ON PRODUCT DECOMPOSITIONS OF COMPLEX SPACES

C. HORST

INTRODUCTION

E very connected complex space $U l$ admits a maximall decomposition $U l \cong U_{1} \mathrm{x} \ldots \mathrm{x} U_{n}$ with indecomposable $U_{\nu} \not \not \neq \mathbf{C}^{0}{ }_{,}$, and it is natural to ask whether (or under which conditions) thesel factors are unique. When considering this question, onel is of coursel tempted to copy the number-theoretic procedure, i.e., given two decompositions, to tryl at first to find a common factorl and then to drop it. However, just this simplification tums out to be the reall problem.

For general complex spaces, little can be said as to when $\mathrm{X} \times \mathrm{Y} \cong \mathrm{X} \times Z$ implies $\mathrm{Y} \cong Z$. Even in the compact case, no counterexamples were known until 1977. Then T. Shioda [12] and, some four years later, G. Parigi [10] presented various examples of compact complex manifolds $Y \not \equiv|Z|$ such that $X \times Y \cong X \times Z \mid$ for some torus X. Shioda's manifolds Y and $Z 1$ are tori as well, and Parigi's examples are total spaces of fibre bundles with finite structure group and torus basis; we shall denotel this class of complex spaces by \mathscr{F}.

Roughly during the same period, diverse criterial for cancellability in the category of re-1 ducedl connected compact complex spaces have been proven ([1], [4], [13])., It tumed out that in this situation, Shioda and Parigi had alreadyl more or less exhausted the scope of counterexamples:

As was shown in [5], $X \times Y \cong X \times Z l$ entails $Y \cong Z \mid$ if $\{X, Y, Z\} \not \subset \mathscr{F}$. Conversely, for every $X \in \mathscr{F}$, therel exist non-isomorphic $Y, Z l$ such that $X \times Y \cong X \times Z$ (see [11]). The proof of the above cancellation result simultaneously yielded the uniqueness of the maximal decomposition for compact varieties that are not contained in 7 .

We shall now generalize the situation of [5] in several respects, Firstly, non-reduced complex spaces will be admitted, and the compactness condition will be weakened; for instance, in the cancellation problem, we only require one of the factors $X, Y, Z \mid$ to be compact. As one of the main results, we obtain that then the cancellation theorem of [5] carries over word for word (Theorem 5.2.1). Again, the proof brings about a (partial) answer to the decomposition problem: In any maximall decomposition of a connected complex space, the compact factors $\notin \mathscr{F}$ and the product of the otherl ones are unique (Theorem 5.3.2 and Theorem 5.3.4).

In the last chapter, we are concemed with a different type of generalization, which is inspired by the fact that in all counterexamples to the cancellation problem, the varieties Y and $Z l$ are still isogeneous, i.e. they can both be coveredl finitely by some common S . Thus one is led to suspect that Y and Z are isogeneous, if so are $X \times Y$ and $X \times Z\rfloor$ This is indeedl the case, if at least onel of the factors X, Y or Z is compact (Theorem 7.2.3). As a by-product of the proof, we obtain again a congenial decomposition result (Theorem 7.3.1).

It is easily seen that both the cancellation and the decomposition problem boill down to the following question: If $\mathrm{X} \times \mathrm{Y} \cong U \mathrm{X} V$ is an isomorphism between connected complex spaces, what is the relation between the individual factors?

To cover also the non-reduced case, it is necessary to consider at first the corresponding locall problem, where $X, Y, U /$ and V are replaced by germs of complex spaces with $\operatorname{dim} \mathrm{X}=0$. It is shown that $\mathrm{X} \times \mathrm{Y}$ and $U \times V$ admit a simultaneous subdecomposition, i.e. that there exist isomorphisms $X \cong X_{U} \times X_{V}, Y \cong Y_{U} \times Y_{V}, U \cong X_{U} \times Y_{U}, V \cong X_{V} \times Y_{V}$ (compare Theorem 1.4.1). The same assertion holds, if $X, Y\|U\| V$ are again complex spaces with $\operatorname{dim} X=0$ (see Chrpter 4). This latter result starts the induction on $\operatorname{dim} X$ in the proof of Theorem 5.1.5, which states that $\mathrm{X} \times \mathrm{Y}$ and $U \mathrm{X} \mathrm{X} V$ with X compact admit a simultaneous subdecomposition, if e.g. $\{\mathrm{X}, \mathrm{Y}, \mathrm{U}, V\} \not \subset \mathscr{F} . \mathrm{T}$ The induction step is brought about by a construction presented in Chapter 3 , which assigns an isomorphism $\bar{X} \times \bar{Y} \cong \bar{U} \times \bar{V}$ to the given one, such that $X \times Y$ and $U / \mathrm{x} V$ admit a simultaneous subdecomposition, if so do $\bar{X} \times \bar{Y}$ and $\bar{U} \times \bar{V} ;$ it turns out that $\operatorname{dim} \bar{X}\langle\operatorname{dim} X l$ if $\{X, Y, U, V\} \not \subset \mathscr{F}$. The background niaterial for this latter conclusion as well as for the construction of the isomorphism $\bar{X} \times \bar{Y} \cong \bar{U} \times \bar{V}$ is compiled in Chapter 2, the contents of which can be summed up as follows:
a) For every connected space S, there exists a largest compact connected complex Lie group $A(S)$ acting holomorphically and effectively on S .
b) If there exists a holomorphic $S \rightarrow A(S)$ that maps the orbit of some positive-dimensional closed complex subgroup T of $A(S)$ onto $T \downarrow$ then $S \in \mathscr{F}$.

Even for a reduced compact $\mathrm{X} \nexists \mathscr{F}$, the unique indecomposable factors given by Theorem 5.3.4 are in general not unique ass subspaces of X, i.e. an automorphism of X need not be a product| of isomorphisms between the indecomposable factors. The relation between Aut (X) and the automorphism groups of the factors is investigated in Chapter 6. It turns out that the situation simplifies considerably, if X is a projective variety.

Finally, when dealing with the isogeny situation, we start again| with connected complex spaces $\mathrm{X} \times Y, \mathbb{U} \times V$ which are now assumed to be isogeneous. Pursuing a similar line of reasoning as in Chapter 5, we show:
a) Therel exists a torus of maximall dimension which is a common isogeny factor of X, Y, $U l$ and V.
b) If this torus is zerodimensional, then there exist isogenies $\mathrm{X}^{\prime} \sim \mathrm{X}, \mathrm{Y}^{\prime} \sim Y, U^{\prime} \sim$ $U, V \mid \sim V$ such that $X \mid \times Y \| \cong U^{\prime} \times V^{\prime}$.

T0 this latter isomorphism, we can then apply the results of Chapter 5.
I am gratefull to 0 . Forster and H.W. Schuster for the interest they took in this work, which has beenl accepted as a Habilitationsschrift by Universitätl München; furthermore I am indebted to Dean Victory for linguistic and stilistic advice.

0. PRELIMINARIES

0.1. Categories with (co-)products

Let \mathscr{A} be a category with a (co-)product $\odot \downarrow$ For $A, B \mid \in \mathscr{A}$ the canonical morphisms $A \odot B \rightarrow A, A \odot B \rightarrow B(A \rightarrow A \odot B, B \rightarrow A \odot B)$ will be denoted by $p_{1}, p_{2}\left(j_{1}, j_{2}\right)$ or, if unambiguous, by $p_{A}, p_{B} \mid\left(j_{A} \mid, j_{B}\right)$, or simply by $\mathrm{p}(j) \mid$. By| $J_{A, B}$ or, if the meaningl is clearl from the context, by J we denotel the natural isomorphism $A \propto B \rightarrow B \subset A$, and we let
 $\bigodot_{n} A \mid$ be given by $\left.p_{\sigma}\right|_{1}, \ldots, p_{\sigma_{n}}\left(j_{\sigma_{1}}, \ldots, j_{\sigma_{n}}\right)$.

If $Z \in \mathscr{A}$ is a finall (initial) element, then $p_{A}: A \propto Z \rightarrow A\left(j_{A}: A \rightarrow A \propto Z\right)$ is an isomorphism for all $A \in \mathscr{O}$. If Z is a zero object, we denotel by abusel of notation the morphism $A \xrightarrow{p_{A}^{-1}} A \odot Z \xrightarrow{\text { id }} \stackrel{\text { okan }}{\longrightarrow} A \odot B, B \mid \rightarrow A \odot B(A \odot B \rightarrow A \odot Z \rightarrow A, A \odot B \rightarrow B)$ by $\mathrm{j}^{\prime}, j_{2}\left(\mathrm{p}, p_{2}\right)$ or by $j_{A} \| j_{B}\left(p_{A}, p_{B}\right) \mid$ Therel will be no confusion with the previous $j \mid \mathrm{p}$, since we shall always consider only one category at a time with exactly one fixed product (coproduct) that is nota coproduct (product).
$A^{\prime} \in \mathscr{A}$ is a factor of $A \in \mathscr{A}$, if $A \cong A^{\prime} \odot A^{\prime \prime} \mid$ for some $A^{\prime \prime} \in \mathscr{A}$. If $\mathscr{A} \mid$ hasafinal (initial) object Z, we shall say that $\mathrm{A} \in \mathscr{A}$ is indecomposable, if every factorl $\# Z$ of A is isomorphic to A. A decumposition of $A \in \mathscr{A}$ is an isomorphism $A \rightarrow A_{1} \propto \ldots \odot A_{n} \mid$ in \mathscr{A}.

A finall (initial) object $Z \in \mathscr{A}$ is a semi-zero object, if $\operatorname{Mor}(Z, A) \neq \emptyset(\operatorname{Mor}(A, Z) \mid \neq 0)$ for all $A \in \mathscr{A}$. If \mathcal{A} has a semi-zero object Z, then a morphism $A \xrightarrow{\phi} B$ is calledl constant, if it admits a factorization $\phi=(A \rightarrow Z \rightarrow B)$.

0.2. Complex spaces and holomorphic mappings

0.2.1. Let $U \mid=\left(|U|, \mathscr{O}_{U}\right), V=(|V|, 8$,$) be complex spaces and let f=(|f|, . f) \mid: U \| \rightarrow$ V be holomorphic. If $U \|$ is reduced, we do not distinguish between $U l$ and $|U|$ and between $f \mid$ and $|f| \mid$ We let $d_{0}(U)\left|:=\min _{u \in U}\right| \operatorname{dim}, \mathrm{U}$.

A (closed or open) complex subspace U^{\prime} of $U l$ will be indicated by the symbol $U^{\prime} \leftrightarrows$ U (which also denotes the inclusion map); if U^{\prime} is reduced, connected and compact, we sometimes write $U^{\prime} \underset{(\text { rccc }}{\hookrightarrow} U$. If U is a complex Lie group and $U^{\prime} \hookrightarrow U l$ is a subgroup, we employ the symbol $U^{\prime} g U$.

For $\mathrm{V}^{\prime} \hookrightarrow \mathrm{V}$ we denotel by $f^{-1}\left(\mathrm{~V}^{\prime}\right)$ the largest subspacel S of Ul such that therel exists a holomorphic factorization $\left.f\right|_{S}=\left(S \rightarrow V^{\prime} \hookrightarrow V\right) \mid$ If $U^{\prime} \hookrightarrow U l$ such that $\left.f\right|_{U^{\prime}}$ is proper, then therel exists a smallest complex subspace $\mid \mathrm{S}$ of V such that $f \mid U^{\prime}$ admits a factorization through $S \hookrightarrow V$, and it will be denoted by $f\left(U^{\prime}\right)$.
$f \mid$ is a quotient \mid map, if it satisfies the following condition: For every open $\mathrm{V}^{\prime} \subset \mathrm{V}$ and every holomorphic $\mathrm{g}: f^{-1}\left(\mathrm{~V}^{\prime}\right) \rightarrow W$ that factors set-theoretically through $|f|_{f^{-1}\left(V^{\prime}\right)}$, there
exists a unique holomorphic factorization of g through $\left.f\right|_{f^{-1}\left(V^{\prime}\right)}$.
If $f \mid$ is proper \mid with Stein factorization $\left(U \xrightarrow{\tau_{f}} S_{f} \mid \xrightarrow{\bar{f}_{\rightarrow}} \mathbf{V}\right.$), then τ_{f} is a quotient map.
f is a covering, if $U \backslash$ is connected and if f is finite and locally biholomorphic. Coverings are quotient maps.

Let $\phi: \mid U \| \rightarrow S$ be a map of sets. We shall say that the analytic quotient $\phi \mid: U \| \rightarrow \mathbf{S}$ exists, if S can be endowed with a complex structurel such that $\phi=|g|$ for some holomorphic quotient map $g: U \rightarrow S$.

Suppose that f is finite and factors through ϕ_{\mid}If ϕ_{ϕ} defines an analytic equivalence relation on $U l$ (i.e., if $\left\{\left(u, u^{\prime}\right) \in U|\times U: \phi(u)|=\phi\left(u^{\prime}\right)\right\}$ is analytic), then the analytic quotient $\phi: U \backslash S$ exists (see [8], | Proposition 49. A 13).
0.2 .2 . The cartesianl product of complex spaces is a product in the category of all complex spaces, and \mathbf{C}^{0} is a semi-zero object. For $u \in \mathbf{V}$ and every complex space $W 1$, we denote the constant holomorphic map $W \rightarrow \mathrm{C}^{0} \cong\{v\} \hookrightarrow V$ by $[v]$. For $(u, v) \in U \times V$ we let $j_{d}:=\left(\mathrm{id}_{U},[v]\right): U \| \rightarrow U \times V, j_{u}:=\left([u], i d_{V}\right) \mid: \mathbf{V} \rightarrow U \times \mathbf{V}$, if the meaning is clearl from the context. If $g: U \mid x \mathbf{V} \rightarrow W$ is holomorphic, then the partial maps g o j_{u}, g o j_{v} will be denoted by $g\left(u_{\|}.\right), g(,, v) \downarrow$ respectively. Let $g: U \times V \rightarrow \mathbf{A} \times B$ be holomorphic, $(u, v) \in U \times V$. Then we let $l g:=p_{A} \circ g \mid$ and $\mathrm{rg}:=p_{B} \circ \mathrm{~g}$; moreover, when no ambiguity arises, we let $\stackrel{\leftarrow}{v}:=|\lg |$ o $j,, \vec{v}:=\mid \operatorname{rg}$ o $j_{v}, \stackrel{\leftarrow}{u}:=\mid \lg$ o j_{u} and $\vec{u}:=\operatorname{rg}$ o j,

Lemma. Let $\mathbf{g}: U \| \mathbf{x} \mathbf{W} \rightarrow \mathbf{V}$ be a holomorphic map between connected complex spaces, and let| A C U X W with $\left|p_{U}\right|(A)|=|U|$ and $| p_{W}|(A)|=|W| \mid$
$I f|f|$ is constant on some open neighbourhood of \mathbf{A}, then all partial maps $f(, w), f(u$, are constant.

Proof.| For symmetry reasons, it suffices to consider the partial| maps $f\left(,{ }_{\text {, }}\right.$ w) ; therefore we may assume that \mathbf{W} is reduced and irreducible. Given (u,w) $\in U \times \mathbf{W}$, we havel to show that $f\left(n_{n}\right.$ w) is constant on every infinitesimal neighbourhood of τ; thus we may assume $U_{\text {red }}=\{u\}$. By assumption, therel exists a non-empty open subset \mathbf{W}^{\prime} of \mathbf{W} such that $\left.f\right|_{U \times W} \mid$ is constant. Hencel f is constant, since \mathbf{W} is reduced and irreducible.

0.3. Products of groups

Although the groups considered in what follows need not be abelian, we denotel the group composition by a +- -sign.| Then every group homomorphism $\mathrm{G} \times H \mathrm{H} \rightarrow \mathrm{G} \times H^{\prime}$ is given by a matrix $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ with $\alpha \in \operatorname{Hom}\left(G, G^{\prime}\right)$ etc. Note that $\alpha 1+\beta|=\beta|+\alpha$ (when no ambiguity can arise, we do not distinguish between α and $\alpha \circ p_{G}, \mathrm{G}$ and $j_{G}(G)$ etc.). The
composition of two such homomorphisms is given by the product $\left(\begin{array}{ll}\alpha & \beta^{\prime} \\ \gamma^{\prime} & \delta^{\prime}\end{array}\right) \cdot\left(\begin{array}{lll}\alpha \\ \gamma & 6 & \end{array}\right)$ (where $\alpha^{\prime} \alpha+\beta^{\prime} \gamma=\beta^{\prime} \gamma+\alpha^{\prime} \alpha$ l etc.).
0.3.1 Lemma. Let $\phi: \mathbf{G} \mathbf{x H} \rightarrow \mathbf{G}^{\prime} \mathbf{x} \mathbf{H}^{\prime}$ be ani isomorphism of groups given by $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$, and led ϕ^{-1} be given by $\left(\begin{array}{ll}\alpha^{\prime} & \beta^{\prime} \\ \gamma^{\prime} & \delta^{\prime}\end{array}\right)$.

If α, or α is injective, then so is $\delta 1$ or $\delta \delta^{\prime}$, respectively; the same assertion holds, ifl| «injeciive» is replaced by «surjective».

Proof] Let α be injective, and let $\left.\mathbf{h}^{\prime} \in \operatorname{Ker} \delta \delta^{\prime}\right\rfloor$ Then $h^{\prime}=\gamma \beta^{\prime}\left(\mid h^{\prime}\right)+\delta \delta^{\prime}(\mid \mathrm{h})=\gamma \beta^{\prime}\left(h^{\prime}\right) \mid$. Ifl $\delta^{\prime}\left(\mathrm{h}^{\prime}\right)=0$, then $0=\alpha \beta^{\prime}\left(\mathrm{h}^{\prime}\right)+\beta \delta^{\prime}\left(\mathrm{h}^{\prime}\right)=\alpha \beta^{\prime}\left(\mathrm{h}^{\prime}\right)$, whence $\beta^{\prime}\left(\mathbf{h}^{\prime}\right)=0$ and therefore $h^{\prime}=\gamma \beta^{\prime}\left(\mathrm{h}^{\prime}\right)=0$. If $\alpha^{\prime} \alpha$ is injective, thenl the equation $0=\alpha^{\prime} \alpha \beta^{\prime}\left(\mathrm{h}^{\prime}\right)+\alpha^{\prime} \beta \delta^{\prime}(\mathrm{h})=$ $\alpha^{\prime} \alpha \beta^{\prime}\left(\mathrm{h}^{\prime}\right)-\beta^{\prime} \delta \delta^{\prime}\left(\mathbf{h}^{\prime}\right)=\alpha^{\prime} \alpha \beta^{\prime}(\mathrm{h})$ again yields $\beta^{\prime}(\mid \mathrm{h})=0 \|$ whence $h^{\prime}=0$.

Let α^{\prime} bel surjective and let $h^{\prime} \in \mathbf{H}^{\prime}$. Then $\beta^{\prime}\left(\mathrm{h}^{\prime}\right)=\alpha^{\prime}\left(\mathrm{g}^{\prime}\right)$ for some $\mathrm{g}^{\prime} \in G^{\prime} \mid$ and therefore $\mathbf{h}^{\prime}=\delta \delta^{\prime}\left(\mathbf{h}^{\prime}\right)+\gamma \beta^{\prime}\left(\mathbf{h}^{\prime}\right)=\delta \delta^{\prime}\left(\mathbf{h}^{\prime}\right)+\gamma \alpha^{\prime}\left(\mathbf{g}^{\prime}\right)=\delta \delta^{\prime}\left(h^{\prime}\right)\left|-\delta \gamma^{\prime}\left(g^{\prime}\right)\right|=\delta\left(\left|\delta^{\prime}\left(\mid h^{\prime}\right)\right|-\right.$ $\left.\gamma^{\prime}\left(\mathrm{g}^{\prime}\right)\right) \in \operatorname{Im} 6$. If $\alpha^{\prime} \alpha$ is surjective, then $\beta^{\prime}\left(\mathrm{h}^{\prime}\right)=\alpha^{\prime} \alpha(\mathrm{g})$ for some $\mathrm{g} \in G \mid$ and hence $h^{\prime}=$ $\delta \delta^{\prime}\left(\mathbf{h}^{\prime}\right)+\gamma \beta^{\prime}\left(\mathbf{h}^{\prime}\right)=\delta \delta^{\prime}\left(\mathbf{h}^{\prime}\right)+\gamma \alpha^{\prime} \alpha(\mathbf{g})=\delta \delta^{\prime}\left(\mathbf{h}^{\prime}\right)-\delta \gamma^{\prime} \alpha(\mathbf{g})=\delta \delta^{\prime}\left(\mathbf{h}^{\prime}\right)+\delta \delta^{\prime} \gamma(\mathbf{g}) \in \operatorname{Im}$ SS'.

0.3.2 Lemma. Let ϕ be asi in 0.3.1.

For all $m, n \in \mathbf{N}$, the map $G \times G \rightarrow G$, given by $\left(g_{1}, g_{2}\right) \mapsto\left(\alpha^{\prime} \alpha\right)^{m}\left(g_{1}\right)+\left(\beta^{\prime} \gamma\right)^{n}\left(g_{2}\right)$, is a surjective homomorphism of groups.

If $\left.\left(\beta^{\prime} \gamma\right)\right|^{n}=\mathbf{0}$ for some \mathbf{n}, then $\left(\alpha^{\prime} \alpha\right)^{m} \mid$ is an isomorphism for all \mathbf{m}.
Proofl From $\alpha^{\prime} \alpha+\beta^{\prime} \gamma=\mathrm{id}_{G}$ we inferl $\alpha^{\prime} \alpha \beta^{\prime} \gamma=\beta^{\prime} \gamma \alpha^{\prime} \alpha$ and hence id ${ }_{G l}=\left(\alpha^{\prime} \alpha+\beta^{\prime} \gamma\right)^{m n}=$ $\left(\left(\alpha^{\prime} \alpha\right)^{m}+\left(\beta^{\prime} \gamma\right) 0 \chi\right)^{m}=\left(\beta^{\prime} \gamma\right)^{n} 0 \chi^{n}+(d a)^{\prime \prime}$ o ψ with suitabled homomorphisms χ, ψ that commuted with $\beta^{\prime} \gamma$ and $\alpha^{\prime} \alpha$] This proves everything.
0.3.2.a Corollary. Let $\mathrm{g}: \mathbf{V} \mathbf{x} \mathbf{W} \rightarrow \mathbf{V} \mathbf{x} \mathbf{W}$ be an endomorphism of \mathbf{K}-vector spaces, and assume that $\left.\mathbf{g}\right|_{\operatorname{Im} g}=\lambda . i d{ }_{\boldsymbol{g}}$ for some $\mathbf{0} \neq \lambda \in K \mid$
$I f \mid\left(\mathbf{W} \xrightarrow{g)_{W} \mid}|\mathbf{V x W} \xrightarrow{p}| W\right) \eta=\mathbf{0}$ forsome \mathbf{n}, then thecomposition $g \circ j_{V} \circ p_{V}|\operatorname{Im}| \mathrm{g} \rightarrow \operatorname{Im} \mathrm{g}$ is an isomorphism.

Proofl Let $\mathbf{V}^{\prime}:=\operatorname{Im} g \mid \mathbf{W}^{\prime}:=\operatorname{Ker} g$ and define $\phi: \mathbf{V}^{\prime} \mathbf{x} \mathbf{W} \rightarrow \mathbf{V} \mathbf{x} \mathbf{W}$ by $\phi\left(v^{\prime} \mid w^{\prime}\right) \mid:=$ $v^{\prime}+\mathrm{w}^{\prime}$. Then ϕ is an isomorphism the inverse of which is given by $(v, \mid w) \mapsto\left(\left.\frac{1}{\lambda} \right\rvert\, \cdot g(v, w)\right.$, $\left.(v, w)-\frac{1}{\lambda} \cdot g(v, w)\right)$. If ϕ is represented by the matrix $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ with inverse
$\left(\begin{array}{ll}\alpha^{\prime} & \beta 1 \\ \gamma \mid & \delta 1\end{array}\right)$, then $\gamma \beta^{\prime}(w) \left\lvert\,=7\left(\left.\frac{1}{\lambda} \right\rvert\, \cdot g(0, w)\right)=\frac{1}{\lambda} \cdot p_{W}(g(0, w))\right.$; thus $\left(\gamma \beta^{\prime}\right)^{n}=0$ for some n . By $0.3 .2, \alpha^{\prime} \alpha$ is an isomorphism, since $\left(\beta^{\prime} \gamma\right)^{n+1}=\beta^{\prime}\left(\gamma \beta^{\prime}\right)^{n} \gamma=0$. This proves the assertion, since $\alpha^{\prime} \alpha\left(v^{\prime}\right)=\alpha^{\prime}\left(p_{V}\left(v^{\prime}\right)\right)\left|=p_{V^{\prime}}\left(\frac{1}{\lambda} \cdot g\left(p_{V}\left(v^{\prime}\right), 0\right)\right)=\frac{1}{\lambda} \cdot g\left(p_{V}\left(v^{\prime}\right), 0\right)\right|$
0.33 Lemma. Let $G_{1} \times H_{1} \supset G_{2}\left|\times H_{2}\right| \supset \ldots \supset G_{n} \mid \times H_{n} \supset \ldots$ be a sequence of subgroups such that
(*)

$$
\left.\mathbf{R}_{n+2}=R_{n} \cap\left(G_{n+1}\right) \times H_{n+1}\right) \text { for } R \in\{G, H\}, n \in \mathbf{N}
$$

Denore by P_{n} the homomorphism

If $P_{n} \circ P_{n+4} \mid \circ \ldots \circ P_{n+4 k}=\mathbf{0}$ forsome $n, k \mid \in \mathbf{N}$, then $G_{m}\left|\mathbf{x} H_{m}\right|=G_{m+1}\left|\mathbf{x} H_{m+1}\right|$ for all $m \gg 0$.

Proof. By assumption, the diagram

$$
\begin{aligned}
& G_{n+4} \xrightarrow{P_{G_{n n 3}}} \quad G_{n+3} \xrightarrow{P_{H_{m}}+1} \quad H_{n+2} \quad \cdots \quad H_{n+1} \quad \cdots \quad G_{n} \\
& \begin{array}{lllll}
\circ & \text { fl } & \text { ก } & \text { ก }
\end{array} \\
& G_{n+2} \xrightarrow{P_{C_{n}}} \mid \quad G_{n+1} \xrightarrow{P_{H_{n}}} \quad H_{n} \| \quad \cdots \quad H_{n-1} \quad \cdots \quad G_{n-2}
\end{aligned}
$$

is commutative for all $n \geq 2$. Thus, if $P_{n} \circ \ldots \circ P_{n+4 k}=0 \mid$ for some n, k, then $P_{m} \circ \ldots$ d $\mathbf{P}_{m+4 \mathrm{k}}=0$ for all $m \geq \mathrm{n}$ with $m-n$ even.

Furthermore, $\left.\left.G_{l+3} \mid \cap G_{l+2}\right]=G_{l+1} \cap\left(G_{l+2} \rtimes H_{l+2}\right) \cap G_{l+2}\right]=G_{l+1} \cap G_{l+2}, H_{l+3} \cap$ $\mathrm{H}_{l+2}=H_{l+1} \cap H_{l+2}, \mathrm{G}_{2 l+1 \mathrm{f}-1} H_{2 d}=G_{2 l-1} \cap\left(G_{2 l} \downarrow \rtimes H_{2 l}\right) \cap H_{2 l}=G_{2 l-1} \cap H_{2 \downarrow}$ and $\mathrm{G}_{2 l+2 l \mathrm{r}-1} H_{2 l+1}=G_{2 l} \cap H_{2 l+1}$ for alll $l \geq 1$. Therefore, we obtain a commutative diagram

$$
\begin{array}{cccccc}
G_{1} \rtimes H_{1} & \supset & G_{2} \times H_{2} & \supset & G_{3} \times H_{3} & \supset \cdots \\
\Downarrow \text { kan } \times \text { kanl } & & \downarrow \text { id } \times \text { karl } & & \downarrow \text { kan } \times \text { kanl } & \\
G_{1}^{\prime} \times H_{1}^{\prime} & \supset & G_{2} \times H_{2}^{+} \mid & \supset & G_{3}^{\prime \prime} \times H_{3}^{\prime} & \supset \cdots
\end{array}
$$

where $\left.G_{2 l+1}^{\prime} \=G_{2 l+1} /\left(G_{1} \cap H_{2}\right), H_{2 l+1}^{\prime}=H_{2 l+1} /\left(H_{1} \cap H_{2}\right)\right)$ and $H_{2 \downarrow}^{+} \downarrow=H_{2 l} /\left(H_{1} \cap H_{2}\right]+$ $\left.G_{1} \cap H_{2}\right) \mid$ (note that $\mathrm{G}, \cap G_{2}$ and $G_{1} \cap H_{2}$ commute).

Clearly, the lower line of this diagram again satisties the condition $\left(^{*}\right)$.
Let now $n, k \in \mathbf{N} \mid$ with $P_{n} \circ \ldots \circ P_{n+4 k}=0$; obviously, we may assume that n is even.

For $1 \in \mathrm{~N}$ with $2 \| \geq n$, consider the commutative diagram

$$
\begin{array}{cccccccccc}
\mathrm{G}_{2 l+4} & \stackrel{p}{\rightarrow} & G_{2 l+3} & \rightarrow & H_{2 l+2} & \rightarrow & H_{2 l+} \downarrow & \rightarrow & G_{2 \downarrow} \downarrow \\
\| & & \| \text { kanl } & & \downarrow \text { karl } & & \downarrow \text { karl } & & \| \\
\boldsymbol{G}_{2 l+4 \|} & & \rightarrow & G_{2 l+3}^{\prime} & \rightarrow & H_{2 l+2}^{+} & \rightarrow & H_{2 l+}^{\prime} \downarrow & \rightarrow & G_{2 l}
\end{array}
$$

 Furthermore, thelarrow $\left.H_{2 l+2}^{+}\right\rfloor \rightarrow H_{2 l+1}^{\prime} \mid$ is injective, sincel $p_{H_{2 l+1}}\left(H_{1} \cap H_{2} \mid+G_{1} \cap H_{2}\right)=$ $p_{H_{2 l+}}\left(H_{2 l+\downarrow}\left|\cap H_{2 l+2}+G_{2 l+1}\right| \cap H_{2 l+2}\right)=H_{2 l+\downarrow} \cap H_{2 l+2}=\operatorname{Ker}\left(H_{2 l+1} \xrightarrow{P_{c_{2}} \mid} G_{2 l}\right) \downarrow$

Now apply the samel construction to the sequence $G_{1}^{\prime} \times H_{1}^{\prime} \supset G_{2} \times H_{2}^{+}\left|\supset 1 G_{3}^{\prime}\right| \mathbf{x} H_{3}^{\prime} \supset 〕 .$. with G and H interchanged; this yields a commutative diagram

with the lower linel again satisfying $\left({ }^{*}\right)$,
Hence, for n and 1 as above」 we obtain

whcre thecompositions $\left.G_{2 l++}^{+} \mid \rightarrow G_{2 l+3}^{\prime \prime} \rightarrow H_{2 l++}^{+}\right\rfloor$and $\left.\left.H_{2 l+2}^{+}\right\rfloor \rightarrow H_{2 l+}^{\prime}\right\rfloor \rightarrow G_{2} d$ areinjective.
Wel conclude that $P_{2 \downarrow}^{+}$o \ldots o $\left.P_{2 l+4(k-1)}^{+}\right)=0$, if $P_{2 \downarrow}^{+} \downarrow: G_{2 l+4}^{+} \mid \rightarrow G_{2 \downarrow}^{+}$denotes the homomorphism given by the bottom linel of the abovel diagram. Moreover, it is obvious from the construction, that $G_{2 l+2} \times H_{2 l+2}\left|=G_{2 l+1}\right| \times H_{2 l+1}=G_{2} \downarrow \times H_{2 l}$ if $G_{2 l+2}^{+} \ \rtimes H_{2 l+2}^{+}=$ $G_{2 l+1}^{\prime \prime}\left|\times H_{2 l+}^{\prime \prime}\right|=G_{2 \downarrow}^{+} \downarrow \times H_{i},$.

Thus, if we proceed by induction on the minimal $k d$ with $P_{n} \circ \ldots 0 P_{n+4 k}=0$, it remains to consider the case $k d=0$, i.e t the case $G_{n} \|=0$. Then $G_{2 \downarrow}\left\|=0, G_{2 l+\downarrow}\right\| \times H_{2 l+\downarrow} \|$ $\left.H_{2 l,} H_{2 l+2}=H_{2 \downarrow} \cap\left(G_{2 l+}\right\rfloor \times H_{2 l+1}\right)=\quad G_{2 l+1} \times H_{2 l+} \downarrow$ and $R_{2 l+3}=\quad R_{2 l+\downarrow} \backslash \cap H_{2 l+2} \mid=$ $R_{2 l+1} \cap\left(G_{2 l+1} \rtimes H_{2 l+1}\right)=R_{2 l+1}$ for $R E\{G, H\} \quad$ andall $\|$ with $2 l \geq \mathrm{n}$.

