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ON COMPLEMENTED SUBSPACE OF CONVERGENCE-FREE SPACES (*)
GOTTFRIED KOTHE!

Abstract. The author proved in 1935 (Math. Annalen 111, 229-258) that two convergence-
free spaces A\, and A, of countable degree are isomorphic if and only if there exists a permu-
tation of the coordinates which transforms X\ into X\, . The author gives a new exposition of
this result and its consequences and formulates some unsolved problems on the structure of
the complemented subspaces of spaces of countable degree.

1. INTRODUCTION

When I came 1n 1929 to Otto Toeplitz as assistant he proposed that we should investigate
infinite systems of linear equations whose matrix he called half finite. The underlying vector
space was ¢ @ w , the first example of a convergence-free space different from ¢ and w. Our
results were published in 1931 (see [KT 1}).

The whole class of convergence-free spaces was defined in 1934 in our work on sequence
spaces (see [KT 2]) and we proved some basic facts on these spaces. I was fascinated by
this new class of sequence spaces and my student F. Menn and I developed this theory in our
papers [M] and [K 1]. For the vast class of spaces of countable degree we were able to solve
the isomorphism problem: two of these spaces are 1somorphic if and only if there exists a
permutation of the coordinates which transforms one space into the other.

In the last year I came back to these spaces and was able to develop their theory further
(see [K 4] to [K 8]) using the results of the old paper [K 1]. But the terminology of [K 1] 1s no
longer in use, so continuity means sequential continuity for example (which does not really
matter since the spaces are bornological). But a reader interested in the results of [K 1] will
have many difficulties to adapt the proofs to modern terminology. So I thought it worthwhile
to give a new exposition of the results of [K 1] with some simplifications of the proof. I added
some problems conceming the structure of the complemented subspaces which are the main
tools of our investigations.

2. CONVERGENCE-FREE SPACES

We assume some knowledge of the theory of sequence spaces and we use the terminology
of [K 2] § 30. A sequence space A D o is called convergence-free if it contains with z =
(T{,Ty,...) eVEIy y = (y{,¥y,...) Withy. =0 if ., = 0. Theset W C N of all £ with
T, # 0 is called the support of z. It is clear that a convergence-free space A 1s determined
by the class # of all supports W of its elements. Such a support is also called a WW-set of
M. We write A = \M(#).

(*) This 1s G. Kothe’s last article.
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A class # of subsets W of IN defines a convergence-free space A\(#") if # has the
following propertics: a) % contains all the finite subsets of N , b) with W is every subset
of Win#,c) W,UW, ¢ #if W, and W, arein %’

If \(#") is convergence-free we callaset ' C IN an F-set of \(#") if FNW is
finite forall W € %" The class % of all F-set of A( %) has the properties a), b) and ¢) and
defines therefore a convergence-free space A\(.%9) which is the oc -dual A(#)* of M(#).
If we write % = (#7)* then we have A\(#)* = A\(#7) . That a convergence-free space is
perfect, A\(#)** = \(#"), can also be expressed as #** = ¥

[t 1s natural to include the finite dimensional vector spaces 1n the class of perfect conver-
gence-free spaces. The classical examples of convergence-free spaces are p, w, p@dw . Exam-
ples of convergence-free spaces which are not perfect are given on p. 127 of [K 8].

In the following X, u will be convergence-free spaces, we will omit the defining class %~
in the notation and only speak of the defining W -sets of A resp. p. That X 1s perfect means
that X\ is complete for the Mackey topology T, [A*] (cf. [K 2] § 30, 5.(9)) and obviously
MTL(XF)] = )7, the o« -dual of a convergence-free space is its dual.

Before saying more on the topologies on a convergence-free space we introduce some
notation.

If M is asubset of IN then the sectional subspace A,, of A consists of all z,, = (z;),
J € M,z € X. X, is again convergence-free. Obviously (Xx,,)* = (N)j;. If M isan
infinite W-set of A\, A,, can be identified with w, if M 18 an infinite F'-set of A, A,, can
be identified with ¢.

If z is an element of )\ then the normal cover {z}"” of z consists of all elements y with

v, |=|z;|, ¢ = 1,2,.... Since X is convergence-free {z}" is a subset of A. The normal
topology T (A*) on ) is the topology of uniform convergence on the normal covers {u}"™ of
the elements v of A* and is also defined by the seminorms p_(z) = > oy |ullz;|, u € A*.
These sums are always finite since the supports of u and z have a finite intersection.

