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ON PRODUCT DECOMPOSITIONS
OF COMPLEX SPACES
C. HORST

INTRODUCTION

Every connected complex space U admits a maximal decomposition U % U, x . . . x U,

with indecomposable U, # Co, and it is natural to ask whether (or under which conditions)
these  factors are unique. When considering  this question, one  is of course  tempted to copy  the
number-theoretic procedure, i.e., given two decompositions, to try at first to find a common
factor  and then to drop it. However, just this simplification tums out to be the real problem.

For general complex space& little can be said as to when X x Y g X x 2 implies Y %’ 2.
Even in the compact case, no counterexamples were known unti1 1977. Then T. Shioda [12]
and, some four years later, G. Parigi [lo] presented various examples of compact complex
manifolds Y 7 2 such that X x Y E X x 2 for some torus X . Shioda’s manifolds Y and
2 are tori as well, and Parigi’s examples are tota1 spaces of fibre bundles with finite strutture
group and torus basis; we shall denote  this class of complex spaces by J?

Roughly during the same period,  diverse criteria for cancellability in the category of re-
duced connected compact complex spaces have  been proven ([l], [4], [13]).  It tumed out that
in this  situation, Shioda and Parigi had alrcady  more or less exhausted the scope of counterex-
amples:

As was shown in [SI,  X x Y g X x 2 entails Y E 2,  if {X, Y, 2) @ K Conversely,
for every X E q there  exist non-isomorphic Y, 2 such that X x Y g X x 2 (see [ll]).  The
proof of the above cancellation result simultaneously yielded the uniqueness of the maximal
decomposition for compact varieties that are not contained  in J?

We shall now generalize the situation of [5]  in several respects.  FirsUy, non-reduced com-
plex spaces will be admitted, and the compactness condition will be weakened; for instante,
in the cancellation problem, we only require one  of the factors X, Y, 2 to be compact. As one
of the main results, we obtain that then the cancellation theorem of [5]  carries over word for
word (Theorem 5.2.1). Again, the proof brings about a (partial) answer to the decomposition
problem: In any maximal decomposition of a connected complex space, the compact factors
6 band the product  of the other  ones are unique (Theorem 5.3.2 and Theorem 5.3.4).

In the last chapter,  we are concemed with a different type of generalization, which is
inspired by the fact that in al1 counterexamples to the cancellation problem, the varieties Y
and 2 are stili isogeneous, i.e. they can both bc covercd finitely by some common S. Thus
one  is led to suspect  that Y and 2 are isogeneous, if SO are X x Y and X x 2.  This is
indeed the case, if at least one  of the factors X, Y or 2 is compact (Theorem  7.2.3). As a
by-product of the proof,  we obtain again a congenial decomposition result (Theorem  7.3.1).
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It is easily seen that both  the cancellation and the decomposition problem boil down to
the following question: If X x Y ?% U x V is an isomorphism between connected complex
spaces, what is the relation between the individua1 factors?

TO cover also the non-reduced case, it is necessary  to consider  at first the correspond-
ing locai problem, where X, Y, U and V are replaced  by germs of complex spaces with
dim X = 0. It is shown that X x Y and U x V admit a simultaneous subdecomposition, i.e.
thatthereexistisomorphismsX~X,xX,,Y~Y,xY,,UrX,xY,,VrX,xY,
(compare Theorem 1.4.1). The same assertion holds, if X, Y, U, V are again complex spaces
with dim X = 0 (see Chipter  4). This latter result starts the induction on dim X in the proof
of Theorem 51.5,  which States that X x Y and U x V with X compact admit a simul-
taneous subdecomposition, if e.g. {X, Y, U, V} @ .9? The induction step is brought about

by a construction presented in Chapter 3, which assigns an isomorphism r x y g u x v
to the given one,  such that X x Y and U x V admit a simultaneous subdecomposition,
ifsodoXxYandvxV; ittumsoutthatdimX < dimX  i f  {X,Y,U,V}  g! F
The background niaterial for this latter conclusion as well as for the construction of the iso-
morphism r x y %’ u x v is compiled in Chapter 2, the contents  of which can be summed
up as follows:

a) For every connected space S, there  exists  a largest compact connected complex Lie
group A(S) acting holomorphically and effectively on S.

b) If there  exists a holomorphic S -t A( S) that maps the orbit of some positive-dimen-
sional closed  complex subgroup T of A(S) onto T, then S E y

Even for a reduced  compact X 6 < the unique indecomposable factors given by The-
orem 5.3.4 are in general not unique as subspaces of X , i.e. an automorphism of X need
not be a product  of isomorphisms between the indecomposable factors. The relation between
Aut (X) and the automorphism groups of the factors is investigated in Chapter 6. It turns out
that the situation simplifies considembly,  if X is a projective variety.