1. LOCAL ALGEBRAS WITH ARTINIAN FACTORS

Let $K l$ be a field of characteristic zero with a complete valuation and denotel by $\mathscr{S}_{K} \mid$ the category of locall analytic K-algebras. The analytic tensor product| is a coproduct in \mathscr{L}_{K} | and \mathbf{K} is a zero-object in $\mathscr{S}_{\boldsymbol{K}}$.

For $\mathbf{A} \in \mathscr{L}_{K} \mid$ with maximal ideall \mathbf{m}_{A} let $\mathbf{n}_{A} \subset \mathbf{A}$ be the nilradical of \mathbf{A}. The canonica1 projection $\mathbf{A} \rightarrow A / \mathbf{n}_{A}=1 A_{\text {rod }}$ is denoted by red, or simply by red. The reduction of a homomotphism $f: \mathbf{A} \rightarrow B \mid$ in $\mathscr{B}_{K} \mid$ is indicated by $f_{\text {red }}: A_{\text {red }} \rightarrow B_{\text {red }} \mid$ its Jacobian $m_{A} / m_{A}^{2} \rightarrow m_{B} / m_{B}^{2}$ by Tf: $T_{A} \rightarrow T_{B} \mid$

For any locall subalgeura $\mathbf{A}^{\prime} \mathbf{c} \mathbf{A}$ we let $A / / A|:=A / A|, m_{A^{\prime}} \mid$

1.1. A surjectivity criterion

Let $(f: A \rightarrow B) \in \mathscr{B}_{K}$, It is well known that f is surjective, if and only if so is its Jacobian Tf.
1.1.1 Lemma. Let $\left(\mathbf{g}: \mathbf{A} \otimes \mathbf{B} \rightarrow \mathbf{A}^{\prime} \otimes \mathbf{B}^{\prime}\right) \in \mathscr{C}_{K} \mid$ such that $p_{A^{\prime}} g j_{A}$ and $p_{B^{\prime}} g j_{B}$ are surjecrive.
${ }_{I f} \mid p_{B^{\prime}} g j_{A}$ or $p_{A^{\prime}} g j_{B}$ is constant, then g is surjective.
Proofl Tg is given by a mauix that has the form $\left(\begin{array}{cc}G_{11} & G_{12} \\ 0 & G_{22}\end{array}\right)$ or $\left(\begin{array}{cc}G_{11} & 0 \\ G_{21} & G_{22}\end{array}\right)$ with surjective $G_{1 \|}\left|: T_{A} \rightarrow T_{A^{\prime}}, G_{22}: T_{B} \rightarrow T_{B^{\prime}}\right|$

The following lemma provides the essential argument in the proof of the locall cancellation theorem. Its assertionl does no longer hold, if $\operatorname{char}(\mathbf{K})>\mathbf{0}$.
1.1.2 Lemma. Let (f : $\mathbf{A} \rightarrow \mathrm{B} \otimes \mathrm{Cj} \in \mathscr{C}_{K}$.
$I f\left|p_{B} f\right|_{\mathbf{n}_{A}}$ is injecfive with $p_{B} f\left(\mathbf{n}_{A} \backslash \mathbf{m}_{A}^{2}\right)\left|\mathbf{C} \mathbf{m}_{B} \backslash \mathbf{m}_{B}^{2}\right|$ fhen $\mathbf{n}_{A} \backslash \mathbf{m}_{A}^{2} \mathbf{C} \operatorname{Ker} p_{C} f$.
Proof. Let $a \in\left(\mathbf{m}_{A} \backslash \mathbf{m}_{A}^{2}\right) \cap \mathbf{n}_{A}$, and let $m \in N$ be minimal with $a^{m+1}=0$. If $p_{C} f(a) \neq 0$, there exists $1 \in N$ with $p_{C} f(\mathbf{a}) \in \mathbf{m}_{C}^{l} \backslash \mathbf{m}_{C}^{l+1} \mid$

Let $\bar{B}=N / \mathbf{m}_{B}^{m+1}, \bar{C}=C / \mathbf{m}_{C}^{l+1}$, and let $\bar{f}=$ kan $\circ f: A \mid \rightarrow \bar{B} \otimes \bar{C}$. Then $\bar{f}(a) \mid=$ $b \otimes 1+z+1 \otimes c$ with $z \in \mathbf{m}_{\bar{B}} \otimes \mathbf{m}_{\bar{C}}, b^{m} \neq 0=b^{m+1-\mu} \cdot z^{\mu}$ for $0 \leq \mu \leq m+1, c \neq 0=c^{2}=c z$, and hence $0=\bar{f}\left(a^{m+1}\right)=((b \otimes 1+z)+1 \otimes c)^{m+1}=(m+1) \cdot(b \otimes 1+z)^{m} \cdot(1 \otimes c)=$ $(m+1) \cdot b^{m} \mid \otimes c$, a contradiction.
1.1.2.al Corollary. (compare [9]), Let f be as abovel with A artinian. ${ }_{I f} f p_{B} f$ and $T_{p_{B}} f$ are injective, then $p_{d} f$ is constant.
1.1.2-b Corollary. (compare [9]). Let f be as in 1.1 .2 with $A_{\text {red }}$ regular. $\left.|f| p_{B} \mathbf{f}\right|_{\mathbf{n}_{A}} \mid$ is injective with $p_{B} \mathbf{f}\left(\mathbf{n}_{A} \backslash \mathbf{m}_{A}^{2}\right) \subset \mathbf{m}_{B} \backslash \mathbf{m}_{B}^{2}$, then $p_{C} \mathbf{f}$ factors throughred A^{4} Proof. It suffices to show that every minimall set of generators $\left\{n_{1}, \ldots, n_{s}\right\}$ of $n_{A} \mid$ is containedl in $\mathbf{m}_{A} \backslash \mathbf{m}_{A}^{2} \mid$ Let \mathbf{n} ' be generated by $\left\{n_{1}, \ldots, n_{s}\right\} \cap\left(\mathbf{m}_{A} \backslash \mathbf{m}_{A}^{2}\right)$ and let $\mathbf{A}^{\prime}:=A / \mathbf{n}^{\prime} \mid$ Then $\operatorname{dim} \mathbf{A}^{\prime}=\operatorname{dim} \mathbf{A}=\operatorname{dim} A_{\text {red }}=\operatorname{dim} T_{A_{\text {mad }}}=\operatorname{dim} T_{A^{\prime}}$, whence \mathbf{A}^{\prime} is reduced, li.e. $\mathbf{n}^{\prime}=\mathbf{n}_{A} \mid \cdot \Delta$
1.1.2.d Corollary. Let ($\mathbf{g}: \mathbf{A} \otimes B \rightarrow \mathbf{A}^{\prime} \otimes \mathbf{B}^{\prime}$) $\in \mathscr{B}_{K} \mid$ with \mathbf{A} artinian.

If $\mid p_{A^{\prime}} g j_{A}$ is an isomorphism, and if $p_{B^{\prime}} g j_{B}$ is surjective, then g is surjective.
Proofl] Evident by 1.1.2.a and 1.1.1.
1.2. Isomorphisms between coproducts in \mathscr{L}_{K},

Let $\mathbf{f}: \mathbf{A} \otimes B \rightarrow \rightarrow \mathbf{C} \otimes D$ be an isomorphism in \mathscr{C}_{K}, and let $f_{A}\left|:=p_{A} f^{-1} j_{C} p_{C} f_{A},\left|f_{A}^{\prime}\right|:=\right.$ $p_{A} f^{-1} j_{D} p_{D} f j_{A}, f_{D}^{-1}:=\left(f^{-1}\right)_{D}=p_{D} f j_{B} p_{B} f^{-1} j_{D}, f_{C}^{-1} \mid:=\left(f^{-1}\right)_{C}^{\prime}:=1 p_{C} f j_{B} p_{B} f^{-1} j_{C}$.
1.2.1 Lemma. It $T p_{C} f \mid j_{A}$ or $T f_{A} \mid i s i n j e c t i v e$, then so is $T p, f^{-1} j_{D}$ or $T f_{D}^{-1}$, respectively. The samel assertion holds, if uinjectives is replaced by «surjective».

Proofll Compare 0.3.1.
1.2.1.al Corollary. $p_{C} f j_{A}$ or f_{A} is an isomorphism, if and only if $p_{B}\left|f^{-1} j_{D}\right|$ or f_{D}^{-1} is, $r e_{-}$ spectively.

Proof. Let $p_{C} f j_{A}$ or $f_{A} \mid$ be an isomorphism. Note at first that it suffices to show that $p_{B}{ }^{-11} j_{D} \mid$ resp. f_{D}^{-1} is surjective: If $p_{C} f j_{A}$ is bijective and $p_{B} f^{-1} j_{D}$ is surjective, we obtain a sequence of surjective homomorphisms

$$
A \otimes B \xrightarrow{f} C \otimes D \xrightarrow{\left(p_{C} f f_{\Lambda}\right)^{-1} \otimes \text { id } D} A \otimes D \xrightarrow{\text { id } A \otimes P_{B} f^{-1} j_{D}} A \otimes B
$$

and we conclude that $p_{B} \mathbf{f}^{-1} j_{D}$ is also injective.
The assertion is now evident by 1.2.1.

1.2.1.b Corollary. Let A or C be artinian.

(i) $I f\left|p_{C}\right| f j_{A}$ is an isomorphism, then so $\operatorname{are} p_{A} f^{-1} j_{C}\left|p_{D}\right| f j_{B}$ and $p_{B} f^{-11} j_{D} \backslash$ moreover, $p_{D} f j_{A}$ and $p_{B} f^{-1} j_{C}$ are constant.
(ii) $I f \mid f_{A}$ is surjective, then f_{A} and f_{D}^{-1} are isomorphisms, and $p_{D} f j_{A}$ is constant.

Proof 1 In (i) as well as in (ii), \mathbf{A} is artinian, if C is. Thus we may assume that \mathbf{A} is artinian.
(i) If $p_{C} f j_{A} \|$ is an isomotphism, then so is $p_{B} f^{-\|} j_{D}$ by 1.2.1.al and C is artinian. By 1.1.2, $p_{D} f j_{A}$ is constant, whence $p_{D} f j_{B}$ is surjective and therefore bijective, since $B|\cong D|$ via $p_{B \mid}{ }^{-1} j_{D} \mid$ Thus $p_{A}{ }^{\mathrm{f}}{ }^{-11} j_{C}$ is an isomorphism, whence $p_{B \mid} f^{-1} j_{C}$ is constant.
(ii) If f_{A} is an isomorphism, then so is f_{D}^{-1} by 1.2.1.a. If $T f_{A}$ and f_{A} are injective, then sol arel $T p_{C} f\left|j_{A}\right|$ and $p_{C} f\left|j_{A}\right|$ whence $p_{D} f^{\prime} j_{A} \mid$ is constant by 1.1.2.a.
1.2.2 Lemma. $p_{B \mid}{ }^{-1} j_{C}$ defines on isomorphism $C / / p_{C} \mid f(A) \rightarrow B / / p_{B} f^{-11}(\mathrm{D})$, whose inverse is given by $p_{C} f j$ Qit

Proofl $p_{B} f^{-1} p_{C} f\left(\mathbf{m}_{A}\right)\left|\subset p_{B} f^{-1}\left(f\left(\mathbf{m}_{A}\right)+C \otimes \mathbf{m}_{D}\right)\right|=p_{B} f^{-1}\left(C \otimes \mathbf{m}_{D}\right)=B \cdot p_{B} f^{-1}\left(\mathbf{m}_{D}\right)$, whence $p_{B} f^{-1}\left(C \cdot p_{C} f\left(\mathbf{m}_{A}\right)\right){ }_{c} B \cdot p_{B} f^{-1}\left(\mathbf{m}_{D}\right) \mid$

Furthermore, $p_{C} f p_{B} f^{-1}(c)\left|\in p_{C} f\left(f^{-1}(c) \mid+\mathbf{m}_{A} \otimes \mathbf{B}\right)=c+C \cdot p_{C} f\left(\mathbf{m}_{A}\right)\right|$ for alll $\mathbf{c} \in \mathbf{m}_{C}$, and the assertion follows for symmetry reasons.
1.23 Lemma. For all $m_{\|} \mid \mathbf{n} \in \mathbf{N}$ the mulfiplication map mult: $\operatorname{Im} f_{A}^{m}\left|\otimes \operatorname{Im} f_{A}^{\prime n}\right| \rightarrow \mathbf{A}$ is surjective.

Proofl By 0.3.2, the Jacobian of mult is surjective.

1.3. The structure of local algebras with artinian factors

Letl $\mathbf{f}: \mathbf{A} \otimes \mathbf{B} \rightarrow \mathbf{C} \otimes \mathbf{D}$ be an isomorphism in $\mathscr{C}_{K} \mid$ and assume that \mathbf{A} is artinian. Then $A_{C}\left|:=\operatorname{Im} f_{A}^{m}, A_{D}\right|:=\operatorname{Im} f_{A}^{\prime m} \mid$ are welldefined for $\mathrm{m}>0 \mid$ and mult: $A_{d} \otimes A_{D} \mid \rightarrow$ \mathbf{A} is surjective by 1.2.3. Clearly, $\left.p_{C} f| |_{A_{C}}\left|p_{D} f\right|\right|_{A_{D}}$ and their Jacobians are injective; thus $\left.p_{D} f\right|_{A_{C}},\left.p_{C} f\right|_{A_{D}}$ are constant by 1.1.2.a. Therefore, $A_{C}=f_{A}(A), A_{D} \mid=f_{A}^{\prime}(A)$, and $p_{C} f(A)\left|=p_{C} f\left(A_{C}\right)=: C_{A}, p_{D} f(A)\right|=p_{D} f\left(A_{D}\right)=: D_{A} \mid$ are isomorphic to $A_{C}, A_{D} \mid$ via $p_{C} f, p_{D} \mid f$, respectively. Conversely, $D_{A} \mathbf{f}^{-1}$ induces isomorphisms $C_{A} \rightarrow A_{C}, D_{A} \rightarrow A_{D} \mid$ whence, again by 1.1.2.a, $p_{B} f^{-1}\left|C_{A}\right|$ and $p_{B} f^{-1}\left|D_{A}\right|$ areconstant. Let $B_{C} \mid:=p_{B} f^{-1}(C)$, $B_{D}:=p_{B} f^{-1}(D), C_{B}:=p_{C} f\left(B_{C}\right),\left.D\right|_{B I}:=p_{D} f\left(B_{D}\right) \mid$; then, by 1.2.3, the multiplications $B_{C} \otimes B_{D} \rightarrow B, C_{A} \otimes C_{B} \rightarrow C, D_{A} \otimes D_{B} \rightarrow D$ are surjective.
13.1 Lemma. mult: $A_{C} \otimes A_{D} \rightarrow \mathbf{A}$ is ann isomorphism.

Proofl. Denotel by χ the composition

$$
A_{C} \otimes A_{D} \xrightarrow{\text { mult }} A \xrightarrow{f j_{A}} C \otimes D D^{p_{A} f^{-1} j_{C} \otimes p_{A} f^{-1} j_{D}} A \otimes A \xrightarrow{p_{C} f j_{\Delta} \otimes p_{D} f j_{A}} C_{A} \otimes D_{A} .
$$

Then $p_{C_{A}} \chi j_{A_{C}}=\left.p_{C} f j_{A} p_{A} f^{-1} j_{C} p_{C} f j_{A}\right|_{A_{C}}=\left.p_{C} f j_{A} f_{A}\right|_{A_{C}} \mid$ andl $p_{D_{A}} \chi j_{A_{D}} \mid=p_{D} f j_{A} p_{A} f^{-1}$ $\left.j_{D} p_{D} f j_{A}\right|_{A_{D}}=p_{D} f j_{A}\left|f_{A}^{\prime}\right|_{A_{D}}$ are isomorphisms. By 1.1.2.c, χ is surjective and thus bijective, whencel mult: $A_{C} \otimes A_{D} \rightarrow \mathbf{A}$ is injective and hence an isomorphism.
1.3.2 Lemma. $\left(p_{B} f^{-1} p_{D} f \mid B_{D} \rightarrow B_{D}\right)\left|=\operatorname{id}_{B_{D}},\left(p_{D} f p_{B} f^{-1} \mid D_{B} \rightarrow D_{B}\right)=\operatorname{id}_{D_{B}}\right|$ and $p_{B} f^{-} \mid p_{D} f_{B_{C}}$ is constant, and the corresponding statements hold after|interchanging C and D, In particular, B_{C} and C_{B}, as well as B_{D} and $D_{B} \mid$ are isomorphic via $p_{C} f \mid p_{D} f$, with the respective inverse given by $p_{B} f^{-11}$.

Proofl Let $s \in \mathbf{m}_{C \otimes D \dagger}$ Then $p_{B} f^{-1} p_{D} f p_{B} f^{-1}(s)=p_{B} f^{-1} p_{D} f\left(f^{-1}(s)+\left(p_{B} f^{-1}(s)-1\right.\right.$ $\left.\left.f^{-1}(s)\right)\right)=p_{B} f^{-1} p_{D}(s), \operatorname{since} p_{D} f\left(p_{B} f^{-1}(s)-f^{-1}(s)\right) \in p_{D} f\left(\mathbf{m}_{A} \otimes B\right)=D l$. $\mathbf{m}_{D_{A}}$ and $\left.p_{B} f^{-1}\right|_{D_{A}}$ is constant. Thus $p_{B} f^{-1} p_{D} f p_{B} f^{-1}\left|d=p_{B} f^{-1} p,\right| d$ is constant, and $\left.p_{B} f^{-1} p_{D} f p_{B} f^{-1}\right|_{D}\left|=p_{B} f^{-1}\right|_{D}$, and we conclude that $\left.p_{B} f^{-1} p_{D} f\right|_{B_{C}} \mid$ is constant and $\left.p_{B} f^{-1} p_{D} f\right|_{B_{D}}\left|=i d_{B_{D}}\right|$ Then also $\left.p_{D} f^{-1} p_{B} f\right|_{D_{B}}=i d_{D_{B}} \mid$ since $p_{D} f\left|B_{D}\right| \rightarrow D_{B} \mid$ is surjective by definition.
1.3.2.a Corollary. The multiplications $B_{C}\left|\otimes B_{D}\right| \rightarrow B, C_{A} \otimes C_{B}\left|\rightarrow C, D_{A} \otimes D_{B}\right| \rightarrow D$ are isomorphisms.

Proof. Let

$$
\chi:=\left(C_{A} \otimes C_{B} \xrightarrow{\text { muly }} C \xrightarrow{f^{-1} j_{C}} A \otimes B \xrightarrow{f_{A} \otimes p_{B}} \xrightarrow{f^{-1} j_{C} p_{C} f_{B}} A_{C} \otimes \text { B, }\right) .
$$

Then $\left.p_{A_{C}} \chi j_{C_{A}}\left|=f_{A}\right| a p_{A} f^{-1} j_{C}\right|_{C_{A}} \mid$ and $p_{B_{C}} \chi j_{C_{B}}=\left.p_{B} f^{-1} p_{C} f p_{B} f^{-1}\right|_{C_{B}}=\left.p_{B} f^{-1}\right|_{C_{B}} \mid$ are isomorphisms, and hencel so are χ and mult (see 1.1.2.c).

Symmetrically, mults $D_{A} \otimes D_{B} \mid \rightarrow \mathbf{D}$ is an isomoxphism.
Finally, mult \otimes mult: $(\mathbf{A}, \otimes \mathbf{A},) \otimes(\mathbf{B}, \otimes \mathbf{B},) \rightarrow A \otimes \mathbf{B}$ is surjective, mult \otimes mult: $\left(C_{A} \otimes C_{B}\right) \|\left(\mathbf{D}, \otimes D_{B}\right) \rightarrow \mathrm{C} \otimes \mathbf{D}$ is an isomorphism, and $A_{C} \otimes A_{D} \mid \otimes B_{C} \otimes B_{D} \cong$ $C_{A} \mid \otimes C_{B} \otimes D_{A} \otimes \mathbf{D}$, . Thus mult: $B_{C} \otimes B_{D} \mid \rightarrow \mathbf{B}$ is an isomorphism as well.

In total, we havel shown:
1.3.3 Theorem. Let $f \quad: \mathbf{A} \otimes \mathbf{B} \rightarrow C \otimes \mathbf{D}$ be an isomorphism in $\mathscr{C}_{K} \mid$ with \mathbf{A} artinian. Then rhere exists a commutative diagram of isomorphisms in \mathscr{L}_{K} |

$$
\begin{array}{ccc}
\left(A_{C} \otimes A_{D}\right) \otimes\left(B_{C} \otimes B_{D}\right) \| & \xrightarrow[f]{\rightarrow}\left(C_{A} \otimes C_{B}\right) \otimes\left(D_{A} \otimes D_{B}\right) \\
\downarrow \text { mul } \otimes \text { mull } & & \downarrow \text { mult } \otimes \text { mull } \\
A \otimes B \mid & f & C \otimes D
\end{array}
$$

where $R_{A}\left|=p_{R} f(A)\right|=p_{R} f\left(A_{R}\right),\left|B_{R}\right|=\left.p_{B} f\right|^{-1}(\mathbf{R})=\left.p_{B} f\right|^{-1}\left(R_{B}\right), R_{B}\left|=p_{R} f\left(B_{R}\right)\right|_{1}$ $A_{R}=p_{A} f^{-1}\left(R_{A}\right) \mid$ for $\mathbf{R} \in\{\mathbb{C}, \mathbf{D}\}$. Inparticular, $R_{S} \cong S_{R}$ for $\mathbf{R} \in\{\mathbb{C}, D\}, S \mid \in\{\mathbf{A}, \mathbf{B}\}$.
1.3.3.al Corollary. (Cancellation theorem, see [6]) \mid Let $\mathbf{R}, \mathbf{R}, \mathbf{S} \in \mathscr{B}_{K} \mid$ such that $\left.\mathbf{R}, \mathrm{R}\right]$ or S is artinian.

If $R \otimes S \cong R^{\prime} \otimes S$, then $R \cong \mathbf{R}^{\prime}$.

Proof. We may assume that S is indecomposable. Then either $R_{S} \cong S_{R}=K l=R_{S}^{\prime} \cong S_{R} \mid$ or $R_{S} \cong S_{R}=S \mid=S_{R^{\prime}} \cong R_{S}^{\prime}$ In the first case, $R \cong R_{R^{\prime}} \cong R_{R}^{\prime} \cong \boldsymbol{R}^{\prime}$, and in the second one $R \cong R_{R^{\prime}} \otimes R_{S} \cong R_{R}^{\prime} \otimes R_{S}^{\prime} \cong R^{\prime}$
1.3.3.b Corollary \mid (Decomposition theorem, sees [6]) \mid Every $S \in \mathscr{C}_{K} \mid$ admits a unique decomposition (up to reordering) $S \cong S_{1} \otimes \ldots \otimes S_{n}|\otimes S|$ with indecomposable artinian $S,, \ldots, S_{n} \mid \in \mathscr{S}_{K} \backslash(K)$ and with $S\left|\in \mathscr{C}_{K}\right|$ having no artinian factor $\neq \boldsymbol{K}$.
Proof. Of course, we need only verify the uniqueness part. Using induction on n , it suffices to show: Ifl $S \cong \tilde{S}_{1}\left|\otimes \ldots \otimes \tilde{S}_{m} \otimes S^{\prime \prime}\right|$ is another decomposition of the same type, then therel exists $1 \leq \nu^{\prime} \leq \boldsymbol{n}$ with $S_{\nu}\left|\cong \tilde{S}_{\|}\right|$and $\otimes_{\nu \neq \nu}\left|S_{\nu} \otimes\right| S^{\prime} \cong \tilde{S}_{2}|\otimes| \ldots \otimes \tilde{S}_{m} \mid \otimes S^{\prime \prime}$.

The case $\mathrm{n}=0$ being trivial, we may assume that the assertion is proven for some $\mathrm{n}-1 \geq$ 0 . Let $B:=\bigotimes_{\nu \geq 2} S_{\nu} \otimes S^{\prime}, D:=\otimes_{\mu \geq 2} \tilde{S}_{\mu} \otimes S^{\prime \prime}$ and let $f: S_{1} \otimes B \rightarrow \widetilde{S}_{1} \otimes D$ be some isomorphism. If $S_{1}=\left(S_{1}\right)_{\bar{S}_{1}} \mid$ thenlet $\nu 1:=1$. Otherwise, $S_{2}\left|\otimes \ldots \otimes S_{n} \otimes S\right|=B 1 \cong$ $\tilde{S}_{1} \otimes B_{D} \cong \tilde{S}_{1} \otimes D_{B}$ and $\tilde{S}_{2} \otimes \ldots \otimes \tilde{S}_{m} \otimes S^{\prime \prime}=D=S_{1} \otimes D_{B} \cong S_{1} \otimes B_{D}$. From the induction hypothesis, we infer that $\tilde{S}_{1} \cong S_{\nu^{\prime},}\left|\otimes_{\nu^{\prime} \neq \nu \geq 2}\right| S_{\nu} \otimes S^{\prime} \cong B_{D}$ for some $2 \leq \nu^{1} \leq \mathrm{n}$, and hence $\otimes_{\nu \neq \nu}\left|S_{\mu}\right| \otimes S^{\prime}=S, \otimes B_{D} \cong \cong=\bigotimes_{\mu \geq 2}\left|\tilde{S}_{\mu}\right| \otimes S^{\prime \prime} \mid$

In view of the applications we have in mind, it is advisable to reformulate 1.3.3 in terms of quotient algebras.
13.4 Theorem. Let $f: A \otimes B \rightarrow C \otimes D$ be an isomorphism in $\mathscr{C}_{K} \mid$ with A artinian, and let R_{S}, S_{R} be as in 1.3.3, where $\boldsymbol{R} \in\{\boldsymbol{A}, \boldsymbol{B}\}, \boldsymbol{S} \in\{\boldsymbol{C}, \boldsymbol{D}\}$. Let $\{\boldsymbol{R}, \boldsymbol{R}\}=\{\boldsymbol{A}, B\},\left\{S, S^{\prime}\right\}=$ \{C, D\}. Then
(i) kanl a $f j_{R}: \boldsymbol{R} \rightarrow C / / C_{R}\left|\otimes D / / D_{R}\right|$ and kan o $f^{-1} j_{S}: S \rightarrow A / / A_{S \mid} \otimes B / / B_{S \mid}$ are isomorphisms.
(ii) The composition $R-\xrightarrow{P_{s} f j_{R}} S \xrightarrow{\text { kan }} S / / S_{R \mid} \mid$ factors through $R \rightarrow R / / R_{S \mid}$ with an isomorphism $R / / R_{S^{\prime}} \rightarrow S / / S_{R^{\prime}}$, and $S \xrightarrow{p_{B} f^{-1} j_{S}} \boldsymbol{B} \xrightarrow{\text { kan }} B / / B_{S \mid}$ factors through $S \rightarrow S / / S_{A}$ with an isomorphism $S / / S_{A} \rightarrow B / / B_{S^{\prime}}$. The homomorphism $f_{A} \mid \boldsymbol{A} \rightarrow \boldsymbol{A}$ resp. $f_{A}^{\prime} \mid: A \rightarrow \boldsymbol{A}$ factors through kan $: A \rightarrow A / / A_{D}$ resp. kan $: A \rightarrow A / / A_{C}$ and the resulting composition $A / / A_{D} \rightarrow A \rightarrow A / / A_{D}$ resp. $A / / A_{C} \rightarrow \boldsymbol{A} \rightarrow A / / A_{C}$ is an isomorphism.
Proofl. kan $\left|R_{S}\right| \rightarrow R / / R_{S^{\prime}}$, kan $\left|S_{R} \rightarrow S / / S_{R}\right|$ are isomorphisms, since so are mult: $R_{S}|\otimes|$ $R_{S \mid} \rightarrow \boldsymbol{R}$, mult $: S_{R} \otimes S_{R^{\prime}} \rightarrow$ S.
(i) Let

$$
\phi_{R}:=\left(R_{C} \otimes R_{D} \xrightarrow{\text { mult }} R \xrightarrow{f j_{R}} C \otimes D \xrightarrow{\mathrm{kan}} C / / C_{R^{\prime}} \otimes D / / D_{R^{\prime}}\right)
$$

and

$$
\psi_{S}:=\left(S_{A} \otimes S_{B} \xrightarrow{\text { mult }} S \xrightarrow{f^{-1} j_{S}} A \otimes B \xrightarrow{\text { kan }} A / / A_{S} \otimes B / / B_{S^{\prime}}\right)
$$

Thenl $p_{S / / S_{R^{\prime}}} \phi_{R} j_{R_{S}}: R_{S} \rightarrow S / / S_{R} \mid$ and $p_{R / / R_{s}} \phi_{S} j_{S_{R}}: S_{R} \rightarrow R / / R_{S \mid}$ are isomorphisms, whence so are $\phi_{A}, \psi_{C}, \psi_{D}$ by 1.1.2.c.

From the commutative diagram

(compare 1.2.2 and the definition of $C_{A} \backslash B_{D}$), we infer that $p_{C / C_{\Lambda}} \phi_{B} j_{B_{D}}$ is constant; symmetrically, so is $p_{D \| D_{A}} \phi_{B} j_{B_{C}}$. In particular, the Jacobian of ϕ_{B} is surjective, and hence so is ϕ_{B}.
(ii) The case $\mathbf{R}=\mathbf{B}$ follows from 1.2.2 and the definition of $B_{C}, \mathbf{B}, C_{A} \mid \mathbf{D}$,. The case $\mathbf{R}=\mathbf{A}$ follows from $S_{A} A=p_{S} f(A)$ and $p_{S} f\left(A_{S^{\prime}}\right)=\mathbf{K}$ for $\left\{S, S^{\prime}\right\}=\{\mathbf{C D}\}$. The morphism f_{A} is constant on A_{D} and hence factors through $\mathbf{A} \rightarrow A / / A_{D}$; furthermore, $\mathbf{f},(\mathbf{A})=A_{C}$ and $A_{C} \rightarrow A / / A_{D}$ is an isomorphism. The corresponding statement for $f_{A}^{\prime} \|$ follows symmetrically.

1.4. Germs of complex spaces with zero-dimensionall factors

1.4.1 Theorem. Let $\phi: X \times Y \rightarrow U \mathrm{X} V$ be an isomorphism between germs of complex spaces, and assume that \mathbf{X} is zero-dimensional. Let $\left\{\mathbf{S}, \mathrm{S}^{\prime}\right\}=\{\mathrm{X}, \mathrm{V}\},\left\{\mathbb{R}, \mathrm{R}^{\prime}\right\}=\{\mathrm{X}, \mathrm{Y}\}$, and denote by

X_{S}	
Y_{S}	
S_{X}	
the fibre of	$X \rightarrow S^{\prime} \rightarrow X I$ $Y \rightarrow S^{\prime}$ S_{Y}
$S\|\rightarrow Y\| \rightarrow S$	
$S \rightarrow X I$	

(where each arrow denotes the corresponding partial map given by ϕ or ϕ^{-1}) \mid
Then
(i) $p_{S} \phi \mid X_{S} \times Y_{S} \rightarrow \mathbf{S}$ and $p_{R} \phi^{-1} \mid U_{R} \times V_{R} \rightarrow \mathbf{R}$ are isomorphisms.
(ii) The partial map $\mathbf{S} \rightarrow \mathbf{R}$ defines an isomorphism $S_{R} \rightarrow R_{S}$, thepartial map $\mathbf{Y} \rightarrow \mathbf{S}$ defines an isomorphism $Y_{S} \rightarrow S_{Y}$, and the composition of parrial maps $\mathbf{X} \rightarrow \mathbf{S} \rightarrow \mathbf{X}$ factors through the inclusion $X_{S} \hookrightarrow \mathbf{X}$, inducingl an isomorphism $X_{S} \rightarrow X_{S} \downarrow$

The proof is evident by 1.3.4.
1.4.1.a Corollary. Let X, Y, Z be germs of complex spaces such that an least onel of them is zero-dimensional.

$$
\text { If } X \times Z \cong Y \times Z \text {, then } X \cong Y \text {. }
$$

1.4.2-b Corollary \mid Every \mid germ $U l$ of a complex space admits a unique decomposition (up to reordering) $\left|U \cong U_{1} \mathbf{x} \ldots \mathbf{x} U_{n}\right| \times U^{\prime}$ with zero-dimensional indecomposable| $U_{\nu} \neq \mathbf{C}{ }^{9}$ and with U^{\prime} having no zero-dimensional factor $\neq \mathbf{C}^{0}$]

2. FAMILIES OF HOLOMORPHIC MAPPINGS

When considering the complex analytic cancellation problem, one is faced immediately with various families of holomorphic mappings - eight at first sight. but actually a lot more. In this chapter, we prepare the way for dealing with them.

