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NEWTON’S OBSERVATIONS ABOUT THE FIELD
OF A UNIFORM THIN SPHERICAL SHELL

R. ARENS

Dedicated to the memory of Professor Gottfried M, Kothe

1. INTRODUCTION

Newton observed ‘1 that with his law of gravitation the field outside a thin uniform spherical
surface 1s the same as that of a particle at the center, having the same mass as the sphere. He
also showed that the field is O inside a sphere (2 (3,

We find below all laws of central force having one or the other of these properties. We
also formulate the analogous question in two and four (rather than just three) dimensions.

(1,7%) .
2

We present the findings in a table where, for example, the entry 1n the place labelled

«outside, 3» says that the ficlds that satisfy the condition outside every sphere in E° are
governed by laws which have any linear combination of 1 and > in the numerator, and 2 in
the denominator (%,

Dimension Qutside Inside

(1,7*) (1,logr)

2
T T
(1,7) (1,7%)
3 TZ TZ
. (1,7%)  (1,7)
T~ r3

2. THE FIELD CREATED BY A THIN UNIFORM SPHERE IN E?

We assume a central force. A central force always has a potential. We assume a potential of
the form g(r) /7, where now this function g takes the place of Newton’s gravitational constant.

(1) 1. Newton, Philosophiae Naturalis Principia Mathematica, London, 1687, Theorem XXXI.

(2) Op. cit., Theorem XXX.

(3) A.S. Ramsey, Newtonian Attraction, Cambridge. Univ. Press, 1940. See p. 46 et seqq. By "sphere” we mean
the surface of a solid ball. We suppose it has a constant surface density and a total mass 4 .

(4) The results for E® can be, or are (for the interior problem) obtained from Ramsay, as noted below. I am grateful
to N. Grossman for this reference.
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Suppose a sphere S or radius a and center at the origin has a uniform surface density
making the total mass equalt to 4 7. Then the potential V' at the point (0, 0, b) will be given
by a constant plus

(2.1) V=/fg(3) sin 0dfd¢,
S

3

= 21T/ 9(s) sin 6d0,
0

S

where at s = o + b> — 2abcos 8.

3. THE EXTERIOR FIELD IN E°

We hypothesize that V = 4 wg(b) /b plus a constant, when b > a. Let this constant be called

47K (a), as it may depend on the radius a.
The hypothesis takes the form ()

b 1 a+b
(31) ?—(—)'= m : g(s)ds+ K(ﬂ)

If we multiply this by 2 ab, and differentiate twice with respect to b, thrice with respect to
a, and then set a = 0, we get ¢””(b) = 0. (® This means that g has to be of the form
g(r) =cy +cyr+ c2r2 + c,r°. If we insert this into 3.1, we find that it satisfies 3.1 only if

c2=0.

4. THE INTERIOR FIELD

In this case b < a so we just change the lower limit in 3.1 to a — b, and erase the term g(b).
We multiply by 2 ab and differentiate once, giving

(4.1) O=g(a+b)+g(a—>b)+2aK(a) =0.

By setting b = 0 we see what K ( a) 1s, and put that back into 4.1. Differentiating twice more
with respect to b and then setting b = a gives g”(a) = 0. We conclude (Pthatg(r) = cy+¢, 1.

A look at the proof shows to obtain this result, one need only assume that the field vanish
on a neighborhood of the center of the sphere.

(5) We assume that g is continuous. By the immediately following integral representation, it will be differentiable
to all orders.

(8) This same result can be obtained from Ramsey, op. cit. p. 65, ex. 57, by expanding his ¢(r + a) in a Taylor
series up to and including &’ . Our g is ¢"'.

(7} Another way of showing this is presented by Ramsay, op. cit.,, p. 66, ex. 49,
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5. GRAVITY IN TWO DIMENSIONS

In the two dimensional case it seems to be easier to deal with the force rather that with poten-
tials.

It is analogous to Newton’s law that two particles in the plane are repelled by a force
G(r?) /r along their line of centers. Suppose a circle S of radius a and center at the origin
has a uniform surface density making the total mass equal to 2 7r. Then the gravitational field
caused by S at the point ( b, 0) will have an z-component X given by

ag.

2w 2 2 2 2
(5.1) X:/ G(s°)(b° + s — a“)
0

2 bs?

where s = a2 + b — 2abcos 0.