The following simple proposition is fundamental (for a proof see [KT 2], p. 221):

(1) Let M\[T,] be a perfect convergence-free space equipped with the normal topology
T (X*). A subset M of X\ is bounded if and only if the union W of the supports of the
elements of M is a W -set of \ and M is bounded in every coordinate of W .

This means that M is contained in )y, isomorphic to w and M is bounded in w. Hence
M 1is contained in the normal hull of an element, which 1s compact. Therefore a bounded
subset M of a perfect ) is always relatively compact. Since A* is always perfect this implies:

(2) On a convergence-free space X\ the topologies T, ( \*) , the Mackey topology T'.( A")
and the strong topology T,(A\*) coincide.

If in the following nothing is said on the topology of a convergence-free space A it 1S
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tacitly assumed that it has the normal topology. (2) implies that every perfect convergence-
free space is reflexive. We add thaton p. 128 of [K 4] the nuclearity of every convergence-free
space 1s proved. The name «convergence-free» is justified as the following remark shows:

(3) A perfect sequence space X\ is convergence-free if and only if for every x € \ and

every u € \* the sum ux = Y 2, u,z, contains only finitely many members u,z; # 0 .

Proof. We know that the condition 1s necessary. Consequently we suppose A to be a perfect
sequence space and that for every z € A and every v € A\® ux 1§ a finite sum. Then uy
is a finite sum for every y with the same support as z. Hence y € A*™ = X and A\ 1S
convergence-free.

I proved in [K 1], § 4, the following theorem:

(4) Let X be a perfect convergence-free space. If the perfect sequence space i 1S 1So-
morphic to A, A = u, then u is convergence-free too.

The following proof uses the ideas of the original proofin [K 1]. Let A be the isomorphism
of A onto i, B its inverse, then AB = | i BA = I, ,where [ is the identity map on . resp.
A and A and B can be written as infinite matrices (a,, ) and (b;) and I is the unit matrix
(see [KT 2] § 6 or [K 2], p. 80/1.

If M, N are subsets of N, then the matrix A,,, = (a,,) Withm € M, n € N, iS
called a section of A.

We assume now A = g and that gy is not convergence-free. (3) implies the existence of
y° € u, v° € u”®, such that v°¢° = Y ° v2y? converges but is not a finite sum. Since y
is normal we may assume that on an infinite subset K of IN the v? and the y; are positive
and zero outside K . We write y° = ), yie,, e, the k-th unit vector. The yge, lie in the
normal hull of y° hence they constitute a bounded set C' in u. Hence B(C) 1s bounded in
A

It follows from (1) that the supports of the b, = Be, lieina W-set W of A and are
therefore contained in the sectional subspace Ay, = w of A.

The b, = Be,, k € K, are columns of the matrix B and have coordinates # 0 only in
the section By, of B. From AB = I, it follows:

(3) AKWBWK = Iy,

where [, is the identity map of the sectional subspace uy, Agw € L(Ay,pg) and B €

Lipg, M) -
Since A\, = w, the rows a, of Ay, arein Ay, = o, therefore finite. Hence Ay, 1sa

rowfinite matrix. The a,, k € K are lincarly independent since from a, = ) I, ¢;a, and
(5) would follow

n
1= ”‘kﬂbku = Eﬂiﬂ#;bko =(.

1=1
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Leta, ,a, ,...beasubsequenceofthe a,, k € K, of strictly increasing length. Then the

linear equations o T =Cp By T=C

q g2’ """
chosen positive ¢, 1 = 1,2,... This means A,z = ¢, where ¢ has the coordinates c_

, have a common solution z € Ay, for arbitrary

on Q = {¢;,9,,-.-} C K. We may choose the c,. S0 that pPas vg ¢, diverges. This means

v°cy diverges, where cg is the restriction of ¢ GI‘IILD Q. But ¢ (w1th added zeros) 1s in u
and this contradicts v° € u*.