2.1. The simultaneous Stein factorization

Let $\phi: W \times U \rightarrow \mathbf{V}$ be a holomorphic map between connected complex spaces. Then W and $U /$ can be interpreted as parameter spaces of holomorphic maps from $U l$ or W into \mathbf{V} with evaluation map $\phi \mid$ In general, we consider $U l$ to be the common domain of the maps parametrized by W. Sometimes, however, it is advisable to interchange the roles of the two factors, and it will be done without further comment」

Mostly, we shall not distinguish between $\mathrm{w} \in W$ and the partial map $\phi(\mathrm{w},$.$) (or between$ u and $\phi(., u)$).
2.1.1 Lemma and Definition. Assume that $\Phi:=\left(p_{W} \mid \phi\right): \mathbf{W} \times U \rightarrow \mathbf{W} \times V$ isproper.

Then the partial maps $\mathrm{w} \in \mathbf{W}$ admit a simultaneous Stein factorization, i.e. the Stein factorization $\Phi=\left(\mathbf{W} \mathbf{x} U \| \xrightarrow{\tau_{\Phi}} S_{\Phi} \xrightarrow{\Phi} \mathbf{W} \mathbf{x} \mathbf{V}\right)$ satisfies $\left.\tau_{\Phi}=\operatorname{id}_{W} \times \tau_{w}, \bar{\Phi}(w \mid)\right)=\left(p_{W}, \bar{w}\right)$ for all $\mathbf{w} \in \mathbf{W}$, \mathbf{w} here $\mathbf{w}=\left(\mathbf{U} \xrightarrow{{ }^{\dagger}}\left|S_{w} \xrightarrow{\bar{w}}\right| \mathbf{V}\right)$ is the Stein factorization of $\mathbf{w} \in \mathbf{W}$.

Proofl By ([5], 4.3), the assertion is true for reduced $U \backslash \mathbf{W}$. Thus therel exists for every $w \in \mathbf{W}$ a commutative diagram

with some homeomorphism h_{w}. The mapping h_{w} is biholomorphic, since both id $\mathrm{x} \tau_{w}$ and τ_{Φ} are quotient maps.

For the remainder of this work, we let therefore $\pi_{\phi}:=\tau_{\psi}: U \| \rightarrow U_{\phi}:=S_{w} \mid$ for $w \in \mathbf{W}$ arbitrary, andl $\phi_{s t}:=p_{V} \circ \Phi: W \times U_{\phi} \rightarrow V \mid$

2.2. Effectively parametrized families

Let $\phi: \mathbf{W} \times \mathbb{U} \rightarrow \mathbf{V}$ be a holomorphic map between connected complex spaces, and let $\operatorname{Hol}(U, V) \mid:=\{\alpha \mid: U l \rightarrow \mathbf{V}: \alpha$ holomorphic $\}$, Hol (U) := Holl (U, U) | Aut $(U):=\{\alpha \in$

Holl (U) : α biholomorphic) . The evaluation map $\mathrm{Hol}(\mathbb{U}, \mathbf{V}) \times \mathbb{U l} \rightarrow \mathbf{V}$ will be denoted by $E_{U, V} \backslash$ or by E_{U}, if $U=\mathbf{V}$ (or by E, if the meaning is clearl from the context). For $u \in U|\cup \cup \subset U, H| \subset H o l l(U, V)$, wedenote by $\cdot u$ thecomposition $E_{U, V} \circ j_{U}: H o l(U, V) \rightarrow$ Holl ($\mathbf{U}, \mathbf{V}) \times U \|, \mathbf{V}$, and we let $\left.H U^{\prime}:=E_{U, V} \backslash H \mid \times \mathbf{U}^{\prime}\right)$, and $H u:=H\{u\} \mid$ We shall say that W is (almost) effectively parametrized, if the natural map $\rho_{\phi}: \mathrm{W} 3 \mathrm{w} \mapsto \phi(\mathrm{w},) \mid. \in$ $\mathrm{Hol}(\mathbf{U}, \mathbf{V})$ is injective (or , respectively, has discrete fibres).

Letl $\phi_{1}: W_{\mathbb{1}} \times \mathbf{V} \rightarrow V_{\mathrm{d}}$ be another holomorphic map between connected complex spaces. When no ambiguity can arise, we denotel by $W_{1} \circ W$ the image of $W_{\mathrm{l}} \mathrm{x} \mathrm{W}$ under $\rho_{\phi \mid} \circ\left(\mathrm{id} W_{1} \mathrm{x}\right.$ $\phi)$; in particular, $\alpha \circ W:=\{\alpha\} \circ W=\rho_{\alpha \circ \phi}(W) \mid$ for $\alpha \in \operatorname{Hol}\left(V, V_{1}\right)$ |

If U I is compact, then $\mathrm{Holl}(\mathbf{U}, \mathbf{V})$ admits a unique complex structure such that $E_{U, V}$ and all possible ρ_{ϕ} are holomorphic; if U is moreoven reduced, then the complex space Hol $(\mathbf{U}, \mathbf{V}$) carries the compact-open topology (see [2]).| For compact Ul, we henceforth tacitly assume $\mathrm{Holl}(\mathrm{U}, \mathrm{V})$ to be endowed with this complex structure. Note that then, according to $0.2, \mathbf{N U} \mathbf{'}^{\prime}$ and $\rho_{\phi} \emptyset$ W') carry the analytic image structure, whenever $\mathbf{H} \hookrightarrow \mathrm{Hol}(\mathbf{U}, \mathbf{V})$, $\mathbf{U}^{\prime} \hookrightarrow U \| \mathrm{W}^{\prime} \hookrightarrow W \backslash$ with proper $E_{U, \eta} \|_{H \times U} \mid$ or $\rho_{\phi}\left|W^{\prime}\right|$

It is well known that Aut (\mathbf{U}) is open in $\operatorname{Holl}(\mathbf{U})$ for compact U; if, in addition, U is reduced, then Aut (\mathbf{U}) is also closed in $\mathrm{Holl}(\mathbf{U})$.

2.2.1 Lemma. Suppose that $\left(p_{U} \mid \phi\right): W \times U l \rightarrow U \mathbf{x} V$ isproper.

(i) Let W be almost effectivelyl parametrized. Then dim $\mathrm{W} \leq \operatorname{dim} \mathrm{V}$. If moreover every irreduciblel component of \mathbf{W} contains a surjective $\mathbf{w}: U \backslash \rightarrow V$, then $\operatorname{dim} \mathbf{W} \unlhd \mathbf{d},(\mathbf{V})=$ $\min _{v \in V} \operatorname{dim}_{u}{ }_{\mathbf{V}}$.
(ii) If some $u_{0} \in U$ isfinite (resp. surjective), then every $u \in U l$ is finite) (resp. surjective).

Proofl. We may assume that $\mathrm{U}, \mathrm{V}, \mathrm{W}$ are reduced; furthermore, a triviall argument shows that \mathbf{W} can be assumedl irreducible. Applying 2.1.1 to the family $\left(\phi\left({ }_{, ~, ~ u)}\right)_{u \in U}\right.$ yields (ii) and the first part of(i). Let \mathbf{V}^{\prime} be an irreducible component of \mathbf{V}. If $w \in \mathbf{W}$ is surjective, there exists an irreducible component \mathbf{U}^{\prime} of $U l$ with $w\left(\mathbf{U}^{\prime}\right) \mathrm{c} \mathbf{V}^{\prime}$. Then $\phi\left(\mathbf{U}^{\prime} \mathbf{x} \mathbf{W}\right) \subset \mathbf{V}^{\prime}$, whence $\operatorname{dim} \mathbf{W} \leq \operatorname{dim} \mathbf{V}^{\prime}$ by the first part of(i).
2.2.2 Lemma and Notation. If W is compact, then the analytic quotient $W \rightarrow \rho_{\phi} \backslash W$) exists. $\rho_{\phi}(\mathbf{W})$ together with this complex structurel will be denoted by $\rho_{\phi}[\mathrm{W}]$. The evaluation map $E_{U, V}: \rho_{\phi}[W] \rightarrow \mathbf{V}$ is holomorphic.

Proof. Let $\phi=\left(W \times U \xrightarrow{\pi_{*} \times \text { xid }} W_{\phi} \times U \xrightarrow{\phi_{s}} \mathbf{V}\right)$ be the simultaneous Stein factorization of the partial maps $\omega: \mathbf{W} \rightarrow \mathbf{V}$. Obviously, ρ_{ϕ} factors through $\pi_{\phi \mid}$ and ρ_{ϕ} defines an analytic equivalence relation on \mathbf{W}. If $\left.\rho_{\phi} \backslash W\right)$ is endowed with the quotient topology, then the natural map $W_{\phi} \rightarrow \rho_{\phi}(W)$ and the orbit maps $\cdot \boldsymbol{u}: \rho_{\phi}(W) \rightarrow \mathbf{V}$ are finite; hence, by ([8], 49.A
13), the analytic quotient $W_{\phi} \rightarrow \rho_{\phi}(W) \mid$ exists. Denotel the corresponding complex space by $\rho_{\phi}[W] ;$ then $\rho_{\phi}: W \rightarrow \rho_{\phi}[W]$ and $\rho_{\phi} \times \mathrm{id}_{U}$ are quotient maps, since $\mathscr{O}_{W_{\phi}}=\left(\pi_{\phi}\right)_{*} \mathscr{O}_{W}$. In particular, the evaluation map is holomorphic.

Note that, if $U /$ is compact, $\rho_{\phi}[\mathrm{W}]$ needl not coincide with the complex subspace $\rho_{\phi}(W) \hookrightarrow \operatorname{Hol}(\mathrm{U}, \mathbf{V})$-in general, the latter structurel is a substructure of that on $\rho_{\phi} \llbracket W \rrbracket$ Nevertheless, for non-compact U, when no such rivalry can occur, we shall introduce the notion of a reduced connected complex subspace of $\mathrm{Holl}(\mathrm{U} \| \mathbf{V})$:
2.23 Definition. Assume that $U l$ is non-compact. $I f \mid \mathbf{W}$ is compact, reduced and weakly normal, and if \mathbf{W} is effectively parametrized, then W is calledl a reduced connected compact w mplex subspacel of $\mathrm{Hol}(\mathrm{U}, \mathbf{V})$, expressed by the symbol $\mathbf{W} \underset{(\mathrm{rcc})}{\longrightarrow} \mathrm{Holl}(\mathbf{U}, \mathbf{V})$.

2.2.3.al Remarks.

(i) If \mathbf{W} isl reduced and compact, then the weak normalization of $\rho_{\phi}[W]$ is a reduced compact complex subspace of $\operatorname{Hol}(\mathbf{U}, \mathbf{V})$.
(ii) Let $W_{1} \underset{(r c c)}{\longrightarrow} \mathrm{Holl}(\mathrm{U}, \mathbf{V}), W_{2} \mid \underset{(r c c)}{\longrightarrow} \mathrm{Holl}\left(\mathbf{V}, V_{\|}\right)$. Then $W_{2}\left|\mathrm{o} W_{1}\right|$ carries a unique struc -1 turel of a reduced connected compact complex subspace of $\operatorname{Holl}\left(U \| V_{\|}\right)$, with which we shall always assume it to be endowed. Note that, in contrastl to the case $U l$ compact, the inclusion $W_{2} \mid \circ w_{1} \rightarrow W_{2} \circ W_{1}$ need not be an embedding; it is, though, if it is bijective.

2.3. Action of compact complex Lie groups

Let $U l$ be a connected complex space.
23.1 Lemma and Notation. Therel exists $\mathbf{A}(\mathbf{U}) \underset{(r c c)}{\hookrightarrow} \mathrm{Hol}(U)$ with id, $\in \mathbf{A}(U)$ such that the following condition holds: If $\phi: \mathbf{W} \times U \backslash U$ is holomorphic with reduced compact connected W, such that id ${ }_{U} \in \rho_{\phi}(W)$, then $\rho_{\phi}(W)$ c $\mathbf{A}(\mathbf{U})$ and $\rho_{\phi}: \mathbf{W} \rightarrow \mathbf{A}(\mathbf{U})$ is holomorphic.

In particular, A(U) admits no proper complex substructure, with respect to which the evaluation map $E_{U} \mid$ remains holomorphic.
$\mathbf{A}(U)$ is a compact complex Lie group and $\mathbf{A}(U)$ is a normal subgroup of Autl (U); if U is compact, then $\mathbf{A}(\mathbf{U})$ is centra 1 in the identity component \mid Aut ${ }_{0}(U) \mid$ of Aut $(U) \|$.

Proof.l By 2.2.2 and 2.2.1(i), therel exists an irreducible $\mathbf{A (U)} \underset{(\mathrm{rcc})}{\longrightarrow} \mathrm{Holl}(\mathrm{U})$ of maximall dimensionl with $\operatorname{id}_{U} \in \mathbf{A}(\mathbf{U})$. Then $\mathrm{id}_{U} \in \mathbf{A}(\mathbf{U})$ o $\mathbf{A}(\mathbf{U}) \underset{(\mathrm{rcc})}{\longrightarrow} \mathrm{Holl}(U) \|$, whence the inclusion α o $\mathbf{A}(\mathbf{U}) \rightarrow \mathbf{A}(\mathbf{U})$ o $\mathbf{A}(\mathbf{U})$ is bijective and therefore biholomorphic for all $\alpha \in \mathbf{A}(U)$. Thus $\mathbf{A}(\mathbf{U})$ c Aut (\mathbf{U}) and $\mathbf{A}(\mathbf{U})$ is a compact complex Lie group.

Let $W \underset{(\text { rcc) }}{\longrightarrow} \mathrm{Holl}(\mathrm{U})$ with id ${ }_{U I} \in W \mid$ and let W^{\prime} be an irreducible component of W that meets $\mathbf{A}(\mathbf{U})$. Then the composition $\mathbf{A}(\mathbf{U}) \stackrel{\cong}{\rightrightarrows} w_{0} \circ \mathbf{A}(\mathbf{U}) \rightarrow W^{\prime} \circ \mathbf{A}(\mathbf{U})$ is bijective and hence biholomorphic for all $w_{0} \in W^{\prime} \cap A(U) \mid$. Thus $\mid W^{\prime} \|$ c $\mathbf{A}(\mathbf{U})$ and hence $|W|$ c $\mathbf{A}(\mathbf{U})$. On the other hand, the composition $W \xrightarrow{\cong} W$ o id, $\rightarrow W$ o $\mathbf{A}(\mathbf{U})=\mathbf{A}(\mathbf{U})$ is injective and holomorphic, whence $\left(W, \mathscr{O}_{W}\right) \hookrightarrow \mathbf{A}(\mathbf{U})$ for a suitable complex substructure $\mathscr{\sigma}_{W}$ of 8 , By 2.1.1, the orbitl maps $\mathbf{A}(\mathbf{U}) \xrightarrow{\boldsymbol{u}} \mathbf{A}(U) \mid \boldsymbol{u} \hookrightarrow U$ are finite and hence locally biholomorphic. Thus no reducedl subspace of $\mathbf{A}(\mathbf{U})$ can admit a proper complex substructure with respect to which the evaluation map remains holomorphic. We conclude that, |f $\phi|: W| \times U / \rightarrow U /$ is as postulated, then $\rho_{\phi}(W)$ c $\mathbf{A}(\mathbf{U})$ and the inclusion $\rho_{\phi}[W] \rightarrow \mathbf{A}(\mathbf{U})$ is holomorphic, and hence so is $\rho_{\phi}: W \rightarrow A(U) \mid$
$\mathbf{A}(\mathbf{U})$ is normal in $\operatorname{Aut}(U)$, since $\alpha \circ A(U) \circ \alpha^{-1} \underset{(r<c)}{\hookrightarrow}$ Aut (U) for every $\alpha \in \operatorname{Aut}(U)$. If U is compact, then $\mathbf{A}(\mathbf{U})$ is a compact connected complex subgroup of the connected complex Lie group Aut ${ }_{0}(U)$ and hence is central.

In the last chapter, we shall make use of the following generalization of the above result:
2.3.2 Lemma. Let $\ldots \rightarrow U_{n+1} \xrightarrow{\alpha_{n}} U_{n} \rightarrow \ldots \xrightarrow{\alpha_{0}} U_{0}$ be a sequence of coverings, and let $W_{n} \underset{(r c c)}{\hookrightarrow} \operatorname{Hol}\left(\mid U_{n+1}, U_{n}\right) \mid$ with $\alpha_{n} \in W_{n}, n \in \mathbf{N}$.

Then $\left|W_{n}\right| \mathbf{c} A\left(U_{n}\right) \mid \mathbf{0} \alpha_{n}$ for $\mathbf{n} \ggg 0$, and the inclusion is holomorphic.
In particular, any $\mathbf{W} \underset{(r c c)}{\hookrightarrow} \mathrm{Hol}(U) \mid$ containing| a covering| al lies in $\mathrm{A}(\mathrm{U}) 0 \alpha$.
Proofl We may assume that alll W_{n} are irreducible. It suffices to show that $W_{n} \mathbf{0} \ldots 0 W_{n+k} \subset$ $A\left(U_{n}\right) \circ \alpha_{n} \circ \ldots \circ \alpha_{n+k}$ for some $k \geq 1$, since the α_{ν} are surjective and locally biholomoxphic. On the other hand, by 2.2.1(i), $W_{n} \mathbf{0} \ldots 0 W_{n+k} 0 \ldots 0 W_{n+k+l}=W_{n} 0 \ldots 0 W_{n+k} d 0 \alpha_{n+k+1} 0$ $\ldots \circ \alpha_{n+k+l}$ for all $n_{l} 1$, and for \mathbf{k} sufficiently large (depending on n). Thus, after suitably condensing| the given sequence, we may assume that $W_{n} \circ W_{n+1} \mid=W_{n} 0 \alpha_{n+1}$ for alll n, whence, in particular, $\left.\operatorname{dim} W_{n+1}\right\rfloor \leq \operatorname{dim} W_{n}$. Cutting off a sufficiently long initial sequence, we can assume that $\operatorname{dim} W_{n}=\operatorname{dim} W_{n+1}$ for all n. The inclusion $W_{n} \mathbf{0} \alpha_{n+1} \rightarrow W_{n} \mid 0 W_{n+1}$ is bijective and hence biholomorphic, and, utilizing its inverse, we obtain a holomorphic

$$
\phi:=\left(W_{n}\left|\times W_{n+1}\right| \rightarrow W_{n} \circ W_{n+1} \stackrel{\cong}{\rightarrow} W_{n} \text { व } \alpha_{n+1} \stackrel{\cong}{\rightarrow} W_{n}\right)
$$

with $\phi\left(., \alpha_{n+1}\right)\left|=\mathrm{id}_{W_{n}}\right|$ Thus $\rho_{\phi}\left(W_{n+1}\right) \subset \mathbf{A}\left(W_{n}\right) \mid$ and ρ_{ϕ} is finite, since so is $W_{n+1} \downarrow \rightarrow$ $\alpha_{n} \circ W_{n+1} \mid$ From $\operatorname{dim} W_{n} \geq \operatorname{dim} \mathbf{A}\left(W_{n}\right) \geq \operatorname{dim} W_{n+1} \mid=\operatorname{dim} W_{n}$, we infer that $W_{n} \cong$ $\mathbf{A}\left(W_{n}\right)$ is a torus」 Denotel by $g_{n}: \mathrm{C}^{\mathrm{A}} \rightarrow W_{n}$ the universal coveringl and assume that $g_{n}(0)=$ α_{n}. Let $E_{n+1}:=E_{U_{n+1} U_{n}} \circ\left(g_{n+1} \mid \times \mathrm{id}_{U_{n-1}}\right)\left|: \mathbf{C}^{k} \times U_{n+1}\right| \rightarrow U_{n} \mid$ anddenoteby $h_{n}: \mathbf{C}^{k} \rightarrow \mathbf{C}^{k}$
the linearl lifting of $\phi\left(\alpha_{n},.\right) \mid: W_{n+1} \rightarrow W_{n}$. Thenthereexistsaunique $E_{n+1}^{\prime}: \mathbf{C}^{k} \times U_{n+1} \rightarrow$ U_{n+1} with α_{n} o $E_{n+1}^{\prime} \mid=E_{n+1}$ and $E_{n+1}^{\prime}|(0,)|=.\operatorname{id}_{U_{n+1}} \mid$.

The simple-arrow part of the diagram

$$
\begin{array}{rllll}
\mathbf{C}^{k} \times U_{n+2} & & \xrightarrow{E_{m+2}} & U_{n+1} & \\
& & & \\
& \downarrow h_{n} \times \alpha_{n+1} & & \Downarrow \text { id } & \\
& & & \alpha_{n} & \\
\mathbf{C}^{k} \times U_{n+1} & & \xrightarrow{E_{n+1}^{\prime}} & U_{n+1} &
\end{array}
$$

is commutative, and from $E_{n+2}(0,) \mid.=\alpha_{n+1}=E_{n+1}^{\prime} \| \circ\left(h_{n} \times \alpha_{n+1}\right)(0,$.$) , weinferthathe$ entirel diagram is commutative, since α_{n} is a covering. Thus $\rho_{E_{n}}\left(\mathrm{C}^{k}\right) \circ \alpha_{n}=W_{n}$ (as subsets of $\operatorname{Hol}\left(U_{n+1}, U_{n}\right)$), and we can endow $V_{n}:=\rho_{E_{\mathbf{*}}}\left(\mathrm{C}^{k}\right) \mid$ with the complex structure given by the bijection $V_{n}\left|\rightarrow V_{n}\right| o \alpha_{n}=W_{n}$.

The diagram

$$
\begin{array}{ccccc}
V_{n+1} & \times & U_{n+1} \\
\downarrow & \xrightarrow{E_{v_{n+1}}} & U_{n+1} \downarrow \\
W_{n} \times U_{n+1} & \xrightarrow{E_{V_{n+1}} \nu_{n}} & \downarrow \\
U_{n}
\end{array}
$$

is commutative with locally biholomorphic vertical arrows; thus $E_{U_{w 1}}$ is holomorphic, whence $V_{n}\left|\underset{(r c c)}{\hookrightarrow} \operatorname{Hol}\left(U_{n}\right)\right|$. As id $U_{U_{0}} \in V_{n} \mid$ the assertion follows.
2.3.2.al Remark. Assume that U and \boldsymbol{W} are compact and that some $w_{0} \in W$ is a covering $\mathrm{Ul} \rightarrow \mathrm{v}$.

If $\rho_{\phi}(W) c \operatorname{Hol}(V) \mid$ a w_{0}, then the corresponding map $\bar{\rho} \mid: W \rightarrow \operatorname{Hol}(V)$ is holomorphic with image in Aut (V).
Proofl Evidently, $\rho_{\phi}=\left(W \xrightarrow{\bar{\rho}} \mid \mathrm{Holl}(V) \rightarrow \mathrm{Hol}(V) \circ w_{0} \hookrightarrow \operatorname{Hol}(U, V)\right) \downarrow$ and $\mathrm{Hol}(V) \rightarrow$ $\mathrm{Holl}(\mathrm{V})$ o w_{0} is biholomorphic, since w_{0} is surjective and locally biholomorphic. Furthermore, $|\bar{\rho}(W)| c \boldsymbol{A}(\boldsymbol{V})$, and $\operatorname{Autl}(\boldsymbol{V})$ is open in $\operatorname{Holl}(\boldsymbol{V})$.
2.33 Definition. Let $\mathbf{g}: U l \rightarrow V$ be a holomorphic map between connected complex spaces, and let $\boldsymbol{T} \square \boldsymbol{A}(\boldsymbol{U})$.
g is T - equivariant, if therel exists a map $g_{d}: T \rightarrow \boldsymbol{A}(V)$ with $\mathrm{g},(\mathrm{O})=0$ and $g .(\alpha) \circ g=g \circ \alpha$ for all $\alpha \in T$.
g is $\mathrm{T}-T^{\prime \prime}$-equivariant, if g is T -equivariant with $\mathrm{g},(\mathrm{T}) \mathrm{c} T^{\prime \prime} \square \boldsymbol{A}(\boldsymbol{V})$.

2.3.3.a Remarks. Let g be a T -equivariant.

(i) g_{al} is uniquely determined and is a homomorphism of complex Lie groups.
(ii) If $f_{m d} g=0$, then g_{d} is finite.

Proofl Let $v_{\mathrm{d}} \in U$ and considerl the commutative diagram

The mapping $\cdot g\left(u_{0}\right)$ is locally biholomorphic and $g_{*}(0)=0$; thus g_{\star} is a homomorphism of complex Lie groups. In particular, g_{\star} is uniquely determined by the equation $\cdot g\left(u_{0}\right) \circ$ o $g_{\star}=$ $g \circ \cdot u_{0}$.

If g is finite in u_{0}, then g_{d} is finite in 0 and hence everywhere.
2.3.4 Lemma. Let $\mathbf{g}: U \rightarrow \mathbf{V}$ be a holomorphic map betw een connected complex spaces.
(i) Let $\mathbf{T} \square \mathbf{A}(\mathbf{U}), T^{\prime \prime} \square \mathbf{A}(\mathbf{V})$ such that $g\left(T u_{0}\right) \mid$ c $T^{\prime \prime} g\left(u_{0}\right) \mid$ for some $u_{0} \in U J I f \mid$ $\bigcap_{u \in U} \mid T^{\prime \prime}{ }_{g} d_{u)}=0$ (e.gł if \mathbf{g} is surjective), then \mathbf{g} is $\mathbf{T}-T^{\prime \prime \prime}$-equivariant.
(ii) $I f \mid \mathbf{g}$ is proper with $g_{*} \mathscr{O}_{U} \mid=\mathcal{O}_{V}$, then g is $\mathbf{A}(\mathbf{U})$-equivariant.
(iii) Let $T^{\prime \prime} \square \mathbf{A}(\mathbf{V})$. If g is a covering, then therel exists a unique $\mathbf{T} \square \mathbf{A}(\mathbf{U})$ such that \mathbf{g} is $\mathbf{T}-T^{\prime \prime}$ - equivariant. In particular, $\operatorname{dim} \mathbf{A}(\mathbf{U}) \geq \operatorname{dim} \mathbf{A}(\mathrm{V})$.
(iv) Let $\mathrm{h}: \mathrm{V} \rightarrow V^{\prime \prime}$ be a covering, and let $\mathrm{T} \square \mathrm{A}(\mathrm{U})$. If g is surjective and h 0 g is T -equivariant, then g is T -equivariant.

Proofl (i) We may assume $\left.g\left(T u_{0}\right)=T " g \ u_{0}\right)$. Then $T " \mathbf{o g o t} \underset{\text { (rcc) }}{\longrightarrow} \mathrm{Holl}(\mathrm{U}, \mathrm{V})$ with $(g \circ T) u_{0}=\left(T^{\prime \prime} \circ g \circ T\right) u_{0}=\left(T^{\prime \prime} \circ g\right) u_{0} ;$ thus $T^{\prime \prime \prime} \circ \mathbf{g} \circ \mathbf{T}=T^{\prime \prime \prime} \circ \mathbf{g}=\mathbf{g} \circ \mathbf{T}$ by 2.2.1(i), and we conclude that $g(T u)|=T " g(u)|$ for all $u \in \mathbb{U}$. The maps $g_{u} \|:=(g|T u| \rightarrow T " g(u))$ are $A(T u)$-equivariant with $\left(g_{u}\right)_{*}: A(T u) \rightarrow A(T " g(u))=T^{\prime \prime} / T^{\prime \prime}{ }_{g(u)}$. As every $\left.T_{g(u)}^{\prime \prime}\right)$ is finite and $\bigcap_{u \in U} \mathrm{~T}_{g(u)}^{\prime \prime}=0$, therel exists a holomorphic homomorphism $g_{*} T \mid \rightarrow \mathrm{T}^{\prime \prime}$ such that every composition $\left.\mathbf{T} \xrightarrow{\mathbf{k a n}} \mathbf{A}(\mathbf{T u}) \xrightarrow{\left(g_{\mathrm{o}}\right)} \mid T^{\prime \prime} / T_{g(u)}^{\prime \prime}\right)$ factors through $g_{*} \downarrow$ By construction, $g_{*}(\alpha) \circ g=g \circ \alpha$ for all $\alpha \in T$.
(ii) Let $\phi:=g \circ E_{U}=\left(T \times U \xrightarrow{\text { id } \times \pi} T \times U_{\phi} \xrightarrow{\phi_{n}} \mathbf{V}\right)$ be the simultaneous Stein factorizationJ Then every $\phi_{s t}(t$,$) is biholomorphic, sincel \mathscr{O}_{V}=g_{*} \mathscr{Q}_{U}=g_{*} t_{*} \mathscr{O}_{U}=\phi(t, .)_{*} \mathscr{O}_{U} \mid=$ $\phi_{s t}(t \|),\left(\pi_{\phi}\right) \mathscr{O}_{U}=\phi_{s t}(t \mid \lambda), \mathscr{O}_{U_{t}}$ By 2.3.1, the assertion follows with $g_{\|}:=\rho_{\phi_{t}}$.

Assertion (iii) follows from (i) by applying Lemma 2.3.2 to the sequence of coverings

$$
\ldots \rightarrow U \xrightarrow{\text { id }} U \rightarrow \ldots|\rightarrow U \xrightarrow{g} V|
$$

with $W_{n}:=T^{\prime \prime} \circ g$.
Assertion (iv) is evident by (i) and (iii).

2.3.4.al Corollary. $\mathbf{A}(U \mathbf{x} \mathbf{V})=\mathbf{A}(\mathrm{U}) \times A(V)$.

 $\phi:=p_{U}$ o $E=\left(\mathbf{A}(U \times \mathbf{V}) \times(U \mid \times \mathbf{V}) \xrightarrow{\boldsymbol{x}_{0} \times \text { id }} A_{0} \times(\mathrm{U} \times \mathbf{V}) \xrightarrow{\phi_{d}} U\right) \mid$ be the simultaneous Stein factorization, and let $\psi:=\phi_{s t} \circ\left(\operatorname{id}_{A_{\mathrm{o}}} \times j_{v_{0}}\right) \|: A_{0} \times U \rightarrow A_{0} \mathbf{x}(\mathbf{U} \times \mathbf{V}) \rightarrow U$ for some fixed $v_{0} \in \mathbf{V}$. Then id, $\in \rho_{\psi}\left(A_{0}\right)$, whence $\rho_{\psi}\left(A_{0}\right) \subset \mathbf{A}(\mathbf{U})$ by 2.3.1, and therefore $p_{U}\left(\mathrm{~A}(U \mathrm{x} \mathbf{V})\left(u, v_{0}\right)\right)=\left(\rho_{\psi}\left(A_{0}\right)\right) u \subset A(U) u \mid$ forall $\boldsymbol{u} \in \mathbf{U}$. By Lemma 2.3.4(i), , p_{U} is $\mathbf{A}(U \times \mathbf{V})$-equivariant, and, symmetrkally, so is p_{V}. Evidently, $\left(\left(p_{U}\right)_{*} \mid\left(p_{V}\right)_{\bullet}\right)$: $\mathbf{A}(U \mathbf{X V}) \rightarrow \mathbf{A}(\mathbf{U}) \mathbf{x} \mathbf{A}(\mathbf{V})$ is injective, and the assertion follows.
2.3.4.b Corollary. Let $T, T \mid$ be tori and $\operatorname{le} \| \phi: T \mid x U \rightarrow \mathbf{T}$ be a holomorphic. $I f \mid$ some $\phi\left(t_{d},,\right): U \rightarrow \mathrm{~T}$ is constant, then ϕ factors through p_{T}.
Proof. $]$ We may assume $\left.t_{0}=0, \phi\left(t_{0},\right)\right)=[\mathrm{O}]$. T' acts effectively on $\mathrm{T}^{\prime} \times \mathrm{Ul}$ via addition in the first factor! By Lemma 2.3.4(i), ϕ is T^{\prime}-equivariant; thus $[0]=\phi(0,)=.(\phi$ o $(-t))(t),\left|=\phi_{\bullet}(-t)\right| \circ \phi(t, \mid) \mid$ i.e $\phi(t \mid) \mid,=\phi_{\mathbf{*}}(t)$.

Let $\mathbf{T} \square \mathbf{A}(\mathbf{U})$. By ([7],| Satz IV.IO.1), therel exists a holomorphic structurel on $|U| / T$ such that the quotient map g becomes holomorphic. Replacing this structure by $q_{*} \mathcal{O}_{U}$, we conclude that the analytic quotient $U \backslash \rightarrow|U| / T \mid$ exists; it will be denoted by $q_{T T}: U \| \rightarrow U / T$, We shall employ the following notation: $\left(Q_{U}: U \rightarrow U_{\infty}\right):=\left(q_{A(U)}: U \| \rightarrow U / A() U\right)$.
2.3.4.c Corollary.
(i) $Q_{U \times V}=Q_{U \mid} \times Q_{V}$.
(ii) The mapping $U l \rightarrow U_{\infty}$ d is functorial with respect to proper holomorphic mappings that satisfy $g . \mathcal{O}_{U}=8$,.
(iii) There exists a covering $U^{\prime} \rightarrow U$ such that every covering $\mathbf{g}: U_{1} \rightarrow U^{\prime}$ is $\mathbf{A}\left(U_{1}\right)$) equivariant. In particular, therel exists a covering| $g_{\infty d}:\left(U_{1}\right)_{\infty} \rightarrow\left(U^{\prime}\right)_{\infty} \mid$ with g_{∞} o $Q_{U_{1}} \mid=$ $Q_{U^{\prime}}$ a g.
Proof. (i) follows from 2.3.4.a, (ii) from 2.3.4(ii), to prove (iii), note that, by 2.2.1(i), , every covering $U^{\prime} \rightarrow U$ satisfies $\operatorname{dim} \mathbf{A}\left(U^{\prime}\right) \leq d_{0}\left|\left(U^{\prime}\right)\right|=\mathbf{d},(\mathbf{U})$. Thus. if $\mathbf{U}^{\prime} \rightarrow U$ is a covering with $\operatorname{dim} \mathbf{A}\left(\mathbf{U}^{\prime}\right)$ maximal, then every covering $U_{1} \rightarrow \mathbf{U}$ ' is $\mathbf{A}\left(U_{1}\right) \mid$-equivariant by 2.3.4(iii)) and 2.3.4(i).