Finally, when dealing with the isogeny situation, we start again with  connected complex
spaces X x Y, U  x V which are now assumed to be isogeneous. Pursuing a similar line of
reasoning as in Chapter 5, we show:

a) There  exists a torus of maximal dimension which is a common isogeny factor  of X, Y,
U and V.

b) If this torus is zerodimensional, then there  exist isogenies X’ N X, Y’ N Y, U’ N

U,V’  - V such that X’ x Y’ E U’ x V’.

TO this latter isomorphism, we can then apply the results of Chapter 5.

1 am grateful  to 0. Forster and H.W. Schuster for the interest  they took  in this work,
which has been accepted as a Habilitationsschrift by Universitat Munchen;  furthermore 1 am
indebted to Dean Victory for linguistic and stili& advice.
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0. PRELIMINARIES

0.1. Categories with (Co-)products

Let & be a category with a (co-)product 0. For A, B E &J the canonica1 morphisms
A@B-+A,AoB--+B(A-+AOB,B +AaB)willbedenotedbyp,,p, (j’,jZ)
or, if unambiguous, by pA, p, ( jA , jn) , or simply by p (j) . By JA,* or, if the meming is
clear from the context, by J we denote  the natural isomorphism A 0  B 4 B 0  A, and we let
JA  := J,,. Moreover, for every permutation cr  of { 1,. . . , n), we let J,,  = JA,o  : 0, A -+

Q,A  WWnbyp,,  ,,...  ,pom  <i,,,...,i,m>.
If 2 E -5 is a fina1  (initial) element, then pA  : A 0 2 -t A ( jA  : A --t  A 0 2) is

an isomorphism for al1 A E -5. If 2 is a zero object, we denote  by abuse  of notation the

morphismAp~A~Zid@?A~B,B~AoB(AoB~AoZ-~A,AOB~B)
by j’ , jz ( p’ , pz) or by jA, jB ( pA, ps).  There  will be no confusion with the previous j, p,
since  we shall always consider  only one  category at a time with exactly one  fixed product
(coproduct) that is nota coproduct (product).

A’E&  isafacforofAE&,ifAEA’OA” forsomeA”EA.If& hasafinal
(initial) object 2, we shall say that A E ~3 is indecomposable,  if every factor  # 2 of A is
isomorphic to A. A decumposition of A E & is an isomorphism A -f A, 0  . . . 0  A,  in
A.

A final (initial) object 2 E .& is a semi-zero object, if Mor( 2,  A) # 0( Mor( A, 2) # 0)

for al1 A E A. If JB has a semi-zero object 2, tben a morphism A % B is called cunstant,
if it admits a factorization 4 = (A +  2 + 8).

0.2. Complex spaces and holomorphic mappings

0.2.1. Let U = (IVI, er,), V = (IVI,  8,) be complex spaces and let f = (lfl,, f> : U --t
V be holomorphic. If U is reduced,  we do not distinguish between U  and IVI  and between
f and Ifl. We let u&(U) := trr; dim, U.

A (closed  or open) complex subspace  U’ of U will be indicated by the symbol U’ ut
U (which also denotes  the inclusion map); if U’ is reduced, connected  and compact, we
sometimes write U’ (2’ U. If U is a complex Lie group and U’ L, U is a subgroup, we

employ the symbol U’ C U.
For V’ c-t V we denote  by f-’ (V’) the largest subspace  S of U such that there  exists

a holomorphic factorization fls = (S --f  V’ L+ V). If U’ + U such that &, is proper,
then there  exists a smallest complex subspace  S of V such that flU’  admits a factorization
through  S L, V,  and it will be denoted by f( U’).

f  is a quotient  map, if it satisfies the following condition: For every open V’ c V and
every holomorphic g : f-‘( V’) + W that factors set-theoretically thtough  flf-l(t,,>,  there
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exists a unique holomorphic factorization of g through flf-,  (“,).