3. SPACES OF COUNTABLE DEGREE

We definie a class & of perfect convergence-free spaces in the following way:

a) The one-dimensional space A = K isin &, where K is the real or complex field,

b) A\ ® X, isin & if X\, and A\, arein &,

c) the topological product []>°, A and the topological direct sum B2, A arein & if
the A arein & .

We call & the class of spaces of countable degree.

p and w are the first infinite dimensional spaces in & and obviously their duals. From
b) and ¢) follows that with X\ also A* is in & and that all spaces in ¥ are perfect and
convergence-free.

Instead of 521 A,, A, = X, we will write (P A or pX;instead of T2, A,, A, = A,
we will write [[p A or wk.

(1) & contains the following spaces of infinite dimension.

=, 0] =W, 0, B0] = pOw,

= @Uﬁ’ g; = H U';, Uﬂ@ U;, o a limit Urdin&‘f,
B<a B<a

[+

— I — T r
o= @r:ra_l =0, 4, O, = ng | SwWo,_y, 0, @cra, a not a limit ordinal

where « is any countable ordinal number.

o, and o’ are called the simple, o, @ o the composite normal forms of degree o. A
finite dimensional space has degree zero.

Our intention now is to show that every infinite dimensional A € & can be permuted in
one of these normal forms.

We use the word «permutation» in a more general sense than the usual one which means
a permutation of the numbers of N . If we look at 0, = P w = w, then the natural
way to describe its elements z is to write them as sequences of sequences and so to denote
their coordinates with indices of IN x IN . Obviously we may write them also as sequences
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oo

by writing N as the union N = [ J.Z, N, of infinitely many disjoint infinite subsets. The
passage from the first representation of pw to the second one is here also called a permutation.

It is important to realize that the elements of the spaces listed in (1) may all be written as
simple sequences but their natural representation is given by iterated sequences and a permu-
tation of one representation into the other will mean a rather complicated rearrangement of
the coordinates.

We will write A =~ p if we obtain g from A\ by a permutation of the coordinates in the
above sense. Such a permutation is a special kind of 1somorphism between the spaces.

(2) If X 1s any space of (1) then A & A =~ \.

This is obvious for ¢, w, v & w, so we can use transfinite induction. Let first o be a lmit
ordinal. Then

0= Do~ D (”ﬁﬂ?‘”ﬁ) ~(Dop@Pog=0. 90,

p<a p<a B<a B<a .

If « is not a limit ordinal, the proof is similar, so (2) 1s true for all o . By duality we get

or @ o>~ of, finally (o, @0)) & (0, Po)) o, Do,.

(3) If \, u are normal forms of degree o resp. B andif a < B then \@u =~ u. Ifa =
and \ # u then A & p is permutable in a normal form of degree «.

The second statement is a trivial consequence of (2). To prove the first statement we use
transfinite induction on B. For 8 = 1 nothing is to prove. Again it will be sufficient to prove
(3) for y = Og- From )\ & Og R Og follows: \* @ gg A UE and \* represents with A\ all
normal forms of degree o« < #. Finally A @ (o, ® 02) ~ o, ® oL.

i) Let first 8 be a limit ordinal. From o < g follows a+ 1 < fand A @ o, ~ 0,4
by assumption. Hence in o4 = (P, 40, we may replace g,,; by A @ o,,; which implies
A D Og Rt Og.

ii) If B is not a limit ordinal then B =6+ 1. If o < é then by assumption A @ oj ~ oy
and 04 = 05, = PN 0F ~ A O P 05 & XD 0g.

iii) We treat now the case that A has the degree 6. We assume first that 6 1s a limit
ordinal. Now for every 7 < é we have o7 @ o5 ~ o, hence o5 © 0, & oz . It follows

Ose1 = @N 05 ~ @1{E(Uﬁz D 05) ~ ‘EBN 05 @ @wiﬁ 0, = 0g41 D 05

This settle the case A = o;. For A = of we have o;,, = Py 0§ =~ 05 © o4, and
(0 ®035) ® 04,1 ~ 05, follows immediately.

If § is not a limit ordinal we have by assumption of ~ o5 @ os_, and therefore oy, =
Pp 0f ~ Pn(0F B 0f_y) =~ 05, B 04, Which settles the case A = oy.

Again o4, , ~ of @ 05, and (o5 @ 0f) @ 05, ~ 05, are trivial.
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Remark. If X\ is of finite dimension then A\ @ u ~ u for every u of (1).

