; 0 T, T(X,A) = (A,0) = A,
sdisfying 1) a homotopy axiom, 2) an exactness axiom and 3) an excision axiom.

By a strong excision axiom we mean the statement: Suppose (X, A), (X /A, )€ K*,
A C X closed, then the projection p : (X, A) — (X /A, *) induces an isomorphism

P h (X, A) D h(X/A, .

Let P C K be aprescribed subcategory (referred to as category of «good spaces») then a
strong homology theory h, on K rel P is a homology theory on K, satisfying a strong ex-
cision axiom and, in addition, a new kind of continuity axiom (the so-called chain-continuity
or c-continuity which depcnds on the choice of the subcategory P. This concept has been
introduced for the first time in [2] and will be explained now: According to [1] theorem 8.1 (or
theorem 8.3) thcre exists to k, a chain functor C, related to h, . That means that H ( C,) () ,
the homology of C, , is naturaly isomorphic to A ( ) (by means of an isomorphism commu-
ting with boundaries).

A chain functor C, is c-continuous (rcl. P) whenever the following holds. Suppose
(X,4) € K* and g € K*((X,4),(P,Q) - ¢, € C,(P,Q),(P,Q) € P, is an
assignment  satisfying

T4 C C

91 = 92
whenever g, € K2((X,4),(P,Q)), 1 : g1 — g, in P2 (ie. 7 € P2((P,Q)),

(Py,Q2)), 791 = 92)-
Then we require;
Cl) There exists aunique c € C,( X, A) satisfying

g()=c, g€K((X,A),(PQ).
C2) We have ¢ € C,( X, A) whenever all ¢, € C,(P, Q) .

Definition 1.1. The homology theory h_ is called c-continuous (rel. P ) whenever the fol-
lowing holds:

Suppose C, is any chainfunctor related to h, |P (i.e. C, is only defined on P) then there
exists 1) a c-continuous chain functor *C, related to A, (now on the larger category K ) and
2) a weak equivalence v:C,C°C, |P. of chain functors (rel. P) (cf. defmition 8.2).

We summarize;

Definition 1.2. A strong homology theory h, rel. P is a homology theory on K , satisfying
a strong excision axiom which is c-continuous rel. P,

Remarks. 1) Aswe pointed out in the remark following definition 8.2 this concept of a strong
homology theory and in particular of a weak equivalence tums out to be sufficient for the
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purpose of theorem 2.2. An existence theorem for a strong homology theory alows a stronger
version of aweak equivalence. Moreover one can include the following assertion: let ) :
'C, — 'C, be a composition of weakly strict transformations

=

o

* —- *

¢ )
A

all x being ¢- continuous chain functors, ¢ Srict and

k4
¢ *

a full weak subfunctor. Suppose that h, is c-continuous and h, ~ H,(‘'C.,),i= 1,2, ),|P.
an isomorphism, then ) itself is an isomorphism.

This specifies the statement «h, ~ H ('C,) » by telling more precisely what kind of
chain transformations are expected to induce this isomorphism. It applies in particular to the
case that C, is a c-continuous chain functor on K suchthat h, ~ H.(C,), v: C,|P C*C,
isaweak equivalence and v : H,(C,) — H, *(C,) an extension of 7 (over K ). However
this property of a strong homology theory is not needed for theorem 2.2.

Conceming strong excision an existence proof of a strong homology theory °h, rel. P
(with prescribed P ¢ K, *h, on P) requires some additional assumptions on the relation-
ship between P and K or some additiona restrictions on the embedding A ¢ X in the
formulation of the strong excision axiom. In the present paper we are not dealing specificaly
neither with strong excision nor with the existence problem of a strong homology theory.

2) As pointed out in [2], ordinary singular homology (on X = Top with P = category of
compact polyhedra) can be determined by a c-continuous chain functor (the flat chain functor
with C,( X, A) being the singular chains). However singular homology is nevertheless not
c-continuous .

3) Every homology theory k, defined on K is c-continuous rel. K.

4) Let p be the category consisting of a single point , K ¢ Top a full subcategory, then
every c-continuous homology theory (rel. P) is trivial (i.e. one has aways h ( X, A) = 0 ).

5) Suppose that to each (X, A) € K? there exists a (P, Q) € P? such that (X, A) ¢
(P, Q) (i.e. each pair can be embedded into a good pair) then it suffices in (1) to require
the mere existence of ac € C,( X, A) satisfying (2). The uniqueness follows because by
definition of a chain functor C, the inclusion i : (X, A) ¢ (P, Q) induces aways a mono-
morphism 4, : C,( X, A) = C,( P, Q) .

6) Ju. Lisica and S. Mardesic (cf. [5]) resp. Z. R. Miminoshwili (cf. [8]) have developed
another concept of an ordinary strong homology theory. For compact metric spaces (and
coefficients in an abelian group G) their homology theory coincides with Steenrod-Sitnikov
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homology theory, hence (in view of [2] theorem 4.1) with our concept of a strong homology
theory.

1 do not know under what more general conditions on the categories P and K an iso-
morphism between the LisicaMardesic-Miminoshwili strong homology theory and the (or-
dinary) strong homology theory in the sense of definition 1.2 can be expected, cf. § 2 remark
2). It should be noticed that both concepts are defined by means of chain complexes, however
a chain functor for a (non-ordinary) generalized homology theory is a rather involved instru-
ment in comparison to the chain complexes which determine ordinary homology theories.

2. THE CLUSTERAXIOM

A continuous homology theory in general cannot exist because continuity and exactness are
not compatible (cf. [4]). However it is well-known that there are weaker forms of continuity
which do not collide with exactness. The most popular example is fumished by the cluste-
raxiom for metric compacta (cf. [7]): let ( X, z,y) ,1=1,2,. .. be acountable family of
based spaces, then the cluster (or strong wedge) of these spaces is the wedge equipped with
the strong topology:

X .
gg(Xi, Tp) =lim X, V... vx,.
n

Altematively onc can define this space by requiring that a neighbourhood of the basepoint
contains almost all spaces X .
We have a natural transformation for any homology theory

Xih, (g (X5 z) *> - II:II h, (Xilzio)

induced by the projections p, : CI2 X; — X, .
Milnor's clusteraxiom requires that X is an isomorphism (cf. [71).
In general we can define the cluster CglA( X,, T,0) = (X, %) of any family of based

spaces (X,, z,4) in the same way as for countably many factors:

Let (X, *) = Vaeq X, be the wedge, retopologized by requiring that a subset U ¢ X’
is open whenever 1) U N X isopenin X for all o and 2) that x € U implies that almost
all X, are containcd inU .

Altematively we can again define CIA( X,y To) aslimh( Xo V...VX, forany
aEA 2

a0y
finite subset {ev;, ..., @} C A, with obvious projections as bonding maps.