If f is proper  with Stein factorization (U 7Z S,  -f V) , then 7r is a quotient map.

f is a covering,  if U is connected and if f is finite and locally biholomorphic. Coverings
are quotient maps.

Let 4 : IVi --)  S be a map of sets. We shall say that the  analytic quotient 4 : U + S
exists, if S can be endowed with a complex strutture such that 4 = 1g 1 for some holomorphic
quotient map g : U + S.

Suppose that f is finite and factors through 4. If 4 defines an analytic equivalente  relation
on U (i.e..  if {(u,  u’) E U x U : 4(u) = C#J(  u’)} is analytic), then the analytic quotient
C#I  : U -t S exists (see [8], Proposition 49. A 13).

0.2.2. The cartesian  product of complex spaces is a product in the category of al1 complex
spaces, and Co is a semi-zero object. For u E V and every complex space W , we denote
the constant holomorphic map W -P Co E {v}rVby[u].For(u,u)EUxVwelet

i, := (id,,[u])  : U --t  U x V,j, := ([u] ,id,)  : V + U x V, if the meaning is clear
from the context.  If g : U x V + IJV  is holomorphic, tben the partial maps g o j,, g o j,
will be denoted by g( u, .),  g( .,  u), respectively. Let g : U x V + A x B be holomorphic,
(~,u)EUxV.Thenweletlg:=p~ogand rg := pB o g; moreover, when no ambiguity

arises, we let L:=  lg o j,, v:= rg o j,, L:= lg o j, and u:=  rg o j,.

Lemma. L.-et  g : U x W + V be a holomorphic map between connected complex spaces,
andfet A c U x W with Ip”l(A)  = IVI and Ip,l(A) = IWl.

If f is constant on some open neighbourhood of A , then  allpartial maps f ( ., w) , f ( u, .)
are constant.

proof:  For symmetry reasons, it suf%es  to consider  the  partial maps f( .,  w) ; therefore we
may assume that W is reduced  and irreducible. Given (u, w) E U x W, we have  to show
that f( .,  w) is constant on every infinitesima1 neighbourhood of u ; thus we may assume
U, = {u}. By assumption, there  exists a non-empty open subset  W’ of W such that flllxW,
is constant. Hence f is constant, since W is reduced  and irreducible. 0

0.3. Products  of groups

Although the groups considered in what follows need not be abelian, we denote  the group
composition by a +- -sign.  Then every group homomorphism G x H -+ G’ x H’ is given

by a matrix CY  B
( >7 6

with CY  E Hom( G, G’) etc. Note that CY  + /? = p + <y (when no

ambiguity can arise,  we do not distinguish between Q and (Y o pG, G and jc( G) etc.). The
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composition of two such homomorphisms is given by the product
(7: s> -(; 6 )

(whcre CY’CY  + P’7  = p’7 + CY’CY  etc.).

0.3.1 Lemma. Let 4 : G x H -+  G’ x H’ be un isomorphism of groups given by

and let +-’ be given by

If (Y or CY’  is injective, then SO is 6’  or Mi’, respectively; the same  assertion holds,  if
«in,iectiveH is replaced by «surjectiveu.

I?xuf: Let a be injective, and let h’ E Ker66’.  Then h’ = 7B’(  h’) + 66’( h’) = 7@‘(  h’)  .
If S’( h’) = 0, thcn 0 = cQ’(  h’) + ,/3S’(  h’) = cr,f3’(  h’) , whence /?‘(  h’) = 0 and therefore
h’ = 7/3’( h’) = 0. If Q’CX  is injective, then the equation 0 = CX’Q/?‘( h’) + a/pS’( h’) =
CY’@‘(  h’) - p’SS’( h’) = a’@‘(  h’) again yields B’( h’) = 0, whence h’ = 0.

Let (Y’  be surjective and let h’ E H’. Then /3’(  h’) = cu’( g’) for some g’ E G’, and
therefore h’ = 66’(  h’) + 7B( h’) = 66’(  h’) + 7a>‘(  g’) = 66’(  h’) - 67’(g’)  = S( 6’(  h’) -
7’( g’)) E Im 6. If (Y’CX is surjective, then /?‘(  h’) = a’a(  g) for some g E G, and hence h’ =
66’(  h’) + 7P’( h’) = 66’(  h’) + 7cy’cx(  g) = 66’(  h’) - S7’cu( g) = 66’(  h’) + SS’7(  g) E Im SS’.