Using (2) and (3) we are able to prove (Hauptsatz 1 in [K 1]):
(4) Every infinite dimensional space of & is permutable in one of the normal forms of

(1).

Proof. & is generated by the two operations a) and b). We have to show that by performing
these operations we always obtain spaces permutable in normal forms.

If A and p are permutable in normal forms then by (2) and (3) this is true also for A & u.
Secondly we have to show that if all A\;, 1+ = 1,2, ..., are permutable in normal forms this
is true also for (P;o; A, and J[;o, ), . Using duality one sees that it is sufficient to prove this

1=]

for @2, A;. So (4) will follow from
(5) Let ) = B, vy with vy a normal form of degree f; or finite dimensional and let

a be the smallest ordinal with B; < « for all 1. Then )\ is permutable in a normal form of

degree Sov.

We prove this by transfinite induction on «. A finite dimensional vg has the degree g; =

0, then obviously (5) is true for a« = 1 since every infinite direct sum of finite dimensional
spaces is finite dimensional or equal to .

We have to look at two cases.

i Inx=0h2, vg there is a greatest §; = B, sothat o« = g+ 1. Then

(6) A~ (D v, & D v,

ﬂi":ﬁ ﬁ;‘:ﬁ

By assumption the first sum in (6) is permutable in a normal form of degree 4. If the
second sum in (6) is finite, then it follows from (2) and (3) that it is permutable in a normal

form of degree B and therefore ) is permutable in a normal form of degree <2.
Next we assume that the second sum in (5) is infinite. It consists of finite or infinite sums

of the spaces oy, 0§, 05 @ 05. Now (D 04 ~ 04, (D 05 = 04, > and using (2) and (3)
we see that 5 g.=g Vg, 15 permutable in a normal form of degree g or g+ 1 and (5) 1s proved
in the case (i).

(ii) The second case will be A = (D7) v, where « is a limit ordinal. (4) will be proved

if we can show that in this case A ~ o .

A space vg may be finite dimensional or o, Or o Or oz @ g5 . AS in (1) we can get rnd
of the finite dimensional spaces and permute X\ in such a way that for any ordinal S, there is
only one gg Or One {:IE_ orone og & UE. in the permuted space.
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It follows that we have to prove A ~ o, only for spaces of the form A = (P, o5 and
A = Dy, o with different §; with supremum «.
a) We treat first the case A = (D7 05 . We note

(7) 9 o4~ o, for every ordinal 7.
B o

If -y is a limit ordinal (7) means by the definition of o, in (1) that 0, ® 0, = 0,. If
Y =7, + n, v alimit ordinal, (7) follows immediately from (7) for ~, by using (2) and

(3). In the general case A = (D7, o4 , the §; constitute a subset of the well ordered set of all

B < « and as such can be well ordered in 4, < 7y < ...y < .... Toprove A = o it will
be sufficient to fill up the gaps between two consecutive ~y; which is possible using

(8) E} 05~ 0.
E{ﬁiifr

We prove (8) by transfinite induction on ~. For v = § + 1 (8) follows from (3). If ~ is
not a limit ordinal we have by assumption o, ~ 0,_; ® 0, & (D;_ 8< 41 g © 0, Which is

(8). If ~ 1s a limit ordinal then by using (3) and (7) we obtain

~ ~ ~ (D N ~ ~
”1““Ufr$“'r”@gﬁ”kj”ﬂ$ CJ Og & 05 D 6 Og ~ @ Og
BE B= 6 5<fS 7 6<f = <y

and (8) 1s proved.
b) It remains to prove A = (P;Z, o5 ~ o, where the limit ordinal « is the supremum of

the B,. Corresponding to (8) we have for a limit ordinal «

(9) eaﬂgwﬂﬂ and Ea 0g R 0, D Ty
p<a ﬁggu

We remark first that P, 0, R Dpeq 01 AN Dy 05 X Dpen Tg+1 - In the right
sides the o resp. og, ( alimit ordinal, are missing. But from o4, & 05 @ 0g,; and
Og+1 R O,y © 0 the two equivalences follow. This implies the first statement of (9):