The fact that both definitions agrce is a smple exercise (cf. [9] proposition 44 conceming
different definitions of a cluster). Suppose that {(X,, z,) |a € A} issuch an indexed family



A strong homology theory safisfies a clusteraxiom 17
of based spaces in K, (the category of based spaces in K ) such that g‘i ( X,,x,0) s again

a based space in K (hence an object of K, ).
Let h, be any homology theory on K, then we have again a natura transformation

(1) A h, (a(él,_;(X“’ *00) ) *> - H hy (Xa» Tao)

a€hd
induced by the projections Pg* (é!qxa - Xg.

Definition 2.1. A homology theory h, on K satisfies a clusteraxiom wheneverfor any in-
dexedfamily {(X,, z,,)|a€ A} of based spaces such that CL(XG, T,0) € K, the tran-
[T

sformation ) is an isomorphism.

Remarks. 1) Suppose that K = Com, the category of compacta, then the condition on
{( X4 7o) |a € A} that Ceh X, € Kyisfulfilled if and only if 4 is countable.

2) Suppose K = Co, the category of compact spaces, then every family {(X,, z ) |a €
A} satisfies the condition CELX,, € K, , for any indexing set A.

3) It is well-known that the clusteraxiom is a weaker form of continuity.

4) Let K be the category_Com , P_the category of compact AN Rs, h, a given homology
theory on P. Then h, satisfies a strong excision axiom (because every inclusion in P is a
cofibration). According to a result in [3] there exists @, up to an isomorphism, unique extension
h, of h, over Com, which satisfies a clusteraxiom. This homology theory is a (generalized)
Steenrod-Sitnikov homology theory.

The following sections 4-6 are devoted to a proof of:

Theorem 2.2. Suppose P ¢ K isa full subcategory of locally contractible spaces, h, a
strong homology theory rel. P on K, then h, satisfies a clusteraxiom.

In view of the preceding remarks 1), 2) and because AN Rs arelocally contractible we
have:

Corollary 2.3. Suppose K = Com, P = category of compact AN Rs , then every strong
homology theory h_on K rel. P satisjies a clusteraxiom (for countably many summands).

Corollary 2.4. Let K = Co, P as in corollary 2.3, then any strong homology theory h, on
Co rel. P satisfies a clusteraxiom (without any restriction on the number of summands in the
cluster).
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Remarks. 1) For K = Com, P , as before, we have proved in [2] Theorem 4.1 that a con-
verse holds: every homology theory h, on K, satisfying a strong excision axiom and a cluste-
raxiom is a strong homology theory. Hence strong homology theories and Steenrod-Sitnikov

homology theories coincide. The proof uses a non-trivid result from [3] and the existence of
strong homology theories (for this particular case). The proof given in [2] for the fact that for
compacta every strong homology theory satisfies a clusteraxiom (i.e. the proof of corollary

2.3) uses details of the construction of a strong homology theory. The present proof of theorem

2.2 is independent of any explicit constructional devices fora strong homology theory.

2) Unlike c-continuity the clusteraxiom does not depend upon the subcategory P, nor
does it refers to any chain functor related to that homology theory.

3) In [9] T. Watanabe verifies the clusteraxiom for a strong homology theory in the sense
of Lisica, Mardesic [5] and Miminoshwili [8] on the category of compact spaces (even for
strongly paracompact spaces, cf. [9] p. 194 conceming the definition). The author deals also
with strong excision for this kind of homology. His results might be regarded as an indication
that for ordinary homology theories on compact spaces both concepts of strong homology
theories agree or are at least very closely related.

3. SINGULARISATION OF A CHAIN FUNCTOR
Suppose P C K is a full subcategory of a category of topological spaces (for example the
category of AN Rs in the category of all topologica spaces) and C, a chain functor on

P, then we would like to find a chain functor 'C, on K such that !C,|P. = C,. The
solution of this problem is not needed for the proof of theorem 2.2 but, since it deserves some
independent interest, included in this paper. The process used to congtruct C, is similar to
that of establishing singular homology. The additiona difficulties appearing are due to the
fact that the homology theory associated with C, is not necessarily an ordinary one. In order
to proceed we are obliged to impose some restriction on the relationship between C, and P:

(*) Let (X, A) € P? be pairs of good spaces, (X,A) € K, ¢, € C (X, 4), f €
KX (( X, A), (X, A) be given, k : (X, A) C (Y, B) an inclusion. Assume that
(g k fidyer =g kfz)acz
forany ¢ € K*((Y,B),(P,Q), (P,Q) € P2, then we have

(g'fl)”cl = (g’fz)acz

for any K2((X,A),(P,Q)).
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This condition is for example fulfilled for any chain functor C,, whenever we can find to
any diagram
(X,4 ¢ (V,B)
g l (P,Q) e P?
(P, Q"

a commutative diagram

(X,4) ¢ (VB

g’/ lg" L (P",Q",(P,Q) € P’

(P,Q) « (P".Q") & (PQ).

It (¢'f)scy 7 (g'fo)uc, » then we have (9" fi)u ¢, 7 (9" £o)4 ¢, , hence, because k' is
an inclusion, (k'g" fi)y ¢, # ( k'g" £,)c, , 0 that

(g k filec F(gk fy)ecy

follows.
The determination of 'C, starts with the definition of two categories:

1) P x 4): The objectsare mappingsg : (X, A) — (P, Q) € P?, the morphisms
commutativetriangles r : g, — g5, g; : (X, 4) = (P,Q), r:(P,Q)) = (P,,Q,),
Tq = g2 .

2) C,: The objects are chains ¢ € C,( P,Q), (P.Q) € P? | the morphisms are mappings
rasinl) satisfyingr,c,=¢c,, ¢; € C (P, Q,) - We define F, (X, A) to be the family of
all functors

ol -B(X,A) - C,

such that ¢(g: (X, A)— (P, Q)) € C,( P, Q) . By setting
(61 + ¢)(9) = ¢1(9) + (9,

F,(X, A) is endowed with an abelian group structure. Let 7 € K*( (X, A), (Y, B)) be
afunctor, then the assignment

F(X,A) — F,(Y,B)
¢() = fud() = 6(-f)
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tums
F.

n

: K* - Ab (= category of abelian groups)
into a functor.

By seiting
d: Fy(X, A) = F,_, (X,A)

¢~ (g —dé(g))

F(X,A)={F,(X,A),d]} cariesthe structure of achain complex and F, : K* — ch
becomes a functor into the category of chain complexes.
Suppose (X, A) € P2, then

v: C(X,A) - F(X,A)

c — ¢.=(gr gyc)

isanatural transformation v : C, — F, |P% . Supposec, # ¢, € C,( X, A), (X, A) € P2,
then v( ¢))(1x 4) = ¢, 7 & = v( ) ( 1(x4y) iMplying that v is monic.