6. THE FIELD OUTSIDE THE CIRCLE

Define ¢ and u by a = bg.and s = bu. Then ¢ < 1. We seck those G for which X has the
value 2 wG(b?) /b, that is, for which
1 [*" G(b*u?)(1 — gcos 6) ;

2y —
(6.1) G0 =5 o 1+¢2 —2qcos0

0,

where we have used, in some places, the relation u? = ¢ + 1 — 2gcos 6.
We now use u as the variable of integration, and obtain

1+q
(6.2) G(b*) =f G(b*u*) K (u,q)du.
1—¢
It 1s clear that K 1s continuous, nonnegative and actually positive in a neighborhood of 1.
Further details will not be needed.
Let ¢ denote the function whose value at x is z, so that for example ef is the exponential

function.
Let us define an integral transform

I+q

(6.3) T(h; q)(x) =/ h(z + log u) K(u, q)du.

l—g

Then our equation 6.2 amounts to requiring T'( h; ¢) = h for the function h = G(e*¢). Given

1
h define G by h ( DEE) . Then

1 2T G(e**u?) (1 — g cos 0)

(6.4) T(hig)(z) = 5—

do.
27 Jo 14+ g2 —2qgcosd

Let cbereal and consider h = e%. Then G = exzp(c/2,log ) = £/2 and G(e**u?) = e“*uc.
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Proposition 1. T(e%; ) = A (c)eX where

1 [*™ uS(1 — gcos0)
A(c) = EL ( ug déo.

Thus T'(e¢;q) = e if Bc=0 or2.

The verification of this may be left to the rcader.
We need another very elementary observation.

Lemma. Let h be a smooth function of a real variable and suppose h"(zy) —2h'(z,) > 0.

Then there is a linear combination k of 1 and e*¢ which has the same value as h at x, and
has k(z) < h(z) for O < |z — zy| < & for some positive é.

We now state the result about the ficld outside the circle.

Theorem. If G is such that for h defined as G(e**),T(h; q) = h, then h is a linear combi-
nation of 1 and e*¢, and G(r?) is a linear combination of 1 and r*.

Proof. Suppose h" — 2 h' is not the O function. Then it is not O at some z,. It suffices to
deal with the case mentioned in the lemma. Let k be the osculating approximation mentioned
there, so h(z,) = k(z,). Pick ¢ so small thatif 1 — g < u < 1+ g then |logu] <
8. Then as far as the integral transform 6.3 is concemned, A(x) might as well be positively
greater than k(z) everywhere, except for z,. Hence T'(h; ¢)(zy) > T'(k; g)(z,) because
K is nonnegative. But actually this incquality will be strong: T'(h; ¢)(zg) > T(k; ¢)(zg),
because K is positive on a neighborhood of 1. Presumably T'(h; q)(zy) = h(zy), and
by the carlier lemma, T'(k; q)(zy) = k(zy). Thus we have h(zy) > k(z,) which is a
contradiction.
Thus A" — 2h' = 0, and the theorem is substantially proved.

7. THE FIELD INSIDE THE CIRCLE
We retuin to 5.1 and let b = pa, p < 1. Since the field inside is supposed to be 0 we get

0:/’“ G‘(::ﬁ.az)(p—(:c:m?)dﬁ|
o p*+1—2pcosb

(8)  And, indeed, only if ¢ has those values, because, as T. Liggett pointed out to me, A is convex. This explains
why the fields admitted in the table of sec. 1 are lincar combination of only fwo. One could also argue on the basis
of the theorem of Choquet and Deny, if one were willing 1o assume & priori that h were bounded on one side. See G.
Choquet and J. Deny, Sur I’équation de convolution i = u x o. Comptes Rendues Pans 1960, 250, 799-801. Part 1,

Math. Sa.
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where u? = p? + 1 — 2pcos 6. We also reduced the 2 7 to 7.