Doz~ Do~ D (‘:’Eﬂ ® Uﬁ) ~ D op @ Do~ Pz

B<a B<a B<a B<a f<a f<a

S” 69 Ogs1 W 63 (::r; B %+1) o 69 Tgey R Oy

f<a f<a
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The second statement of (9) is a trivial consequence of the first.
The general case X = (P2, of can be treated in the same way. We write again \ =

Py o5 N <Y < ... < ..., where the o4 are a well ordered sct of indices with supre-

mum «. Using the result of a) and the relation Uf;ﬁ N ::rf]‘jﬁ D Uf;a we have

\m Doz v Doz ~ D[ e0,) v Dok, e Do, ~
b

) & 6 )

which proves (5) and also (4).
Reraark. (9) shows that for alimit ordinal o one could define o alsoas o, = B B<a OF-

An easy conscquence of (4) 1s

(10) Every sectional subspace h,, of a normal form X\ 1s permutable in a normal form of
degree less or equal (o the degree of .

By using transfinite induction and using (5) one sees easily that (10) 1s true for A = o . It
follows from (1) that A and A* have the same degree. Since (A, )* = (A*),, duality implies
(10) for the X = ¢ and then (10) follows for the A = o, & o .

4. ALL NORMAL FORMS ARE DIFFERENT

So far we have proved that every infinite dimensional A € % is permutable in one of the
spaces listed in 3.(1). We will now show that two different spaces of 3.(1) are not permutable
into each other so that a space A € ¥ is permutable in exactly one of the spaces 3.(1) and has
therefore also a uniquely defined degree o

The following exposition is very close to § 3 of [K 1].

(1) o, is not permutable in a sectional subspace of o, and conversely oy, is not permu-
table in a sectional subspace of o .

We prove this again by transfinite induction. For « = 1 this 1s true since obviously ¢ 1s
not permutable in a sectional subspace of w and conversely. We assume (1) for 8 < a.

(1) oZ is not permutable in a sectional subspace of o, .

We prove this first for a lIimit ordinal . We assume there exists a permutation P of the
coordinate indices which maps o = J[4., 05 in a sectional subspace of o, = Dy, 04-



On complemented subspaces of convergence-free spaces 31

Now by 3.(7) @qg 5Ty R Og and by assumption crg 1S not permutable in a sectional sub-

space of og. Hence there exists a coordinate index Sﬁ of 04 whose image E’fg = Pf 5ﬁ) 1S
not a coordinate index of @f,s_‘: 5Ty Obviously the set M of the 65 , B < a,18a W-set of

o, butits image P(M) isnota W-set of o because every W-set of o_ is a W-set of a
finite sum of o4, B < a. This contradiction proves (i) for a limit ordinal « .

The proof for o3, , = [ [ 0, and oy, ; = Py 02 is similar.
(i1) o, is not permutable in a sectional subspace of o~ .

If o, were permutable in (oZ),, , then o would be permutable in the sectional subspace
(o) = (o,)) which contradicts (i).
From (1) follows now:

(2) No simple normal form is permutable in another simple normal form.

This follows for o, and o immediately from (1). If A u are normal forms of degree
o < f then by 3.(3) A is permutable in a sectional subspace of p* and by (1) 4 is not
permutable in A.

(3) A simple normal form is not permutable in a composite normal form.

Every composite normal form o, @ o is permutable in its dual o @ o, which is not true
for simple normal forms.

(4) 04 @ og is not permutable in o, & o, for a < .

We assume that o4 @ oy 1S permutable in o, @ o . Then o4 is permutable in a sectional
subspace of o, @0 . Then we have o4 = v, ®v, , where vy, v, are permutable in a sectional
subspace p, resp. u, of o resp. o’ . By 2.(10) v, and v, are permutable in normal forms

of degree =3. Using 3.(2) and 3.(3) one sees that at least one of these normal forms has to
be o4 and we have the situation that a space permutable in o4 is a sectional subspace of o,
or o2, that means of og and this contradicts (1).

Collecting our results we obtain ([K 1]§ 3, Hauptsatz 2)

(5) Every space of countable degree and infinite dimension is permutable in one of the
normal forms of 3.(1) and these spaces are all different in the sense that none of them 1is
permutable in another one.,

5. THE ISOMORPHIC CLASSIFICATION

Our aim 1S now to prove that our classification relative to permutations is also the classifi-
cation of the spaces of & relative to isomorphism. The main tool for the proof is a class of
complemented subspaces. We note two simple facts on complemented subspaces.
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(1) Let E = E; & E, be a complementary decomposition of the locally convex space
E. Forasubspace FF C E with F' O F, this induces a complementary decomposition

This 15 obvious.

