HOLOMORPHIC FUNCTIONS ON C^I , I UNCOUNTABLE

J.A. BARROSO, S. DINEEN (*)

Dedicated to the memory of Professor Gottfried Köthe

Abstract. In this article we show that $H(C^I)$, the (Fréchet) holomorphic functions on C^I , is complete with respect to the topologies τ_0 , τ_ω and τ_δ . The same result for countable I is well known (see [2]) since in this case C^I is a Fréchet space. The extension to uncountable I requires a different approach. For the compact open topology τ_0 we use induction to reduce the problem to the countable case. Next we use the result for τ_0 to reduce the problem for τ_ω and τ_δ to the case of homogeneous polynomials. Using a method developed for holomorphic functions on nuclear Fréchet spaces with a basis and, once more, the result for the compact open topology we complete the proof for τ_ω and τ_δ . We refer to [2] for background information.

1. HOLOMORPHIC FUNCTIONS ON LOCALLY CONVEX SPACES

Let E denote a locally convex space over C.

A C-valued function on a domain Ω is said to be holomorphic (or Fréchet holomorphic) if

- (i) it is continuous;
- (ii) its restriction to each finite dimensional section of Ω is holomorphic as a function of several complex variables.

A function which satisfies (ii) is said to be Gâteaux holomorphic. We let $H(\Omega)$ denote the vector space of all holomorphic functions on Ω . The compact open topology on $H(\Omega)$, τ_0 , is the topology of uniform convergence on the compact subsets of Ω . A semi-norm p on $H(\Omega)$ is said to be ported by the compact subset K of Ω is for every open set $V, K \subset V \subset \Omega$, there exists C(V) > 0 such that

$$p(f) \leq C(V)||f||_V$$

for all f in $H(\Omega)$.

The τ_{ω} topology on $H(\Omega)$ is the topology generated by the τ_{ω} -continuous semi-norms. A semi-norm p on $H(\Omega)$ is said to be τ_{δ} -continuous if for every increasing open cover of Ω , $(V_n)_{n=1}^{\infty}$, there exists a positive integer n_0 and C>0 such that

$$p(f) \le C||f||_{V_{\eta_0}}$$

^(*) Partially supported by CAPES, FINEP and UFRJ.

J.A. Barroso, S. Dineen

for all $f \in H(\Omega)$.

The τ_{δ} topology is the topology generated by all τ_{δ} -continuous semi-norms on $H(\Omega)$. We always have $\tau_{0} \leq \tau_{\omega} \leq \tau_{\delta}$.

We let $P(^nE)$ denote the (vector) subspace of H(E) consisting of all (continuous) n-homogeneous polynomials. By [2, proposition 2.41] τ_{ω} and τ_{δ} induce the same topology on $P(^nE)$ for all n.

We shall need the following result which can be easily deduced form [2, definition 3.32, the remarks following this definition and proposition 3.36].

Proposition 1. Let E denote a locally convex space and suppose $(H(E), \tau_0)$ is complete. The following are equivalent:

- (a) $(H(E), \tau_{\delta})$ is complete,
- (b) $(H(E), \tau_{\omega})$ is complete,
- (c) $(P(^{n}E), \tau_{\omega})$ is complete for all n.

2. HOLOMORPHIC FUNCTIONS ON C^I

A function $f: C^I \to C$ is said to depend on finitely many variables if there exists a finite subset J of I such that

$$f((x_i)_{i \in I}) = f((y_i)_{i \in I})$$

whenever $x_i = y_i$ for all i in J. By Liouville's theorem every element of $H(C^I)$ depends on finitely many variables and a Gâteaux holomorphic function on C^I is holomorphic if and only if it depends on finitely many variables. On $H(C^I)$ (see [1]) we have $\tau_0 < \tau_\omega < \tau_\delta$. Let $I^{(N)} = \{(m_i)_{i \in I}; m_i \in Z^+ \text{ and } m_i = 0 \text{ for all except a finite number of } i\}$. For $a \in C$ we let $a^0 = 1$. For $m = (m_i)_{i \in I} \in I^{(N)}$ we denote by z^m the $|m| = \sum_i |m_i|$ -homogeneous

polynomial which maps

$$(z_i)_{i\in I}$$
 to $\prod_{i\in I} z_i^{m_i}$.

If P is an n-homogeneous polynomial on C^I then, since P depends on finitely many variables, there exists a set of scalars, $(a_m)_{m\in I^{(N)}}$, with $a_m=0$ for all but a finite number of elements of $I^{(N)}$ such that

$$P((z_i))_{i\in I} = \sum_{m\in I^{(N)}} a_m z^m.$$

Now let p denote τ_{ω} -continuous semi-norm on $P({}^n(C^1))$. If $b_m = p(z^m)$ for all m in $I^{(N)}$ then

$$p\left(\sum_{m\in I^{(N)}}a_mz^m\right)\leq \sum_{m\in I^{(N)}}|a_m|b_m$$

for all
$$\sum_{m \in I^{(N)}} a_m z^m$$
 in $P({}^n(C^I))$. Let

$$q\left(\sum_{m\in I^{(N)}}a_mz^m\right)=\sum_{m\in I^{(N)}}|a_m|b_m$$

and, for each finite subset F of $I^{(N)}$, let

$$q_F\left(\sum_{m\in I^{(N)}}a_mz^m\right)=\sum_{\substack{m\in I^{(N)}\\m\in F}}|a_m|b_m$$

Clearly, by the Cauchy inequalities q_F is a τ_0 -continuous semi-norm, q is always finite since each polynomial has only a finite number of non-zero terms and

$$q = \sup_{F} q_{F}.$$

Since τ_{ω} is a barrelled topology on $P({}^{n}(C^{I}))$ ([2, p. 24]) q is a τ_{ω} -continuous semi-norm on $P({}^{n}(C^{I}))$.