2.4. Torsionl bundles over tori

Letl $U l$ be a connected complex space.
2.4.1. Definition. Let $\pi: U \backslash T$ be holomorphic, T a k-dimensiona1 torus. We shall say that π is a torsion bundle over \mathbf{T} with fibre U_{d}, if π is a U_{0}-bundlel with finite structure group such that the totall space of the associated principal bundle is connected.

Notation. $(\pi \mid: U \rightarrow T) \mid \in \mathscr{F}_{k}$ with fibre U_{d}. Sometimes we also say $U \in \mathscr{F}_{k}$, if there exists $(\pi: U l \rightarrow T) \in \mathscr{F}_{k}$ with some fibre. With this convention we let $\mathscr{F}:=\bigcup_{k>1} \mathscr{F}_{k}$.

2.4.1.al Remarks, examples, and notations

(i) Every connected complex space lies in $\mathscr{F}_{0} \backslash$ If $(\pi: U \rightarrow T) \in \mathscr{F}_{k}$ with fibre U_{0}, and $\left(\tau\left\{V \rightarrow T^{v}\right) \in \mathscr{F}_{l}\right.$ with fibre V_{0}, then $\pi \times \pi \in \mathscr{F}_{k+d}$ with fibre $U_{0} \times V_{0} \mid$ In particular, $U \mathrm{x} V \in \mathscr{F}$ ifl $U \in \mathscr{F}$ orl $V \in \mathscr{F}$. We shall seal later on that the converse holds, too.
(ii) Let $T:=\mathbf{C} / \mathbf{Z}+i \mathbf{Z} \mid$ and let $\pi_{j}: \left.T \rightarrow T \Lambda_{0} \frac{1}{5} \right\rvert\,$ be the \mathbf{Z}_{5}-principal bundle given by the \mathbf{Z}_{S}-action $\mathbf{Z}_{\mathrm{S}} \times T \ni(n, t) \mapsto t+\frac{n_{j}}{5} \in T$, where $1 \leq j \leq 4$. for every complex space U_{d} with non-trivial \mathbf{Z}_{s}-action, the U_{d}-bundlel $\pi_{j}\left\langle U_{0}\right\rangle$ associated to π_{j} is a torsion bundle over $\left.T \Lambda_{0} \frac{1}{5} \right\rvert\,$ with fibre U_{0}. The bundles $\pi_{j}\left\langle U_{0}\right\rangle \|$ and $\pi_{5-j}\left\langle U_{0}\right\rangle$ are isomorphic via $\sharp \mapsto-t \downarrow$ whereas $\pi_{j}\left\langle U_{0}\right\rangle$ and $\pi_{k}\left\langle U_{0}\right\rangle$ are not isomorphic for $k \neq 5,5-j$. The associated fibre spaces, however, and, a fortiori, their totall spaces, may be isomorphic. For instance, if $U_{0}=V^{5}$ for some V, where $\mathbf{Z}_{\boldsymbol{j}}$ acts by cyclic permutation of the coordinates, then the fibre spaces associated to the $\pi_{j}\left\langle U_{0}\right\rangle$ are alll isomorphic. On the other hand, if $U_{0} \mid=P$, with \mathbf{Z}_{5}-action $\left(n,\left(x_{0}: x_{1}\right)\right) \mapsto\left(x_{0}: \varepsilon^{n} x_{1}\right) \mid$ where $\varepsilon=\exp \left(\left.\frac{2 \pi i}{5} \right\rvert\,\right)$, thenl not even the tota1 spaces of $\pi_{1}\left\langle\mathbf{P}_{1}\right\rangle$ and $\pi_{2}\left\langle\mathbf{P}_{1}\right\rangle$ are isomorphic (see [5], 6.2).
(iii) Let $(\pi: U \rightarrow T) \in \mathscr{F}_{k}$ withl fibre U_{0}, and let $\pi^{\prime}: \mathbf{T}^{\prime} \rightarrow \mathbf{T}$ be the associated principal bundle. Then T^{\prime} is a k-dimensiona1 torus and $\pi 1$ is a covering. We may assume that π^{\prime} is a homomorphism and identify the structurel group Γ of π with Ker $\left.\pi^{\prime}\right\rfloor$ Assume that the Π-action on T^{\prime} is given by $(7, t) \| \mapsto \sharp+\tilde{\chi}(\gamma)$ with some $\tilde{\chi} \in \operatorname{Aut}(\Gamma) \downarrow$ and definel $\chi: \Pi \rightarrow$ Autl $\left(U_{0}\right)$ by $\left.\chi(\gamma)\right):=\tilde{\chi}^{-1}(-7)$ (where we consider Π as a subgroup of Aut $\left.\left(U_{0}\right)\right) \downarrow$ Then thenatural map $T^{\prime} x U_{d} \rightarrow U$ given by $(t, u) \sim(t+\tilde{\chi}(\gamma),(-\gamma)(u))$, coincides with the quotient map $q: T^{\prime} x U_{\mathrm{d}} \rightarrow\left(T^{\prime} \times U_{0}\right) / \operatorname{graph} \mid(\chi)$. Consider the cartesian square

$$
\begin{array}{ccc}
T^{\prime} \times U_{\mathrm{d}} & \xrightarrow{q} & U l \\
\downarrow p_{p^{\prime}} & & \downarrow \pi \\
T^{\prime} & \xrightarrow{\pi^{\prime}} & T
\end{array}
$$

and let T^{\prime} act on $T^{\prime} \times U_{\mathrm{d}}$ via addition in the first factorl Applying Lemma 2.3.4(iv) to $T^{\prime} \rtimes\left\{u_{0}\right\} \xrightarrow{q}\left\|q\left(T^{\prime} \times\left\{u_{0}\right\}\right) \mid \xrightarrow{\pi}\right\| T$, we infer from 2.3.4(i) that q is T^{\prime}-equivariant.| Moreover,

Therefore, we shall from now on consider $T^{\prime} \square A(U)$ in this sense.
(iv) Let S be a k-dimensional torus, and let $\chi]: \Gamma \rightarrow$ Aut (U_{0}) be a monomorphism from a finite subgroup Π of S into the automorphism group of some complex space U_{0}. Then, evidently, the map $\left(\mathrm{S} \times U_{0}\right) / \operatorname{graph}(\mid \chi) \rightarrow S / \Gamma \mid$, given by $(s, u) \mid \mapsto s+\Pi$, is a torsion bundle over $S / \Gamma \mid$ withl fibre U_{0}.

Conversely, by (iii), every $\pi \in \mathscr{F}_{k}$ arises in this way.
(v) Let $\left.(\pi: U \| \rightarrow T) \in \mathscr{F}_{k}\right]$ with fibre U_{0}, and let \mathbf{V} be a connected component of $\pi^{-1}(\mathbf{0}) \cong U_{0}$. Denote by $\mathrm{A} \subset T^{\prime} \sqsubseteq \mathbf{A}(\mathbf{U})$ the isotropy group of \mathbf{V}; then $\mathrm{A} \square \Pi:=\operatorname{Ker} \pi 1$ (π^{\prime} as in (iii)), and A stabilizes every connected component of $\pi^{-1}(0) \mid$ In particular, A contains every isotropy group Γ_{u} for $u \in \pi^{-1}(0)$. Thus $\pi_{\downarrow}=\pi^{\prime}=\left(T \mid \xrightarrow{\text { kan }} T^{\prime} / \Gamma_{0} \xrightarrow{\lambda} T\right)$ with some homomorphism $\lambda, \|$ and thel restrictions $\pi: T$, $u \rightarrow T, u \in \pi^{-1}(0)$, alll factor through $\lambda\rfloor$ As U is the disjoint union of the $T^{\prime} u, u \in \pi^{-1}(0) \downarrow$ we obtain a map (of sets) $\pi_{d}: U l \rightarrow T^{\prime} / \Delta \mid$ with $\pi=\lambda$ o $\pi_{c} ; \pi_{d}$ is holomorphic, since λ is locally biholomorphic.

The commutative diagram

immediately yields that $\pi_{d} \in \mathscr{F}_{k}$ with fibre \mathbf{V} and structurel group A. If $U=\left(T^{\prime} \mathbf{x}\right.$ $\left.U_{0}\right) / \operatorname{graph}(\chi)$ (according to (iv)), then $U I=\left(T^{\prime} \times V\right) / \operatorname{graph}(\psi) \mid$, where $\psi \mid:=(\chi|\Delta| \rightarrow$ Aut $(V))$.

Note that for compact reduced $U l$ the equation $\pi=\lambda$ o π_{c} is just the Stein factorization of π.

The following characterization of \mathscr{F}_{k} is one of the essential ingredients of the investigations performed in Chapter 5:
2.4.2 Lemma. Leti $m: U \| \rightarrow T$ be a holomorphic map ìnto a k-dimensional torus $T \|$ and assume that therel exists a k dimensional $\mathrm{T}^{\prime} \square \mathrm{A}(\mathrm{U})$ with $\pi\left(T^{\prime} u_{0}\right)=\mathrm{T}$ for some $u_{0} \in \mathrm{U}$.

Then $\pi \in \mathscr{F}_{k}$ with fibre $\pi^{-1}\left(\pi\left(u_{0}\right)\right)=: U_{0}$.
Proof.l By Lemma 2.3.4(i), the map π is T^{\prime}-equivariant with $\pi_{*}\left(\mathbf{T}^{\prime}\right)=\mathbf{T}$; in particular, π is locally trivial, and the diagram

commutes. Again by 2.3.4(i), E_{U} is T^{\prime}-equivariant (with respect to the additionl in the first factor), whence E_{U} is a covering. Thus every $\sharp \in T^{\prime}$ defines a map $\chi_{t}: \Pi=\operatorname{Ker} \pi_{*} \rightarrow$ Aut $\left(U_{0}\right) \mid$ suchthat $E_{U}^{-1}\left(E_{U}(t, u)\right)\left|=\chi_{t}(\Gamma) u\right|$ fora11 $u \in U$. Now $t\left(E_{U}\left(\gamma, \chi_{0}(\gamma)(u)\right)\right) \mid=$ $t\left(E_{U}(0, u)\right)=E_{U}(t, 0)=E_{U}\left(t+\gamma, \chi_{t}(\gamma)(u)\right)=t\left(E_{U}\left(\gamma, \chi_{t}(\gamma)(u)\right)\right)$ for all $t \in T^{\prime}, u \in$ U, whence $\chi_{t}=\chi_{d}$ for all $\| \in T$ '; in particular, $\chi:=\chi_{d}$ is a homomorphism, since $\chi\left(\gamma+7^{\prime}\right)=\chi_{\gamma}\left(\gamma^{\prime}\right)\left|\circ \chi_{0}(\gamma)=\chi\left(\gamma^{\prime}\right)\right| \circ \chi(\gamma) \mid$ forall γ, γ^{\prime}. Evidently, $E_{U}: \mathbf{T}^{\prime} \mathbf{x} U_{d} \rightarrow U$ factors through $T\left|x U_{0} \xrightarrow{\text { kan xid }}(T / \operatorname{Ker} \chi)\right| x U_{d}$, and we conclude that $\operatorname{Ker} \chi \mid=0$. Therefore π can be represented as in 2.4.1.a(iv).।
2.4.2.a Corollary. Let oa: $U \backslash \rightarrow \mathbf{A}(U)$ be holomorphic. Fix some $u_{0} \in U$ and define $\alpha_{n}: U \| \rightarrow U$ by $\alpha_{n}:=\left(U \xrightarrow{\alpha} \mathbf{A}(U) \xrightarrow{u_{0}} U\right)^{n}$ for all $n \in \mathbf{N}$.

Therel exists $\mathrm{k} \in \mathrm{N}$ such that $\left(\alpha \circ \alpha_{n}: U \rightarrow \alpha\left(\alpha_{n-1}\left(A(U) u_{0}\right)\right)\right) \in \mathscr{F}_{k}$ for all $n \gg 0$. Proof. We may assume $\alpha\left(u_{0}\right)=0$. Then $T_{n}:=\alpha\left(\alpha_{n}\left(A(U) u_{0}\right)\right) \mid \sqsubseteq A(U)$ and $T_{n+1} \sqsubseteq T_{n}$, whence $T_{n}=T_{n+1} \downarrow$ for $\mathrm{n} \gg 0$. Letting $\mathbf{k}:=\operatorname{dim} T_{n} \mid$ for $\mathrm{n} \gg 0 \mid$ thel assertion follows from Lemma 2.4.2, since $\alpha_{n}: U \| U$ factors through $\cdot u_{0}: T_{n-l} \rightarrow U$.

2.4.2.b Corollary. Let $U \mathbb{x} V \in \mathscr{F}_{k}|I f| \mathbf{V} \notin \mathscr{F}$, then $U \in \in \mathscr{F}_{k}$.

Proofl. Let $(\pi \mid: U l x \mathbf{V} \rightarrow \mathbf{T}) \in \mathscr{F}_{k}$. Composing π with some covering $T \rightarrow T$, we may assume $\mathrm{T} \square \mathbf{A}(\mathbb{U l x} \mathbf{V})$ (compare 2.4.1 a(iii)), and that $\pi_{\downarrow}: \mathbf{T} \rightarrow \mathrm{T}$ is homothetic.
Fix some $\left(u_{0}, v_{0}\right) \| \in U \times \mathbf{V}$ and considering $g:=\left(\mathbf{A}(U \mid \mathbf{X V})=\mathbf{A}(\mathbf{U}) \times \mathbf{A}(\mathbf{V}) \stackrel{\left(u_{0}, v_{0}\right)}{\rightarrow}\right.$ $U \operatorname{x} \mathbf{V} \xrightarrow{\boldsymbol{\pi}} \mathbf{T})$; evidently, $\mathrm{g}(\mathbf{T})=\mathbf{T}$. For $S \mid \in\{U \mid \mathbf{V}\}$ let $d_{S} \mid:=\lim _{n \rightarrow \infty} \operatorname{dim} \operatorname{Im}\left(T \mid \xrightarrow{P_{A(S)}}\right.$ $A(S) \xrightarrow{〕} A(U) \times A(V) \xrightarrow{g} T)^{n} ;$ then $\mathrm{S} \in \mathscr{F}_{d_{s}} \mid$ by 2.4.2.a, whence $d_{V} \mid=\mathbf{0}$. Thus the lifting $\tilde{g}: \widetilde{A(U)}|\times \widetilde{A(V)}| \rightarrow \tilde{T} \mid$ to the universal coverings with $\tilde{g}(0,0)=0$ satisfies the condition of 0.3.2.a, and we conclude that $\mathbf{T} \xrightarrow{P_{A(U)}} \mathbf{A}(\mathbf{U}) \xrightarrow{\hookrightarrow} \mathbf{A}(U \mid x V) \xrightarrow{g} \mathbf{T}$ is surjective, whence $d_{U l}=\mathbf{k}$.
2.4.3 Definition. Letl $\left(\pi_{j} \mid: U_{j} \rightarrow T_{j}\right)\left|\in \mathscr{T}_{k_{k}}\right|$ with fibre $V_{j}|j|=1,2 \mid$ A holomorphic map $f: U \rightarrow U_{2}$ is a \mathscr{F}-morphism, if it is $T_{1} \mid-T_{2}^{\prime}$-equivariant and fibre-preserving with respect tol π_{1}, π_{2}.

For brevity of expression, we employ the notation: $f: \pi_{1} \rightarrow \pi_{2}$,

2.4.3.a Remarks.

(i)If $f \ddagger \pi_{\downarrow} \rightarrow \pi_{2}$, therel exists a commutative diagram of holomorphic mappings

$$
\begin{array}{rlllll}
T_{1}^{\prime} \times V_{1} & \xrightarrow{q_{1}} & U_{1} & \xrightarrow{\pi_{1}} & T_{1} \\
\downarrow f . \times f_{0} & & \downarrow f & & \downarrow \bar{f} \\
T_{2}^{\prime} \times V_{2} & \xrightarrow{q_{2}} & U_{2} & \xrightarrow{\boldsymbol{\pi}_{2}} & T_{2}
\end{array}
$$

(ii) $f: U_{1} \rightarrow U_{2}$ is fibre-preserving, if f maps at least onel fibre of $\pi_{\|}$into ones of π_{2}.
(iii) A surjective holomorphic $f: U_{1} \rightarrow U_{2}$ is a \mathscr{F}-morphism, if and only if it maps some fibre of π_{1} intol one of π_{2}, and some orbitl of $T_{1} \|$ into one of T_{2}^{\prime}.
Proof. (i) The existence of the righthand rectangle is obvious. Let $f_{0}:=f \mid \pi_{1}^{-\|}(0) \rightarrow$ $\pi_{2}^{-1}(0)$. Then the lefthand rectangle commutes, since $q_{2}\left(f_{*}(t), \mathbf{f}_{,},(\mathbf{u})\right)=q_{2}\left(f_{*}(t)\right.$ $\left.\left(0, f_{0}(u)\right)\right)=f_{*}(t)\left(q_{2}\left(0, f_{0}(u)\right)\right)=f_{*}(t)\left(f\left(q_{1}(0, u)\right)\right)=f\left(t\left(q_{1}(0, u)\right)\right)=$ $f\left(q_{1}(t, u)\right)$.
(ii) and (iii) follow from 2.3.4.b, 2.4.1.a(v), and from 2.3.4(i).

3. PRELIMINARIES ON ISOMORPHISMS BETWEEN PRODUCTS

Let $f=(l f, r f): \mathrm{X} \times \mathrm{Y} \rightarrow U \mathrm{U} \times \mathbf{V}$ be a biholomorphic map between connected complex spaces. This is the starting position for both the cancellation and the decomposition problem. We shall now develop some techniques for reducing the situation to a simpler one.

3.1. Relations between the partiall maps

3.1.1 Lemma. $\operatorname{Led}(x, y) \in X x Y|(u \mid v)|:=f\left(x_{\downarrow} y\right)$.
(i) $\vec{y}=r f(, y)$ induces a biholomorphic map jiom $F:=\overleftarrow{y}^{-1} \mid(u)$ onto $\vec{u}^{-1}(y)$, whose inverse is given by $t=l f^{-\eta}(u,$.$) .$
(ii) $I f \mid \overleftarrow{y}$ is biholomorphic in x , then $\vec{u} \mid$ is biholomorphic in v .
(iii) $I f \mid$ every $\stackrel{\leftarrow}{y^{\prime}}$, where $y^{\prime} \in Y$, is biholomorpic, then so is every $\overrightarrow{u^{\prime}}$, where $u 1 \in \mathrm{U}$.

Proof. (i) From $i d_{F \times\{y\}}=f^{-1}$ o $\left.f\right|_{F \times\{y\}}=f^{-\psi} \mid$ o $\left.([u], r f)\right|_{F \times\{y\}}$ we infer $\left.u|\vec{y}|\right|_{F}=\mathbf{i d}$, and $\left.\vec{u} \vec{y}\left\|\left.\right|_{F}=\right\| y\right]\left.\right|_{F}$, and the assertion follows with a symmetry argument.

Assertion (ii) is evident by 1.2.1 a.
(iii) The partiall maps $\boldsymbol{y}^{\prime} \mid$ resp. $\overrightarrow{u^{\prime}}$ are all biholomorphic, if and only if $\left(l f, \mid p_{Y}\right) \mid: \mathrm{X} \times \mathrm{Y} \rightarrow$ $U \mathbb{x}$ Y resp. $\left(p_{U} \mid r f^{-1}\right): U \times \mathbf{V} \rightarrow U \times Y$ is biholomorphic. Thus the assertion follows froml $\left(p_{U}, r f^{-1}\right) \mid \circ f=\left(l f, p_{Y}\right)$.

3.1.1.al Corollary. If all $\mathfrak{y} \mid$ are biholomorphic, then $Y \cong V$.

3.1.1.b RemarkJ Let

be commutative and let $\mathrm{y}^{\prime}:=q_{11}(\mathrm{y})$.
Then $\overleftarrow{y^{\prime}} \circ p_{1}\left|=p_{U^{\prime}} \circ f^{\prime} \circ\left(p_{1} \times q_{1}\right)(., y)=p_{U^{\prime}} \circ\left(p_{2} \times q_{2}\right) \circ f(., y)\right|=p_{2} \circ \overleftarrow{y}$. In particular, if p_{1} is surjective, then y^{\prime} is constant, if y is.

3.2. Degenerating isomorphisms

3.2.1 Definition. Let $(x \mid \mathrm{y}) \in \mathrm{X} \times Y|(u \backslash v)|=f(x, \mathrm{y})$. f degenerates with respect to $\left(x_{1} \mathbf{y}\right)$, if the reduction of the map $(\overleftarrow{u} \vec{x} \vec{v} \overparen{y})^{n} \mid$ is constant for $\mathrm{n} \gg \mathbf{0}$. We say that \mathbf{f} degenerates, if f degenerates with respect to some ($x \backslash \mathrm{y}$).

3.2.1.a| Examples.

(i) If f is a product of isomorphisms $\mathrm{X} \rightarrow U, \mathrm{Y} \rightarrow V$, then e.g. every $\vec{v} \mid u \in \mathbf{V}$, is constant, whence f degenerates with respect to every (x, y y).
(ii) Let $\mathrm{X}=\mathrm{Y}=U \mathrm{~V}=\mathbf{V}$ be a one-dimensional torus, and let f be given by $\mathbf{f}(x, \mathbf{y})=$ $(2 x+y, x+y) \mid$ Then $(\overleftarrow{u} \vec{x} \vec{v} \overleftarrow{y})\left(x^{\prime}\right)\left|=2 x^{\prime}+|3 x+4 y|\right.$ for all $\left.x, x\right| \in X, y|\in Y,(u, v)|=$ $\mathbf{f}(x \mid y)$ Thus \mathbf{f} does not degenerate.

3.2.1.b Remarks.」

(i) If \mathbf{f} degenerates with respect to $(x \backslash y) \|$ then J ofo \boldsymbol{O} degenerates with respect to $(\mathrm{y}, x) \boldsymbol{l}$, and \boldsymbol{J} of ${ }^{-\mathbb{l}}$ degenerates with respect to $(u, v)=\mathbf{f}(x, y)$. It is not clear, whether e.g. f^{-1} degenerates.
(ii) Let X be compact, $\left(x_{0}, y \mathrm{y}, u_{\mathrm{d}}, v_{0}\right) \in \mathrm{X} \times \mathrm{Y} \times \mathrm{U} \times \mathbf{V}$. If $\mid\left(\overleftarrow{u}_{0} \mid \vec{x}_{0} \vec{v}_{0} \overleftarrow{y}_{0}\right)^{n} \|$ is constant for some fixed $n \in N$, then so is every $\left|(\hat{u}|\vec{x} \vec{v}| \underline{y})^{n}\right|$ (compare Lemma 2.1.1). In particular, if \mathbf{f} degenerates with respect to some $\left(x_{0}, y_{0}\right)$, then \mathbf{f} degenerates with respect to every $(x \ y)$, and the minimall n from the definition does not depend on (x, y).
(iii) Let

$$
\begin{array}{ccc}
X \times Y & \xrightarrow{f} & \mathrm{u} \times \mathrm{v} \\
1 \mathrm{PI} \times q_{1} & & 1 p_{2} \times q_{2} \\
X|\times Y| & \xrightarrow{f^{\prime} \backslash} & U^{\prime} \times V^{\prime}
\end{array}
$$

be commutative with surjective $p_{\|}$and biholomorphic \mathbf{f}^{\prime}, and assume that \mathbf{f} degenerates with respect to somel $(x \mid y) \mid$ Then, by 3.1.1.b, \mathbf{f}^{\prime} degenerates withrespectto $\left(p, \mid \times q_{1}\right)(x \mid y)$,

3.3. Simultaneous subdecompositions

33.1 Lemma and Notation. Let $Y_{1}:=\mathbf{Y} \mathbf{x}, y_{d}:=(\mathbf{y}, v) \in Y_{1}$, und let $S_{1} \mathbf{f}: \mathbf{x} \times Y_{1} \rightarrow$ $\mathbf{X} \times Y_{1}$ bel given by $\mathbf{S}, \mathbf{f}:=\left(f^{-1} \mathrm{x}\right.$ id,) o J_{V} o $\left(f \mid \mathrm{x}\right.$ id,). For $n a \geq 1$ led $Y_{n+1}:=$ $Y_{n} \times Y_{n}, y_{n+1}:=\left(y_{n}, y_{n}\right)$ und $S_{n+1} f:=S_{1}\left(S_{n} f\right)$. Then
(i) $S_{n+1} f\left|\circ S_{n+1} f\right|=\mathrm{id}_{X \times Y_{n+1}} \mid$ and
(ii) $p_{X} \circ S_{n+1} f\left(., y_{n+1}\right)\left|=(\overleftarrow{v} \overleftarrow{y})^{2 n}\right|$
for all $n \geq 0$.
Proofl It suffices to consider the case $n=0$. Then (i) is evident from the definition of $S_{\|} f$, and (ii) follows from $S_{1} f(.,(y, v))=\left(f^{-1} \mathbf{x}\right.$ id) $0 J 0(f(., y),[v])=\left(f^{-1} \mathbf{x} i d\right) \circ$ $(l f(., y),[v], r f(., y))=(\stackrel{\leftarrow}{v} \stackrel{\leftarrow}{y}, \vec{v} \stackrel{\leftarrow}{y}, \vec{y})$.
3.3.2 Definition. Let $(x, \mid y) \in X \times Y,(u \mid v) \mid=\mathbf{f}(x \mid y)$. We shall say that $(x \mid y)$ decomposes f, if the following conditions are fulfilled:
(i) For $\{(A, B),(C, D)\}=\{(X, Y),(U, V)\}$ with $a, b, c, d \in\{x, y, u, v\}$ accordingly, the systems of complex subspaces

$$
\begin{array}{ll}
\left\{\left((\stackrel{\leftarrow}{d} b)^{n}\right)^{-1}(a) \mid: n \in \mathrm{~N}\right\}, & \left\{\left((\stackrel{\leftarrow}{c} \vec{b})^{n}\right)^{-1}(a): n \in \mathrm{~N}\right\}, \\
\left\{\left((\vec{d} \stackrel{\leftarrow}{a})^{n}\right)^{-1}(b) \mid: n \in \mathrm{~N}\right), & \left\{\left((\vec{c} \vec{a})^{n}\right)^{-1}(b): n \in \mathrm{~N}\right)
\end{array}
$$

havel maximall elements $\left.A_{D}, \mathbb{A}, B_{D}, B_{C}\right\rceil$ respectively.
(ii) For $\{(\mathbf{A}, B\},\{C, D\}\}=\{\{X, Y\},\{U, \mathbf{V}\})$ with $\mathbf{A} \in\{\mathbf{X}, U\} \mid$ thel $\operatorname{maps} A_{C} \mathbf{x}$ $B_{C} \rightarrow C$ given by p_{C} of (if $\mathbf{A}=\mathrm{X}$) or by p_{C} o f^{-1} (if $\left.\mathbf{A}=U\right)$ are biholomorphic.
(iii) The isomorphism $\tilde{f}\left|: U_{X} \times V_{X}\right| \times U_{Y}\left|\times V_{Y}\right| \rightarrow X_{U}\left|\times Y_{U}\right| \times X_{V}\left|\times Y_{V}\right|$ induced by \mathbf{f} via (ii)| satisfies:

Each of the partial maps $R_{S} \mid \rightarrow S_{R}, S_{R} \rightarrow R_{S}$ given by $\tilde{f}, \tilde{f}^{-1} \mid$ and x, y, u, u (where $\mathbf{R} \in$ $\{U, \mathbf{V}\}, S \in\{X, Y\})$ is biholomorphic (i.e. the composition $U_{X} \rightarrow U_{X} \mid \mathbf{x}\{(\mathbf{u}, u, v)\} \xrightarrow{\tilde{f}}$ $X_{U} \times Y_{U} \times X_{V} \times Y_{V} \xrightarrow{p} X_{U}$, etc.).
finduces al simultaneous subdecomposition, if some (x, y) decomposes \mathbf{f}.

3.3.2.a Remarks.

(i) The condition 3.3.2(iii) is well-defined, since by construction $s \in S_{R} \cap S_{R \mid}$ for all possiblecombinations (i.e. $\stackrel{\leftarrow}{v} \stackrel{\leftarrow}{y}(x)\left|=l f^{-1}(l f(x, y), v)\right|=l f^{-1}(f(x, y))=\mathbf{x}$ etc.).
(ii) \mathbf{f} as in 3.2.1.a(i) induces a simultaneous subdecomposition, \mathbf{f} as in 3.2.1.a(ii) does not.
(iii) If $\left(x_{\|} y\right)$ decomposes f, then ($x_{\mid} y$) also decomposes $J \circ f$, and $f\left(x_{\|} y\right)$ decomposes f^{-1}.
(iv) Assume that f induces a simuhaneous subdecomposition and that $\mathrm{X} \cong U$ is inde \downarrow composable \mid Then $\mathrm{Y} \cong \mathbf{V}$.

In fact, if $X \neq \mid C^{0}$, then either $X=X_{U}$, and hence $U=U_{X}$, or $X=X_{V}$ and $U=U_{Y}$, In the first case, we conclude $\mathbf{V}=V_{Y} \cong Y_{V}=\mathbf{Y}$; in the second one, $\mathrm{Y} \cong U_{Y}\left|\mathbf{x} V_{Y}\right|=$ $U \times V_{Y} \cong X \times Y_{V}=X_{V} \times Y_{V} \cong V \mid$
3.3.2.b Example. With the notations of 2.4.1.a, let $\mathrm{X}=\mathrm{U}=\mathbf{T}$, and Y be the total space of $\pi_{1}\left\langle\mathbf{P}_{1}\right\rangle, \mathbf{V}$ that of $\pi_{2}\left\langle\mathbf{P}_{1}\right\rangle$. Then $\mathrm{X} \cong U l$ is indecomposable,, $\mathrm{X} \times \mathrm{Y}$ is isomorphic to $U \mid \mathbf{x} \mathbf{V}$ via the map induced by $T \times \mathbf{T} \times \mathbf{P}, \exists(s, t, x) \mapsto(3 s+5 t, s+2 t, x) \in T \times T \times \mathbf{P}_{1}$, but Y is not isomorphic to \mathbf{V}.
3.3.3 Lemma. Let

be a commutative diagram of holomorphic maps between connected complex spaces with f, biholomorphic. Assume that $p_{1}=\mathrm{id}$, or $p_{2} \mid=\mathrm{id}$,, and that $q_{11}=$ id $_{U}$ or $q_{2}=$ id V_{1}
$I f \mid\left(x^{\prime} \mid \mathrm{y}^{\prime}\right)=\left(p_{1} \mid(\mathrm{z}), p_{2}(\mathrm{y})\right)$ decomposes $\mid f$, then $\left(x_{1} \mid \mathrm{y}\right)$ decomposes f.
Proofl By 3.3.2.a(iii), we needl only consider the case $p_{2]}=$ id $_{Y}{ }_{*} q_{2]}=$ id $_{V+1}$ Then V_{X} and Y_{U} exist and are equal to $V_{X}^{\prime} \mid$ resp. $Y_{U^{\prime}}^{\prime} \mid$ From thel commutative diagram

$$
\begin{array}{lllllll}
X & \xrightarrow{\vec{\rightharpoonup}} & V & \xrightarrow{\bar{u}} & X & \xrightarrow{\vec{u}} & V \\
\downarrow p_{1} & & \| & & \downarrow p_{1} & & \| \\
X^{\prime} & \xrightarrow{\vec{b}} & V^{\prime} & \stackrel{\rightharpoonup}{u^{\prime}} & X^{\prime} & \xrightarrow{\vec{b}} & V^{\prime}
\end{array}
$$

(compare 3.1.11.b), we infer that $V_{Y} \mid$ exists and is equal to $V_{Y^{\prime}}^{\prime}$, and that X_{U} exists and is equal to $p_{1}^{-1}\left(X_{U^{\prime}}^{\prime}\right)$.