0

0.3.2 Lemma. Let 4 be as in 0.3.1.

Forallm,nEN,themapG~G--+G,givenby(g~,g~) ~((y’~)~(g~)+(P’r)“(g~),
is a surjective homomorphism of groups.

lf (P’7) n = 0 for some n, then ( cJcY)‘” is un isomorphism for al1  m.

~?Tw[ From $cy + P’7  = id G we infer CY’CY~‘~  = /3’7ycy’<y  and hence id G = ( Q’Q  + P’7)  mn =
((da)m  + (P’7) 0 x)”  = (/3’7)” 0 x” + (da)” o $J  with suitable homomorphisms x, $
that commute  with P’7 and (Y’CY.  This proves everything. 0

0.3.2.a Corollary.  Let g : V x W -t V x W be un endomorphism  of K -vector spaces, and
assume that g II,,, 9 = X . id,, 9 for some 0 # X E K.

lf (W ‘2  V x W -% W)”  = 0 forsome n, then thecomposition gojVopVIIm g + Im g
is un isomorphism.

proof  Let V’ := Im g,  W’ := Ker g and dehne 4 : V’ x W’ + V x W by #J( Y’, w’)  :=

u’ + w’. Then #J is an isomorphism the inverse of which is given by (u, W)  H
(
; .du,w>,

If $ is represented  by the matrix with inverse
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Ly’  B
( >7’  6’ ’ then 7jY(w) = 7 (k -~J(O,W))  = t .p&~(O,w));  thus (7P’)” = 0 for

some n. By 0.3.2,  CY’CY  is an isomorphism, since (/?‘7)*’  = p’(7fl)“7 = 0. This proves

the assertion, since CX’CY( u’)  = CU’(  pV( u’))  = pV, ; -S(P&‘LO)  = ; -dP”w,w
>

0

0.33 Lemma. LA  G1  x H,  > G2 x H, > . . . > G, x H,  > . . . be a sequence  of subgroups
such thaf

(*) R ,,+z  =R,n(G,,  ~H,,)~o~RE{G,H},~EN

Denore by P,,  the homomorphism

G PG+3 PIIIIZ P%  1 PG
n+4 4 G,,  + H,,+, --)  H,,+,  --)  G,.

JfP,oP,,  o...oPnc4k = 0 forsome n,k  E  N, then  G,  x H,  = G,+,  x Hm+,  fora11
m»O.

l?ruoL By assumption, the diagram

G P%t3
n+4 + G,,  ‘% H,,  -t H,,+,  -t G,

n f-l n n n
G n+2 ‘%’ G,,  ‘4+  H,, -r H,,  =i  G,,

iscommutativeforalln~2.Thus,ifP,o...oP~+,,=O  forsomen,k,thenP,,,o...o
Pm+4k  = 0 for al1 m 2 n with m .- n even.

Furthermore, G,+s I-J  G+2 =  Gl+,  n W,,  x HL+,)  n G1+2 =  GI+I n G1+2  8 Hl+3  n

H 1+2 = Hl+1  n Hl+2p G21+1  f - l  H21  =  G2,-1 n CG,,  x H,,)  n H,, = G21-,  n H2,  and
G21+2 r-l H21+1  = G2,  n H2I+  1 for al1 12  1. Therefore, we obtain a commutative diagram

G, x H, > G, x H, > G,xH, > . .  .

1 kmxkm 1 id xkm 1 krnxkan

G;  x H; > G2 x H; > G;  xH; > . .  .

whereG&+, = G2r+iI(G, nH,),Hi,+, = H21+1/W1 nH2) and H;, = H,,/W, nH2 +
G, rl H2)  (note that G, n G2 and G, n H, commute).

Clearly, the lower line of this  diagram again satisties the condition (*).
Letnown,kEN with P,,o...oP~+,, = 0; obviously, we may assume that n is even.
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For 1 E N with 2 1 > n, consider the commutative diagram

G21+4 P, G21+3 =+ H21+2 S H21+1  -i G,,

Il 1 km 1 km 1 km Il
G21+4

0, G;1+3 -t H;,,, 4 Hil+,  -t Gzl

Thearrow H;,,, -PG,, isinjective,since  H, nH2 = H21+1 nH2,  = Ker(H,,+,  "2 G2,).
Furthermore,the  arrow  Hl,+, + Hi,,, is injective, since pH2,+,(H1  fé HZ + G1 n Hz) =

pH2,+,W2~+~  n H21+2  + G21+1  nH,,+,) = H21+1  nH2,2  = Ker(H21+1  "% G2z).