We summarize the above in the following proposition:

Proposition 2. If p is a τ_{ω} -continuous semi-norm on $P({}^{n}(C^{I}))$ then there exists a τ_{ω} -continuous semi-norm q on $P({}^{n}(C^{I}))$ and a collection of τ_{0} -continuous semi-norms $(q_{\alpha})_{\alpha \in A}$ such that:

(i)
$$p \leq q$$
,

(ii)
$$q = \sup_{\alpha \in A} q_{\alpha}$$
.

3. COMPLETENESS OF $(H(C^I), \tau_0)$

Proposition 3. $(H(C^I); \tau_0)$ is complete.

Proof. Let $(f_{\alpha})_{\alpha \in \Gamma}$ denote a Cauchy net in $(H(C^I), \tau_0)$. Since the Banach space C(K), K compact, with the supremum norm is complete there exists a function f on C^I , continuous on compact subset of C^I , such that $f_{\alpha} \to f$ as $\alpha \to \infty$, uniformly on compact sets. Since $f_{\alpha} \to f$ uniformly on the finite dimensional compact subsets of C^I and each f_{α} is holomorphic it follows that f is Gâteaux holomorphic. Hence, to complete the proof we must show that f is continuous. By our remarks in §2 this is equivalent to showing that f depends on a finite number of variables. Suppose otherwise. Let J_1 denote a non-empty finite subset of I. Then

there exist $x'=(x_i')_{i\in I}$ and $y'=(y_i')_{i\in I}$ in C^I such that $f(x'+y')\neq f(x')$ and $y_i'=0$ for $i\in J_1$. Let $\delta=|f(x'+y')-f(x')|$ and let $K_1=\{(\omega_i)_{i\in I}; |\omega_i|\leq |x_i'|+|y_i'| \text{ for all } i \text{ in } I\}$. Then K_1 is a compact subset of C^I , x' and x'+y' belong to K_1 . Now choose $\alpha\in\Gamma$ such that

$$||f-f_{\alpha}||_{K_1} \leq \delta/8.$$

Since f_{α} is holomorphic it depends on a finite number of variables I_1 . Let

$$\widetilde{x}_{i}' = \begin{cases} x_{i}' & \text{if } i \in I_{1} \cup J_{1}, \\ 0 & \text{otherwise} \end{cases}$$

and let

$$\widetilde{y}_i' = \begin{cases} y_i' & \text{if } i \in I_1 \cup J_1, \\ 0 & \text{otherwise} \end{cases}$$

Then \tilde{x}' and $\tilde{x}' + \tilde{y}'$ belong to K_1 and since x' and \tilde{x}' agree on I_1 and y' and \tilde{y}' agree on I_1 we have

$$f_{\alpha}(x'+y')=f_{\alpha}(\widetilde{x}'+\widetilde{y}')$$
 and $f_{\alpha}(x')=f_{\alpha}(\widetilde{x}')$.

Hence

$$|f(\widetilde{x}' + \widetilde{y}') - f(\widetilde{x}')| \ge |f(x' + y') - f(x')| - |f(\widetilde{x}' + \widetilde{y}') - f_{\alpha}(\widetilde{x}' + \widetilde{y}')|$$

$$-|f_{\alpha}(\widetilde{x}' + \widetilde{y}') - f_{\alpha}(x' + y')| - |f_{\alpha}(x' + y') - f(x' + y')|$$

$$-|f(x') - f_{\alpha}(x')| - |f_{\alpha}(x') - f_{\alpha}(\widetilde{x}')| - |f_{\alpha}(\widetilde{x}') - f(\widetilde{x}')| \ge \delta/2$$

both \widetilde{x}' and \widetilde{y}' have their support in $I_1 \cup J_1$ and $\widetilde{y}_i' = 0$ if $i \in J_1$. Let $J_2 = I_1 \cup J_1$. Using the same method we can find a finite subset I_2 of I and vectors \widetilde{x}^2 and \widetilde{y}^2 with support in $I_2 \cup J_2$ such that

$$f(\tilde{x}^2 + \tilde{y}^2) \neq f(\tilde{x}^2)$$
 and $\tilde{y}_i^2 = 0$ if $i \in J_2$.