Weset Fi(X,A) = {¢ € F,(X,A)|¢(g) € C., g € Pixn} Let 'C,(X,A) bethe
subgroup of F, ( X, A) generated by all those ¢ € F, (X, A) which are of the form f,¢_,
for some ¢ € C,(X', A), (X', A) € P*, fe K*((X', A"), (X, A)).

Correspondingly we defme ! G/ ( X, A) ¢ 1 C, (X, A) by meansof F,( X, A) and get a
natural inclusion ¢: ' C! C ' C, .

Let f € K*((X',A"),(X,A)) beamapping then we have the associated f' € K2 (X', X)
and set

Py 1 ICOUX,A) = 1C(X)

(1)
fyd. — f;%,(c) = (g (9f upy(0)

Let f € K2(X', X) beamapping, X' € P, (X, A) € K* apair, then we set f €
K2((X', f~1(A)), (X, A)) whenever (X', f~1(A4)) € P? resp. f€ K*((X',9),(X,4))
otherwise as associated maps. We defme

Ky | ‘C,(X) — 'CL(X,A)
fabe = (g (9F)ry (),
Il
Fabrato

(2)
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Let f € K(A',A), A’ P beamapping (X, A) € K*, then we have the associated
fe K*((A, A, (X, A)) and define
i: C,(A) — 'CL(X,A)
fade > (g 0 (9 ().
I
J}# ¢'i'(c)
We observe that:

Lenmma 3. 1. 1)(1)-(3) define chain mappings; moreoveri' , £ are natural transformations.
2) We have

v(£(c)) = u(c)
v(py(0)) = pyu(c)
v(ry(0)) = myr(c)

v(i'(c)) = {'v(c)

whenever both sides are dejined.

Wehave
Py Ry Fy b = 4 Fo by (g = (i Doy 5y ()
= febonyar
because ()’ = f . Since there exists a chain homotopy
dD(c) + D(dc) = pyru(c) — ¢

we are enabled to define

(fed)(9) = (9 (D(0c)),
feh € 'Cpy (X), satisfying
dfyA+ f#Ad=90#"3#f#¢c _f#d’.c'

Similarly we have:
Jepufade =0 Py (o)

= (f]./)# d’m(c)

= fiPiopta
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where j : X — (X, 4), ;' : X' = (X', A’) are the inclusions. Since j; p, ~ £, We have
again
Japufub. 2L,

Let fe K(A' A), A € P,i: A — X begiven, then we have ’17 = f, hence
N#i#f#ff’c = f#%,(c) = ;#d’;"(@ = i’f#%

because (ry @ C,(A) = C, (A, A)) = ryi=i,i=1y A - A
Lemma 3.2. 'C, as dejined above is a chain functor

Proof. We have defined 'C,,! Cl, ¢, p,, ryd', and verified that o,k ~ 1, Jyp, ~ £,
Kyty =17

All other necessary details (like for example the existence of chain homotopies D, for a
homotopy I : (X, A) X I — (Y, B) are established by the same methods. The verification
of the relations between these mappings, as required in the definition of a chain functor (cf.
§ 8) can be immediately accomplished. The fact that an inclusion & : (X, A) C (X, B)
induces @ monomorphism follows from (*).

We summarize:

Theorem 3.3. Let P ¢ K be a pair of categories of topological spaces C, a chain functor
on P satisfying (*). Then there exists a chain functor ’Q on K suchthat'C,|P~ C,.

Proof. We have an inclusion v : C,5 IC|P*. Let fy¢, € 'C,(X,A) be a chain,
(XA) € P?, fe P*((X' A),(X,A)), then weconclude

febe= 45f,(c) =v(fy(c)).

Hence v is surjective. Since v~} is also a transformation of chain functors, v is an
isomorphism, as asserted.

Remark. The classical process of singularization of an ordinary homology theory is aso
performed on the chain level. It fails for generalized homology theories defined on an arbitrary
category P to provide us with a homology theory on alarger category K because of the
absence of a singular complex functor |S|: K — P.Moreover there has to be much more
structure of the chain functor C, to be the transported to the larger category K.

We have a derived prehomology theory H,('C;)() on K (we do not investigate the
vaidity of any excison axiom, therefore in accordance with the terminology in [1] the name

prehomology).
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Corollary 34. Let E, be another chain functor on P and
prH(CH()~ H(E)D()

an isomorphism of prehomology theories (i.e. a natural isomorphism offunctors commuting
with the boundary operator). Then there exists an extension

i H('C)(O)~ HCE)Q)

being defined on K .

Proof. Let fu¢, € Z,(!C(X,A)), z € Z,(C(X'A)), f € K*((X',A),(X,A)),
(X', A') € P* be given, then we take a Z € Z,( E,(X',A)) , 7 € u({z}) and define

B{fe¢.} = {fud3}
This is obvioudly independent of the choice of the representative z, 7 in their homology
classes and gives a natural isomorphism of homology groups. Suppose z = 4(Z') + ¢, ( a) ,

Z €Cl(X',A),dZ €im(1:C, 1 (A) = C, (X", A)), (cf. § 8 conceming the
notation), then we have by detinition

8z} = (i'dZ} e H, , (C,)(A).
S0 we take
F=0Z)+q(3), 7 € E/(XA),dZ €eim(i: E,_ | (A) - E,_ (X A)),
and deduce (because p is commuting with boundaries)
{i71d7} e p({#1d2"D = ou({=}).

Hence we have

a{f#¢z} = {j‘# ¢i"‘dz’}l

fiA' = A associated with f , and therefore T{f, ¢,} = i{fs dy1g,} = (Febpraz )
Op{fy 8.} = 8{f, $7} = {f4 61,7} ensuring that ji und 3 commute.
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4. OUTLINE OF THE PROOF OF THEOREM 22

Suppose h, is astrong homology theory rel. P and C, any chain functor related to s, on
P. We find by defmition a c-continuous chain functor °C, related to h, (on K ) as well
as a weak equivalence v: C, C °C,.Asaresult we are alowed, by surpressing v in

our notation, to talk about chains ¢ € C, on pairs (X,A) € K? (for example by taking
fiv(e) € °C(X,A), ¢ € C(X' A, (X',A) € P2, f € K*((X',A),(X,A)).
Now assume that we enlarge for some reason the chain functor C, to a chain functor ! @l
(both being defined von P) such that the inclusion C, ¢ ' C, induces an isomorphism of
homology theories on P. Again we can consider ! C, as being defined on g . It may happen

that cycles 'z in Z,('C,( X, A)) detcrmine homology classes {2z} in H,(C,)(X, A)
which are not in the image of #_( C,) (X, A)) . Similarly acycle z ¢ Z,( C,( X, A)) may

bound in ' C,( X, A) but notin C,( X, A) . This observation is basic for the detection of an
inverse to

A h* <O{C€!4 (Xa; Iao) ,*> — H h’* (Xalmao)
= acA
Let {¢a} € Tlaea Ma(XarZ40) be an clement, z, € (s 2z, € Z,(C,(X,,T4)) 2
farnily of cycles. If therc does not cxist @ «sum» z = 3° 4 2, € Z,( C&(Xa, Too), *)
aEA_

setisfying psz = 24> Py (élAXa — X, the projection), then we invent such a cycle,

enlarging the originally given chain functor by these new «sums». We must take care that on
P? the homology is not changed by the introduction of these new cycles.