We now integrate this equation with respect to p from p = 0 to p = P. In the resulting
double integral we reverse the order of integration, and then eliminate the variable p in favor
of w where w? = a?(p? + 1 — 2pcos 6), 0 being fixed during this step. The result is

x praV1+PZ_2Pcosf 2
0=f f G Gwdo.
0 a

w

We differentiate this equation with respect to a, cancel two expressions /1 + P2 — 2 P cos
which arise and obtain

0= —1~/ {G[u2(1+ P2 —2Pcos8)] —G[uz]}dﬂ.
™ Jo
Therefore

(7.1) G(a?) = %/IG[EZ(1+P2-2PCGS 0)1de
0

should be true for all P < 1, for the desired functions G. Defining g( ) = G(e*%) as before,
this equation takes the form

(7.2) h(z) = U(h,P)(z)

where

(7.3) U(h, P)(z) = %f' h(z + log \/1+ P2 — 2P cos 6)db.
0

It is easy to see that U(1, P) = 1, and that the kernel (* involved in the definition of the
transform U is nonnegative.
Now

U(E,P)(z) =x+ -1-/ log \/] + P2 —2Pcos 8)do.
v

0

This latter integral is (!9 0. SoU(¢&, P) = €.

Reasoning as in sec. 6 about linear combinations, this time of 1 and ¢, we deduce that for
and h satisfying 7.2 one must have h” = 0. Thus, for the field to behave in the required way
inside the circle, it is necessary and sufficient that G( %) = ¢+ klog r or the law of central

force be (c+ klogr)/r.

(9 Like the K in the last section.
(10} See Burington's tables, Fourth Edition, page 106.
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8. GRAVITY IN E*

It is appropriate to let the law of central force be G(r?) /»> . We introduce spherical coordi-
nates = rsin @sin ¢ sin ¢,y = rsin #8in ¢ cos ¥,z = rsin € cos ¢, w = rcos . Then the
w-component of the force of a sphere of mass 2 7%, with center at the origin and radius a, on
aunitmass at (0,0,0,b) will be

" G(a% + b* — 2abcos 0)

— -2 2
0 [uz-{-bz_zabcosmz (b—acos @) sin“ 6d6,

(8.1) W =4

where s? = a? + b*> — 2abcos 0.
LetG = 1. Whena > b, the integral 8.1 is 0. Whenb > a, itis2mw* /b .

The proof is tedious but can be left to the reader. The formula 1! is relevant.

9. THE FIELD OUTSIDE THE SPHERE

Define ¢ and u by a = bg and s = bu. Then ¢ < 1. We seek those & for which W has the
value 22 G(b?%) /b°, that is, for which

2 ™ G(b2u?)(1 — gcos 6) sin? 6d6
T Jo (gc+1—2qgcos )

Here u? = g2+ 1 —2¢gcos 8. We now use u as a variable of integration, and obtain an equation
literally like 6.2, except of course for a new kernel K. We can use 6.3 to define new T', for
which 6.4 holds by virtue of 8.2. To get an analogue of Proposition 1 we must study 9.1 when
G(u?) is set equal to u®. Let

= A(c).

il

2 /‘“ uS(1 — g cos ) sin? 6d6
o (g2+1—2qgcosf)?

Then T(e%; q) = A (c)e%. Moreover, A (0) and A (4) = 1. For ¢ = 0 this is essentially 8.2
for the case a < b. For ¢ = 4, it 1S obvious.

Dealing with h” — 4 ' as in sec. 6, we conclude that a field satisfying our conditions
outside of the sphere in R*, must have G(7?) be a linear combination of 1 and r*.

(11) Burington, op. cif, No. 213.
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10. THE FIELD INSIDE THE SPHERE IN R?

P
Now b < a. Set b = ap in 8.1, and set the integral equal to 0. Let us take f ...dp,
0

and change the order of integration. We change to a new variable in the dp integral, w =
ay/1+ p* — 2pcos 0. In this change, 6 is held constant. There results

" aV1+ P2 -2 Pcos 8 2
(10.1) f sin 9@9/ G(""S)dw =0,
0 a

w

where a factor a? has been discarded. We now take the partial derivative with respect to a.

Introducing the variable u = /1 + P2 — 2 Pwf, we can write the result as

Gla?) = gf” G(a?u?) sin”? ﬁdﬁi
0

T u?

This result 1s analogous to 7.1. Just as we did there, we can introduce an integral transform

ag.

2 w r 2
U(h, P)(z) = —f h(z + log u) 22
m 0 17

For h = e the transform is e%X A (¢) where this factor is

2 (" usin? 6
_/‘usm "
0

! u2

Obviously ¢ = 2 makes this = 1. Now 8.2 says that G = 1 satisfies our conditions for the
field inside the sphere, so ¢ = 0 must also make the factor = 1. Now h = e% corresponds to
G(r*) = r. Thus our G(7*%) must be a linear combination of 1 and r.
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