(2) Let E[T,(E')] be locally convex and reflexive and let E = E, & E, be a comple-
mentary decompositionof . Then F, and FE, are reflexive and we have

a) E[T(E)] = E|[T(E)] & E,[T,(E})],
b) E'[T,(E)] = E|T,(E)]® ET(E)]%
= By [Ty (B)] @ EF [ T(ED].

Proof. The given decomposition has the form E[T,(E")] = E|[T (E)] & E,[T,(E")].
But 7, ( £') coincides with T, ( E}) on E, by [K 2], § 22, 5.(4), which implies a). Hahn-
Banach implies E' = E] @ E; , hence b) holds.

The reflexivity of E, [T, (E})] follows casily: a closed subspace of a reflexive space is
semireflexive, hence E, [T, (FE;)] is semircflexive by a) and its dual is semireflexive by b).
This implies the reflexivity of E; by a well known proposition ([K 2], § 23, 5.(3)).

We come now to the first part of the main result of [K 1]:

(3) Let )\ be an infinite dimensional complemented subspace of o, (resp. o ) and let A
be isomorphic to a perfect convergence-free space o . Then o 1s permutable in o, (resp. o)
or into a normal form of degree B < «.

Proof. «) This is true for o, = . In this case every infinite dimensional closed subspace is
complemented and isomorphic to . We prove (3) by transfinite induction for «v. We write
o, = D) v » Where vy is a simple normal form of degree B; < a. In this way we have

not to distinguish between « a limit ordinal or not.
By assumption ¢, = X @ p and there exists an isomorphism A such that A(o) = A. Let
e; be aunit elementin ¢ and Ae; = a; for all 1. Each a; has a length n in ¢, which means

a; € (Pi; vg butnotin P vg . We define M, = {1 € N, q; of length k}. We note that
M, can be infinite, finite or even empty. We have N = | Ji2, M, with pairwise disjoint M.

Hence o contains ;. M,, the 0y, Sectional subspaces of o. Obviously A, = A(E}“M*)

contains only elements of length =k.
We show that o = @E‘f’__l Ty, - Otherwise ¢ would contain an element z with a support

N with N N M, non empty for infinitely many k. Since o, is convergence-free there exist

unit elements ep,, p; in M, such that Y, ep, € 0. Then A() ,ep;) = ) ap; should be in
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A which is impossible since the partial sums of ), ap, have lengths going to infinity and do
not converge in o, . Hence

o0 o0 o0
o=(Poy and X=A(0) =PA(ay) =PI
k=1 k=1 k=1

Now A 1s complemented in o_, A, is complemented in A, hence A, 1S complemented

in o,. We have A\, C GB:LI vg C 0. It follows from (1) that X, is complemented in
{szl vg » Which is by 3.(3) permutable in a normal form of degree S < «. By assumption
(3) is true for 8 < «, hence A‘l(}.k) = Oy, 1s a space of degree qfﬂ < «. It follows that
A'(N) =0 =P, Oy, IS permutable in o, or in a space of degree < a.

B) We assume now o) = A @ pu, A isomorphic to o. Then by (2) we have o, = A\* @ u*
and A* 1s 1somorphic to o*. Then by o) o is permutable in o or in a space of lesser
degree. Hence o is permutable in o or in a normal form of degree < «. This finishes the

proof of (3).

(4) Let ) be an mnfinite dimensional complemented subspace of o, ® o, and let » be
isomorphic to a perfect convergence-free space o, then o is permutable in a normal form of
degree f < a orin o, or . oro. @ a,.