This is accomplished by observing that for a good space (Y, =) one has a contractible
neighborhood of the base point U. So let f : aCelAX" — Y be a based mapping, then all

but a finite number of the cycles { f, z,} are lying inside U , hence they bound in (Y, *) not
contributing to the homology class of f,z . Therefore f, z is homologous to Ele e 24, for
a finite sum, which is arcady presentin Z_( C (Y, %)) .

This procedure is to remedy the fact that ) for H,( C,) (instead of &, ) is eventually not
epic.

Supposethat z € Z,,( C,( QCEIA( X,) , %) liesin the kemel of ), hence we have X(z) =

{24}s 2, = dz,, z, € C,_, (X,, z,4) (Nnow with ) on the chain level). Then we pro-
ceed with {z_} inthe same way as before with {z_}, inventing (if necessary) a «sum»
I = EaEA Ty € ! Cn+1 ( (él/i Xa, *) y SaIleymg Dot T = ‘Ta’ dﬂ:v = z. While the new

cycles z =3 ., z, are counterimages of {z,} € Ilaea Z,(C,(X,, To)) , ensuring that
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Mz} = {{2a}} € [Taea ha(Xar Ta0) » the new chains z =3 ., z, € ‘CMI((&XM*)

have the property d z = 2, othat X (for H, ¢ !, ) isnow monic.
As a result the basic issues in the proof of theorem 2.2 are 1) inventing sums ), =,

in such a way that the resulting 'C, carries the structure of a chain functor (one must for
example determine induced chains f, (3,4 z,) forany f: (CE}}XQ,*) — (Y,B) € P?

in a canonical way) and 2) to make sure that by these new chains the homology of C, (on P)
is not atered.

In this process we have to deal with the following technical problem: it may happen that
for given { z_} there exist already different cycles 2/, 2" € Z,( C,( Ch X,, %) satisfying
a€A_

Dot 2 =Po2" =24 1f z,=0unless a,, . . ., a,,, then we have aways the finite sum
2= Y11 2, (omitting inclusions from our notation) and every other 2' with p, 2’ = 2,
must be (not necessarily equal but) homologous to z .

In particular there might existaz # 0in Z,( C'(a(é!s_x"’ *) such that p,_4z = O for all

a€A.
This problem is treated in § 6.

5. PROOF OF THEOREM 2.2 (FIRST PART)

We resume the notation of § 4 and consider the functor C, originaly defined on P as a functor
onK.
Suppose Cl, X, € K, is a cluster of based spaces {X,) in K, and let (Y, B) € p?
ags

be any pair.
A X-set {z,, f,} = {z,} is 1) afamily of chains z, € C,(Y, B), 2) afamily f,_ :
(X,, z4) -t (Y,B) such that f = (é!qfu ! (%}.X“’*) — (Y, B) is defined and 3) a

family {Z,},%, € C,( X, 74 ) satisfying f o4&, = z,.
A X-setis called inessential, whenever there exists a z € C,( Ckxa, x) satisfying
atE

P4 = 5,. Inthis case the X-set {z,} and x = f, T are associated. Notice that although
% determins {x,} , the converse must not be true: there might exist different z € C (Y, B)
which are associated with the same X-set. In particular a X-set {z,} with 3 = O for

amost all o € A isa inessential and associated with $°% | z, = 7, where z, = 0 for
aFa, ... 0.
A X-set which is not inessential is called essential. If {x,} is a X-set, then 2 is {dx,} .
If {z,} and {dz,} are essentid, we call { z,} fully essential.
In what follows we have to distinguish two cases:
In the course of this section we
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1) Assume that z!, 22 € C,( C!ar, %), Doy T' = p,y 7° forall o € A implies 7' = 1*.
a€

In particular two chains associatcd with the same X-set are equal.
Let T, (Y, B) be the set of all essential X-sets, then we define

z associated with {d z,}

o} = {{(;l;a}...{za} fully essential

Let g€ P> ( (Y, B), (Y, B')) bc a mapping, thcn we observe:
{ z,} = (essentid, fully essential) X-set =

{g4( z,)} = (essentid, fully essential) X-set

X associated with {z,} = g, X associated with {g, X,}.
Hence we are able to dcfine

v LY, B) » T,(Y', B
{z,} = {o(z},
commuting With boundaries.
From now on we writc T",,( (Y, B); {X,}) instcad of fﬂ(Y, B) in order to specify the

given family of spaces. Suppose we have another family of indexed spaces { X} (same
indexing set A) in K, , CEI/1 X! e K, and afamily of mappings

ry 0 (X Tao) = (X2, 70) giving riseto a
<Cl ) - <Cl X!, >
aEAh 4 a€A

We are defining an cquivalence relation in the union UL, ( (Y, B) , {X_}) (taken over all
such families {X/}):
Suppose we have
{z,}eT ((Y,B);{X‘}),f‘ L (XL zh) = (Y, B),
f Cl a) GEC(X‘J a()) f;I —I
i=1,2.

W (X aloy = (X2 2k, t= Cl t,, tofa = f2.
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Then we set
{z,} ~ {z2}

whenever t4 T, = T2 for all o € A.

This relationship generates an equivalence relation.

If { 2.} is associated with z , then { 22} is also associated with z. We call T, (Y, B) =
Ur,((Y,B);{X.})/ ~, observing that:

{dz.} ~ {da?}
CARTEARS B A
{gsze} ~ {gp 22}
forany g € P*((Y, B),(Y',B")).
By an abuse of notation we still write {z_} € T,,('Y, B) for the equivalence class.
Let {z3} € T, ((Y, B) {X2}),i=1,2, begiven.
Then we form X/, = X} V X2, ¢!, (X}, zho) C (X,, zl4) (the inclusion) and ' :

(XL, zh0) — (Y, B) (defined by f} v £ ). We conclude that with Z¢, = &5, =%, , we have
{IL} r {E;} d

As a result we can assume without loss of generality that up to an equivalence, every
finite set of elementsin UT,( (Y, B) ; {X,}) islying in the same T, ((Y, B); {X,}) . Let
F,(Y, B) be the free abelian group generated by the elements of I' (Y, B) . We establish a
quotient group of F, (Y, B) ® C,( Y, B) by introducing the following relations:

R1) Suppose {z¢,, f,} € T, ( (Y, B); {X.}) (same mappings f,!)i=1,2, are such
that ! = 72 unless o = @y, . .., o, , then we set

{zi} = {al} =) 3} =% €C,(Y, B).

i=l
R2) Suppose again {z},, £,} €T, ((Y,B); {X.}),i=1,2, then we set

{za} — {72} = {za— 2},

provided the right-hand term isin T, ( (Y, B) ; {XL.}) defined.
The quotient group * C.(Y,B)=F (Y,B)®C,(Y,B) /R hasthe following properties:
‘1) There exists aboundaty d:' C (Y, B) —'C,_; (Y, B) which coincides with the
boundaty on C, (Y, B) whenever both are defined. One has d? =0, hence ! C,(Y, B) is a
chain complex.
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*2) There are induced mappings g, ' C,(Y,B) —  !C,(Y',B),

g € P2((Y,B),(Y',B")), tuming 'C, : P?> — ch (= category of chain complexes) into a
functor.