Symmetrically: $Y_{V} \mid$ exists and is equa1 to $Y_{V^{\prime}}^{\prime}, \|$ and U_{X} exists and is equal to $\left.q_{1}^{-1}\left(U_{X^{\prime}}^{\prime}\right)\right\rangle$.
From the commutative diagram

$$
\begin{aligned}
& \overleftarrow{y}^{-1}(u) \stackrel{\vec{\nu} \xlongequal{\rightrightarrows} \vec{u}^{-1}(y) \mid}{x}
\end{aligned}
$$

(compare 3.1.1.(i)), we infer that $p_{1}\left|\overleftarrow{y}^{-1}(u)\right| \rightarrow \overleftarrow{y}^{\prime-1} \mid\left(u^{\prime}\right)$ is welldefinedand biholomorphic.
Let now $S_{n} f \backslash S_{n} f^{\prime}$ be as in 3.3.1. By construction, the diagram

$$
\begin{aligned}
& \|_{p_{1} \text { xid }} \quad \downarrow q_{1} \times \text { id } \\
& \left.\left.X^{\prime} \times Y_{n}^{\prime} \quad \xrightarrow{S_{n} f}\right] \quad X^{\prime} \times Y_{n}\right]
\end{aligned}
$$

is well-defined and commutative.
Applying the above remarkl to $S_{n} \mid$, we conclude that
$p_{1}\left|\overleftarrow{y}_{n}^{-1}(x)\right| \rightarrow \overleftarrow{y^{\prime}{ }_{n}}{ }^{-1}\left(x^{\prime}\right)$ is well-defined and biholomorphic (where $\overleftarrow{y}_{n}=\left|S_{n}\right| f\left(, y_{,}\right)$: $\mathrm{X} \rightarrow \mathrm{X}$). Thus, by 3.3.1.(ii), $X_{V \mid}$ exists and $p_{\|}\left|X_{V}\right| \rightarrow X_{V^{\prime}}^{\prime} \mid$ is well-defined and biholomor phic. Symmetrically: $U_{Y} \mid$ exists and $q_{1} \mid U_{Y} \rightarrow U_{Y^{\prime}}^{\prime}$, is well-defined and biholomorphic.

From the commutative diagram

$$
\begin{aligned}
& X_{V} \mid \times Y_{V} \xrightarrow{r f} \quad V \\
& \cong \rrbracket_{p_{1} \times \text { id }} \quad \| \\
& X_{V 1}^{\prime} \mid \times Y_{V \mid}^{\prime} \xrightarrow{f f^{\prime \prime}} V^{\prime} \\
& \cong
\end{aligned}
$$

we infer that $r f\left|\left|X_{V}\right| \times Y_{V}\right| \rightarrow \mathrm{V}$ is biholomorphic. Symmetrically: $r f^{-1}\left|U_{Y}\right| \times V_{Y} \mid \rightarrow Y$ is biholomorphic.

The commutative diagram

$$
\left.\begin{array}{cccc}
X_{U} \times Y_{U} \mid & \xrightarrow{|f|} & U l \\
\downarrow p_{1} \times \text { idd } & & \| q_{1} \\
X_{U \mid}^{\prime} & \times & Y_{U \mid}^{\prime} \mid & \xrightarrow[\left|f^{\prime}\right|]{\longrightarrow}
\end{array} U^{\prime} \right\rvert\,
$$

yields that $l f\left|\left|X_{U}\right| \times Y_{U} \rightarrow U \|\right.$ is biholomorphic, since $\left.X_{U}\right| \times Y_{U} \mid=\left(p_{1} \times \text { id }\right)^{-1}\left(X_{U}^{\prime} \mid \times\right.$ $\left.Y_{U^{\prime}}^{\prime}\right), \| U=q_{1}^{-1}\left(U^{\prime}\right) \mid$ Symmetrically, $l f^{-1}| | U_{X}\left|\times V_{X}\right| \rightarrow \mathrm{X}$ is biholomorphic.

To verify condition 3.3.2.(iii), let $\mathrm{R} \in\{U, \mathrm{~V}\}, \mathrm{S} \in\{\mathrm{X}, \mathrm{Y}\}$, and denote by $\mathrm{j}: R_{S} \rightarrow$ $U_{X}\left|\times V_{X} \times U_{Y}\right| \times V_{Y} \mid$ the natura1 embedding given by $(u, v) \mid\left(\right.$ i.e $\mid U_{X} \rightarrow U_{X} \times\left\{\left(v \mid u_{\|} v\right)\right\}$ etc.), with corresponding $\mathrm{j}^{\prime}: R_{S \mid}^{\prime}\left|\rightarrow U_{X^{\prime}}^{\prime} \times V_{X^{\prime}}^{\prime} \times U_{Y^{\prime}}^{\prime}\right| \times V_{Y^{\prime}}^{\prime} \mid$ Consider the commutative
diagram

$$
\begin{aligned}
& R_{S} \quad \rightarrow \quad R_{S^{\prime}}^{\prime} \\
& \text { li }
\end{aligned}
$$

$$
\begin{align*}
& \boldsymbol{x} \times Y\left|\xrightarrow{p_{1} \times \text { id }} X^{\prime} \times Y\right| \\
& \boldsymbol{i} \quad \downarrow \boldsymbol{f} \quad \downarrow f^{\prime} \quad \downarrow \tilde{f}^{\prime} \\
& \boldsymbol{u} \boldsymbol{x} \boldsymbol{v} \xrightarrow{q_{1} \times i d} U^{\prime} \times V 1 \\
& \backslash \mid f \times r \cap \\
& X_{U} \times Y_{U} \times X_{V} \times Y_{V} \tag{l}\\
& \downarrow p \\
& X_{U \mid}^{\prime}\left|\times Y_{U \mid}^{\prime}\right| \times X_{V^{\prime}}^{\prime} \times Y_{V^{\prime}}^{\prime} \\
& \downarrow p \\
& S_{R} \\
& \longrightarrow \\
& S_{R}^{\prime} \mid
\end{align*}
$$

with $P:=q_{1} \mid$ id $x q, \times$ id $, Q:=p_{1}$ xid $x p$, xid.
If $R_{S} \nexists U_{X}$, then P IQ define l isomorphisms $\mathrm{j}\left(R_{S}\right) \rightarrow j^{\prime}\left(R_{S^{\prime}}^{\prime}\right)$, resp. $\mathrm{j}\left(S_{R}\right) \| \rightarrow j^{\prime}\left(S_{R^{\prime}}^{\prime}\right) \mid$, whence p o $\tilde{f} \mathrm{~d} \mathrm{j}: R_{S} \rightarrow S_{R}$ is biholomorphic.

Let now $R_{S}=U_{\boldsymbol{X}} \mid$ The diagram

$$
\begin{array}{cccc}
X_{U} \times Y_{U} \times X_{V} \times Y_{V} \quad \xrightarrow{p} & X_{U} \\
\downarrow Q & & \|_{\mathbf{p}} \\
X_{U \mid}^{\prime} \times Y_{U}^{\prime}\left|\times X_{V}^{\prime}\right| \times Y_{V^{\prime}}^{\prime} \xrightarrow{p} \mid & X_{U}^{\prime} \mid
\end{array}
$$

is clearly cartesian, and from $\left.\tilde{f}\left(\mathrm{j}\left(U_{X}\right)\right)=Q^{-\eta}\left(\tilde{f}^{\prime} \backslash \mathrm{j}^{\prime}\left(U_{X^{\prime}}^{\prime}\right)\right)\right)$ we infer that $p \mid \tilde{f}\left(\mathrm{j}\left(U_{X}\right)\right) \rightarrow$ $X_{U} \mid$ is biholomorphic, since $p\left|\tilde{f}^{\prime}\left(j^{\prime}\left(U_{X^{\prime}}^{\prime}\right)\right)\right| \rightarrow X_{U}^{\prime} \mid$ is.

3.4. Dimension-decreasing constructions

3.4.1. Consider at first the double-arrow part of the diagram
$X \times Y$
$\stackrel{f}{\Rightarrow} \quad \mathrm{u}$ x
$\stackrel{f-1}{\Rightarrow} \quad X \times Y$
$\searrow_{p^{\prime} \times i d} \searrow^{\text {id } \times 91} \searrow_{p^{\prime} \times i d}$
$\Downarrow\left(l f, p_{y}\right)$

$$
X I \times \mathbf{Y} \quad \Downarrow\left(p_{U}, r j^{-1}\right)
$$

$U \times V^{\prime} \Downarrow\left(l f, p_{y}\right)$
$X 1 \times \mathbf{Y}$

$$
U \times Y|\quad \swarrow \quad \stackrel{\swarrow}{\text { id }} \quad U \times Y| \quad \stackrel{\text { id }}{\Rightarrow} \quad U \times Y \mid
$$

which is clear| commutative. In particular, $\left(l f, \mid p_{Y}\right)$ is proper, if and only if so is $\left(p_{U} \mid r f^{-} \|\right)$. Assume now that $\left(l f, \mid p_{Y}\right) \mid$ and $\left(p_{U}, r f^{-1}\right)$ are proper, and let their Stein factorizations be given by the simple arrows (compare 2.1.1). As $p^{\prime} \backslash q^{\prime}$ are quotient maps, the abovel diagram can be commutatively enlarged by uniquely determined holomorphic arrows $f \mid: X \times Y \rightarrow$ Ul x $V^{\prime},(\mathrm{f}-1)^{\prime}: ~ U \mid x V^{\prime} \rightarrow X^{\prime} \times Y$ which are obviously inverse to eachl other.

Interchanging $U l$ and \boldsymbol{V}, ifallowed (i.e. if the corresponding arrows are proper), we obtain

$$
X \times Y 1 \quad \stackrel{f}{\Rightarrow} \quad \boldsymbol{u x} \boldsymbol{v} \quad \stackrel{f^{-1}}{\Rightarrow} \quad X \times Y
$$

and again we can insert unique holomorphic maps $f^{\prime \prime}: \mathrm{X}$ " $\times \mathrm{Y} \rightarrow \boldsymbol{U}$ " $\boldsymbol{x} V,\left(f^{-1}\right)^{\prime \prime}=$ $\left(f^{\prime \prime}\right)^{-11}: U^{\prime \prime} \boldsymbol{x} \boldsymbol{v} \rightarrow X^{\prime \prime} \boldsymbol{x} \mathbf{Y}$.
3.2.1.b (iii) and 3.3 immediately yield:
3.4.1.al Remark\| Let $(x \| y) \in X \times Y \mid$ and let $\left(z^{\prime}, y^{\prime}\right)=\left(p^{\prime}(x) \mid \mathbf{y}\right),\left(x^{\prime \prime} \backslash \mathbf{y}^{\prime \prime}\right)=(\mathbf{p} \mathbf{\prime \prime}(\mathbf{z}), \mathbf{y})$.
(i) If f degenerates with respect to $(x \mid y)$, then f degenerates with respect to $\left(x^{\prime}, y^{\prime}\right)$, and $f^{\prime \prime} \|$ degenerates with respect to ($x^{\prime \prime}, y^{\prime \prime}$).
(ii) If ($x^{\prime} \mid y^{\prime}$) decomposes f^{\prime}, or if ($x^{\prime \prime}, y^{\prime \prime}$) decomposes $f^{\prime \prime}$, then $(x \mid y)$ decomposes f.

Assume now that X is compact, i.e. that both constructions can be performed. We shall seel that they commutel (in the obvious sense). Applying the " -construction to $f^{\prime} \mid$ yields just as above

since the Stein factorization of ($r f^{\prime-1}$, id v)) is evidently given by the corresponding simple
arrows. Symmetrically, we obtain:

$X^{\prime \prime} \rtimes \mathrm{Y}$	$\stackrel{f^{\prime \prime}}{\Rightarrow}$	$\stackrel{f^{-1}}{\Rightarrow} \quad X^{\prime \prime} \times Y$			$\\left(p^{\prime}\right)^{\prime} \times$ id				
$\Downarrow\left(l r^{\prime \prime}, p_{Y}\right)$	$\left.\left(X^{\prime \prime}\right)\right\|^{\times}$	Y	$\\| H\left(P_{4}^{\prime \prime}, r^{\prime \prime-1}\right)$	$U^{\prime \prime} \mid \times V^{\prime}\\| \\|\left(l f^{\prime \prime}, p_{y}\right) \\|$	$\left(X^{\prime \prime}\right)^{\prime} \times Y$				
					\wedge				
$U^{\prime \prime} \rtimes \mathrm{Y}$	$\stackrel{\text { id }}{\Rightarrow}$		$U^{\prime \prime} \rtimes \mathrm{Y}$	$\stackrel{\text { id }}{\Rightarrow} \quad U^{\prime \prime} 1 \times \mathrm{Y}$					

and we conclude that $\left(\mathrm{f}^{\prime}\right)^{\prime \prime}=\left(\mathrm{f}^{\prime}\right)^{\text {' }}$.
Let now $|f|:=\left(\mathrm{f}^{\prime}\right)$) $:|X| \rtimes|Y| \rightarrow|U| \times|V|$ (although $\mathrm{Y}=|Y|$ it is convenient to mark eachl entry with the samel symbol), and let $\mid P:=(|p| \times \mathrm{id}):,=\left(\left(\mathrm{p}^{\prime}\right) " \times \mathrm{id},\right): \mathrm{X} \times \mathrm{Y} \rightarrow$ $|X| \rtimes|Y|\left|Q:=\left(q^{\prime \prime} \times q^{\prime}\right): U\right| \times v \rightarrow|U| \rtimes|V|$
3.4.1.b Remark. Let $(x \| y) \mid \in \mathbf{X} \rtimes Y$, and let $(|x| y),|=| P(x \backslash y)$.
(i) If $f \mid$ degenerates with respect to $(x \mid y) \mid$, then $|f|$ degenerates with respect to $(|x| y$,$) .$
(ii) If $(|x \|| y)$ decomposes $|f|$ then $(x \mid y)$ decomposes $f \mid$
(iii) The Stein factorization of every $\vec{v}{ }^{\dagger} \stackrel{\leftarrow}{\mathrm{y}}: \mathrm{X} \rightarrow U \rightarrow \mathrm{Y}$ and every $\vec{u} \overrightarrow{\mathrm{y}} \mid: \mathrm{X} \rightarrow V \rightarrow Y$ (with arbitrary $(u, v) \in U \times V) \mid$ has the form $X \xrightarrow{\mid p}|X \rightarrow Y|$

Proofl (i) and (ii) follow again from 3.2.1.b(iii) and 3.3.
(iii) By construction, all partiall maps $U^{\prime \prime} \rightarrow Y \mid V^{\prime} \rightarrow Y,\left(X^{\prime \prime}\right)^{\prime} \rightarrow U^{\prime \prime},\left(X^{\prime}\right)^{\prime} \rightarrow V^{\prime}$ are finite, and hencel so are the compositions $|X| \rightarrow|U \rightarrow| Y=Y,|X| \rightarrow|V| \rightarrow|Y|=Y$. On the other hand, $|p|$ is a quotient map with connected fibres.
3.4.2. We shall now present a similar construction that will take care of the non-compact factors.

Let $(x, y) \in \mathrm{X} \rtimes Y,(u, v)=f(x, y)$, denote by $X_{0}, Y_{0}, U_{0}, V_{0}$ the orbits $A(X) x$, $A(Y) y, A(U) u, A(V) v$, andlet $f_{0}:=f \mid X_{0} \times Y_{0} \rightarrow U_{0} \rtimes V_{\mathrm{d}}$ (compare 2.3.4.a). Applying the '-construction (3.4.1) to $f_{0}|\mathrm{o} \mathrm{J}|$ we obtain a commutative diagram

$$
\begin{aligned}
& X_{0} \times Y_{0} \xrightarrow{f_{0}} U_{d} \times V_{d} \\
& \downarrow \text { id } \times{ }^{\prime} p_{d} \quad \downarrow \text { id } \times x_{0} \\
& X_{0} \times Y_{0}\left|\xrightarrow{f_{0}} U_{0} \times V_{0}\right|
\end{aligned}
$$

\cong
As Y_{d}, V_{0} are orbits of $A(Y), A(V)$, respectively, therel exist connected compact complex subgroups $A^{\prime} \square A(Y), B^{\prime} \square A(V)$ such that ' $p_{0}=\left(q_{A \mid}: Y_{0} \mid \rightarrow Y_{0} / A^{\prime}\right)$ and ${ }^{\prime} q_{0} \mid=\left(q_{B^{\prime}}:\right.$
$\left.V_{d} \rightarrow V_{0} / B^{\prime}\right) \mid$ (compare2.3.4.c). Applying2.1.1 tothecomposition $(\mathrm{X} \times Y) \mid \times A(Y) \xrightarrow{\text { id }} \xrightarrow{x \times E}$ $X \times Y \xrightarrow{l f} U$ and to $(U \times V) \times A(V) \xrightarrow{\text { id }} \times E$. $U \times V \xrightarrow{l f^{-}-} \mathrm{X}$, we see that A^{\prime}, B^{\prime} do not depend on the choice of (x, y). Moreover, by 2.3.4.(i), f is $A^{\prime}-B^{\prime}$-equivariant. Thus, denoting by 'p,' q the quotient maps $\mathrm{Y} \rightarrow Y / A^{\prime}, V \rightarrow V / B^{\prime}$, , respectively, we arrivel at a commutative diagram

$$
\begin{array}{rcccc}
X \times Y \mid & \xrightarrow{f} & \text { uxv } & \xrightarrow{f^{-1}} & X \times Y \mid \\
\downarrow \text { id } \times^{\prime} p l & & \downarrow \text { id x'q } & & \downarrow \text { id } \times^{\prime} p \mid \\
X \times Y / A \mid & \xrightarrow{\prime f} U \backslash \times V /\left.B\right|^{\prime\left(f^{-1}\right)} \mid & X \times Y / A \mid
\end{array}
$$

where ' f and ${ }^{\prime}\left(f^{-1}\right) \mid$ are holomorphic and inverse to eachl other.
Again, we may interchange U and V to obtain

$$
\begin{array}{ccc}
X \times Y & \stackrel{f}{l} \quad \mathrm{u} \times \mathrm{v} \\
\downarrow \text { id } \times \text { "p } p & & \downarrow \text { ""xid } \\
X \times Y / A^{\prime} \mid & \xrightarrow{\prime f}\left|U / B^{\prime \prime}\right| x & V
\end{array}
$$

Finally, we can construct "('f) and '("f), which again coincide, and will be denoted by $f|: X| \times Y|\rightarrow U| \times V \mid$. The quotient maps $X \times Y \rightarrow X|\times Y|, U \times V \rightarrow U|\times V|$ will| be indicated by $P|=(\mathrm{id}, \mathrm{x} p \mid), Q|=\left({ }^{\prime} q x^{\prime} q\right) \mid$ respectively.
3.4.2.a Remark. Let $(x, y) \quad X x Y$,andlet $(\mathrm{sl}, \mathrm{yl})=\mathrm{Pl}(\mathrm{s}, \mathrm{y})$.
(i) If f degenerates with respect to (x, y), then $f \|$ degenerates with respect to $(x \| y \mid)$.
(ii) If $|x|, y \mid) \mid$ decomposes $f|\mid$ then (x, y) decomposes $f|$
(iii) Every $\hat{u} \mid \vec{x}: \mathrm{Y} \rightarrow \mathrm{X}$ and every $\hat{v}^{\hat{v}} \stackrel{\mid}{x} \cdot \mathrm{Y} \rightarrow \mathrm{X}$ factors through $p|: \mathrm{Y} \rightarrow \mathrm{Y}|$ such that the corresponding map $\mathrm{Y} \mid \rightarrow \mathrm{X}$ is finite on the images $p \mid(A(\mathrm{Y}) \mathrm{y})$ of the orbits of $A(Y)$.
3.43. Let now X be compact and let $\bar{f}:=\mid(f \mid): \bar{X} \times \bar{Y} \rightarrow \bar{U} \times \bar{V}$ (which does not coincide with $(\mid f)|\mid!)$; moreover, let $\bar{P}|:=|(P \mid)|: \mathrm{X} \mathrm{x} \mathrm{Y} \rightarrow \bar{X} \times \bar{Y}|$ and $\bar{Q}:=|(Q \mid)|: U \mid x V \rightarrow$ $\bar{U} x \bar{V}\rfloor$

Summing up, we arrivel at the commutative diagram

$X \times Y$		\xrightarrow{P}	$\nearrow \mid p \times$ id	$\bar{X} \times \bar{Y}$		
	$\chi_{\text {id }} \times \mathrm{pl}$					
		$X\|\rtimes Y\|$				
$\downarrow 1$		$\downarrow f \mid$		$\downarrow \bar{f}$		
		$U\\|\times V\\|$				
	\nearrow		V			
$\mathbf{u} \times \mathrm{v}$		\bar{Q}		$\bar{U} \times \bar{V}$		

3.4.3.a Remark\| $\operatorname{Let}(x, y) \in \mathbf{X} \mathbf{x}$, and let $(\bar{x} \mid \bar{y})=\bar{P}(x, y)$.
(i) If f degenerates with respect to $(x \mid y)$, then \bar{f} degenerates with respect tol $(\bar{x} \mid \bar{y}) \mid$.
(ii)| If (\bar{x}, \bar{y}) decomposes \bar{f}, then (x, y) decomposes f.

4. COMPLEX SPACES WITH ZERO-DIMENSIONAL FACTORS

This chapter provides the connecting link between the locall and the global situation.
Let $f: \mathrm{X} \times \mathrm{Y} \rightarrow \boldsymbol{U} \mathbf{x} \mathbf{V}$ be a biholomorphic map between connected complex spaces, and assume that $X_{\text {red }}=\{x\}$. For $y \in Y \mid$ let $\bar{y}:=(x, y) \mid$

Theorem. f induces a simultaneous subdecomposition.
M ore explicitly, we have. 1
(i) Every $(\mathbf{x}, \mathbf{y}) \in \mathbf{X} \mathbf{x} \mathbf{Y}$ decomposes f.
(ii) Let $\bar{y}=(x, y) \in \mathbf{X} \mathbf{x} Y,(u, v)=f(\bar{y}) \mid$ For $\mathbf{R} \in\{X, Y\}, S \in\{U, V\} \mid$ denote by $R_{S}(\bar{y}), S_{R}(\bar{y})$ |the subfactors \mid given by $\bar{y} \mid$ according to 3.3.2. then

$$
U_{X}(\bar{y})=(\stackrel{\leftarrow}{x} \vec{v})^{-1}(u), \quad X_{U}(\bar{y})=(\overleftarrow{u} \vec{y})^{-1}(x)
$$

and \bar{v} induces an isomorphism $U_{X}(\bar{y}) \rightarrow X_{U}(\bar{y})$;

$$
V_{X}(\bar{y})=(\vec{x} \vec{u})^{-1}(v), \quad X_{V}(\bar{y})=(\overleftarrow{v} \stackrel{t}{y})^{-1}(x)
$$

and $\stackrel{t}{t}$ induces an isomorphism $V_{X}(\bar{y}) \rightarrow X_{V}(\bar{y}) ;$

$$
U_{Y}(\bar{y})=\overleftarrow{v}^{-1}(x) \downarrow \quad Y_{U}(\bar{y})=\vec{x}^{-1}(v)
$$

and \vec{v} induces $a n$ isomorphism $U_{Y}(\vec{y}) \rightarrow Y_{U}(\bar{y})$ whose inverse is given by \overleftarrow{x}.

$$
V_{Y}(\bar{y})\left|=\overleftarrow{u}^{-1}(x)\right| \quad Y_{V}(\bar{y})\left|=\overleftarrow{x}^{-1}(u)\right|_{1}
$$

and \vec{u} induces an isomorphism $V_{Y}(\bar{y}) \mid \rightarrow Y_{V}(\bar{y})$ whose inverse is given by \vec{x}.
(iii) Let $\mathbf{y}^{\prime} \in \mathbf{Y}, \mathbf{S} \in\{U$, V $\}$. Then $X_{S}(\bar{y})=X_{S}\left(\bar{y}^{\prime}\right) \mid=: X_{S}$, and $S_{Y}(\bar{y})\left|=S_{Y}\left(\bar{y}^{\prime}\right)\right|=$: S_{Y}

Proofl. Let y $\in \mathrm{Y}$ be fixed, and let $\mathrm{S} \in\{U, V\} \mid$ By Theorem 1.4.1, $X_{S}(\bar{y}) \mid$ and $S_{X}(\bar{y}) \mid$ exist, and
(1) the relations postulated in (ii) are satisfied.
(2) $l f^{-1}$ defines an isomorphism $U_{X}(\bar{y})\left|x V_{X}(\bar{y})\right| \rightarrow \mathbf{X}$,
(3) the compositions $X_{U}(\bar{y}) \hookrightarrow X \xrightarrow{\stackrel{+-1}{v y}} X_{U}(\bar{y})$ and $X_{V}(\bar{y}) \hookrightarrow X \xrightarrow{\stackrel{t}{4 y}} X_{V}(\bar{y})$ are welldefined and biholomorphic.

Let now $Y \mid$ be the irreducible component of Y that contains y and assume from now on that y satisfies the following condition:
${ }^{(*)}$ For every y' in some neighbourhood of y , any embedding $X_{U}\left(\vec{y}^{\prime}\right) \hookrightarrow X_{U}(\bar{y})$ is an isomorphism.

Such points y exist, since $\operatorname{dim} X=0$.
Let $\phi:=\left(U \times \mathrm{V} \xrightarrow{f^{-} \mid} \mathrm{X} \xrightarrow{\stackrel{\leftarrow}{v /-}} \mathrm{X},(\mathrm{y})\right)$. Then $\phi(\mathrm{l}, v) \mid U_{X}(\bar{y}) \rightarrow X_{U}(\bar{y})$ is biholomorphic by (1) and (3); therefore $\phi\left({ }_{\cdot n} v^{\prime}\right)\left|U_{X}\left(\bar{y}^{\prime \prime}\right) \rightarrow X_{U}(\bar{y})\right|$ is an embedding and hence, by (1) and $\left(^{*}\right)$, an isomorphism for $\left(v^{\prime} \|\right.$ y") sufficiently close to (v, y). Using 1.1.2.a, we conclude that $\phi\left(u^{\prime \prime},.\right)$ is constant on $V_{X}\left(\bar{y}^{\prime}\right) \mid$ for ($\left.u^{\prime \prime}, y^{\prime}\right)$ sufficiently close to (u, y); in particular, if y^{\prime} is close to y and (u', $\left.v^{\prime}\right)=f\left(x, y^{\prime}\right)$, then $X_{V}\left(\bar{y}^{\prime}\right) \mid=\leftarrow^{\prime}\left(V_{X}\left(\bar{y}^{\prime}\right)\right)$ с $\mathrm{X},(\mathrm{y})$, , and as shown above, $\left|X_{U}\left(\mid \bar{y}^{\prime}\right) \cong X_{U}(\bar{y}),\right|$ On the other hand, by (1) and (2), X is isomorphic to every $X_{U}\left(\bar{y}^{\prime \prime}\right) \mid \times X_{V}\left(\bar{y}^{\prime \prime}\right), y^{\prime \prime} \in \mathrm{Y}$; thus $X_{V}\left(\bar{y}^{\prime}\right) \mid=X_{V}(\bar{y})$ for y^{\prime} close to y . This means (see (1)) that $\mathfrak{u}^{\prime}\left|y^{\prime}\right|$ is constant on $X_{V}(\bar{y})$ for y^{\prime} close to y and hence for all y' $\in \mathrm{Y}^{\prime}$. Thus, if y is chosen according to $\left(^{*}\right)$, then $X_{V}(\bar{y})$ is contained in every $X_{V}\left(\bar{y}^{\prime}\right)$, for y ' close to y or $\mathrm{y}^{\prime} \in \mathrm{Y}^{\prime}$; in particular, any embedding $X_{V}\left(\bar{y}^{\prime}\right) \hookrightarrow X_{V}(\bar{y}) \mid$ is an isomorphism for y' close to y. We can therefore interchange $U l$ and \mathbf{V} in the above considerations and obtain that every $X_{U}\left(\bar{y}^{\prime}\right) \mid$ contains $X_{U}(\bar{y}) \mid$ for $y^{\prime} \in \mathrm{Y}^{\prime}$. Using again (2), we conclude that $X_{U}\left(\bar{y}^{\prime}\right)\left|=X_{U}(\bar{y}), X_{V}\left(\bar{y}^{\prime}\right)\right|=X_{V}(\bar{y})$ for alll $\mathrm{y}^{\prime} \in \mathrm{Y}^{\prime}$, and hence, as Y is connected:
(4) $X_{U}\left(\bar{y}^{\prime}\right)\left|=X_{U}(\bar{y})=: X_{U}\right|$ and $X_{V}\left(\bar{y}^{\prime}\right)\left|=X_{V}(\bar{y})=: X_{V}\right|$ fora11 $y^{\prime} \in Y$]

Let $\psi \mid:=l f^{-1}$ o $\left(l f \mid\right.$ o $\left(\mathrm{id}, \mathrm{x} p_{1}\right), r f \mid$ o $\left.\left(\mathrm{id}, \mathrm{x} p_{2}\right)\right) \mid: \mathrm{X} \times \mathrm{Y} \times \mathrm{Y} \rightarrow \mathrm{X}$; then $\psi(, n(y, y))=i d$, for all y. Using 1.1.2.a, we see that $\psi(x, \ldots) \mid$ is constant on some neighbourhood of the diagonal in Y x Y, and from the lemma in 0.2 .2 we infer that evt ery| partial| map $\psi\left(x_{j}(\mathrm{y},).\right) \| \psi\left(x_{\|}(., \mathrm{y})\right)$ is constant. Thus $\left.f(x),\right) \mid$ defines an embedding
$Y \rightarrow \bigcap_{v \in V} \leftarrow^{-1}(x) \times \bigcap_{u \in U} \overleftarrow{u}^{-1}(x)$, since every $\overleftarrow{v} \stackrel{\leftarrow}{x}: Y \rightarrow X, \overleftarrow{u} \vec{x}: Y \rightarrow \mathrm{X}$ is constant. On the other hand, by 3.1.1, the maps $\overleftarrow{x}, \vec{x} \mid$ induce isomorphisms $\vec{x}^{-1}(v) \rightarrow \leftarrow_{v}^{-1}(x)\left|\overleftarrow{\leftarrow}^{-1}\right|$ $(u) \mid \rightarrow \overleftarrow{u}^{-1}(x)$, respectively, for alll $(u, v) \mid \in U l \times V$. We conclude that $\overleftarrow{v}^{-1}(x), \overleftarrow{u}^{-1}(x)$ do not depend on $(u, v) \mid$, and that $f\left(x_{\|}\right) \mid$defines an isomorphism $\mathrm{Y} \rightarrow \overleftarrow{v}^{-1}(\mathrm{~s}) \times \tau_{u^{-1}}(x)$ with inverse $r f^{-1}\left|\overleftarrow{v}^{-1}(x) \times \overleftarrow{u}^{-1}(x)\right| \rightarrow Y$. This yields

$$
\begin{array}{ll}
\vec{x}^{-1}(v)=\left((\vec{u} \vec{x})^{n}\right)^{-1}(y), & \overleftarrow{x}^{-1}(u)=\left((\vec{v} \overleftarrow{x})^{n}\right)^{-1}(y), \\
\overleftarrow{v}^{-1}(x)=\left((\overleftarrow{y} \overleftarrow{v})^{n}\right)^{-1}(u), & \overleftarrow{u}^{-1}(x)=\left((\vec{y} \overleftarrow{u})^{n}\right)^{-1}(v)
\end{array}
$$

for alll $n \geq 11$ Thus
(5) $S_{Y}(\bar{y}) \mid$ and $Y_{S}(\bar{y}) \mid$ exist for $S \in\{U \mid V\}$ and satisfy the relations postulated in (ii). Furthermore,
(6) $S_{Y}(\bar{y})={ }_{\mathrm{j}} S_{Y}$ does not depend on \boldsymbol{y}, and $\left.f(x),\right)$ defines an isomorphism Y -t $U_{Y}\left|\times V_{Y}\right|$ whose inverse is given by $r f^{-1}$.
(5) and (6) immediately yield:
(7) $Y_{S}(\bar{y})\left|=Y_{S}\left(\bar{y}^{\prime}\right)\right|$ forl alll $Y^{\prime} \in Y_{S}(\bar{y})$ |

By 1.4.1, therestriction $l f\left|X_{U}(\bar{y})\right| \times Y_{U}(\bar{y}) \rightarrow U$ is biholomorphic in (x, y), and hence, by (4) and (7), is biholomorphic in every ($x \|$ y') with $y^{\prime} \in Y_{U}(\vec{y})$. On the other hand, the reduction $\left((l f)_{\text {red }} \mid\left(X_{U}(\bar{y}) \rtimes Y_{U}(\bar{y})\right)_{\text {red }} \rightarrow U_{\text {red }}\right) \mid=\left(l f(x,) \mid.\left(Y_{U}(\bar{y})\right)_{\text {red }} \rightarrow\left(U_{Y}\right)_{\text {red }}\right)$ is biholomorphic by (5). Thus:
(8) $l f\left|X_{U}\right| \times Y_{U}(\bar{y}) \mid \rightarrow U$ is biholomorphic, and, symmetrically, so is $r f\left|X_{V}\right| \times Y_{V}(\bar{y}) \mid \rightarrow$ V]

Collecting what we havel shown up to now, we observe that
(ii) is proven by (1) and (5),
(iii) is proven by (4) and (6), and,
by (ii), (iii), (2), (6) and (8), every ($x \| y$) satisfies the conditions 3.3.2.(i) and 3.3.2.(ii).,
To complete the proof, it remains to verify the condition 3.3.2.(iii). Consider the commutative diagram of biholomorphic mappings

$$
\begin{array}{ccc}
\left(U_{X}(\bar{y}) \times V_{X}(\bar{y})\right)\left|\times\left(U_{Y} \mid \times V_{Y}\right)\right| & \stackrel{\bar{f}}{\rightarrow} & \left(\left.X\right|_{U} \times Y_{U}(\bar{y})\right)\left|\times\left(X_{V} \mid \times Y_{V}(\bar{y})\right)\right| \\
\Downarrow l f^{-1} \times r f^{-1} & & 1 \text { lf } \times r f \mid \\
X \times Y & f & u x v
\end{array}
$$

and denote every partiall embedding $R_{S}(\bar{y}) \hookrightarrow U_{X}(\bar{y}) \rtimes V_{X}(\bar{y}) \times U_{Y} \mid \rtimes V_{Y}, S_{R}(\bar{y}) \hookrightarrow$ $X_{U} \times Y_{U}(\bar{y}) \mid \times X_{V} \times Y_{V}(\bar{y})$ by $j\left(\right.$ Le. $U_{X}(\bar{y})\left|\rightarrow U_{X}(\bar{y})\right| \rtimes\{(v, u, v)\}$ etc. $)$.