By induction we can generate an increasing sequence of finite subset of I, $(J_n)_{n=1}^{\infty}$, and sequences of vectors (\tilde{x}^n) and (\tilde{y}^n) in C^I such that

- (i) $f(\tilde{x}^n + \tilde{y}^n) \neq f(\tilde{x}^n)$ for all n,
- (ii) \widetilde{x}^n and \widetilde{y}^n have their support in J_{n+1} ,
- (iii) $\widetilde{y}_i^n = 0$ if $i \in J_n$.

Let $J = \bigcup_n J_n$. We now restrict all f_{α} and f to the Fréchet space $C^J \times 0^{I \setminus J}$. Since $f_{\alpha}|_{C^J \times 0^{I \setminus J}} \to f|_{C^J \times 0^{I \setminus J}}$ uniformly on compact sets it follows that $f|_{C^J \times 0^{I \setminus J}}$ is holomorphic and hence depends on a finite number of variables in J. This is impossible, however, by (i), (ii) and (iii), since any finite subset of J is contained in some J_n . This completes the proof.

4. COMPLETENESS FOR THE τ_{ω} and τ_{δ} TOPOLOGIES

Proposition 4. $(H(C^I); \tau_{\omega})$ and $(H(C^I); \tau_{\delta})$ are complete locally convex spaces.

Proof. By propositions 1 and 3 it suffices to show that $(P({}^n(C^I)), \tau_\omega)$ is complete for all n. Let $(P_\alpha)_{\alpha\in\Gamma}$ denote a τ_ω Cauchy net in $(P({}^n(C^I)), \tau_\omega)$. Since $\tau_\omega \geq \tau_0$, proposition 3 implies that there exists a polynomial P in $P({}^n(C^I))$ such that $P_\alpha \to P$ in $(P({}^n(C^I)), \tau_0)$ as $\alpha \to \infty$. Let p denote a τ_ω -continuous semi-norm on $P({}^n(C^I))$. By proposition 2 we may suppose in the following argument that

$$p = \sup_{\beta \in B} p_{\beta}$$

where each p_{β} is a τ_0 -continuous semi-norm and B is some indexing set. Given $\varepsilon > 0$ there exists $\alpha_0 \in \Gamma$ such that $p(P_{\alpha_1} - P_{\alpha_2}) \le \varepsilon$ for all $\alpha_1, \alpha_2 \ge \alpha_0$. Hence $p_{\beta}(P_{\alpha_1} - P_{\alpha_2}) \le \varepsilon$ for all $\beta \in B$ and all $\alpha_1, \alpha_2 \ge \alpha_0$. Since p_{β} is τ_0 -continuous and $P_{\alpha} \to P$ as $\alpha \to \infty$ in the compact open topology we have

$$p_{\beta}(P_{\alpha}-P) \leq \varepsilon$$
 for all $\beta \in B$ and all $\alpha \geq \alpha_0$.

Hence

$$p(P_{\alpha} - P) = \sup_{\beta \in B} p_{\beta}(P_{\alpha} - P) \le \varepsilon$$

and $P_{\alpha} \to P$ in $(P({}^{n}(C^{I})), \tau_{\omega})$ as $\alpha \to \infty$. This completes the proof.

5. BALANCED DOMAINS IN \mathbb{C}^I

If U is a balanced open subset of a locally convex space E and τ is a locally convex topology on H(U) then $(H(U), \tau)$ is said to be T.S. (Taylor series) complete if for any se-

quence
$$(P_n)_{n=0}^{\infty}$$
, $P_n \in P(^nE)$ all $n, \sum_{n=0}^{\infty} p(P_n) < \infty$ for every τ -continuous seminorm p

implies $\sum_{n=0}^{\infty} P_n \in H(U)$ [2, p. 128]. The hypothesis in proposition 1 are used to show that $(H(E), \tau_0)$ is T.S. complete and from this it follows that $(H(E), \tau_\omega)$ and $(H(E), \tau_\delta)$ are also T.S. complete. Now, if U is a balanced open subset of C^I and $(P_n)_{n=0}^{\infty}$ is a sequence of continuous polynomials, $P_n \in P(^nE)$ all n, then since each polynomials only depends on finitely many variables the sequence $(P_n)_{n=0}^{\infty}$ only depends on countably many variables and hence, using the fact that C^N , N countable, is a Fréchet space we see that $(H(U), \tau_0)$ is T.S. complete for any balanced open subset U of E. Propositions 3 and 4 thus imply the following.

J.A. Barroso, S. Dineen

Proposition 5. If U is a balanced domain in C^I then $(H(U), \tau)$ is complete for $\tau = \tau_0, \tau_\omega$ and τ_δ .

REFERENCES

- [1] J.A. Barroso, L. Nachbin, Some Topological Properties of spaces of Holomorphic Mappings in Infinitely Many Variables, Advances in Holomorphy, ed. J.A. Barroso, North-Holland Mathematics Studies 34, pp. 67-91, 1979.
- [2] S. DINEEN, Complex Analysis in Locally Convex Spaces, North-Holland Mathematics Studies 57, 1981.

Received December 7, 1989
Jorge Alberto Barroso
Institute de Matematica/UFRJ
Caixa Postal 68530
21.945 Rio de Janeiro
RJ
BRAZIL

Séan Dineen
Department of Mathematics
University College Dublin
Belfield
Dublin 4
IRELAND