*3) The natural mapping C,(Y, B) — F,(Y,B) @ C,(Y,B) — 'C,(Y,B)isa
monomorphism, i.¢. the equivalence relation R does not identify different elements of
C,(Y, B).

*4) Aninclusion i : (Y, B) C (Y’, B’) induces a monomorphism i, : ! C,(Y, B) =
'C.(Y',B).

*5) 1 ¢, satisfies a homotopy axiom (cf. § 8): To each (Y, B) ¢ P? there exists a natural
chain homotopy Dy gy : 'C,(Y,B) — ' C,,, (Y x I, B x I) between the inclusions
it 0 C(Y,B) = 'C . (Y x ,Bx I).

*6) We have

le () = 'C,(v,8) = C,(Y).
Proof. Ad * 1) : The boundary d on T, as well ason C, induces one in T & C, , Which is

immediately seen to respect the relations in R.

Ad *2) : Follows by the same kind of argument.

Ad *3) : An identification of two chainsz' +# z* € C, (Y, B) by means of R can only
happen if there are different chains associated with a given X-set, but this is in case 1 (with
which we are dealing now) excluded.

Ad*4): Suppose {z, f1}, {2, f2} € I',((Y, B),{X.}) are identified under 1, then
at first ifl = if2 implies f! = f2. Hence is ({xl}) = iy { 22} implies {z1} = {z2} and
I,(i): T,(Y, B) — I[,(Y’, B) isamonomorphism. Since i, : C,(Y, B) — C,(Y’, B')
is @ monomorphism by definition,

iy: F,(Y, B) D C,(Y, B) - F,(Y',BY P C,(Y', B)
is a monomorphism. Now we have
iWB(Y,B) = R(Y',B) niy (F(v,B) D (¥, B))

implying the assertion *4) .
Ad *5) : Wehave Dy py = D dready defined on C, and set

D{z,} = {Dz,}

whenever this is essentia resp.
D{z,} = D(x)
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if z is associated with { Dz }. Sowe obtaina D= D,y for F, @ C, 1N anaurd way.
Since this ] respects obvioudy all the relations involved, the assertion follows.
Ad ‘6) : Is an immediate consequence of I, (Y, 0) = @ .

In order to complete the definition of a chain ftmctor we define ! C.( Y, B) = C.( Y, B)
and resume all remaining items (like ¢, &, 1", p) from C,, endowing ’ C, with the structure
of a chain functor, containing C, as a subfunctor.

The most important assertion about the inclusion v : C, C !, is.

*7): v induces an isomorphism of homology theories in P.

Proof. We are obliged to prove that every cycle in 1 C,( Y, B) , (Y, B) € P?, is holomogous
o acyclein C,(Y, B) and that acycle z € C,( Y, B) whichboundsin!C_,, (Y, B) is
dready bounding in C,,, (Y, B) .

Let to this end (Y, B) € P2 be a pair and consider a cycle

zZ= E af{z,}+ c € Z,('C (Y, B))

6, € Z, c € C,(Y,B) , then we can assume without loss of generality (because of the
remark following the definition of T ) that, up to an equivalence, all {z,} are lying in a
fixed I'_( (Y, B); {X,}) . Using the relationships R1), R2), Z can be written in the form

z={z,}+{v.} + ¢,

where {z_} is fully essentid, {y,} is essential but not fully essentia (i.e. one has d {y,) =
z€Z,_,(C(Y,B)))andce C,(Y,B).

We have dz = 0, S0 that d {z, } does not drop out against dc or d{y,} . Hence we
conclude that { z_} does not appear; displaying a z of the form

z={y,} + ¢,

with not fully essentid { vy.}.

Since Y is locally contractible, there exists a family {U,} of neighborhoods of the base-
point f(*) € B cY suchthat 1) U, = f(*),2) f( X.)C U, 3) ail but afinite number
of these U, are contractible.

Let g: (GCEE(1 U,, f(#*)) — (Y, B) be induced by the inclusions U, C Y and let

U

ot

into

., U, be those neighborhood which are eventually not contractible. We split {y.,}

{va} = (UL} + {¥"a}
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J _{ya‘.. afo,..., o,
a 0... = Qpyeeey Q)
, Yg o, O Qpyueny Oy
*=10... afoq,..., a,

observing that {y".} = ¢; € C,(Y, B),calling d{y.}= 2 € Z, ,(C,(Y,B)).
According to *5) we have

dD({y;}) + D(2;) = {y;} — %,

* denoting a bounding cycle in C, (¥, ) . So we conclude that the cycle{ y,} = D( z;) =d T
is bounding (in ' C,( Y, B) ) and that

z=z+d7x

2= D(z)) + o+ ¢, € Z,(C,(Y, B))

is a cycle homologous to Z.

Asaresult v: C,c 'C, induces an epimorphism. The argument for verifying that v
induces a monomorphism is smilar: Let z=d%z,z € Z,(C,(Y,B)) , Z={z,} + C €
1C.,, (A, B), then we find again {z,} (as before {y,}), % = {z,} + ¢, d{z,} = 2 and
deduce the existence of a z € C,,; (Y, B) suchthat T = z + dZ,, hence z = dz is already
bounding in C,( Y, B) .

In order to complete the proof of theorem 2.2 (stili for the case 1)) we argue as in § 4:

Let a(;:lAXa € Kybe given, { z,} € [aea Z.( C.(X,, 740)) , being inessential, then

we find the associated z € Z,(C,(Y, B)) satisfying Mz} = {{ps2}} = {{z.}} €
[laes ha(X,, Tao) - If however [z } is essential, then we have az € Z,,(* C( (ékxa,*))

such that Mz} = {{z,}}. So Misepic. If - € Z (C,( (g(iXa, *)) has the property that

AM2) = {pasz} = {dz,}, T, € Coyy (Xg, Top) , We ague with {z_} as before with { z,} .
This settles the first case.