By (ii), therel exists a commutative diagram

$$
\begin{align*}
& \left.U_{X}(\bar{y})|\rtimes\{v\} \xrightarrow{\mid \bar{f}(.,(u, v))}| \quad X_{U} \mid \rtimes Y_{U}(\bar{y})\right) \quad \hookleftarrow X_{U} \mid \times\{y\} \\
& 1 \text { lf }^{-1} \\
& X_{v} \tag{Ul}\\
& \xrightarrow{l f(., y)}
\end{align*}
$$

with biholomorphic vertical arrows. Thus $l \tilde{f} \propto j$ maps $\left.U_{X} \cap \bar{y}\right)$ biholomorphically onto $X_{U} \mid \mathrm{x}$ $\{y\}$ |

All we havel used to derive this diagram from the preceding one, was the fact that \overleftarrow{v} induces an isomorphism $U_{X}(\bar{y}) \rightarrow X$. Hence, by (ii), the same type of diagram exists, mutatisl mutandis, for $V_{X}(\bar{y})\left|, U_{Y}\right|, V_{Y}\left|, Y_{U}(\bar{y}), Y_{V}\right|(\bar{y}) \mid$, and we conclude:

$$
\begin{array}{clrl}
r f \circ j \mid & V_{X}(\bar{y}) & X_{V} \mid \rtimes\{y\} \\
l \tilde{f} \circ j \mid & U_{Y}(\bar{y}) & \{x\} \mid \times Y_{U}(\bar{y}) \\
r \tilde{f} \circ j . & \text { maps } & V_{Y}(\bar{y}) \mid \text { biholomorphically } & \text { ontol } \\
\{x\} \quad \mathbf{x} & Y_{V}(\bar{y}) \\
r \tilde{f}^{-1} \mid 0 j & Y_{U}(\bar{y}) & U_{Y} \mid \times\{v\} \\
r \tilde{f}^{-1} \mid 0 j & Y_{V}(\bar{y}) & \{u\}\left|\rtimes V_{Y}\right|
\end{array}
$$

Finally, therel exists a commutative diagram

$$
\begin{aligned}
& \left.X_{U} \times\{y\} \quad \stackrel{\bar{f}^{-1}}{\rightarrow} \quad U_{X}(\bar{y}) \times V_{X}(\bar{y})\right) \quad \hookleftarrow \quad U_{X}(\bar{y}) \times\{v\}
\end{aligned}
$$

(compare (3) for the diagonal in the lefthand rectangle), and we conclude that $\left|\tilde{f}^{-1}\right|$ o j maps X_{U} biholomorphically onto $\left.U_{X} \backslash \bar{y}\right) \times\{\mathrm{v}\}$. Symmetrically: $r \tilde{f}^{-1} \mid$ o j maps $X_{V} \mid$ biholomorphically onto $\{u\} \times V_{X}(\bar{y})$,

Thus, an even stronger condition than 3.3.2.(iii) is fulfilled.

5. COMPLEX SPACES WITH COMPACT FACTORS

Generalizing the situation of the preceding chapter, weconsider now biholomorphic mappings $f: \mathrm{X} \times \mathrm{Y} \rightarrow U \mathrm{~V} \times V$ with compact X . As demonstrated by Example 3.2.1.a(ii) (see also 3.3.2.a(ii)), f needl no longer induce a simultaneous subdecomposition; it will, however, if $\{\mathrm{X}, \mathrm{Y}, U, V\} \nsubseteq \mathscr{F}_{k}$ for all $k \geq 1$ - a condition that is of course fulfilled, if $\operatorname{dim} \mathrm{X}=$ 0 . This resultl is the basis for the subsequent| investigations conceming cancellability and decomposability.

5.1. The structurel induced by two decompositions

Let $f: \mathrm{X} \times \mathrm{Y} \rightarrow \mathbb{U} \times \mathbf{V}$ be a biholomorphic map between connected complex spaces, and assume that $X 1$ iscompact. Fix some $\left(x_{0}, y_{0}\right)|\in X \times Y|$ let $\left(u_{0}, v_{0}\right) \mid:=f(x, y)$, and considerl the sequence of holomorphic maps

$$
(*) \ldots \downarrow \rightarrow X \xrightarrow{\stackrel{\rightharpoonup}{\nu_{0}}} U \xrightarrow{\overrightarrow{v_{0}}} Y \xrightarrow{\overrightarrow{x_{0}}} V \xrightarrow{\stackrel{\rightharpoonup}{u_{0}}} X \xrightarrow{\stackrel{\rightharpoonup}{\nu_{0}}} U \rightarrow . .
$$

To simplify the notations, we denote by $S \xrightarrow{(*, l)} S^{\prime}$ the map $S \rightarrow S^{\prime}$ given by a subsequence of $\left(^{*}\right.$) that starts at S, consists of \downarrow arrows, and ends at S^{\prime} (where $\left\{S, S^{\prime}\right\}$ c $\{X, Y, U \| V\}$;
 $\left(\mathrm{S} \xrightarrow{(*, l)} \mathrm{S}^{\prime}\right)=\left(S\left|\xrightarrow{(*, k)} S_{\mathrm{d}} \xrightarrow{(*, m)}\right| S_{1}^{\prime} \xrightarrow{(\cdot, n)} \mathrm{S}^{\prime}\right)$ with suitable $k \mid n$.
5.1.1 Lemma. Let $\left\{\mathbf{S}, \mathbf{S}^{\prime}\right\} \subset\{\mathbf{X}, \mathbf{Y}, U, \mathbf{V}\}$ wirh corresponding $s_{d}, s_{d}^{\prime} \mid \in\left\{x_{0}, y_{d}, u_{0}, v_{0}\right\}$.
(i) $I f \mid \mathbf{1} \geq \mathbf{2}$, then $|S| \xrightarrow{(*, l)} S^{\prime} \mid$ factors through $\cdot s_{0}^{\prime}: ~ H o l l ~\left(S^{\prime}\right) \rightarrow$ S' with $s_{0} \mapsto$ id s^{\prime} (ii) $I f \mid \mathbf{S} \xrightarrow{(*, l)} S^{\prime}$ contains $X \mid \xrightarrow{(*, 10)} \mathbf{Y}$, then $\mathbf{S} \xrightarrow{(*, l)} S^{\prime}$ factors holomorphically through $s_{d}^{\prime}: \mathbf{A}\left(\mathbf{S}^{\prime}\right) \rightarrow \mathbf{S}^{\prime}$ with $s_{0 \mid} \mapsto$ id,,.

Proofl Seel 7.1.4.
S.1.2 Proposition. Let $l_{f} \mid:=\lim _{n \rightarrow \infty} \operatorname{dim} \operatorname{Im}(X \xrightarrow{(*, 4 n)} X)$.

For every $\mathbf{S} \in\{X, \mathbf{Y}, U \mid \mathbf{V}\}$ rhere $\operatorname{exists}\left(\pi_{S}: \mathbf{S} \rightarrow T_{S}\right) \mid \in \mathscr{F}_{l_{\|}}$with some connected fibre $F_{S} \mid$

In particular, if $\{\mathbf{X}, Y, \cup \backslash \mathbf{V}\} \not \subset \mathscr{T}_{k}$ for all $\mathbf{k} \geq 0$, rhen $f \mid$ degenerates with respect to $\left(x_{0}, u_{0}\right)$ |

Proofl By 5.1.1.| 2.4.2.a and 2.4.1.a(v), the map $S \xrightarrow{(\cdot 16)} \mathrm{S}$ gives rise to some $\left(\pi_{S}: \mathrm{S} \rightarrow\right.$ $\left.T_{S}\right) \mid \in \mathscr{F}_{l(S)}$ with connected fibre $F_{S} \mid$ As $\mathrm{S} \xrightarrow{(*, 4 n+4)} \mathrm{S}$ contains $\mathrm{X} \xrightarrow{(*, 4 n \|} \mathrm{X}$, we conclude that $\mathrm{I}(\mathrm{S})=l(X)=l_{f}$ for all $\mathrm{S} \in\{\mathrm{X}, Y, U, \mathrm{~V}\}$.
5.1.2.a Remark. Let $\mathrm{S} \in\{\mathrm{X}, \mathrm{Y}, \mathbf{U}, \mathbf{V}\}$ with corresponding $s_{0} \in\left\{x_{0}, y_{0}, u_{0}, v_{0}\right\}$, and let $\pi_{S}: S \rightarrow T_{S}$ be as in 5.1.2 with corresponding $T_{S}^{\prime} \square \mathbf{A}(\mathbf{S})$ (compare 2.4.1.a(iii)). By construction, $\mathrm{S} \xrightarrow{\left(\boldsymbol{*}_{4}^{n}\right)} \mathrm{S}$ factors through the inclusion $T_{S}^{\prime} s_{0} \hookrightarrow \mathrm{~S}$ of the orbitl $T_{S}^{\prime} s_{0}$ for $n \|$ w 0 . Furthermore, $\mathfrak{y}_{0}\left(T_{X}^{\prime} x_{0}\right)=T_{U}^{\prime} u_{0}, \vec{v}_{\mathrm{d}}\left|\left(T_{U}^{\prime} u_{0}\right)\right|=T_{Y}^{\prime}, y_{0}, \overrightarrow{x_{0}}\left|\left(T_{Y}^{\prime} y_{0}\right)\right|=T_{V}^{\prime} v_{0}, \mathfrak{u}_{\mathrm{o}}$ $\left(T_{V}^{\prime} v_{0}\right)=T_{X}^{\prime} x_{0}$.
5.1.2.b Corollary. $|I f| \operatorname{dim} \operatorname{Im}(X \xrightarrow{(*, 4)} \mid X)=\operatorname{dim} X$, then $\left(\pi_{X}\right)_{\text {red }}:{\underset{\Omega}{\text { red }}}^{\boldsymbol{X}} \rightarrow T_{X} \mid$ is biholomorphic.

Proof.| By 2.2.1, $\operatorname{dim} X\left|\geq d_{0}(X)\right| \geq \operatorname{dim} \mathbf{A}(X)$, and by 5.1.1.(i) and 2.3.1, $\operatorname{dim} \mathbf{A}(\mathbf{X}) \geq$ $\operatorname{dim} X\rfloor$ Thus $X_{\text {red }}=A(X) x_{0}$ and $\operatorname{dim} \mathrm{X}=l_{f}$, and we conclude that $\left(\pi_{X}\right)_{\text {red }}$ is locally biholomorphic, and hence biholomorphic, since l $F_{X} \mid$ is connected.

Recall now the diagram

that was constructed in 3.4.3.

SI. 3 Lemma. There existjinite holomorphic maps $\mathrm{g}, \mathrm{h}: \overline{\mathrm{X}} \rightarrow \mathrm{X}$ such that
(i) the Stein factorization of $X \xrightarrow{(*, 4)} \mid X$ is given by $(X \xrightarrow{(*, 4)} X)=\mathrm{g} 0 \quad|p|$ and
(ii) the Stein factorization of $\leftarrow v_{0}\left|\leftarrow_{0}\right| \overrightarrow{u_{0}}\left|\overrightarrow{y_{0}}\right|: \mathrm{X} \rightarrow \mathrm{X}$ is given by $\overleftarrow{v}_{0} \underset{x_{0}}{u_{0}} \overrightarrow{u_{0}} \overrightarrow{y_{0}}=\mathrm{h} 0|p|$

Proof Consider the following commutative diagrams derived from the above one:

$$
\begin{array}{lllll}
\mathrm{X} & \xrightarrow[(*, 2)]{\rightarrow} & Y & \xrightarrow[(* 2)]{\rightarrow} & X \mid \\
\| & & \downarrow p \mid & \nearrow & \| \\
X \mid & \rightarrow & Y \mid & \rightarrow & X \mid \\
\downarrow \mid p & \nearrow & \| & & \\
\bar{X} \mid & \rightarrow & \bar{Y} & &
\end{array}
$$

By 3.4.1.b(iii), thel diagonal arrows $\bar{X}|\rightarrow Y|$ are finite for both diagrams; moreover, by 3.4.2.a(iii), the diagonal arrows $\mathrm{Y} \mid \rightarrow \mathrm{X}$ arefiniteonevery $(p \mid)(A(Y)$ y) \mid Now, by 5.1.1.(i) and 2.3.1, the image of X under ($* \sqrt{ }$) is contained (set-theoretically) in the orbit $\mathbf{A}(\mathbf{Y}) y_{0}$, and, for symmetry reasons, $\left(\overleftarrow{u_{0}} \overleftarrow{x_{0}}\right)(\mathrm{X}) \subset \mathbf{A}(\mathbf{Y}) y_{\mathrm{d}}$ as well. Tbus, if we denotel by g resp. h the composite of the diagonal arrows in the corresponding diagram, the assertion is proven, sincel $|p|$ is a quotient map with connected fibres.
5.13.a Corollary. $I f|\operatorname{dim} \bar{X}|=\operatorname{dim} X$, then $\left(\pi_{X}\right)_{\text {red }}$ is biholomorphic.

Proof. Evident by 5.1.2.b.
5.1.3.b Corollary. If f degenerates, then so do $\mathrm{J} \circ f$ and f^{-11} (compare 3.2.1.b(i) and (ii)).

Proofl Evident by 5.1.3 and 3.2.1.b(i).
Let now ($\left.\pi_{R}: \mathrm{R} \rightarrow T_{R}\right) \in \mathscr{F}_{l_{f}}$, be as in 5.1.2 (where $\mathbf{R} \in\{\mathbf{X}, \mathbf{Y}, \mathbb{U} \mid \mathbf{V})$), with corresponding $T_{R}^{\prime} \square \mathbf{A}(\mathbf{R})$ (compare 2.4.1 a(iii)).

5.1.3.d Corollary. \boldsymbol{f} is $T_{X}^{\prime}\left|\mathbf{x} T_{Y}^{\prime}\right|-T_{U}^{\prime} \mid \mathbf{x} T_{V}^{\prime}$-equivariant.

Proofl The groupl isomorphism $f_{\downarrow}: \mathbf{A}(\mathbf{X}) \mathbf{x} \mathbf{A}(\mathbf{Y}) \rightarrow \mathbf{A}(\mathbf{U}) \mathbf{x} \mathbf{A}(\mathbf{V})$ is given by a matrix $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ with inverse $\left(\begin{array}{cc}\alpha^{\prime} & \beta^{\prime} \\ \gamma^{\prime} & \delta^{\prime}\end{array}\right)$. From 5.1.2.a, we infer $\alpha\left(T_{X}^{\prime}\right)=T_{U}^{\prime}$ and $\delta\left(T_{Y}^{\prime}\right)=T_{V}^{\prime}$, obviously, it remains only to show that $\beta\left(T_{Y}^{\prime}\right) \subset T_{U}^{\prime}$ and $\gamma\left(T_{X}^{\prime}\right) \subset T_{V}^{\prime} \mid$ Applying 5.1.2 and 5.1.2.a to \mathbf{J} o f_{*}, we obtain subgroups $T_{R}^{\prime \prime} \square \mathbf{A}(\mathbf{R})$ (where $\mathbf{R} \in\{\mathbf{X}, \mathbf{Y}, \mathbb{U} \mid \mathbf{V}\}$), with $T_{X}^{\prime \prime} \mid=$ $\left.\operatorname{Im}\left(\alpha^{\prime} \beta \delta^{\prime} \gamma\right)\right)^{n} \mid$ for $n \ggg 0$ and $T_{V}^{\prime \prime}=\gamma\left(T_{X}^{\prime \prime}\right), T_{Y}^{\prime \prime}=\delta^{\prime}\left(T_{V}^{\prime \prime}\right), T_{U}^{\prime} \|=\beta\left(T_{Y}^{\prime \prime}\right), T_{X}^{\prime \prime} \mid=\alpha^{\prime}\left(T_{U}^{\prime \prime}\right)$. Now, $\gamma^{\prime} \alpha \mid+\delta^{\prime} \gamma=0$ and $\alpha^{\prime} \beta \mid+\beta^{\prime} \delta=0$, whence $\alpha^{\prime} \beta \delta^{\prime} \gamma=\beta^{\prime} \delta \gamma^{\prime} \alpha$. We conclude that $T_{X}^{\prime \prime}=T_{X}^{\prime}$, whence, for symmeuy reasons, $T_{R}^{\prime \prime}=T_{R}^{\prime}$ in all other cases, and the assertion follows.

In general, however, f needl not be a \mathscr{T}-morphism between $\pi_{X \mid} \times \pi_{Y \mid}$ and $\pi_{U \mid} \times \pi_{V}$:
5.1.4.al Example. Let T be a one-dimensionall torus, and let $\mathrm{X}=\mathrm{Y}=\mathrm{U}=\mathbf{V}=\mathbf{T} \mathbf{x}$ P_{2}, where $P_{2} \hookrightarrow \mathrm{C}$ denotes the double point. Defining $f: \mathrm{X} \times \mathrm{Y} \rightarrow \mathrm{U} \times \mathrm{V}$ by $f((s, x),(t, y)):=((2 s+t+x y, x),(s+t+x y, y))$, one easily checks that $\left(\pi_{R} \nmid R \rightarrow\right.$ $\left.T_{R}\right)=\left(p_{T}: \mathbf{T} \times P_{2} \mid \rightarrow \mathbf{T}\right)$ for all factors \mathbf{R}. Thus f is not fibre-preserving with respect to $\pi_{X \mid} \times \pi_{Y}, \pi_{U} \times \pi_{V}+$

Fortunately, nothing of this kind can happen in the reduced case:

5.1.4 Lemma. \mathbf{f} is $\mathbf{a} \mathscr{F}$-morphism $\left|\pi_{X}\right| \times \pi_{Y \mid} \rightarrow \pi_{U \mid} \times \pi_{V}$, ifl onel of the following conditions is fulfilled:

(i) $\bar{f}: \pi_{\bar{X}} \times \pi_{\bar{Y}} \rightarrow \pi_{\bar{U}} \times \pi_{\bar{V} \mid}$
(ii) π_{X} is biholomorphic.
(iii) X is reduced.

Proofl By 5.1.3.c, we needl only show that f is fibre-preserving.
(i) Let $\lambda_{S}: S \rightarrow \bar{S}$ be the canonicall projection (i.e. $\lambda_{X}|=|p|$ etc.). As $S| \stackrel{(\bullet 4)}{\rightarrow} \mid \mathrm{S}$ factors through λ_{S}, the construction of π_{S} immediately yields $\pi_{S}=\pi_{\bar{S}} q^{\lambda_{S}}$. Thus, if ($\pi_{\vec{U} \mid \mathrm{x}}$ $\left.\pi_{\bar{V}}\right)$ o $\bar{f}=\bar{f}_{0}$ o $\left(\pi_{\bar{X}} \mid \times \pi_{\bar{Y}}\right)$ with a suitable holomorphic $\bar{f}_{d}: T_{\bar{X}} \times T_{\bar{Y}} \rightarrow T_{\bar{U}}\left|\mathbf{x} T_{\bar{V}}\right|$ then $\left(\pi_{U} \mid \times \pi_{V}\right) 0 f l=\left(\pi_{\bar{U}} \times \pi_{\bar{V}}\right) 0\left(\lambda_{U} \mid \times \lambda_{V}\right) 0 f=\left(\pi_{\bar{U}} \times \pi_{\bar{V}}\right) 0 \bar{f}\left|0\left(\lambda_{X} \mid \times \lambda_{Y}\right)\right|=$ $\bar{f}_{\mathrm{O}} \circ \circ\left(\pi_{\bar{X}} \mid \times \pi_{\bar{Y}}\right) \circ\left(\lambda_{\mathrm{X}} \mid \times \lambda_{Y}\right)=\bar{f}_{\mathrm{O}} \mid \circ\left(\pi_{X} \mid \times \pi_{Y}\right)$, i.e. f is fibre-preserving.
(ii) Let $S t \in\{U, \mathbf{V}\}$. Every composition $\mathrm{X} \rightarrow \mathrm{S} \rightarrow \mathrm{Y}$ of partiall maps is an immersion of the form $T_{X} \mid \rightarrow T_{Y}^{\prime}$ y with suitable y ; therefore every $\mathrm{Y} \rightarrow S \rightarrow \mathrm{X}$ factors through $\pi_{Y \mid}: \mathrm{Y} \rightarrow T_{Y}$. We conclude that \hat{x} resp. \vec{x} maps every fibre of $\pi_{Y \mid}$ into one of $\pi_{U \mid}$ resp. π_{V}; inotherwords, $l f\left(\pi_{X}^{-1} \pi_{X}(x) \mid \times \pi_{Y}^{-1} \pi_{Y}(y)\right)=l f\left(\{x\} \times \pi_{Y}^{-1} \pi_{Y}(y)\right) \mid \subset \pi_{U}^{-1} \pi_{U}(l f(x, y))$, andl $r f\left(\pi_{X}^{-1} \pi_{X}(x) \mid \times \pi_{Y}^{-1} \pi_{Y}(y)\right)$ с $\pi_{V}^{-1} \pi_{V}(r f(x, y))$,

Assertion (iii) follows from 5.1.3.al and from (i) and (ii) by induction on $\operatorname{dim} \mathrm{X}-\operatorname{dim} T_{X}$, since $T_{\bar{X}}\left|=T_{X}\right|$.
5.1.5 Theorem. Let $\mathrm{f}: \mathrm{X} \times \mathrm{Y} \rightarrow U \times \mathrm{X}$ be a biholomorphic map between connected complex spaces with X compact.
$I f \mid f$ degenerates, rhen suery (\mathbf{x}, y) $\in \mathbf{X} \times \mathbf{Y}$ decomposes f.
In particular, f inducesl a simultaneous subdecomposition, if $\{X \mid Y, U, V\} \nsubseteq \mathscr{F}_{k}$ for all $k \geq 1$.

Proofl We proceed by induction on $\operatorname{dim} \mathrm{X}$, noting that the case $\operatorname{dim} \mathrm{X}=0$ has been settled in Chapter 4.

Let $\operatorname{dim} \mathrm{X} \geq 1$. Then $\operatorname{dim} \bar{X}$ $\triangleleft \operatorname{dim} \mathrm{X}$ by Corollary 5.1.3.aן and \bar{f} degenerates by 3.4.3.(i). Thus, by induction hypothesis, every ($\overline{\mathrm{x}}, \overline{\mathrm{y}}) \in \bar{X} \mid \mathrm{x} \overline{\mathrm{Y}}$ decomposes \bar{f}, and the assertion follows from 3.4.3.(ii),

5.1.5.al Corollary. If f is a \mathscr{F}-morphism $\pi_{X} \times \pi_{Y \mid} \rightarrow \pi_{U \mid} \times \pi_{V \mid}$ (e.g| if X is reduced), then the corresponding isomorphism $F_{X} \mid \times F_{Y} \rightarrow F_{U \mid} \times F_{V \mid}$ betw een the jibres induces a simultaneous subdecomposition.

Proofl Clearly, $F_{X} \times F_{Y}\left|\rightarrow F_{U} \times F_{V}\right|$ degenerates.
Note that in Example 5.1.4.a, therel still exists some isomorphism $F_{X} \times F_{Y}\left|\rightarrow F_{U}\right| \times F_{V} \mid$ that induces a simultaneous subdecomposition. It would be (mildly) interesting, whether at least this statement remains true in general.

5.2. Cancellation

5.2.1 Theorem. Let $\mathrm{g}: \mathrm{X} \times \mathrm{Y} \rightarrow \mathrm{X} \times Z$ be a biholomorphic map between connected complex spaces, and assume that X, Y or $Z \mid$ is compact.
 If $\{X, Y, Z\} \not \subset \mathscr{F}_{k}$ for all $k \geq 1$, then $Y \cong Z$]

Proofl We may assume that X is indecomposable. Then the assertion follows from 5.1.3.b, 5.1.5 and 3.3.2.a(iv).
5.2.1.al Examples. X cancels in the sense of 5.2.1, if $\operatorname{dim} \mathrm{X}=0 \downarrow$ if X has vanishing first Betti number or non-vanishing Euler characteristic, if $\operatorname{dim} \mathbf{A}(\mathbf{X})=\mathbf{0}$ (in particular, if \mathbf{X} admits at most countably many holomorphic automorphisms), if X is Stein, etc. Further examples (with X compact and reduced) can be found in ([5], 1.3).

Conversely, G. Parigi has shown that for any $\mathrm{X} \in \mathscr{F}$ therel exist non-isomorphic Y, \mathcal{Z} with $\mathrm{X} \times \mathrm{Y} \cong \mathrm{Xl}$ x Z1 (see \|11]; he states this fact for compact reduced X only, but his proof is easily seen to work for general X as well).

An interesting question arising in this context is the following: If $\mathrm{X} \times \mathrm{Y} \cong \mathrm{X} \times Z$, what is the relation between Y and Z ?

In view of Example 5.1.4.a, it seems reasonable to restrict one's attention at first to the reduced case, where onel can find at least some structural similarity. By 5.1.2, 5.1.4 and 5.1.5.a, we obtain then commutative diagrams

$$
\begin{array}{ccc}
X \times Y & \stackrel{\cong}{\rightrightarrows} & X \times Z \\
\downarrow_{\pi_{X} \times \pi_{Y}} & & \downarrow_{x} \times \pi_{Z} \\
T_{X} \times T_{Y} & \stackrel{\cong}{\rightrightarrows} & \tilde{T}_{X} \times T_{Z} \\
\left(\mathbf{F \times} \times F_{1}\right) \times\left(\mathbf{F}^{\prime \prime} \times \mathbf{F I}\right) & \stackrel{\cong}{\rightrightarrows}\left(F \times F_{1}^{\prime \prime}\right) \times\left(F^{\prime \prime} \times F_{1}\right) \mid \\
\downarrow \cong \mid & \downarrow \cong \mid \\
\pi_{X}^{-1} \pi_{X}(x) \mid \times \pi_{Y}^{-1} \pi_{Y}(y) & \stackrel{\cong}{\rightrightarrows} \tau_{X}^{-1} \tau_{X}\left(x^{\prime}\right) \times \pi_{Z}^{-1} \pi_{Z}(z)
\end{array}
$$

However, therel is no reason for $\pi_{\boldsymbol{X}}^{-1} \pi_{X}(x)$ and $\tau_{\boldsymbol{X}}^{-} \mid \tau_{X}\left(x^{\prime}\right)$ to be isomorphic. Thusl we are faced with a much more difficult question than the decomposition problem, namely:

Given $\left(\pi_{j}: X \rightarrow T_{j}\right) \mid \in \mathscr{F}_{k}$ with fibre $X_{j}, j=1,2, \|$ such that therel exists a \mathscr{F}-morphism $h_{l}: \pi_{1} \rightarrow \pi_{2}$ with $h_{*}\left(T_{1}^{\prime}\right) \mid=T_{2}^{\prime}$, what is the relation between X, and X_{2} ?

In Chapter 7, at least a necessary condition for $Y, Z \mid$ to satisfy $X \times Y \cong X \times Z \mid$ with suitable X will be given.

A more restricted version of the cancellation problem is the ques tion of whether $\mathrm{X} \times \mathrm{X} \cong$ X x Y implies $\mathrm{X} \cong Y$. No counterexample with compact X, Y seems to be known. Shioda proved that no counterexample with tori X, Y can exist ([12]). Parigi’s varieties $Y \neq \mathbb{Z l}$ with $X \times Y \cong X \times Z$ satisfy by construction $Y \neq \mathbb{Z} \neq \mid Z$ 」

5.3. Decomposition with respect to \mathscr{P}-categories

Denote by \mathscr{E} the category of all compact connected complex spaces,
53.1 Definition. A subcategory $\mathscr{K} 1$ c \mathscr{E} is a \mathscr{P}-category, if it has thel following property: $\mathrm{X} \times Y \mid \in \mathscr{K}$ if and only if $X, Y \mid \in \mathscr{K}$.

53.1.a Remarks and Examples.

(i) \mathbf{C}^{0} lies in every non-empty \mathscr{P}-category. The intersection of \mathscr{P}-categories is a \mathscr{P} category.
(ii) Each of the following is a $\mathscr{P}_{\text {-category }} \not \mathscr{C}_{\|} \mid \mathscr{E}_{\text {red }}:=\{\mathrm{X} \in \mathscr{E} \mid: \mathrm{X}=\mathrm{X}\},, \mathscr{E}_{d}:=$ $\{X \in \mathscr{E} \backslash \operatorname{dim} X \mid=0\}, \mathscr{E} \backslash \mathscr{F}($ see 2.4.2.b) $,\{X \in \mathscr{C} \mid: X$ projective $),\{X \in \mathscr{C} \mid: X$ Moisezon $\},\{X \in \mathscr{E} \mid$ trdeg $\mathscr{A}(X) \mid=0\}$, $\{$ tori $\}$.
53.2 Theorem. Let U be a connected complex space, and let $\mathscr{K} 1$ c $\mathscr{E} \backslash \mathscr{F}$ be a \mathscr{P}-category.

There exists a unique decomposition $U I \cong U_{\mathscr{G}} \times U^{\prime}$ with $U_{\mathscr{G}} \in \mathscr{K} \mid$ such that U^{\prime} has no factor \mid in $\mathscr{K} \backslash \backslash\left\{\mathrm{C}^{0}\right\}$.

If $f|=(l f, r f)|: U_{\mathscr{E}} \mid \times U^{\prime} \rightarrow U_{\mathscr{B}} \times U^{\prime}$ is biholomorphic, then every partial map $l f^{j}\left({ }_{, 1} u^{\prime}\right), r f^{j}\left(u_{1}.\right) \mid$ (where $j= \pm 1 \|$) is biholomorphic, and every composition ($l f^{j}(u,) \mid$. $\left.r f^{-j}\left(. \| u^{\prime}\right)\right)^{n}$ is constantfor n sufficiently large.

Proof. Letl $f: U_{\mathscr{G}}\left|x U^{\prime} \rightarrow U_{\mathscr{G}}^{1}\right| \times U_{1}^{\prime}$ be biholomorphic, where $U_{\mathscr{G}}, U_{\mathscr{K}}^{1} \in \mathscr{K} \|$ such that $U^{\prime}, U_{1}^{\prime} \mid$ havel no factorl in $\mathscr{K} \mid \backslash\left\{\mathbf{C}^{0}\right\} . f$ degenerates with respect to every $\left(u, u^{\prime}\right) \in$ $U_{\mathscr{E}} \mid \times \mathbf{U}^{\prime}$, since $\mathscr{K} \mid$ с $\mathscr{E} \backslash \mathscr{F}$. Therefore, every ($\mathrm{u}, \mathrm{u}^{\prime}$) decomposes f, and hencel gives rise to a commutative diagram

$$
\begin{array}{ccc}
\left(F_{1}^{1} \times F_{-1}^{1}\right) \times\left(F_{-1}^{-1} \times F_{1}^{-1}\right) & \rightarrow & \left(F_{1}^{1} \times F_{1}^{-1}\right) \times\left(F_{-1}^{-1} \times F_{-1}^{1}\right) \\
\downarrow & & \downarrow \\
U_{\kappa} \times U^{\prime} & \rightarrow & U_{\kappa}^{1} \times U_{1}^{\prime}
\end{array}
$$

according to 3.3 .2 (we choosel this new notation, in order to avoid e.g. $U_{\mathscr{G}}^{1}$ appearing as an index; moreover, we do not distinguish between the subfactors that are biholomorphically correlatedl by 3.3.2.(iii)).|

If $l f\left(., u^{\prime}\right)$ were not biholomorphic, then $\left.F_{-1}^{1}\right\rfloor \in \mathscr{K} \backslash \backslash\left\{\mathbf{C}^{0}\right\}$ or $F_{1}^{-1} \in \mathscr{K} \backslash\left\{\mathbf{C}^{0}\right\}$, whence U_{1}^{\prime} or U^{\prime} would admit a factorl in $\mathscr{K} \backslash \backslash\left\{\mathbf{C}^{0}\right\}$.

