HOLOMORPHIC FUNCTIONS ON C^I, I UNCOUNTABLE
J.A. BARROSO, S. DINEEN (*)

Dedicated to the memory of Professor Gottfried Köthe

Abstract. In this article we show that $\hat{H}(C^I)$, the (Fréchet) holomorphic functions on C^I, is complete with respect to the topologies τ_0, τ_ω and τ_δ. The same result for countable I is well known (see [2]) since in this case C^I is a Fréchet space. The extension to uncountable I requires a different approach. For the compact open topology τ_0 we use induction to reduce the problem to the countable case. Next we use the result for τ_0 to reduce the problem for τ_ω and τ_δ to the case of homogeneous polynomials. Using a method developed for holomorphic functions on nuclear Fréchet spaces with a basis and, once more, the result for the compact open topology we complete the proof for τ_ω and τ_δ. We refer to [2] for background information.

1. HOLOMORPHIC FUNCTIONS ON LOCALLY CONVEX SPACES

Let E denote a locally convex space over C.

A C-valued function on a domain Ω is said to be holomorphic (or Fréchet holomorphic) if

(i) it is continuous;

(ii) its restriction to each finite dimensional section of Ω is holomorphic as a function of several complex variables.

A function which satisfies (ii) is said to be Gâteaux holomorphic. We let $H(\Omega)$ denote the vector space of all holomorphic functions on Ω. The compact open topology on $H(\Omega), \tau_0$, is the topology of uniform convergence on the compact subsets of Ω. A semi-norm p on $H(\Omega)$ is said to be ported by the compact subset K of Ω is for every open set $V, K \subset V \subset \Omega$, there exists $C(V) > 0$ such that

$$p(f) \leq C(V) ||f||_V$$

for all f in $H(\Omega)$.

The τ_ω topology on $H(\Omega)$ is the topology generated by the τ_ω-continuous semi-norms. A semi-norm p on $H(\Omega)$ is said to be τ_δ-continuous if for every increasing open cover of $\Omega, (V_n)_{n=1}^\infty$, there exists a positive integer n_0 and $C > 0$ such that

$$p(f) \leq C||f||_{V_{n_0}}$$

(*) Partially supported by CAPES, FINEP and UFRJ.
for all \(f \in H(\Omega) \).

The \(\tau_6 \) topology is the topology generated by all \(\tau_6 \)-continuous semi-norms on \(H(\Omega) \). We always have \(\tau_0 \leq \tau_w \leq \tau_6 \).

We let \(P(\mathbb{N}E) \) denote the (vector) subspace of \(H(E) \) consisting of all (continuous) \(n \)-homogeneous polynomials. By [2, proposition 2.41] \(\tau_w \) and \(\tau_6 \) induce the same topology on \(P(\mathbb{N}E) \) for all \(n \).

We shall need the following result which can be easily deduced from [2, definition 3.32, the remarks following this definition and proposition 3.36].

Proposition 1. Let \(E \) denote a locally convex space and suppose \((H(E), \tau_6)\) is complete. The following are equivalent:
(a) \((H(E), \tau_6)\) is complete,
(b) \((H(E), \tau_w)\) is complete,
(c) \((P(\mathbb{N}E), \tau_w)\) is complete for all \(n \).

2. **HOLOMORPHIC FUNCTIONS ON \(C^I \)**

A function \(f : C^I \to C \) is said to depend on finitely many variables if there exists a finite subset \(J \) of \(I \) such that

\[
 f((x_i)_{i \in I}) = f((y_i)_{i \in I})
\]

whenever \(x_i = y_i \) for all \(i \) in \(J \). By Liouville’s theorem every element of \(H(C^I) \) depends on finitely many variables and a Gâteaux holomorphic function on \(C^I \) is holomorphic if and only if it depends on finitely many variables. On \(H(C^I) \) (see [1]) we have \(\tau_0 < \tau_w < \tau_6 \).

Let \(I^{(N)} = \{ (m_i)_{i \in I} ; m_i \in \mathbb{Z}^+ \text{ and } m_i = 0 \text{ for all except a finite number of } i \} \). For \(a \in C \) we let \(a^0 = 1 \). For \(m = (m_i)_{i \in I} \in I^{(N)} \) we denote by \(z^m \) the \(|m| = \sum_i |m_i| \)-homogeneous polynomial which maps

\[
 (z_i)_{i \in I} \mapsto \prod_{i \in I} z_i^{m_i}.
\]

If \(P \) is an \(n \)-homogeneous polynomial on \(C^I \) then, since \(P \) depends on finitely many variables, there exists a set of scalars, \((a_m)_{m \in I^{(N)}} \), with \(a_m = 0 \) for all but a finite number of elements of \(I^{(N)} \) such that

\[
 P((z_i)_{i \in I}) = \sum_{m \in I^{(N)}} a_m z^m.
\]