Now apply the same construction to the sequence  G’t  x Hi > G, x H; > G; x H4 > . . .
with G and H interchanged; this yields a commutative diagram

G;xH;  > G, xH,+ > G;xH; > . . .
1 kanxkm 1 k a n x i d 1 k a n x k m

Gi'xHI' > G; xH; > G;xH;' > . . .

with the lower line again satisfying (*).
Hence,  for n and 1 as above,  we obtain

G 21+4 5 G21+3 -t H21+2 =+ H21+1 +"' G,,

Il 1 kan 1 km 1 kan Il
G21+4 p, ci,+, -3 H;,+2 L H;l+l 4 G,,

1 1 Il 1 1
G+21+4 -$  G;,,, --f  fG,+,  -+ H&+I  + 6

whcre thecompositions G&+,  + G&+, + H&+,  and H;,,  -+ HiI+,  -t G,, areinjective.
We conclude that P2; o . . . o P2;+4Ck-,) = 0, if P2; : G&+,  --B G;, denotes  the ho-

momorphism given by the bottom line of the above  diagram. Moreover, it is obvious from
the construcnon,  that G21+2 x H,,,, =  G21+‘,  x H21+1  =  G2,  x H,,, if ci,+,  x H&+2 =
G,+, x H&+, = G;, x H;,.

Thus, if we proceed by induction on the minima1 k with  P,, o . . . o P,,+4k = 0, it remains
to consider the case k = 0, i.e. the case G,  = 0. Then GZ1 = 0 ,G21+1  x H21+1 c
H21  I H21+2 = 4, n Gl+l X H,,+,)  =  G21+1  X H21+1  and R21+3  =  R21+1  nH2,+2 =

hl+1  r-l (G21+1  x  H2,d  = R21+1 for RE {G, H} andall 1 with 212 n. 0
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1. LOCAL ALGEBRAS WITH ARTINIAN FACTORS

Let K be a field of characteristic zero with a complete valuation and denote  by SK the
category of locai analytic K-algebras. The analytic tensor product  is a coproduct in 3,
and K is a zero-object in 3,.

For A E 9, with maximal ideai mA  let nA  c A be the nilradical of A. The canonica1
projection A --t A/n,  =: A,  is denoted by red, or simply by red. The reduction of
a homomotphism f : A -f B in S, is indicated  by f& : A,  -+ Bnd, its Jacobian

m,/mi  + m,/mt  by Tf : TA  + T,.
For any locai subalgetira A’ c A we let AIA’  := A/A  . mA,.

1.1. A surjectivity criterion

Let(f:A-+B) ~2%~. It is well known that f is surjective, if and only if SO is its
Jacobian Tf.

1.1.1 Lemma. Let (g : A @  B + A’ @  B’) E  %‘,  such that  pA,gjA  and p,,gj,  are
surjecrive.

lf pB,gjA  or pA,gjs  is  conslant,  then g is surjective.

Pmof:  Tg is given by a mauix that has the form (el un) o r  (u:: C;,) w i t h

surjective G1,  : T,  + TA’,&  : TB -tT~l. 0

The following lemma provides the essential argument in the proof of the locai cancellation
theorem.  Its assertion  does no longer hold, if char(  K) > 0.