Thus all $l f\left(, u^{\prime}\right)$ and, symmetrically, alll $l f^{-\eta}\left(., u_{1}^{\prime}\right)$ are biholomorphic, whence, by Lemma 3.1.1.(iii), so are all $r f^{-1}\left(u_{\|},\right), r, r f(, \mathrm{u})$.

The theorem is now completely proven, since, in particular, $U_{\mathscr{G}} \cong F_{1} \mid \cong U_{\mathscr{B}}^{1}$ and $U^{\prime} \cong F_{-1}^{-1} \cong U_{1}^{\prime}$ (compare 3.3.2.(i)).
53.3 Lemma. Let $f: \mathbf{X} \times \mathbf{Y} \rightarrow U \times V$ be an isomorphism in \mathscr{E}, and assume that $\mathbf{X} \neq \mathbf{C} 0$ is indecomposable and not contained in \mathscr{F}.

There exists a unique $\mathbf{S} \in\{\mathrm{U}, \mathrm{V}\}$ with $\mathbf{S} \cong \mathbf{X} \times S_{0}$ such that the resulting isomorphism $\bar{f}: \mathbf{X} \times \mathbf{Y} \rightarrow \mathbf{X} \times\left(S_{0} \mid \times \mathbf{S}^{\prime}\right)\left(\mathbf{w}\right.$ here $\left\{\mathbf{S}, S^{\prime}\right\}=\{\mathbf{U}, \mathbf{V})$) satisfies. \mid Every partial \mid map $\overline{l f}^{j}(, \mathrm{n}), r \bar{f}^{j}(\mathrm{x},$.$) is biholomorphic, and every \left(\bar{l}^{-j}(\mathrm{x},) \mid. 0 r \bar{f}^{j}(, \mathrm{~b})\right)$ " is constantfor $\mathrm{n}>$ >0 (where $b \in Y$ or $b \in S_{0} \times S^{\prime}$, according as $j=1$ or $j=-1$),

Proofl Fix some $\left(x_{0}, y_{0}\right) \in \mathrm{X} \rtimes \mathrm{Y}$ and consider the diagram corresponding to the simultaneous subdecomposition given by $\left(x_{0}, y_{0}\right)$ (note that f degenerates):

We may assume that $\mathrm{X}=X_{U}$, since X is indecomposable; denotel by \bar{f} the resulting isomorphism $X \times Y=X_{U} \times Y \rightarrow U_{X} \times\left(U_{Y} \times V_{Y}\right) \cong X \times\left(U_{Y} \times V_{Y}\right)$. Then $\bar{l}\left(., y_{0}\right)$ and $l \bar{f}^{-1}\left(, r \bar{f}\left(x_{0}, y_{0}\right)\right)$ are biholomorphic by 3.3.2.(iii) \mid As Aut (X) is open in $\operatorname{Hol}(\mathrm{X})$, the holomorphic maps Y \exists y $\mapsto|\bar{f}(, y)| U_{Y}\left|\times V_{Y}\right| \ni(u \mid v) \mid \mapsto l \bar{f}^{-1}(, n(u, v))$ both havel their imageinAut (X). Thus all $l \bar{f}(., y), l \bar{f}^{-1}(.,(u, v))$ are biholomorphic, whence, by 3.1.1, so are all $r \bar{f}^{-1}(\mathrm{x},).|, r \bar{f}(\mathrm{x})$,$| Now \mathrm{X}$ is indecomposable and $\left(x_{0}, y_{0}\right)$ decomposes \bar{f}; therefore (compare 3.3.2.(i), (ii)) all $\left(\bar{l}^{j}(\mathrm{x}, .) \text { or } \bar{f}^{-j}(, \mathrm{~b})\right)^{\eta} \mid$ become constant| for n sufticiently large.

Assume now that in addition $\mathbf{V}=V_{Y} \xlongequal{\cong} \mathrm{X} \rtimes V_{0}$ with alll the postulated properties for the resulting isomorphism $\hat{f}\left|: \mathrm{X} \times \mathrm{Y} \rightarrow \mathbf{X} \times\left(U \mid \times V_{0}\right)\right|=\mathbf{X} \times\left(\mathbf{X} \times U_{Y} \mid \times V_{0}\right)$. Fixsome $(u, v) \in U_{Y} \mid \times V_{0}$, andlet $\phi:=l \hat{f}^{-1}(.,(., u, v)) \mid: X \mathrm{xX} \rightarrow X$. By construction, both
$\phi(x$,$) and \phi(, n)$ are contained in $\mathbf{A}(\mathrm{X})$ for all $x \in \mathrm{X}$, which can only happen, if every orbit map $\cdot \mathfrak{I}: \mathbf{A}(X) \rightarrow X_{\text {red }}$ is biholomorphic and if X is reduced in every smooth point of $X_{\text {red }}$ (see 1.1.2.b). Thus $\mathbf{C}^{0} \neq X \cong \mathbf{A}(X)$ in contradiction to $X \notin \mathscr{F}$.

53.4 Theorem. Let $\mathrm{X} \in \mathscr{E} \backslash \mathscr{F}$.

Then X admits a unique| decomposition (up to reordering) $\mid \mathbf{X} \cong X_{1}^{\prime} \rtimes \ldots \rtimes X_{\|}$| such that $X_{\lambda}^{1} \cong Y_{\lambda \lambda \lambda}^{m_{\lambda}}$ with $m_{\lambda} \geqslant 1$ and $X_{\lambda} \neq \mathbf{C}^{9}$ indecomposable and pairwise non-isomorphic for $1 \leq \lambda \leq l$.

If $\mid f \in$ Aut (X), then every partial \mid map $X_{\lambda}^{\prime} \rightarrow X_{\lambda}^{\prime}$ given by f or $f^{-\|}$is biholomorphic, and every composition of partial maps $\left(\left|X_{\lambda \mid}^{\prime} \rightarrow \prod_{\lambda \neq \lambda^{\prime}} X_{\lambda}^{\prime}\right| \rightarrow X_{\lambda^{\prime}}^{\prime}\right)^{n}$ is constant for $\mathbf{n} \ggg 0$. M oreover, therel exist permutations σ_{λ} of $\left\{1, \ldots, n_{\lambda}\right\}$ such that
$\bar{f}:=\left(J_{\sigma_{\|}} \mid \times \ldots \times J_{\sigma_{1}}\right) \mid$ of $: X_{1, \|}\left|\times \ldots \times X_{1, n \mid n} \times \ldots \times X_{l, \|}\right| \times \ldots \times X_{l, n \mid} \rightarrow X_{1, \|} \mid \times \ldots \times X_{l, n}$ (where $X_{\lambda \mu}=\mathbf{x}$,) satisfies. All partial maps $X_{\lambda, \psi} \rightarrow X_{\lambda, \downarrow}$ | given by \bar{f} or $\bar{f} \|$ are bi-1 holomorphic, and all compositions $\left(X_{\lambda^{\prime}, \nu \mid} \rightarrow \prod_{(\lambda, \nu)=\left(\lambda^{\prime}, \nu^{\prime}\right) \mid} X_{\lambda, \nu} \mid \rightarrow X_{\lambda^{\prime}, \nu}\right)^{n}$ are constant for $n \gg 0$.

Proof.| Evident by Lemma 5.3.3.
53.4.a Let now $\mathscr{K} \mid:=\mathscr{C} \backslash \mathscr{F}, U_{\mathrm{d}}:=U_{\mathscr{G}}$ and U^{\prime} according to 5.3.2, with $U_{\mathrm{d}}=X_{1}^{\prime} \rtimes \ldots \times$ $X_{l}^{\prime}=X_{1}^{n_{1}} \times \ldots \downharpoonleft \times X_{l}^{n_{n}} \mid$ according to 5.3.4. Every isomorphism $U \cong X_{1}^{n_{\|}} \rtimes \ldots \times X_{l}^{n_{1}} \rtimes \mathbf{U}^{\prime}$ will be called a standard decomposition of $U l$.

5.4. Some Examples

Let $p q q$ with $p \neq q q$ be primes, and let $\mathbf{A}, B \mid$ be connected complex spaces such that \mathbf{Z}_{p} acts non-trivially on \mathbf{A} and \mathbf{Z}_{α} acts non-trivially on $B 1$. Fix some generators $\alpha \in \mathbf{Z}_{p}, \beta \mid \in \mathbf{Z}$,, and let $T:=\mathbf{C} / \mathbf{Z}+i \mathbf{Z}$.

For $1 \leq n \leq \mathbf{p}-1,1 \leq s \leq q-1$ definel $\alpha_{\tau} \in \operatorname{Aut}(T \mid \rtimes \mathbf{A})$ by $\alpha_{\tau}(t \mid$ a) $:=$ $\left(t+\frac{1}{p}, \alpha^{\gamma}(a)\right), \beta_{s} \in \operatorname{Aut}(T \times B)$ by $\beta_{s}(t, b):=\left\lvert\,\left(s+\frac{1}{q}, \beta^{s}(b)\right)\right.$, and let $\gamma \in \operatorname{Aut}(T \times$
$\mathbf{A} \times \mathbf{B})$ begivenby $\gamma(t, a, b):=\left(f_{t+1} \frac{1}{p q}, \alpha(a), \beta(b)\right)$. Then the quotients $A_{\eta} \mid:=(T \mid \times$ $A) / \alpha_{r}, B_{s}:=\left(T \mid \times\right.$ B) $/ \beta_{s} \mid \mathbf{A B}:=(T \mid \rtimes \mathbf{A} \rtimes B) / \gamma$ are total spaces of torsion bundles over $T /\left(\frac{1}{p}\right), T /\left(\frac{1}{q}\right), T /\left(\frac{1}{p q}\right)$, respectively. Evidently, $A_{\tau} \cong A_{p-r}$ via $t \mapsto-t$.

5.4.1 Lemma.

(i) $\mathbf{T} \times A_{r} \cong T \times A_{r}$ for all $r, r^{\prime} \in\{1 ; \ldots, p-1\} \mid$
(ii) $A_{r} \times B_{s} \cong A_{\tau} \times B_{s^{\prime}}$ for all $r \in\{1, \ldots, p-1\}$, and $s, s^{\prime} \in\{1, \ldots, q-1\}$.
(iii) $A_{\boldsymbol{r}} \times A_{r^{\prime}} \cong A_{r^{\prime}} \times A_{r^{\prime}}$ if $r^{2} \exists \pm r^{\prime 2}(\operatorname{modp})$.
(iv) Assume that $p=2, q=3$, and led C, D be connected complex spaces with non-trivial $\mathbf{Z}_{2} \mid$-resp $\left|\mathbf{Z}_{3}\right|$-action. Then $A B \times \mathbf{C D} \cong A D \mathbf{x C B}$.

Proof. Let $\Phi: T \times T \rightarrow T \times T$ be given by the matrix
(i)) $\left(\begin{array}{cc}\lambda & p \\ \lambda^{\prime} & p+\rho\end{array}\right)$, where $r^{\prime} \rho \ni \eta(\bmod p)$, and $\left(\lambda-\lambda^{\prime}\right) p+\lambda p \mid=1$,
(ii) $\left(\begin{array}{cc}\lambda p+1 & \mu q \| \\ \lambda p \mid & \mu q+\rho\end{array}\right)$, where s'p $\exists \mathrm{s}(\bmod q)$, and $\lambda p \rho+\mu q=1-\rho$,
(iii) $\left(\begin{array}{ll}\rho & \lambda p \\ p & \mu \rho\end{array}\right)$, where $r^{\eta}=\rho \eta$ and $\mu \rho^{2}=\lambda p^{2} \pm 1$,
(iv) $\left(\begin{array}{cc}3 & 4 \\ 16 & 21\end{array}\right)$.

Then

$$
\begin{array}{ll}
\text { (i) } \Phi \times \mathrm{id}, & \text { (ii) } \Phi \mathrm{x} \text { id,,, } \\
\text { (iii) } \Phi \mathrm{x} \text { id,,, } & \text { (iv) } \Phi \times \mathrm{id}_{A \times B \times C \times D}
\end{array}
$$

induces an isomorphism as postulated.

From now on assume that
(1) \mathbf{A} and \mathbf{B} are indecomposable,
(2) therel exists no non-constant holomorphic $\mathbf{A} \times \mathbf{B} \rightarrow \mathbf{T}$,
(3) T does not act non-trivially on $A / \mathbf{Z}_{p} \times B / \mathbf{Z}_{q}$,
(4) every composition of holomorphic maps $(\mathbf{A} \rightarrow \mathbf{B} \rightarrow \mathbf{A})$ " is constant for $\mathrm{n} w 0$.

5.4.2 Lemma.

(i) Every A_{\uparrow} is indecomposable.
(ii) AB has no non-trivial compact factor, $I f \backslash$ in addition A or B is compact, then AB is indecomposable.
(iii) $A_{\eta} \cong A_{\tau}$, ifand only ifthere exists $\eta \in$ Aut (A) with $7 \circ \alpha^{\eta}=\alpha^{ \pm \gamma \mid} 07$. In particular, if Z_{p} is central in Aut (A), then $A_{r} \neq A_{r^{\prime}}$ for $n \not \equiv \equiv r^{\prime}(\bmod \mathrm{p})$.

Proof \backslash Let $\mathrm{S} \in\{A, A B)$ with $S \cong S_{1} \times S_{2}$. By 2.4.2.b, we may assume that therel exists $\left(S_{\|} \xrightarrow{\pi_{1}} T_{1}\right) \mid \in \mathscr{F}_{1}$ with some fibre S_{1}^{\prime} and with $T_{\|}$isogenous to T. By (2) and (3), every isomorphisms $\mathrm{S} \rightarrow S_{1} \times S_{2}$ is a \mathscr{F}-morphism| $\pi \rightarrow \pi_{1} \circ p_{S_{\|}}$(where π denotes the given torsionl bundle $A_{\eta} \mid \rightarrow T / \mathbf{Z}_{p}$ resp. $A B \rightarrow T / \mathbf{Z}_{p q}$.
(i) Clearly,,$A_{\eta} \mid$ cannot be \mathscr{F}-isomorphic to $T \times A$. Thus $S_{1}^{\prime} \neq \mathrm{C}^{0}$, and we conclude that $S_{2}=\mathbf{C}^{0}$, since $A \cong S_{1}^{\prime} \times S_{2}$ is indecomposable.
(ii) Again,,$A B$ is not \mathscr{T}-isomorphic to $T x A \times B$, whence $\left.S_{1}^{\prime} \neq \mathrm{C}^{0}\right\rfloor \mathrm{By}$ (4), the isomorphism $A \times B \rightarrow S_{1}^{l} \times S_{2}$ between the fibres degenerates and therefore induces a simultaneous subdecomposition, if A, B, S_{1} or S_{2} is compact (sed 5.1.5).| Denotel this iso-l morphism by f, and assume that S_{1} or S_{2} is compact with $S_{2} \neq \mathrm{C}^{0}{ }^{0}$ Then either all partial maps $r f\left(a_{1},\right): B \rightarrow S_{2}$ or alll $r f(, b): A \rightarrow S_{2}$ are biholomorphic by (1). On the otherl hand, it is evident that $r f(\alpha(a), \beta(b))=r f(a, b)$ for all (a, b); in particular,, $r f\left(a, \beta^{2}(b)\right)=r f(a, b)=r f\left(\alpha^{3}(a), b\right)$, a contradiction. Thus $\left.S_{2}=C^{0}\right]$

Assertion (iii) is obvious, since every $A_{r} \xrightarrow{\cong} A_{r} \mid$ is a \mathscr{F}-morphism.
For $k \geq 2$ let $\varepsilon_{k}:=\exp \left(\frac{2 \pi i}{k}\right)$ andlet $\mathbf{Z}_{k} \mid$ acton $\mathbf{P}_{n} \mid$ via $(\kappa, x) \mid \mapsto\left(\varepsilon_{k}^{\kappa} x_{0} \mid: x_{1}: \ldots\right.$ $\left.x_{n}\right) \mid$. If we want to indicate this action, we let $Z(k):=\mathbf{P}_{1} \mid$ in what follows. By blowing up $\mathbf{x} \in \mathbf{P}_{2} l l+\|$ times, where $l \geq 1$, we means blow up $x l$ times and then blow up (once) any point in the exceptional curve.

Let $\mathrm{X}(\mathrm{k})$ be the manifold that arises from \mathbf{P}_{2} by blowing up (once) every $\left(\varepsilon_{k}^{\kappa} x_{0}: 1: 0\right)$, $1 \leq k l \leq k$, by blowing up $l+2$, times the points $(0: 1: 1)$ for $0 \leq l \leq 2$ and by blowing up five times the point ($1: 0: 0$). The \mathbf{Z}_{k}-action on \mathbf{P}_{2} lifts to $\mathrm{X}(\mathrm{k})$ and also restricts to the complement $U(k) \subset \mathrm{X}(\mathrm{k})$ of the inverse image of ($1: 0: 0$). It is easy to see that $\mathbf{Z}_{k}=\operatorname{Autl}(\mathrm{X}(\mathrm{k}))$ and $\mathbf{Z}_{k}=\operatorname{Aut}(U(\mathrm{k})$). Thus, by 5.4.2.(iii), $A(p), \cong A(p)$, (where $A \in\{\mathrm{X}, U\})$, if and onlyif $n \ni r^{\prime}(\bmod p)$.

Clearly, every pair (A(p) , $B(q)$) with $A, B \in\left\{U_{\|} \mid \mathrm{X}, Z\right\}$ satisfies the conditions (1). (4).

5.43. Examples.

a) Therel exist indecomposable connected complex spaces $\mathrm{X}, \mathrm{U}, U^{\prime}$ with X compact, and with $U U^{\prime}$ having no compact factor $\neq \mathrm{C}^{0} \downarrow$ such that $U \backslash \neq \mathcal{I}^{\prime}$, and $\mathrm{X} \times U \cong X \times U^{\prime}: X:=$ $T, U:=U(q)_{1}, U^{\prime}:=U(q)_{2}$ with $q \geq 5$ (see 5.4.1.(i), 5.4.2.(i)).
b) Therel exist indecomposable connected complex spaces $\mathrm{X}, \mathrm{X}^{\prime}, U /$ with X, X^{\prime} compact, and with $U l$ having non compact factor $\not \neq \mathbf{C}^{0} \downarrow$ such that $\mathrm{X} \nexists^{\prime} \mathrm{X}^{\prime}$ and $\mathrm{X} \times U \cong X^{\prime} x$ Ul : $U \|:=U(q)_{1}, X \mid:=X(p)_{1}, X I:=X(p)_{2}$ with $p \geq 5$ (see 5.4.1.(ii), 5.4.2.(i)).
c) Therel exist indecomposable connected complex spaces $X, X^{\prime}, U, U^{\prime}$ with X, X^{\prime} com-
pact, \mid and with $U \mid U^{\prime}$ admitting no compact factor $\neq C^{0} \mid$ such that $X \not \approx \neq X^{\prime}, U \neq \neq U^{\prime}$, and $X \times X \cong X^{\prime} \times X^{\prime}, U \times U \cong U^{\prime} \times U^{\prime} \downarrow$
$\mathrm{X}:=\mathrm{X}(5)_{\downarrow}, X^{\prime} \mid=\mathrm{X}(5)_{2}, U:=U(5)_{\downarrow}, U^{\prime}:=U(5)_{2}$ (see 5.4.1.(iii), 5.4.2.(i)).
d) Therel exist connected complex spaces $X, U \| V, W$, with $X \neq \mathbf{C}^{0}$ indecomposable and compact, and with U, V, W having no compact factor $\nexists \mathbf{C}^{0} \downarrow$, such that $\mathrm{X} \times U \cong V \times W$:
$X:=X(2) Z(3), U|:=U(2) U(3), V|:=X(2) U(3), W|:=U(2) Z(3)|$ (see 5.4.1.(iv), 5.4.2.(ii)).
e) Therel exist $\mathrm{X}, Y, U \downarrow V$ with $\mathrm{X} \nexists \mathbf{C}^{9} \neq \mathrm{Y}$ compact, and with U, V admitting no compact factor $\nexists \mathbf{C}^{0}$, such that $\operatorname{dim} X \neq \operatorname{dim} Y$ and $X \times U \cong Y \times V \ddagger$
$\mathrm{X}:=X(2) Z(3), Y|:=X(2) X(3), U:=U(2) X(3), V|:=U(2) Z(3) \mid$ (see 5.4.1.(iv), 5.4.2.(ii)).|

In particular, we see that for general U, therel is no possibility of introducing a reasonable notionl of a unique maximall compact factor.

Choosing $A, B \backslash \mathrm{C}$ appropriately, one can show in a similar way that a general $\mathrm{X} \in \mathscr{C}$ does not admit a unique maximal factor in any of the \mathscr{P}-categories listed in 5.3.1.a(ii) otherl than $\mathscr{E} d$ or $\mathscr{E} \backslash \mathscr{F}$.

6. AUTOMORPHISMS OF PRODUCTS

Let $U l$ be a connected complex space with standard decomposition $U \cong U_{d} x U^{\prime} \cong X_{1}^{\prime} x$ $\ldots \times X_{\|} \| \times U^{\prime}$ (compare 5.3.4.a), and let $\phi \in \operatorname{Autl}(U)$. By 5.3.2 and 5.3.4, every partial map $U_{c} \rightarrow U_{c}, X_{\lambda}^{\prime} \rightarrow X_{\lambda}^{\prime}, U^{\prime} \rightarrow U^{\prime}$, given by ϕ or $\phi^{-\|}$is biholomorphic. In general, however. ϕ need not be a product of isomorphisms between the individual factors. For every ϕ to be a product of automorphisms of U_{c} and U^{\prime}, it is necessary that therel exist no non-constant holomorphic mappings $U^{\prime} \rightarrow$ Aut $\left(U_{c}\right), U_{d} \rightarrow$ Aut $\left(U^{\prime}\right)$. In the reduced case, this condition is easily seen to be sufficient ass wcll; in general, it is not.

If U is reduced and compact with $A(U)=0$, then evidently all $\phi \in$ Autl (U) are products of isomorphisms between the indecomposable factors of $U \downharpoonleft$ This assertion does no longer hold for non-reduced U; for instance, the automorphism of $P_{2}\left|x P_{2}\right|\left(P_{2} \mid \hookrightarrow C\right.$ the double point) given by $(x \| y) \mapsto(x+x y \| y+s y)$ is not a product.

In view of these difficulties, wc henceforth restrict our attention to the compact reduced case.

6.1. Decomposition-preserving automorphisms

Letl X be a reduced compact complex space with a decomposition $f: \mathrm{X} \rightarrow Y_{\|}\left|\mathrm{x} \ldots Y_{n}\right|$
6.1.1. Defînition. An automorphism ϕ of X preserves the decomposition f, if all partial maps $Y_{\nu} \rightarrow Y_{\nu}(1 \leq \nu \leq n)$ given by ϕ and ϕ^{-1} are biholomorphic. We let Aut $_{f}(X) \mid:=$ $\{\phi \in \operatorname{Aut}(X)|: \phi|$ preserves $f\} \mid$
6.1.1.al Remarks. From 5.3.2 and 5.3.4, we infer:
(i) If Y_{ν} and Y_{μ} havel no positive-dimensional common factor for all $1 \leq \mu, u \leq \mathrm{n}, \mu \neq \nu_{\lambda}$ and if at most one Y_{ν} is contained in \mathscr{F}, then Aut $\left.(\mathrm{X})=\operatorname{Autl}_{f} \backslash \mathrm{X}\right)$.
(ii) If $Y_{\|} \cong \ldots \cong Y_{n} \notin \mathscr{G}$ arel indecomposable, then Aut $(\mathrm{X})=\underset{\sigma \in S(n)]}{u} J_{\sigma \mid} \circ$ Aut $_{f}(\mathrm{X})$, where $\mathscr{P}(n)$ denotes the group of alll permutations of $\{1, \ldots, n\})$.

We shall now - in the case $\mathrm{n}=2$ - demonstrate how to construct $\left.\mathrm{Aut}_{f} \backslash \mathrm{X}\right)$ from Aut $\left(Y_{1}\right) \times$ Aut ($\left.Y_{2}\right) \mid$. Then, using the abovel remarks, onel can build up successively Aut (X) from $\prod_{\lambda=1}^{1} \mid \operatorname{Aut}\left(X_{\lambda}\right)^{m_{\mid} \mid x} \operatorname{Autl}\left(X^{\prime}\right)$, where $X \cong\left(\prod_{\lambda=1}^{1} X_{\lambda}^{m_{\lambda}} \mid\right) \mathrm{xX}$ ' is a standard decomposition of x.

To simplify the notation, we consider reduced compact complex spaces $Y \mid Z$ with $Y \notin \mathscr{F}$, and we let $\operatorname{Aut}+(Y \times Z)\left|:=\operatorname{Aut}_{\mathrm{id}_{\gamma \times \Sigma}}(Y \mid \times Z)\right|$ Then, by 5.1.2, every $\phi \in \operatorname{Aut}+(Y \times Z) \mid$ degenerates.

Let $\phi \in \operatorname{Aut}+(\mathrm{Y} \times \mathrm{Z})$, and fix some $\left.\left(y_{0}, z_{0}\right) \mid \in \mathrm{Y} \times Z\right\rfloor$ By Theorem 5.3.2, there exist $(\alpha, \delta) \mid \in \operatorname{Aut}(Y) \times \operatorname{Aut}(Z) \downarrow$ and $\beta \mid \in \operatorname{Hol}(Z, A(Y)), \gamma \eta \in \operatorname{Hol}(Y, A(Z))$ with $\beta^{\prime}\left(z_{0}\right)\left|=\operatorname{id}_{Y}, \gamma^{\prime}\left(y_{0}\right)\right|=\mathrm{id}$, , such that $\phi(y, z)\left|=\left(\beta^{\prime}(z)(\alpha(y)), \gamma^{\prime}(y)(\delta(z))\right)\right|$ forl all $(\mathrm{y}, z) \mid$ As $\boldsymbol{A}(\boldsymbol{Y} \times Z) \mid$ is normall in $\operatorname{Aut}(\mathrm{Y} \times \mathrm{Z})$, therel exist $\beta \mid \in \operatorname{Holl}(Z, \boldsymbol{A}(\boldsymbol{Y}))$ with $\beta\left(z_{0}\right)=i d_{Y}$ and $\gamma \in \operatorname{Hol}(Y, A(Z))$ with $\gamma\left(y_{0}\right)=i d_{Z} \mid$ such that α o $\beta(z)=\beta^{\prime}(z) \mid$ o α and δ o $7(\mathrm{y})=7^{\prime}(\mathrm{y})$ o δ for all $\mathrm{y} \in \mathrm{Y}, z \in Z$ J Evidently, the quadruple $(\alpha, \beta, \gamma, \delta)$ is uniquely determined by these properties.

We shall now derive a necessary and sufficient criterion for such a quadruple ($\alpha, \beta, \gamma, \delta)$ to define $\phi \in \operatorname{Aut}+(\mathrm{Y} \times Z)$ inthewaydescribedabove. For $(\beta, \gamma) \in \operatorname{Hol}(Z, A(Y)) \mathrm{x}$ $\operatorname{Hol}(Y, A(Z))$ definel $\langle\beta, \gamma\rangle: Y|\times Z \rightarrow Y \times Z|$ by $(y, z) \mid \mapsto(\beta(z)(y), \gamma(y)(z))$. Evidently, it suffices to find out under which conditions $\langle\beta, 7) \in$ Aut $(\mathrm{Y} \times Z) \downarrow$

To begin with, we reduce the situauon to the case where $Y \mid Z$ are tori:
6.1.2. Lemma and Definition.The functor $\mathscr{E}_{\text {red }} \rightarrow \mathscr{E} n s, Z \mapsto \cup\{\operatorname{Hol}(Z, T) \mid: T$ a torus $\}$, is represented by $\mathrm{abb}^{0}: Z \mid \mapsto\left(\operatorname{abb}_{Z}^{0} \mid: Z \rightarrow \mathrm{Alb}^{0}(Z)\right)$.
alb_{Z}^{0} |is calledl the weak Albanese map of Z 」
The proof can be copied word for word from the corresponding onel for smooth varieties. Note that $\mathrm{alb}_{Z}^{0}=\mathrm{alb}_{Z}$ if Z is smooth.

Let $\left(x_{0}, y_{0}\right) \in \mathrm{Y} \times Z$ with $\operatorname{alb}^{0}\left(x_{0}, y_{0}\right)=0$ and let $(\beta, \gamma) \in \operatorname{Hol}(Z, A(Y) \| \times$ $\operatorname{Hol}(Y, A(Z))$ with $\beta\left(z_{0}\right)=\operatorname{id}_{Y}, \gamma\left(y_{0}\right)=\mathrm{id}$, Then $\operatorname{alb}^{0}\left(\langle\beta, \gamma)\left|: \operatorname{Alb}^{0}(Y \mid \times Z)\right|-\mathrm{t}\right.$ $\mathrm{Alb}^{0}(Y \mid \times Z) \mid$ is a holomorphic homomorphism. Moreover, if we let $\bar{\beta}$ be the compositionl $\left(\operatorname{Alb}^{0}(Z) \xrightarrow{\mathbf{a l b}^{0}(\beta)} \operatorname{Alb}^{0}(A(Y))=A(Y) \xrightarrow{\text { alb }} A\left(\operatorname{Alb}^{0}(Y)\right)=\mathrm{Alb}^{0}(Y)\right)$, and
$\bar{\gamma}: \operatorname{Alb}^{\alpha}(\mathrm{Y}) \rightarrow \operatorname{Alb}^{0}(Z) \mid$ accordingly, then $\left.\operatorname{alb}^{0}(\langle\beta, \gamma\rangle) \mid=\langle\bar{\beta}, \bar{\gamma}\rangle\right)$.
6.1.3 Lemma. The map $\langle\beta, \gamma\rangle$ is biholomorphic, if and only if sol is $\langle\bar{\beta}, \bar{\gamma}\rangle$,

Proofl \mid Let $\langle\bar{\beta}, \mid \bar{\gamma}\rangle$ be biholomorphic (the other implication is trivial). It suffices to show that $\langle\beta, 7)$ is injective; for this, in turn, we need only show that $\langle\beta, \gamma\rangle$ is injective on every fibre of $\operatorname{alb}_{Y \times Z}^{0}$.

Let $Y_{0} \mid \times \quad Z_{0}$ besomefibreof $\operatorname{alb}_{Y \times Z}^{0}=\operatorname{alb}_{Y}^{0}\left|\times \operatorname{alb}_{Z}^{0}\right|$ Then $\left.\beta\right|_{Z_{0}}=\left[\beta\left(z_{1}\right)\right],\left.\gamma\right|_{Y_{0}} \mid=$ $\left[\gamma\left(y_{1}\right)\right]$ for any $z_{1} \in Z_{0}, y_{1} \mid \in Y_{0}$, and thereforel $\left.\langle\beta, \gamma\rangle\right|_{Y_{0} \times z_{0}}=\beta\left(z_{1}\right)\left|\times \gamma\left(y_{1}\right)\right|_{Y_{0} \times z_{0}}$ is injective.

Let now $\bar{Y}:=\operatorname{Alb}^{0}(Y), \bar{Z}:=\operatorname{Alb}^{0}(Z)$.
6.1.4 Lemma. $\langle\bar{\beta}, \bar{\gamma}\rangle$ is biholomorphic, ifand only if $(\bar{\beta} \mid 0 \quad \bar{\gamma})^{n}=0$ for n w 0」

Proof. Let $\sigma:=\bar{\beta} \bar{\gamma} \mid n:=\bar{\gamma} \bar{\beta} ;$ then σ is nilpotent, if and only if so is τ. The homomorphism $\langle\bar{\beta}, \bar{\gamma}\rangle$ is an isomorphism, if and only if therel exists an endomorphism of $\bar{Y} \mid \times \bar{Z}$ given by a $\left.\operatorname{matrix}\left(\begin{array}{cc}\alpha^{\prime} & \beta^{\prime} \\ \gamma^{\prime} & \delta^{\prime}\end{array}\right) \right\rvert\,$ suchthat $\left(\begin{array}{c|c}\alpha^{\prime}+\beta^{\prime} \bar{\gamma} & \alpha^{\prime} \bar{\beta}+\beta^{\prime} \\ \gamma^{\prime}+\delta^{\prime} \bar{\gamma} & \gamma^{\prime} \bar{\beta}+\delta^{\prime}\end{array}\right)=\left(\begin{array}{cc}i d & 0 \\ 0 & i d\end{array}\right)$. If σ is nilpotent, then id $-\sigma$ and id $=\tau$ are invertible, and a simple computation shows that the matrix $\left(\begin{array}{cc}\alpha^{\prime} & \beta^{\prime} \\ 7 & \delta^{\prime}\end{array}\right)$, given by $\alpha^{\prime}=(i d-\sigma)^{-1}, \delta^{\prime}=(i d-\tau)^{-1}, \beta^{\prime}=-\alpha^{\prime} \bar{\beta}, 7^{\prime}=-\delta^{\prime} \bar{\gamma} \mid$ defines an inverse of $\langle\bar{\beta}, \bar{\gamma}\rangle$.