Proof. We write o2 @ o, as oX @ (P2, v;, v; of degree B, < a. We have A = A(o). An
T € o @ o, haslength M if z € oZ ® (D, v; butnot in o= & E]Z—}::ll v,. The z € ol
have the length O . Let again a, = Ae;, 1 = 1,2,..., e; the unit elements of o. We define
M, = {i € N,a, of length k}. Then N = (., M,, the M, pairwise disjoint. The
same argument as in the proof of (3) shows that o = (P2, o), and X = P, A, with

M = A(oy ) and the A, are complemented in o @ o, and in o, & @fﬂ v;. By 3.(3)

oz ®@r, v; is permutable in 0% . Hence by (3) A™'(),) = 0, is permutable in ¢% orina
space of lesser degree. Therefore o is permutable in pol = o_,; or a normal form of lesser
degree. Butif o & o, were to contain a complemented subspace A & o, then the dual
space, which is again o @ o, would contain a complemented subspace A* = o7, , which
is impossible since o, is not isomorphic to a complemented subspace of o, by (3).

(3) and (4) imply the main result of [K 1], Hauptsatz 3:

(5) Every space of the class & is permutable in one of the normal forms of 3.(1) and two
of these normal forms are never isomorphic.

The first statement is contained in 4.(5). Now we assume that for 8 < « Og 18 1somorphic
0 o,. Since oy is complemented in o4 it follows from (3) that o, is a sectional subspace
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of Og which contradicts 3.(10). So all o are pairwise non isomorphic. The same argument
shows that two og are not isomorphic and that no o, is isomorphic to a 0.

Since no o, 18 isomorphic to its dual o but o, @ o is isomorphic to its dual, no simple
normal form is 1somorphic to a composite normal form. Finally by (4) two different composite
normal forms are not isomorphic.

6. COMMENTS AND PROBLEMS

We formulate our results in a different way which will relate them to ideas of Banach and
Mazur. Let o be a space of &°. We introduce the c-dimension of o, dim_(o), as the class
of all normal forms of # to which a complemented subspace of o is isomorphic. From 5.(3),
5.(4) and 3.(1) it follows immediately

(1) dim_(o,) resp. dim_ (o) is the class of all normal forms of degree f < « and o
resp. o .

Obviously the c-dimension is invariant for isomorphisms and two spaces of & are iso-
morphic if and only if they have the same c-dimension. A € & is isomorphic to a comple-
mented subspace of 4 € € if and only if dim_()) C dim (u).

The analogue to the linear dimension of Banach and Mazur in the case of Banach spaces
is dim,(o) , the class of all normal forms to which a closed subspace of o is isomorphic. It
may be that dim_(o) = dim,(o) forall o € &. This depends on the positive solution of
the following
Problem 1. Suppose o € &. Is every closed subspace H of o which is isomorphic to a
space of &, complemented in o ?

This 1s true for ¢, w, p ® w, pw and wy, since in these spaces every closed subspace is
complemented (see [H]), but in pw Gw and the spaces of higher degree the question is open.

We give another application of our results. Pietsch introduces in [P], 10.1, the notation
of an absolute equicontinuous basis of a locally convex space. In perfect sequence spaces
equipped with the normal topology the unit vectors e, 1+ = 1,2, ..., constitute an absolute
equicontinuous basis. Pietsch proves that every complete locally convex space E with an
absolute equicontinuous basis 18 1Isomorphic to a perfect sequence space S(FE) and the iso-
morphism S of E onto S(E) is givenby Sz = S(> 0, z,0;) = (z,,1,,...) for every
Tz € F.

Letnow E bea )\ € &. Since X is nuclear, every equicontinuous basis of )\ is absolute
by a theorem of Dynin and Mitiagin (cf. [P] 10.2). Hence in our case we may omit «absolute»,
Let {a,,a,,...} be any equicontinuous basis of A. Then S(\) is a perfect sequence space
and by 2.(4) convergence-free. It follows from 5.(3) and 5.(4) that S(A) 1s a permutation of
A

Let now {b,,b,,...} be a second equicontinuous basis of A and 7" the isomorphism
T(Y oy z:b) = (zy,2,,...) € T(XN). Then S(}) is permutable in 7°(\) . The unit element
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T'b; of T'(A) is therefore equal to the unit element Sa,_(,, of S()), = a permutation of N .

(1
Therefore b, = 7' Sa,, for all i, where 'S is an automorphism A of . We have
proved

(2) If {a,a,,...} and {b;,b,,...} are two equicontinuous bases of a space A € ¥,
then there cxists an automorphism A of A and a permutation m of N such that

Abizu“{i‘}l i=112’iilll

In the terminology of Mitiagin [Mi] this means that every space of £ has the quasiequi-
valence property.
I come back to problem 1. It has a positive solution in the simple case H = w:

(3) Let \ be complete convergence-free, H a closed subspace isomorphic to w (in the
induced topology). Then H has a sectional complement in .