6. PROOF OF THEOREM 22 (SECOND PART)

We treat case 11) where the assumption of I) is not necessarily true. This will be accomplished
by 1) replacing the given chain functor C, by a new onc E,, giving the same homology
as C, and 2) redtricting the class of X-sets (with E.,) in such a way that on one hand 1) is

fulfilled and on the other there are still sufficientrly many X-sets available to perform the same
constructions as in case 1).
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The construction of E, is accomplished in severa steps:
Resuming thenotatlons of § 5conceming {X} , {X.}, r: CEELX‘,, *) — (%LX;',, *)

for (XL, zl4) = (Y,B) etc. wedefine
ar ol

G\ (Cl Xa,*> =C, (cn Xa,*>
acA acA
(1) =
G (Xara0) = G Xy 200) (D F ({(c, p.) lc€C, (aceléxa,*) })

where we generally denote by F'( M) the free abelian group generated by the set M . Dealing
with pairs like ( c, p,) we agree to identify (0, p,) with O.

@ (@) -a (@) @ (fenrea (@)}

GO (X}, 7h0) = Co(X, 7ho) D
D ({emiea (gx.-)ufernieec (g xas) o
U{(Ia"ra)lma € Cn(Xal Iao)}) .

For (Y, B) € K* we Set:

E{(Y,B) = C,(A, B)@F(U{(c £uP YU {ah, £) Y, € Cu(XL, m)
{Xa}

where the union is taken over all families {X| } asin § 5 (where {X,} plays a distinguished
role).

We have a boundary:
d..E(Y B) » EY (Y, B)

(resp. for G by applying d to the first components of the pairs (c, p,) etc. and preserving
theoriginal d on C, .

To eachg € K2 ((Y, B), (Y’, B)) we have the induced

E{’(Y,B) — E{’(Y',B)
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defined by
cr—gy(cy on C,

(c, f.p) — (' gf.pl)
(L, f) — (z,9f)-

Similarly we define:

G;l)(Pa) = Dus - Gil) <oglAX°“*> - GSLI)(Xa’ IaO)
¢+ (c¢,py)

G (P =Py : G (g;xg.*) = G (X}, 7o)
¢ € C, <UC€{4X;*> - (c,pl)
(e,7) — (c,pyr)
resp. fa, s,

We have a natural inclusion
1 Rl 1
GV c EY

whenever both sides are defined, e.g.

G (XXg) C BV (X, mo0)
T, = (25, 1)
(c,py) — (c,1py,).
In a second step we introduce certain connecting chains A , fumishing us with homologies
betwsen pairs ( X, f) and the element f, X :

G2 <Cl X *> =G <Cl XU,*>
" acA @ i aEA
G (X Tao) = G0 (X4 T00) P P({A(6,0,) })

where we require
dA(Z)pa) = (Clpa) _pg#C_ A(dc)pa)
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and throughout
A(c,)=0
e (felgx"’“*> =GM (géxf,,*> P F{ae,n},
dA(c,r) = (c,1) —ryc—A(dc,7),
G (X, 3hg) = GO (XL, 7o) €D F{A(C, pl) WU
U{A(c,pom o)} U{A(z4,70) }
where the first and the third A -chain satisfies a relation as before while we require
dA(c,p,r,py) = (¢,p,1) = (ry4c,p.) = A(dc,plr, D))

and in all cases again A(0,-,-) = A(0,-) =0

EZ (v,B) = ES (v, B) D F( | {Ale, fupi) U

n+l
{Xa}
U{A(C, faPo P YU {A (20, fD -
dA(C, fophy D) = (¢, fuph) = (Pasc, fa) — A(dL, £,0,,p.), (Y, B) € P2

The boundary d in these new groups is obvious; let g € P({Y, B), (Y’, B))be a
mapping, then we set
94 A (C, o) = A, 0£000)
94A(C, fouPan D) = A(C, oDl D)
and in @ similar form for the remaining cases, providing us also with induced mappings

pa#lpla‘#lf#i’r#l for G,E:Z) and ES‘Z)

Again we have an inclusion G ¢ E® whenever both sides are defined.
We recall the definition of an agebra; cone, cone( K,) over a chain complex X, . In
particular we have the possibility to erect the cone over the subcomplex K, C L,: L, U

cone( K,) (cf. [1] § 4).
So we define for (Y, B) € P?

E,(Y,B) = E?(Y,B) Ucone(D,(Y,B))
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where D,(Y, B) is the subcomplex of E{? (Y, B) which is generated by all A chains (con-
taining for example chains of the form (z, fp,) = ( fp )y 2+ 2 € Z,( C,(CI X, %)) ). Since
formation of the cone is a natural process, we have induced mappings

9:. E,(Y,B) - E(Y',B"),g € K*((Y,B),(Y',B)).

We claim:
*1) There exists a natural isomorphism

b, H(C(Y,B)) ~ H(E (Y,B))
induced by the inclusion (on the category K)
uw:C,CE,.

Proof Letz € Z,( E,(Y, B)) be acycle
£ m m
Z=c+ Eaici"fa.-pa.' + Ea;(z;j,faj) + Eak“Ak +p,05,05,0," € Z,
=1 =1 k=T

A, a A-chain, p € coneD, \ E?, then we can pull down all brackets by A-chains to
elements in C, . By adding themupwefindaz' ~z,2' = ¢ + 3 b,A/ + p. Wehave

—dd' =) bda/+dp.

Since p ¢ E{Y , dp does not contribute summands in E{" hence all brackets b(c, £),
beZ, appearingin 5" b.d A/ +d p must sum up to zero. On the other hand every summand
¢, € C,_; inthissum comes together with such a bracket. Therefore also these ¢, sum up
to zero, implying that -dc’ = 0 and that } " b,A/ + p € Z,( coneD,) where it is bounding.

Therefore we obtaina z" = ¢’ € Z,(C.(Y, B)), 2" ~ 2, ensuring that y, is an epi-
morphism.

The proof that 4, is @ monomorphism is similar:

Suppose z€ Z,(C(Y,B)), z=d7,

T= Za‘(c:.,fa‘p:yi) + Ea;(z;j,fai) + E a,"A, + p,

then we have again
T=d+) bAl+p+d) bdA",
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where gll sums are finite and A,y AL A aeA -chains.

Since d7 = z in Z,(C,(Y,B)) wededuce z—dc = 5 bdA/ + dp and by the same
argument as before that " b.A/ + p is a bounding cycle, implying

z = dc'.

Hence z is dready bounding in C,( Y, B) .