Now let \(p \) denote \(\tau_w \)-continuous semi-norm on \(P(\mathbb{N}(C^I)) \). If \(b_m = p(z^m) \) for all \(m \) in \(I^{(N)} \) then

\[
 p \left(\sum_{m \in I^{(N)}} a_m z^m \right) \leq \sum_{m \in I^{(N)}} |a_m| b_m.
\]
for all \(\sum_{m \in I^{(N)}} a_m z^m \) in \(P^n(C^I) \). Let

\[
q \left(\sum_{m \in I^{(N)}} a_m z^m \right) = \sum_{m \in I^{(N)}} |a_m| b_m
\]

and, for each finite subset \(F \) of \(I^{(N)} \), let

\[
q_F \left(\sum_{m \in I^{(N)}} a_m z^m \right) = \sum_{m \in I^{(N)}} \sum_{m \in F} |a_m| b_m
\]

Clearly, by the Cauchy inequalities \(q_F \) is a \(\tau_0 \)-continuous semi-norm, \(q \) is always finite since each polynomial has only a finite number of non-zero terms and

\[
q = \sup_F q_F.
\]

Since \(\tau_0 \) is a barrelled topology on \(P^n(C^I) \) ([2, p. 24]) \(q \) is a \(\tau_0 \)-continuous semi-norm on \(P^n(C^I) \).

We summarize the above in the following proposition:

Proposition 2. If \(p \) is a \(\tau_0 \)-continuous semi-norm on \(P^n(C^I) \) then there exists a \(\tau_0 \)-continuous semi-norm \(q \) on \(P^n(C^I) \) and a collection of \(\tau_0 \)-continuous semi-norms \((q_\alpha)_{\alpha \in A} \) such that:

(i) \(p \leq q \),

(ii) \(q = \sup_{\alpha \in A} q_\alpha \).

3. **COMPLETENESS OF** \((H(C^I), \tau_0)\)

Proposition 3. \((H(C^I); \tau_0)\) is complete.

Proof. Let \((f_\alpha)_{\alpha \in \Gamma}\) denote a Cauchy net in \((H(C^I), \tau_0)\). Since the Banach space \(C(K), K \) compact, with the supremum norm is complete there exists a function \(f \) on \(C^I \), continuous on compact subset of \(C^I \), such that \(f_\alpha \rightarrow f \) as \(\alpha \rightarrow \infty \), uniformly on compact sets. Since \(f_\alpha \rightarrow f \) uniformly on the finite dimensional compact subsets of \(C^I \) and each \(f_\alpha \) is holomorphic it follows that \(f \) is Gâteaux holomorphic. Hence, to complete the proof we must show that \(f \) is continuous. By our remarks in §2 this is equivalent to showing that \(f \) depends on a finite number of variables. Suppose otherwise. Let \(J_1 \) denote a non-empty finite subset of \(I \). Then
there exist \(x' = (x'_i)_{i \in I} \) and \(y' = (y'_i)_{i \in I} \) in \(C^I \) such that \(f(x' + y') \neq f(x') \) and \(y'_i = 0 \) for \(i \in J_1 \). Let \(\delta = |f(x' + y') - f(x')| \) and let \(K_1 = \{ (\omega_i)_{i \in I}; |\omega_i| \leq |x'_i| + |y'_i| \) for all \(i \) in \(I \). Then \(K_1 \) is a compact subset of \(C^I \), \(x' \) and \(x' + y' \) belong to \(K_1 \). Now choose \(\alpha \in \Gamma \) such that
\[
||f - f_\alpha||_{K_1} \leq \delta/8.
\]
Since \(f_\alpha \) is holomorphic it depends on a finite number of variables \(I_1 \). Let
\[
\overline{x}'_i = \begin{cases}
 x'_i & \text{if } i \in I_1 \cup J_1, \\
 0 & \text{otherwise}
\end{cases}
\]
and let
\[
\overline{y}'_i = \begin{cases}
 y'_i & \text{if } i \in I_1 \cup J_1, \\
 0 & \text{otherwise}
\end{cases}
\]
Then \(\overline{x}' \) and \(\overline{x}' + \overline{y}' \) belong to \(K_1 \) and since \(x' \) and \(\overline{x}' \) agree on \(I_1 \) and \(y' \) and \(\overline{y}' \) agree on \(I_1 \) we have
\[
f_\alpha(x' + y') = f_\alpha(\overline{x}' + \overline{y}') \quad \text{and} \quad f_\alpha(x') = f_\alpha(\overline{x}').
\]
Hence
\[
|f(\overline{x}' + \overline{y}') - f(\overline{x}')| \geq |f(x' + y') - f(x')| - |f(\overline{x}' + \overline{y}') - f_\alpha(\overline{x}' + \overline{y}')| - |f_\alpha(x' + y') - f_\alpha(\overline{x}' + \overline{y}')| \geq \delta/2
\]
both \(\overline{x}' \) and \(\overline{y}' \) have their support in \(I_1 \cup J_1 \) and \(\overline{y}'_i = 0 \) if \(i \in J_1 \). Let \(J_2 = I_1 \cup J_1 \). Using the same method we can find a finite subset \(I_2 \) of \(I \) and vectors \(\overline{x}^2 \) and \(\overline{y}^2 \) with support in \(I_2 \cup J_2 \) such that
\[
f(\overline{x}^2 + \overline{y}^2) \neq f(\overline{x}^2) \quad \text{and} \quad \overline{y}^2_i = 0 \quad \text{if } i \in J_2.
\]
By induction we can generate an increasing sequence of finite subset of \(I, (J_n)_{n=1}^{\infty} \), and sequences of vectors \((\overline{x}^n) \) and \((\overline{y}^n) \) in \(C^I \) such that
\[
\begin{align*}
(i) & \quad f(\overline{x}^n + \overline{y}^n) \neq f(\overline{x}^n) \quad \text{for all } n, \\
(ii) & \quad \overline{x}^n \text{ and } \overline{y}^n \text{ have their support in } J_{n+1}, \\
(iii) & \quad \overline{y}^n_i = 0 \quad \text{if } i \in J_n.
\end{align*}
\]
Let \(J = U_n J_n \). We now restrict all \(f_\alpha \) and \(f \) to the Fréchet space \(C^J \times 0^{I \setminus J} \). Since \(f_\alpha|_{C^I \times 0^{I \setminus J}} \rightarrow f|_{C^I \times 0^{I \setminus J}} \) uniformly on compact sets it follows that \(f|_{C^I \times 0^{I \setminus J}} \) is holomorphic and hence depends on a finite number of variables in \(J \). This is impossible, however, by (i), (ii) and (iii), since any finite subset of \(J \) is contained in some \(J_n \). This completes the proof.
4. COMPLETENESS FOR THE τ_w and τ_6 TOPOLOGIES