Proof. Let A be the isomorphism of w onto H, a; = Ae;, 1 € IN . Then the set of all e, is
bounded in w hence the set B = {a,,* € N } is bounded in A. By 2.(1) B has a support W,
which is a W-set of A and B C Ay, & w. Butin w every closed subspace has a sectional
complement: if z = (0,...,0,z_,z_,,,...) Ew, z, ¥ 0, then we call n the length of z.

The e, with lengths k not occurring in H define a sectional complement S of H in Ay, .
Butthen A\= H® S & L\NNWI = H® F, F asectional subspace of A.

This result solves problem 1 for H = w, but it says more: the complement can be chosen
as a sectional subspace. That A can be an arbitrary complete convergence-free space, not only
a space of £, should also be noted.

We say (cf. [K 3] § 38,3.) that a space v € ¥ is &-detachable if every closed subspace
H = vofa) € & hasacomplementin ), strictly &-detachable if H has always a sectional
complement in X.

(1) says that w is not only #-detachable but also strictly #-detachable and this answers,
for v = w, the following
Problem 1°, Is every v € ¥ strictly &-detachable?

A very natural question 1s stated 1n
Problem 2. 1s every complemented subspace of a A € & isomorphic to a space of &?

This is true for ¢, w, p & w, pw,wp (cf. [H]) but open for pw & wyp and the spaces of
higher degree.

But let us come back to problems 1 and 1°. We look at the dual situation. We say (cf.
again [K 3], § 38,3.) that a space v € & is #-liftable if for every A € ¥ and a quotient
)/ H isomorphic to v there exists a continuous projection of A with kermel H .

We say further that a space v € & is strictly #-liftable if for every A € ¥ and a quotient
A/ H isomorphic to v there exists a continuous projection P of A with kernel A and P())
a sectional complement of H with P()\) = v.
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Corresponding to the problems 1 and 1’ we have
Problem 3. Is every v € & &-liftable?
Problem 3’°. Is every v € & strictly &-liftable?
Again there is an example (the only one I know)

(4) The space  is strictly ¥ -liftable.

Proof. Suppose A\ € & and H aclosed subspace with A\/H = ¢. Then (M/H) = H+ C ).
Obviously (A/H)' & w in the topology Ts(¢) = T, () . If K is the canonical mapping of
A onto A/ H , then for M bounded in A, K( M) is a finite dimensional bounded set in A/ H
and every bounded set in A/ H is of the form K (M) . This means that T;()\) coincides on

H+ with T,(\/H) . Hence H' is a closed subspace of \', H* = w. Thenby (3) H+ hasa

sectional complement S,\' = H1 @ S and it follows A = H ¢ S+, S+ & .

The dual problem to problem 2 is
Problem 4. If a locally convex space F is liftable or strictly liftable in A € &, 1s E is0-
morphictoa v € §7?

Again this is true for p,w,p @ w, pw,wp, (this follows from the results of [H]) and
unknown for pw @ we.

Problem 5. Has every complemented subspace of a A € & a basis?

If problem 2 has a positive answer then problem 5 would also have a positive answer since
every A € & has a basis.

Certainly more difficult is
Problem 6. Has every closed subspace of a A € & a basis?

Again this is true for ¢, w, p G w, pw,wyp and unknown for pw G wp.

I made some attempts to get a survey over the closed subspaces of pw @ wyp but failed. I
found a closed subspace H which is not complemented, can be algebraically identified with
¢, but the induced topology on H 1is strictly weaker than the normal topology on ¢ (see [H],
(K 2], p. 304). In section 3 of [K 5] I constructed a closed subspace p of pw @ wyp which is
algebraically isomorphic to pwe. I stated there wrongly that p 1s isomorphic to pwe, but
the topology on g induced by pw @ wy is again weaker than the normal topology. Hence
the statement in [K 5] that pw @ we and pwe have the same classes of closed subspaces 1s
not proved and probably false.

I hope the reader will feel like me, that a systematic study of the space pw @ wy should
be very interesting.
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