By setting £, (Y, B) = C,(Y, B) , taking p, s, p, i’ from C, and by observing that (by
definition) E, (Y, @) = C,(Y, @), weturn E, into a chain functor, giving the same homo-
logy as C, . The validity of a homotopy axiom is immediate. Now we proceed almost as in
§5: A restricted X-set (X,-set) is a X-set {e} such that the associated €, € E, (X', zl,)
are dready contained in the subgroup G'? (X!, ., ) (and not in the first summand C, ). We
have

‘2) Let {e} be an inessential X,-set, associated with ¢!, 2 and suppose that 2!, & ¢
E ( O% X, ) are the corresponding elements satisfying

then we have
&=

In other words: The X,-sets satisfy the assumption of case 1).

Proof, According to the definition of induced maps we have:

s (c',1) = phy (2, 7)
implies
(¢!, phr) = (?, pr)

hence
(cl,r): (cz,'r).

In the same way we obtain

— 2
p;#(cll) - P:}#(CIZ) => C/l = C/ ] p;# = E‘(p;)

resp. for the A -chains.
Now we repeat the argumentation of case 1) in $5:
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Let {z,} € [[,enZ.(E,(X,,14)) be given then we can according to * 1) replace
z, in its homology class by a z, € Z,(C (X, z,,)) - By setting (Y, B) = (X,, z0) =
(Xg To0) We have (7,10, € GIP(X,, 7,0) C En(X,, Tao) » Providing us with a X,-set

{(z,, 1)) o which there existsaz € 'E,( %IAX“’*) suchthat X(Z) = {(z,, 1)). Let Z €

Z,(E\( CLXG, *) bea cycle such that E,(p,)%Z = d . According to * 1) we find a cycle
13

zeC/( ‘%4 X,, ¥) such that (z, 1) ~z ~ Z andd chains §, € E,, | (X,, x,,) satisfying

dy, = C,(p,) Z.Asinthe proof of * 1) we detect chains z, € C,,  (X,, Zo) such that

dIa = C*(Pa)z- As areSUIt Wededuce E.(Pa)(zx 1) = d((A(‘z)pal 1) + (Ia, 1)) = dga
Since {7,}isaX,-set, wefinday € ' E,( Cl, X,, %) such that

z-(z,1) =dy.
SO
A:h, (a(élﬁxa,*> ﬁgh,(xa,zw)

is an isomorphism.

7. ADDITIVITY AND COMPACT CARRIER
We can use the considcrations of § 4 to settle the following two questions below:

Suppose K is any category of topological spaces containing 1) the category P of compact
AN Rs 2) the category of finite dimensional locally compact spaces as subcategories. Let *H,
() be ordinary strong homology theory rel. P with integer coefficients.

Question 1: Is *H, additive?

Question 2: Does * H, have compact carricrs?

The answer to both questions is negative. More prccisely:

Proposition 7.1. There exist compact metric spaces X, € K ,an index n and an element
¢ € *H, (3% X)) (3.2, X; denoting the free union of the spaces X ) such that

N oo
(D (géim(”H,, (EX:) — °H, (EX1)>
i=1 ]

for any finite N .
Proof. For convenience we rcplace X; by the based space X = (X", ) and 332, X, by
the wedge

X = (X,%) = \/(X{,*).
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Wehave

*H,(X,*) ~ °H, (i X,)

i=1
*H(X7,*) ~ *H/(X,)

Let *C, be any c-continuous chain functor related to *#, . On compacta *C, coincides
with a c-continuous chain functor giving ordinary Steenrod-Sitnikov homology theory. It
is well-known that there exist compacta X, and cycles 2, €°C (X, %) 2,40, such
that z; ~ 0 0N each (X, %) C (P, ) € P, . On the homology level that amounts to the
assertion that ¢, = {z,} € *H,( X}, %) isnot trivial but k,(; = {ky 2} € *H (P, %),
k(X! 9c (P, %) , vanishes. Take for example the Sitnikov chain functor (cf. [1]§ 9)
and a cycle z in the solenoid Y = X, which bounds on each enveloping ANR uncoherently,
i.e. without bounding a chain = € °C,,, (Y) . The fact that this exists is standard.

In the same way in which we invented «sums» in § 4, we get acycle z = 3%,
z; € °C,(X, %) which has the property that p, z € Z,(°C,( X}, %) (p;: X = (X[, %
the projection) is notbounding. Hence ¢ = {2} € * H_( X, *) is a homology class satisfying
(1).

It is immediately clear, that 7.1 provides us with a negative answer to both questions.

Remark. 1) °*H_ was probably the candidate where one would most likely expect a positive

answer to the two questions.
2) In [6] the authors come to the conclusion that for strong homology in the sense of J.

Lisica and S. Mardesic [5] the questions 1), 2) are undecidable.

8. APPENDIX

We collect some definitions and conventions which are constantly used in the course of the
present paper:

a) category of topological spaces: A full subcategory K ¢ Top such that:

1)BeK,2) X €K =>XXI€ K,by K,we denote the category of based spaces
(X,79), X € K,andrequire 3) (X;,z,0) € Ky,i=1,...,m =\ (X;,7) € K.

b) chain functors: The explicit definition is contained in[1] to which we refer. A chain
functor is a functor

(1) C,: K — ch = (category of chain complexes)

with much additional structure:
there are functors

(2) C,,C.: K* — ch,
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neturd inclusions £ : C! ¢ C,,

i1 C(A) ¢ Cy(X,A),(X,4) € K?
and non-natural chain mappings

0+ CU(X,A) — C(X)
Ky . C,(X) — CL(X)A)

togcther with chain homotopies resp. relations:

D1) tpgky =1l L CU(X) — C(X)
Jepe >l ,7: X (o (X,4)
Kgty =1 , 11 A c (X,A4).

Wc have a diagram with exact upper row

$H0 —c,(A) Souxabdouxa-o

I pp LT hy L
() C.(A) & C(X) 2 0/(XA

and a (natura]) mapping
Y1 H,(C"(X,A4)) - H(C(X, 4)),

defined by
(2"} = {&(2) + g4a},
dz' € im(i: C(A) — C.(X,A))
p(Z)=2", ¢q: (A A c (X,4), a€C,(AA)
such that da= —s,7~'dz’,s: Ac (AA).
We require;

D2) y is an epimorphism; there exists @ p : im j, — H,(C",( X, A)) satisfying ¢p =
l1:imj, —imJ, and

P& = pf,, K= Ke H(C(X)) = H(CUX, A)).
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Let 8 : H,(CLX, A) — H,_, (C(A)) be the boundary operator associated with

(S) , then we have
ker ¢ C ker 0.

Moreover

*) All inclusions f : (X, A) ¢ (Y, B) induce monomorphisms

**) The complex C,( X, X) = C,(X) is acyclic.

If C,: K2 -+ ch or dtematively C, : K — ch carries all this structure, then it is called
aD-functor.

A D-functor is caled a chain functor whenever it satisfies

Cl) To each homotopy H : fy ~ f, : (X, A)—= (Y, B) in K? there exists a natural
chain homotopy

D(H) : C,(fy) ~ C(f).