Conversely, if $\langle\bar{\beta}, \bar{\gamma}\rangle \mid$ is invertible, then so is $\langle\beta, \gamma\rangle \mid$ and $\langle\beta, \gamma\rangle \mid$ degenerates, sincel $U \|$ F.l By 3.1 . 1 l .b, $\langle\bar{\beta}, \bar{\gamma}\rangle \mid$ degenerates as well,, i.e., if $(\langle\bar{\beta}, \mid \bar{\gamma}\rangle)$ । is given by $\left(\begin{array}{ll}\alpha^{\prime} & \beta^{\prime} \\ 7 & 6\end{array}\right)$, then $\left(\bar{Y} \xrightarrow{i d} \bar{Y} \xrightarrow{\gamma^{\prime}} \bar{Z} \xrightarrow{i d} \bar{Z} \xrightarrow{\beta^{\prime}} \bar{Y}\right)^{n}=0$ for $n \gg 0$. Now $\beta^{\prime}=-\alpha^{\prime} \bar{\beta}=-\bar{\beta} \delta^{\prime}, \gamma^{\prime}=-\delta^{\prime} \bar{\gamma}=-\bar{\gamma} \alpha^{\prime}$, and we conclude that $\alpha^{\prime} \alpha^{\prime} \bar{\beta} \bar{\gamma}=\alpha^{\prime} \bar{\beta} \delta^{\prime} \bar{\gamma}\left|=\beta^{\prime} \gamma^{\prime}\right|=\bar{\beta} \delta^{\prime} \bar{\gamma} \alpha^{\prime} \mid=\bar{\beta} \bar{\gamma} \alpha^{\prime} \alpha^{\prime}$; thus $\beta^{\prime} \gamma \mid$ is nilpotent, if and only if so is $\bar{\beta} \bar{\gamma}$ |

For $(\widehat{\beta}, \hat{\gamma})|\in \operatorname{Hom}(\bar{Z}, A(Y))| \times \operatorname{Hom}(\bar{Y}, A(Z))$, let $\beta \times \gamma:=\left(\hat{\beta} \circ \operatorname{alb}_{Z}^{0}\right) \times\left(\widehat{\gamma} \circ \operatorname{alb}_{Y}^{0}\right) \mid:$ $Z \times Y \mid \rightarrow A(Y) \times A(Z)$, and $\bar{\beta} \times \bar{\gamma}:=\left(\mathrm{alb}_{*}^{0} \circ \widehat{\beta}\right) \times\left(\mathrm{abb}_{*}^{0} \circ \widehat{\gamma}\right): \bar{Z} \times \bar{Y} \rightarrow A(\bar{Y}) \times A(\bar{Z})=$ $\bar{Y}|\mathbf{x} \bar{Z}|$

Summing up, we obtain:
6.1.5 Theorem. Let $Y|Z|$ be reduced connected compact complex spaces with $Y \notin \mathscr{F}$, and let $\mathscr{H}(Y \mid \times Z) \mid:=\{(\alpha, \widehat{\beta}, \widehat{\gamma}, \delta)|\in \operatorname{Aut}(Y)| \times \operatorname{Hol}(\bar{Z}, A(Y)) \times \operatorname{Hol}(\bar{Y}, A(Z))|\times \operatorname{Aut}(Z)|:$ $\bar{\beta} \bar{\gamma} \mid$ nilpotent $\}$.

Then the map $\mathscr{E}(Y \times Z)\left|\rightarrow \operatorname{Aut}_{+}(Y \mid \rtimes Z)\right|$ given by $|(\alpha, \widehat{\beta}, \widehat{\gamma}, \delta) \mapsto(\alpha \mid \rtimes \delta)| \circ\langle\beta, \gamma)$, is well-defined and bijective.

6.2. Automorphisms of projective varieties

6.2.1 Lemma. Let U be a connected complex space, and let T be a connected compact complex subgroup of $A(U)$. Assume therel exists a line bundle L on $U \mid$ that is ample on some orbit $T u_{0}$ of T .

Then therel exists $(U \mid \rightarrow T) \in \mathscr{F}_{l}$, where $1:=\operatorname{dim} \mathrm{T}$.
Proof. Denote by \hat{L} the linel bundle $\left(E_{U}^{*} \mid \mathbf{L}\right) \otimes\left(\left(\cdot u_{0} \circ p_{T}\right)^{*} L\right)^{-4}$ on $\mathbf{T} \mathbf{x} U$ (where $E=E_{U} \mid$ denotes the evaluation map). Evidently, $\left.\hat{L}\right|_{T \times\{u\}} \mid$ is topologically triviall for alll $\left.u \in U\right\}$ thus $u \mapsto j_{u}^{*} \hat{L}$ defines a holomorphic map $\pi: U \rightarrow \operatorname{Pic}_{0}(\mathbf{T})$. Let T_{d} denote the connected component of $\tau^{-1} T\left(u_{0}\right) \cap T u_{0}$ that contains u_{0}. As \tilde{L} istrivialalongevery $T \times\{u\}, u \mid \in T_{0}$, therel exists a linel bundle L_{1} on T_{d} with $\hat{L}_{\mid T \times T_{\mathrm{d}}}=p_{T_{0}}^{*} L_{1}$; thus $E^{*} L|T| \times T_{\mathrm{d}}\left|=p_{T_{0}}^{*} L_{1}\right| \otimes$ $\left(\cdot u_{0} \circ p_{T}\right){ }^{*} L, ~$ We conclude that $L_{\|} \mid$is ample, since so is $\left.\left.E^{*} L\right|_{\left\{u_{0}\right\} \times T_{d}} \cong p_{T_{0}}^{*} L_{1}\right|_{\left\{u_{0}\right\} \times T_{0}} \mid$ Thus $\left.E^{*} L\right|_{T \times T_{\mathrm{d}}}$ is ample, i.e. $E \mid T \times T_{\mathrm{d}} \rightarrow E\left(T \times T_{0}\right)=T u_{\mathrm{d}}$ is finite, whence $T_{0}=\left\{u_{0}\right\} \mid$ This shows that $\left.\tau\right|_{T u_{0}}$ is finite and hence surjective. In particular, therel exists some finite holomorphic homomorphism $\beta\left|: \operatorname{Pic}_{0} T\right| \rightarrow \mathbf{T}$ such that $\alpha:=\beta$ o π satisfies the condition of Lemma 2.4.2.
6.2.1.a Corollary. Led X be a projective variety. Then therel exists $(\mathrm{X} \rightarrow \mathrm{A}(\mathrm{X})) \in \mathscr{F}_{a}$, where $a:=\operatorname{dim} \mathbf{A}(\mathbf{X})$.
6.2.1.b Corollary. Let X be a projective variety with standard decomposition $\mathrm{X} \cong X_{d} \mathrm{x}$ $X^{\prime} \cong X_{1}^{\prime} \times \ldots \times X_{l}^{\prime} \times X^{\prime}=X_{1}^{m_{1}} \times \ldots \times X_{l}^{n_{4}} \times X^{\prime}$ (compare 5.3.4.a).

Then $\left.\operatorname{Aut}(X) \cong\left(\prod_{\lambda=1}^{l} \mid \operatorname{Aut}\left(X_{3}^{\prime}\right)\right)\right) \times \operatorname{Aut}\left(X^{\prime}\right) \times \operatorname{Hol}\left(\operatorname{Alb}^{0}\left(X_{c}\right), A\left(X^{\prime}\right)\right)$ (where the isomorphism is given by 6.1.5), and $\operatorname{Aut}\left(X_{\lambda}^{\prime}\right) \mid \cong \underset{\sigma \in S\left(m_{2}\right)}{ } J_{\sigma} \circ$ o $\left(\operatorname{Aut}\left(X_{\lambda}\right)\right)^{m_{2} \mid}$ (compare 6.1 . 1 .a(ii)).
6.2.1.d Example. Let T_{1} be a two-dimensional torus of algebraic dimension 1, and let π : $T_{1} \rightarrow \mathbf{T}$ denotel its equivariant algebraic reduction. Let $\mathrm{C} \rightarrow \mathbf{T}$ be a surjective holomorphic map from a compact Riemann surface of genus ≥ 2 onto $T \|$ and let $\mathrm{X}:=T_{1} \times{ }_{T \mid} \mathbf{C}$. Then X is a two-dimensional compact Kähler manifold, $\mathbf{A}(\mathbf{X}) \cong \operatorname{Ker} \tau \mid$ is one-dimensional, and $X \notin \mathscr{T}$.

7. ISOGENY DECOMPOSITIONS

In Shioda's as well as in Parigi's examples for $\mathrm{X} \times \mathrm{Y} \cong \mathrm{X} \times Z$ 引 the varieties Y, Z always admit coverings $S \rightarrow Y \mid S \rightarrow Z$ (with the samel S) and thus are still closely related to each other. We shall now see that this fact is not accidental.

7.1. Isogenous products

7.1.1 Definition. Let S_{1}, S_{2} be connected complex spaces.
(i) S_{1} and S_{2} are isogenous, if therel exist coverings (i.e. locally biholomorphic finite mappings with connected domain) $\mathrm{S} \rightarrow S_{1}, \mathrm{~S} \rightarrow S_{2}$.

Notation: $S_{1} \sim S_{2}$. A diagram $S_{1} \mathrm{tS} \rightarrow S_{2}$ of coverings is called an isogenybetween S_{1} and S_{2}.
(ii) S_{1} is an isogeny factorl of S_{2}, if $S_{2} \sim S_{1} \mid \times S_{1}^{\prime}$ with suitable $S_{1}^{\prime}\left|S_{2}\right|$ is strongly indecomposable, if it admits no isogeny factor $\nmid\left\{\mathrm{C}^{0}, S_{2}\right]$.
7.1.1.al Remarks. (i) \sim is an equivalencel relation.
(ii) If $(\pi: U l \rightarrow T) \mid \in \mathscr{F}$, then T is an isogeny factor of U ।

7.1.2 Lemma. Ler $\phi: S \rightarrow X X Y$ be a covering.

Then therel exist coverings $\alpha: X|\rightarrow \mathbf{X}, \beta| Y \mid \rightarrow Y$ with the following properties:
(i) $\alpha \times \beta$ factors through ϕ.
(ii) If $7: X^{\prime \prime} \rightarrow \mathrm{X}, \delta: Y^{\prime \prime} \rightarrow \mathrm{Y}$ are coverings such that $7 \mathrm{x} \delta$ factors through ϕ, then 7 factors through α and $\delta \mid$ factors through β.
(iii) $I f \mid \phi$ is biholomorphic, then $\alpha=\mathrm{id}$, and $\beta=\mathrm{id}$,.

Proof. Let $\widehat{\alpha}: \tilde{X} \rightarrow X, \widehat{\beta}: \tilde{Y} \mid \rightarrow Y$ be the universa] coverings with deck transformation groups $G \cong \pi_{1}(X), H \cong \pi_{1}(Y)$. Then $G^{\prime}:=G \cap \pi_{1}(S), H \mid:=H \cap \pi_{1}(S)$ havefinite index in G, H, respectively, and $\mathrm{G}^{\prime} \times \mathrm{H}^{\prime}$ is a subgroup of $\pi_{1}(\mathrm{~S})$. Thus therel exist factorizations $\hat{\alpha} \mid=\left(\tilde{X}\left|\rightarrow \tilde{X} / G^{\prime} \xrightarrow{\alpha}\right| X\right) \rrbracket \widehat{\beta}=\left(\tilde{Y}\left|\rightarrow \tilde{Y} / H^{\dagger} \xrightarrow{\beta}\right| \mathrm{Y}\right)$, and the assertion follows with $\mathrm{X}^{\prime}=\tilde{X} / G^{\prime}, \mathrm{Y}^{\prime}=\tilde{Y} / H^{\prime}$.
 construct the triangle

$$
\begin{array}{ccc}
X^{\prime} \times Y^{\prime} & \stackrel{\phi^{\prime}}{\rightarrow} & \mathrm{s} \\
& \searrow \alpha \times \beta & \downarrow \phi \\
& & X \times Y \mid
\end{array}
$$

as above. Let $\left(f_{1}: X_{2} \times Y_{2} \rightarrow U_{\|} \times V_{1}\right):=\left(\psi \circ \phi^{\prime}: X^{\prime} \times Y^{\prime} \rightarrow U \times V\right)$, and apply the
samel construction to f_{1}, thus obtaining

$$
\begin{array}{ccc}
U_{3} \times V_{3} & \xrightarrow{f_{2}} & X_{2} \times Y_{2} \\
& \searrow \alpha_{1} \times \beta_{1} & \downarrow f_{1} \\
& & U_{1} \times V_{1}
\end{array}
$$

Iterating this procedure, we ai-rive at

By construction, if some $f_{n} \mid$ is biholomotphic, then so are all $f_{m} \mid$ for $m \geq n$, and $f_{m} \mid$ and f_{m+1} are then inverse to each other.

Let $\left(\left(x_{2 n}, y_{2 n}\right)\right) \in \prod_{n \geq 1}\left(X_{2 n} \mid \times Y_{2 n}\right)$ with $\alpha_{2 n}\left(x_{2 n+2}\right)\left|=\quad x_{2 n}, \beta\left(y_{2 n+2}\right)\right|=\quad y_{2 n}$, and let $\left(\left.u\right|_{2 n+1}, v_{2 n+1}\right):=f_{2 n+1}\left(x_{2 n+2}, y_{2 n+2}\right) \mid$ Consider the sequence

$$
(*) \ldots \rightarrow X_{2 n+4} \xrightarrow{\bar{y}_{2 n+1}} U_{2 n+3} \xrightarrow{\vec{v}_{2 n 3}} Y_{2 n+2} \xrightarrow{\vec{x}_{2 n 2}} V_{2 n+1} \stackrel{\bar{u}_{2 n 1}}{\rightarrow} X_{2 n} \rightarrow \ldots
$$

and denote by $R_{n+l} \xrightarrow{(*)} R_{n}^{\prime}$ the map given by a subsequence of length 1 , where $\mathbf{R}, \mathbf{R}^{\prime} \in$ $\{\mathrm{X}, \mathrm{Y}, \mathrm{U}, V\}, \mid$ appropriately.
7.13 Definition. The isogeny $X \times Y \nleftarrow S \rightarrow U \times V$ degenerates (with respect to the family $\left.\left(\left(x_{2 n}, y_{2 n}\right)\right)\right)$, if the reduction of $R_{n+l} \xrightarrow{(*)} R_{n}$ is constant for $1 \gg 0$ and all n.
7.1.3.a Remark.J If $\left(X_{2+4 \mathrm{k}} \xrightarrow{(*)} X_{2}\right)_{\text {red }}$ is constant, then so is $\left(R_{n+l} \xrightarrow{(*)} R_{n}^{\prime}\right)_{\text {red }}$ for all n and all $l \geq 4 k+6$.

Proof. Clearly, $\left|\alpha_{2 n+2}\right| \circ \overleftarrow{y}_{2 n+4}\left|=\overleftarrow{y}_{2 n+2}\right| \circ \alpha_{2 n+3}$, and cormsponding relations hold for x, ul , Thus $\left(X_{4 k+2} \xrightarrow{(*)} X_{2}\right)$ व $\alpha_{4 k+2} \circ \ldots$ a $\alpha_{2 n+4 k}=\alpha_{2} \circ \ldots$ o $\alpha_{2 n}$ a $\left(X_{2 n+4 k+2} \xrightarrow{(*)} X_{2 n+2}\right)$, whence $X_{4 k+2} \xrightarrow{(*)} X_{2}$ is constant, if and only if so is $X_{2 n+4 k+2} \xrightarrow{(*)} X_{2 n+2}+$ Furthermore, every subsequence of $(*)$ of length $\geq 4 k+6$ contains some $X_{2 n+4 k+2} \xrightarrow{(*)} X_{2 n+2}$.
7.1.4 Lemma. (compare 5.1.1).
(i) If $\mathbf{1} \geq 1$ 2, then $\left|R_{n+d} \xrightarrow{(*)} R_{n}^{\prime}\right|$ factors (set-rheorefically) through $H o l l\left(R_{n+2}^{\prime}, R_{n}^{\prime}\right) \mid \xrightarrow{r} \rightarrow$ R_{n}^{\prime} with $r_{n+d} \mapsto \gamma_{n}$, where $\gamma \in\{\alpha, \beta\}$ according as $\mathbf{R}^{\prime} \in\{U \mid \mathbf{X}\}$ or $\left.\mathbf{R}^{\prime} \in \mathbf{N}, \mathbf{Y}\right\}$ with corresponding $r_{\downarrow} r^{\prime} \in\left\{x \mid \mathrm{y}, u_{\|} v\right\}$.
(ii) If $\mathbf{n} \mathbf{w} \mathbf{0}$ and $i f\left|\left(R_{n+l} \stackrel{(\bullet)}{\xrightarrow{\prime}} R_{\mathrm{n}}^{\prime}\right)\right|$ contains $\left(X_{m+10} \xrightarrow{(*)} Y_{m}\right)$, then $R_{n+l} \xrightarrow{(*)} R_{n}^{\prime}$ factors holomorphically through $\mathrm{A}\left(R_{n}^{\prime}\right)\left|r_{n}^{\prime}\right|$ with $r_{n+d} \mapsto$ id ${ }_{R_{n}^{\prime} \mid}$

Proofl The proof of (i) does not require X to be compact; thus we may assume $R_{n}^{\prime}=X_{n} \mid$ for symmeuy reasons.

Let $\phi:=l f_{n} \circ\left(\overleftarrow{y}_{n+2} \mid \circ p_{X_{n+2}}, r f_{n+1}\right): X_{n+2}\left|\times Y_{n+2}\right| \rightarrow X_{n} ;$ then $\phi\left(x_{n+2,}\right)=\overleftarrow{u}_{n+1}\left|\vec{x}_{n+2}\right|$ and $\phi\left(., y_{n+2}\right) \mid=l f_{n} \circ f_{n+1}\left(., y_{n+2}\right)=\alpha_{n}$.

Thus we obtain a commutative diagram

r_{n+l}	\in	R_{n+l}	
\downarrow		$\downarrow(*)$	$\searrow(*)$
y_{n+2}	\in	Y_{n+2}	$\stackrel{u_{n+1} \vec{x}_{n+2}}{ }$
\downarrow		$\downarrow \rho_{n}$	$\nearrow \cdot x_{n+2}$
α_{n}	\in	$\operatorname{Hol}\left(X_{n+2}, X_{n}\right)$	

which proves (i).
Consider now $\left.\psi:=\left(X_{n+2} \times X_{n+4}|\xrightarrow{\text { id } \times *}| X_{n+2}\right] \times Y_{n+2} \xrightarrow{\phi} \mathrm{X},\right)$, let $\widetilde{W}_{n} \mid:=\rho_{\psi}\left[X_{n+4} \mid\right]$ (compare 2.2.2), and denote by W_{n} the weak normalization of $\left(\widehat{W}_{n}\right)_{\text {red }} \mid$ Applying 2.3.2 to the sequence $\ldots \rightarrow X_{n+2} \xrightarrow{\alpha_{n}} \mid X_{n} \rightarrow \ldots$, we conclude that $\left|W_{n}\right| \subset A\left(X_{n}\right) \circ \alpha_{n}$, and from 2.3.2.a we infer that the natural map $\widehat{W}_{n} \rightarrow \operatorname{Hol}(\mathbb{X}$, $)$ is holomorphic with image contained in $A u t(X$, , . This yields a commutative diagram

and we conclude that $X_{n+8} \xrightarrow{(*)} X_{n}$ factors through $\cdot x_{n} \mid: A\left(X_{n}\right) \rightarrow X_{n}$, since the orbit map $\cdot x_{n+4}\left|\operatorname{Aut}\left(X_{n+4} \mid\right) \rightarrow X_{n+4}\right|$ factors through $\left(X_{n+4}\right)_{\mathrm{red}} \hookrightarrow X_{n+4} \mid$.

From the commutative diagram

$$
\begin{aligned}
& \mathbf{R}_{n+1} \xrightarrow{(*)} X_{m+8} \quad(*)\left|\quad X_{m} \xrightarrow{(*)} R_{n+2}\right| \quad(*) \mid \quad R_{n}^{\prime}
\end{aligned}
$$

we infer that therel exists $V_{n} \underset{(\mathrm{rcc})}{\longrightarrow} \operatorname{Holl}\left(R_{n+2}^{\prime}, R_{n}^{\prime}\right) \mid$ with $\gamma_{n} \in V_{n}$ such that $X_{m+8} \xrightarrow{(*)} R_{n}^{\prime}$ factors holomorphically through $\cdot r_{n+2}^{\prime}: V_{n} \rightarrow R_{n}^{\prime}$. Now assertion (ii) follows by applying 2.3.2 to the sequence $\left|\ldots \rightarrow R_{n+2}^{\prime}\right| \xrightarrow{\gamma_{n} \mid} R_{n}^{\prime} \mid \rightarrow \ldots$ and to the family $\left(V_{n}\right)$. 0
7.1.5 Proposition. Let $l\left|:=\lim _{\kappa \rightarrow \infty} \operatorname{dim}\right| \operatorname{Im}\left(\mid X_{2+4 k} \xrightarrow{(*)} X,\right)$.

Then therel exists an \mathbb{I}-dimensionall torus \mathbf{T} which is an isogeny factor of X, Y, Ul and \mathbf{V}.
In particular, $i f|X| Y,|U|$ and \mathbf{V} do not admil a common torus isogeny factor| (of positive dimension), then every isogeny between $X \times Y$ and $U \times V$ degenerates.

Proof.l Evidently, $\mathbb{\|}=\lim _{\kappa \rightarrow \infty} \operatorname{dim} \mid \operatorname{Im}\left(S_{m+k} \xrightarrow{(*)} S_{m}^{\prime}\right)$ for all $\mathrm{m} \in \mathrm{N}$ and all $\mathrm{S}, \mathrm{S}^{\prime} \in$ $\{X, Y, U, V\}$ (compare 7.1.3.a).

By Lemma 7.1.4.(ii), therel exists a commutative diagram

for m sufficiently large and $k \geq 16$. Increasing k, we may assume that $\operatorname{dim} \operatorname{Im}\left(S_{m+2 k} \xrightarrow{(*)}\right.$ $\left.S_{m}^{\prime \prime}\right)=1$; then $\operatorname{Im}\left(S_{m+k}^{\prime} \stackrel{(*)}{\rightarrow} S_{m}^{\prime \prime}\right) \mid$ coincides with the image of the orbitl $\mathbf{A}\left(S_{m+k}^{\prime}\right)\left|s_{m+}^{\prime}\right|_{k}$ and hence is the orbit of some $\mathbf{T}\left(S_{m}^{\prime \prime}\right) \square \mathbf{A}\left(S_{m}^{\prime \prime}\right) \mid$ Thus, for all $m \gg 0$ and all $\mathbf{R} \in\{X|Y| U, V\}$, therel exists an l-dimensionall $\mathbf{T}(\mathbf{R},) \square \mathbf{A}(\mathbf{R}$,$) such that every R_{m+k}^{\prime} \xrightarrow{(*)}\left|R_{m}\right|$ factors through $r_{m}: \mathbf{T}(\mathbf{R}) \rightarrow R_{m}$, if k is sufficiently large. Using Lemma 2.4.2 and 7.1.1.a(ii), we conclude that $\mathrm{T}\left(R_{m}\right) \mid$ is an isogeny factor of \mathbf{R}; clearly, $\mathbf{T}\left(R_{m}\right) \mid$ and $T\left(\mid R_{n}^{\prime}\right) \mid$ are isoge $-\mid$ nous for alll $\mathbf{R}, R^{\prime} \in\{\mathbf{X}, Y, U, V\}$.
7.1.6 Lemma. If the isogeny $\mathbf{X} \times \mathbf{Y} \mapsto \mathbf{S} \rightarrow U \mathbf{X} \mathbf{V}$ degenerates \downarrow then f_{n} is a degenerating isomorphism for $\mathbf{n w} 0$.

Proofl By 7.1.2(iii) and 7.1.3.b, it suffices to show that f_{n} is biholomorphic for $n \| 0$. For this, in turn, we need only show that f_{n} induces an isomorphism between the corresponding fundamental groups.

Let $G_{2 n}=\pi_{1}\left(X_{2 n}\right), H_{2 n}\left|=\pi_{1}\left(Y_{2 n}\right), G_{2 n+1}\right|=\pi_{1}\left(U_{2 n+1}\right), H_{2 n+1}=\pi_{1}\left(V_{2 n+1}\right)$, By construction of the sequence $\left(f_{n}\right) \mid$, the sequence $\left(\mathrm{G}, \mathrm{x} H_{n}\right)$ satisfies the condition of Lemma 0.3.3, if the isogeny X x Y t $S \rightarrow \cup U \mathrm{x} \mathbf{V}$ degenerates.

7.2. Cancellation

7.2.1 Lemma. Let U_{1}, U_{2} be connected complex spaces, and let $T_{1}, T_{2} \mid$ be tori such that

 $T_{1} \rtimes U_{1} \sim T_{2} \times T_{2} \downarrow$If therel exists no positivedimensional torus that is an isogeny factor of both U_{1} and U_{2}, then $T_{1} \sim T_{2}$ and $U_{\mathbb{1}} \sim U_{2}$.

Proofl It is easily seen (e.g. by using 7.1.2) that every isogeny factor of a torus is isogenous to a torus. Thus, by 7.1.5, every isogenous between $T_{1} \times U_{1}$ and $T_{2} \times U_{2}$ degenerates. By 7.1.6, we may assume that therel exists a degenerating isomorphism $f: T_{1} \times U_{1} \rightarrow T_{2} \mid \mathbf{x} U_{2}$, which, by 5.1 .5 , induces a simultaneous subdecomposition. As neither U_{1} nor U_{2} admits a positive-dimensional torus factor, we conclude that (with the notations of 3.3.2) $T_{1}=T_{1 T_{2}} \cong$ $\mathbf{T}_{2 T \|}=T_{2}$ and $U_{\|}=U_{1 U_{2}} \cong U_{2 U_{1}}=U_{2} \downarrow$

For any connected complex space U denotel by $t(U)$ the maximall $m \in N$ such that therel exists an m-dimensional torus that is an isogeny factor of $U l$. Thus $U l$ is isogenous to $T(U) \times U_{+}$, where $T(U)$ is a $t(U)$-dimensional torus and U_{+}is a connected complex space with $t\left(U_{+}\right)=\mathbf{0}$.

7.2.1-a Corollary,

(i) Let $U / \sim \mathbf{T} \mathbf{x} U^{\prime}$ with some torus $\mathbf{T} . I f \mid \operatorname{dim} \mathbf{T}=\mathbf{t}(\mathbf{U})$ or if $t\left(\mid \mathbf{U}^{\prime}\right)=\mathbf{0}$, then $\mathbf{T}(\mathbf{U}) \sim \mathbf{T}$ and $U_{+} \sim U^{\prime}$.
(ii) $T(U) \times T(V) \sim T(U \times V)$ and $U_{+} \times V_{+} \sim(U \times V)_{+}$for all connected complex spaces $U l$ and \mathbf{V}.

Proof] The assertion (i) is obvious by 7.2.1. To prove (ii), consider any isogeny between $U_{\downarrow} \times V_{\downarrow}$ and $\mathbf{T} \times Y$, where T is a torus and Y a suitable connected complex space. By 7.1.5, this isogeny degenerates, and using 7.1.6 and 5.1.5, we conclude that U_{+}and T or V_{\downarrow} and \mathbf{T} possess a common isogeny factor. Thus $\operatorname{dim} \mathrm{T}=0$ and we can apply 7.2 .1 to $T(U x V) x(U \mid x)_{+}-(T(U) x T(V))^{\circ} x\left(U_{+} x V_{+}\right) \downarrow$
7.2.2 Lemma. Let T, T_{1}, T_{2} be tori with $\mathbf{T} \times T_{1} \sim \mathbf{T} \times T_{2}$. Then $T_{1} \sim T_{2}$.

Proofl We proceed by induction on $\operatorname{dim} T \times T_{1}$. In the induction step, we may assume that $\operatorname{dim} T_{1}>10$, and that T_{1} and T_{2} have no common torus isogeny factor. Then, by 7.1.5, any isogeny between $T \times T \|$ and $T \times T_{2}$ degenerates, whence, by 7.1 .6 , we may assume that therel
exists a degenemting isomorphism $\boldsymbol{T} \times T_{1} \rightarrow \boldsymbol{T} \times T_{2}$ with some torus $\boldsymbol{T}^{\boldsymbol{\prime}} \sim \boldsymbol{T}$. From 5.1.5 we infer $\boldsymbol{T} \cong T_{T \mid} \times T_{2}$ and $\boldsymbol{T} \cong T_{T} \mid \times T_{1}$, sincel T_{1} and $T_{2} \mid$ have no positive-dimensional common factor. Thus $T_{1} \sim T_{2}$ by induction hypothesis.
7.23 Theorem. Led X, Y, Z be connected complex spaces, such that X, Y or Z is compact. $I f \mid X \times Y$ and $X \times Z$ are isogenous, then so are Y and Z.」

Proof. By 7.2.1.a, wehave $\mathrm{T}(\mathrm{X}) \mathrm{x} \boldsymbol{T}(\boldsymbol{Y}) \sim \boldsymbol{T}(\boldsymbol{X} \boldsymbol{x} \boldsymbol{Y}) \sim \boldsymbol{T}(\boldsymbol{X} \boldsymbol{x} \mathrm{Z}) \sim \boldsymbol{T}(\boldsymbol{X}) \boldsymbol{x} \boldsymbol{T}(\boldsymbol{Z})$ and $X_{+} \times Y_{+} \sim(\mathrm{X} \times Y)_{+} \sim(\mathrm{X} \times 2)_{+} \sim X_{+} \times Z_{+}$. Thus $\mathrm{T}(\mathrm{Y}) \sim \mathrm{T}(\mathrm{Z})$ by 7.2.2. By 7.1.5, every isogeny between $X_{+} \times Y_{+}$and $X_{+} \times Z_{+} \mid$degenerates (note that X_{+}, Y_{+}or Z_{+} is compact). Using 7.1.6, we may assume $X_{+} \times Y_{+} \cong X_{+} \times Z_{+}$, whence $Y_{+} \cong Z_{+}$by 5.2.1. Thus $\boldsymbol{Y} \sim \boldsymbol{T}(\boldsymbol{Y}) \boldsymbol{x} Y_{+} \sim \boldsymbol{T}(\boldsymbol{Z}) \boldsymbol{x} Z_{+} \sim \boldsymbol{Z}$.
7.2.3.a Corollary. If $X \times Y \cong X \times Z$ with X, Y or Z compact, then Y and Z are isogenous.

73. Decomposition

73.1 Theorem. Every connected complex space $U /$ admits a uniqueisogeny decomposition (up to reordering) $U \| \sim \mathbf{X}, \times \ldots \times X_{n} \times T(U) \times U^{\prime}(n \geq 0)$, suchthat
(i) $\boldsymbol{T}(\boldsymbol{U})$ is a (possibly zero-dimensionai) torus and U^{\prime} has no compact isogeny factor $\neq \mathrm{C}^{0}$,
(ii) every $X_{\nu}, 1 \leq u \leq n$, is compact, strongly indecomposable, $\neq \mathbf{C}^{0}$, and not isogenous to any torus.

Proof.l Evident by 7.2.1.a, 7.1.6, and 5.3.4.

REFERENCES

[1] J. BRUN, Surlal simplification par les variétés homogènes, Math. Am. 230 (1977) 175-182
[2] A. DOUADY| Lel probleme des modules pour les sous-espaces analytiques| compacts d'un espace analytique| donné, Ann. Inst. Fourier 16 (1966) 1-95.
[3] G. Fischer, Complex analytic geometry, Lecture Notes in Math. 538 Springer, 1977.
[4] T. Fuנrta, Cancellation problem forl complete variefies, Invent. math. 64| (1981) 119-121.
[5] C. Horst \Decomposition of compac§ complex varietiest and the cancellation problem, Math. Annل 271 (1985) 467-477.
[6] C. Horst, A cancellation theorem for artinian locall algebras, Math. Ann. 276 (1987) 657-662.
[7] B. KAUP, Äquivalenzrelationen auf allgemeinen komplexen Räumen, Schriftenreihe Math」 Inst. Univ. Miinster 39 (1968).
[8] L. Kaup, B. Kaup, Holomorphic functions in several variables, De Gruyter, 1983.
[9] F. Oort, Algebraic groupl schemes in characteristic zero are reduced \Invent. math. 2 (1966/67)| 79-80.
[IO] G. Parigi, Surlfa simplification par lest tores complexes, J. Reine Angew. Math. 322 (1981) 42-52.
[|| 1] G. Parigi, Caractérisation des variétés compactes| simplifiables el applications aux surfaces| algébriques, Mathل Z.190 (1985) 371-378.
[12] T. Shioda, Some remarks on abelian variefies, J. Fac. Sci. Univ. Tokyo 24 (1977) 11-21.
[13] T. Urata, Holornorphic automorphisms and cancellation theorems, Nagoya Math. J. 81 (1981) 91-103.

Received February| 2.1990.
C. Horst

Mathematisches Institut
Universitätl Miinchen
Theresienstr. 39
D-8000 München 2, West Germany