Proposition 4. $(H(C^I); \tau_w)$ and $(H(C^I); \tau_6)$ are complete locally convex spaces.

Proof. By propositions 1 and 3 it suffices to show that $(P(n(C^I)), \tau_w)$ is complete for all n. Let $(P_{\alpha})_{\alpha \in \Gamma}$ denote a τ_w Cauchy net in $(P(n(C^I)), \tau_w)$. Since $\tau_w \geq \tau_0$, proposition 3 implies that there exists a polynomial P in $P(n(C^I))$ such that $P_{\alpha} \to P$ in $(P(n(C^I)), \tau_0)$ as $\alpha \to \infty$. Let p denote a τ_w-continuous semi-norm on $P(n(C^I))$. By proposition 2 we may suppose in the following argument that

$$p = \sup_{\beta \in B} p_\beta$$

where each p_β is a τ_0-continuous semi-norm and B is some indexing set. Given $\epsilon > 0$ there exists $\alpha_0 \in \Gamma$ such that $p(P_{\alpha_1} - P_{\alpha_2}) \leq \epsilon$ for all $\alpha_1, \alpha_2 \geq \alpha_0$. Hence $p_\beta(P_{\alpha_1} - P_{\alpha_2}) \leq \epsilon$ for all $\beta \in B$ and all $\alpha_1, \alpha_2 \geq \alpha_0$. Since p_β is τ_0-continuous and $P_{\alpha} \to P$ as $\alpha \to \infty$ in the compact open topology we have

$$p_\beta(P_{\alpha} - P) \leq \epsilon \text{ for all } \beta \in B \text{ and all } \alpha \geq \alpha_0.$$

Hence

$$p(P_{\alpha} - P) = \sup_{\beta \in B} p_\beta(P_{\alpha} - P) \leq \epsilon$$

and $P_{\alpha} \to P$ in $(P(n(C^I)), \tau_w)$ as $\alpha \to \infty$. This completes the proof.

5. BALANCED DOMAINS IN C^I

If U is a balanced open subset of a locally convex space E and τ is a locally convex topology on $H(U)$ then $(H(U), \tau)$ is said to be T.S. (Taylor series) complete if for any sequence $(P_n)_{n=0}^{\infty}, P_n \in P(n)E$ all $n, \sum_{n=0}^{\infty} p(P_n) < \infty$ for every τ-continuous seminorm p implies $\sum_{n=0}^{\infty} P_n \in H(U)$ [2, p. 128]. The hypothesis in proposition 1 are used to show that $(H(E), \tau_0)$ is T.S. complete and from this it follows that $(H(E), \tau_w)$ and $(H(E), \tau_6)$ are also T.S. complete. Now, if U is a balanced open subset of C^I and $(P_n)_{n=0}^{\infty}$ is a sequence of continuous polynomials, $P_n \in P(n)E$ all n, then since each polynomials only depends on finitely many variables the sequence $(P_n)_{n=0}^{\infty}$ only depends on countably many variables and hence, using the fact that C^N, N countable, is a Fréchet space we see that $(H(U), \tau_0)$ is T.S. complete for any balanced open subset U of E. Propositions 3 and 4 thus imply the following.
Proposition 5. If U is a balanced domain in C^I then $(H(U), \tau)$ is complete for $\tau = \tau_0, \tau_\infty$ and τ_S.
REFERENCES