C2) Dencting by 0 € K resp. O € ch the zero objectsone has C,(0) =0 .
The following axiom of carrier is not explicitely used in this paper dthough it would be
quite €asy to endow all chain functors ¢, , E, constructed in § 3-6 with carriers:

C3) Toeach ¢ € C,(X) there exists a space X C X (nof necessarily X € K) satisfying
a) to each subspace X' C X , K 3 X’ D X there existsac’ € C,(X') such that

jed=c,  jrX'CcX

b) Suppose that X' € K, X' ¢ X, ¢ € C,( X’) such that j, ¢’ = c holds, then we have
Xcx'.

One can replace

1) ClI) by the appearently weaker:

Cl') To each (X, A) € K there exists a chain homotopy D x 4 @ C,(X, A) —
Cor1 XX I, AxI)between ig , 154, 1 (X, A)C (X x I,Ax I),t= 0,1, which
is natural in the sense that g € K2 ( (X, A), (Y, B) ) renders the diagram

C(X, 4 "% 0. XxLAx D
g9s | (g x 1)y
c,v,B) "% ¢, (YXLBxI

commutative;
and
2) the existence of g in D2) by the requirement

ker j, c kerp, K.
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Definition 8.1. 1) The derived homology H,(C,)() of a chain funcor C, is defined by
H(C)(X,A) = H(C,(X,A)) while the boundary operator 0: H(CH(X,A) —
H,_,(C,)(A)stems from g in D2).

2) A given homology theory h, = {h, 9} is related to a chain functor C, whenever
there exists a natural isomorphism H,(C,) () ~ h,() of homology theories (i.e. a natural
isomorphism of functors commuting with boundaries).

We need the concept of a transformation between chain functors:
Let ‘C,, 1= 1,2 be two chain functorson K and let

Mxa =X 1C(X,A) - 2CUX,A),
(X,A) € K*

My =N 1 ICUX,A) = 2CUX, A)

be families of chain mappings which are additive, natural, compatible with £ and 1’ but only
up togiven chain homotopies in 2 C, such that every cy cle formed by these chain homotopies
is bounding in 2 C, .

Then we talk about a transformation of chain functors \: 'Cx — ! C,.

We call ) strict whenever the chain homotopies associated with naturality, additivity and
1,1 are trivial.

This concept of a transformation is 1) sufficient to ensure that there exists an induced
natural transformation X, : H,(1C,) () — H,(*C,) () of homology theories, 2) general
enough to comprise all transformations appearing in practice.

Strict transformations are in particular valuable whenever %C, is c-continuous (rel. P).
In this case a dtrict transformation [P alows a unique extension over K . The fact that most

interesting transformations are not strict can be remedied in the following way: A family
C,={C,, C,: K* e, p,, 54, p,, , I} satisfying all requirements of a chain functor

with the exception of the condition *) and the condition that i, [ are monic is called a weak

chain functor.
Such a weak chain functor appears only as full weak subfunctor Q, of a chain functor

C, , which means that there exist transformations

~

.
g | c

satisfying 1) {n = identity (i.e. 7 iS monic, 2) n induces an isomorphism of homology
groups, 3) ¢ is suict. 4) @* is c-continuous whenever C, is.
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It turns out that many interesting tmnsformations ) : 'C, — 2C, , with c-continuous
ZQ , dthough not being strict themselves, factorize over full weak subfunctors by means of
strict transformations (so-called weakly strict transformations).

Definition 8.2. Aweak equivalencev: 'C, c 2C, is a monic transformation of chain
jiinctors together with a left inverse i, :2C, — ' C,, pv =1, inducing an isomorphism of
homology theories.

Remarks, 1) For the purpose of an existence theorem of a strong homology theory one is able
to enhance the concept of weak equivalence by requiring that v is weakly strict. However in
our context the weaker concept of 8.2 is sufficient.

2) The relationship between different chain functors 'C,, *C, which are related to the
same homology theory (cf. definition 8.1, 2)) is rather complicatcd and cannot be described
simply by natural transformations between these chain functors.

3) For establishing an existence theorem for strong homology theories we have to restrict
ourselves to closed pairs (X, A) € K2. In our context, i.e. for deducing theorem 2.2, this is
unnecessary.

The main objective of [1]is to presenta proof of
Theorem 8.3. Each homology theory h, on K is related to a chain jiictor C, .

It tums out that we can say much more about specia properties of C,,eg. C, can be
assumed to be a free chain complex.

The basic issue of theorem 8.1 is not smply to find a canonically defined chain complex
C,( X, A)ysuchthat h (X, A)r H (C,( X, A)); this can be achieved in a trivial way (de-
fine C (X, A)=h,(X,A)and let all boundariesd : C, — C,_, be trivial). The additional
structure of a D- resp. a last of a chain functor is introduced to ensure that this isomorphism
becomes an isomorphism of homology theories, i.e. it must commute with boundary ope-
rators g : h,(X,A) — h,_; (A)resp. for H, (C,) . For ordinary homology theories (i.e.
those satisfying a dimension axiom) we can confine ourselves to flat chain functors which
are characterized by the property that ¢ : H,(C",( X, A)) = H (C,(X, A)) is always an
isomorphism.



102 Friedrich W. Bauer

REFERENCES
[1] E W. BAUER, Generalized homology theories and chain complexes, Annai di Matematica pura ed applicata
(IV) Vol. CLV (1989). 143-191.
[2] F. W. BAUER, Strong homology theories; Proceedings of «Geometric Topology and Shape Theory», Lecture
Notes Vol. 1283 Springer Verlag (1984), 3-29.
[3] F. W. BAUER, Extensions of generalized homology theories, Pacific Journal of Math.128(1), (1987). 25-61.

[4] s. ELENBERG, N. STFENROD. Foundations of Algebraic Topology, Princeton Univ. Press (1952).

[5] 3. Lisica, S, MARDESIC, Steenrod-Sitnikov homology for arbitrary spaces, Bull. Amer. Math. Soc. 9(2)
(1983). 207-210.

[6] S. MarDESIC, A. V. PRASOLOV, Strong homology is not additive, Trans AMS 307(2) (1988). 725-744.

[7] 3. MILNOR, On the Steenrod homology theory, Berkeley (unpublished manuscript) (1960).

[8] Z R. MIMINOSHVILI, On the sequence of exact and half-exact homologies of arbitrary spoces. (Russian) Bull.
Akad. Nauk Gruz. SSR 113(1) (1984), 41-44,

[9] T. WATANABE, Cech homology, Steenrod homology and strong homology I, Glasnik Mat. 22(42) (1987),
187-238.

Received April 14,1990

F. W. Bauer

Johann Wolfgang Goethe Universitit
Fachbereich Mathematik

6 Frankfurt a.M.

Germany