1.1.2 Lemma. Ler  (f : A + B @  Cj E  5YK.

If pBflnA  is injecfive wilh  pBf( nA  \ InA)  C mB \ mi, fhen nA  \ mi  C Ker pcf.

~~~~t~~(m~\m~)~n~,andletm~~beminim~witha””=O.Ifp~f(a)#O,

there  exists  1 E N with pcf(  a) E  m& \ mg’.

Let B = N/m;+*,C = CImE’, andletf= kanof:A +B@C.Thenf(a) =

b~l+z+l~cwithz~m~~m~,bm#O=bm+*-~.z~forO~~<m+l,c#O=c2=cz,

andhenceO=f(am’1)=((~~1+z)+1épc)m+1=(m+1).(b~1+z)m.(1~c)=
(m + 1) . b” @ c, a contradiction. 0

1.1.2a Corollary. (compare [9]).  Lei  f be as above  with  A artinian.
If pg  f and TPB f are injective, then pC  f is constant.
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1.1.2-b Corollary. (compare [9]).  Let f be as in 1.1.2  with A, regular.

lf p, f I,, is injective with pB f ( nA \ mi)  c mB \ mi,  then pC f factors through  red A.

Roof: It suffices to show that every minimal set of generators { ni , . . . , n,,) of nA  is contained

in mA  \ mi. Let n’ be generated by {n, , . . . , T+,}  n ( mA  \ mi)  and let A’ := A/n’. Then
dim A’ = dim A = dim A, = dim TA, = dim TA,,  whence A’ is rtxiuced,  i.e. n’ = nA  . 0

1.1.2.~  Corollary. Let (g : A @  B + A’ 8 B’) E SK with A artinian.

tf p,,g  jA is an isomorphism, and if p,,g jB is surjective, then g is surjective.

Bo& Evident by 1.1.2.a and 1.1.1. 0

1.2. Isomorphisms between coproducts in 5YK.

Let f : A @ B -f C @ D be an isomorphism in JYK,  and let fA := pA  f-’ jCpcfjA, f; :=

pAf-1jDpDf3A,  f;’ := (f-‘jD = p,fispsf-‘iD,fg”  := (f-‘>& := PcfjBPef-‘&.

1.2.1 Lemma. It TpCf jA or TfA is injective, then SO is Tp, f -’ jD or Tfi’ , respectively.

The same  assertion holds,  if uinjectives is replaced by asurjectivew.

Proof:  Compare 0.3.1. 0

1.2.la  Corollary. pCfjA or fA is an isomorphism, if and only if pB f-’ jD or fi’ is, re-
spectively.

FYcrof  Let pcfjA  or fA be an isomorphism. Note at first that it suffices to show that pB  f -’ jD

resp. fi’ is surjective: If pCfjA  is bijective and ps f-*jD is surjective, we obtain a se-
quence  of surjective homomorphisms

and we conclude that pB f -‘io is also injective.
The assertion is now evident by 1.2.1. 0

1.2.1.b Corollary. Let A or C be artinian.

(i) If pC f jA is an isomorphism, then SO are pA  f SI jC, pD f jB and pB f -’ jD; moreover,

pDfjA and p, f-’ jC are constant.

(ii) If fA is surjective, then fA and f;’ are isomorphisms, and pDfjA  is constant.
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Pro& In (i) as well as in (ii),  A is artinian, if C is. Thus we may assume that A is artinian.
(i) If pcfjA  is an isomotphism, then SO is pBf-’  jD by 1.2.1-a, and C is artinian. By

1.1.2, pDf jA is constant, whence pD  fjB is surjective and therefore  bijective, since  B GZ D

via pe f -‘in. Thus pA  f -’ jc is an isomorphism, whence pn f -i jc is constant.

(ii) If fA is an isomorphism, then SO is f;’ by 1.2.1.a. If TfA  and fA are injective, then

SO  Xe Tpcf  jA and  pcf  jAI whence p, f jA  is constant by 1.1.2.a. 0
1.2.2 Lemma. pg  f -’ jc akfines  on isomorphism C/pc f ( A) + B/p, f -’ ( D) , whose
inverse is given by pc f j 9.

BOO&  pBf-‘pCf(mA)  cpBf-‘(f(q)+C@q)  = pBf-l(C@mD)  = O,f-‘(mDL

whence  psf-‘(C-Pcf(mAN  c B.p,f-‘OnDI.

Furthermore,  pcfpBf-l(c)  E  pcf(f-l(c)  + mA  @ B) = c + C. pcf(m,)  for aI1
c E m,..,  and the assertion follows for symmetry reasons. 0
1.23 Lemma. For al1  m,  n E  N the mulfiplication map mult: Im fF @ Im f2 + A is
surjective.

Pruof:  By 0.3.2,  the Jacobian of mult is surjective. 0

1.3. The strutture of loca1  algebras with artinian factors

La f : A @ B -+ C @ D be an isomorphism in %, and assume that A is artinian.
Then A,  := Im fz,  A, := Im f;‘”  are welldefined for m » 0, and mult: A,  @  A,  +
A is surjective by 1.2.3. Clearly, pcf  IAc,  pDf IAD  and their Jacobians are injective; thus

pDf iA,, pcf  IAD are constant by 1.1.2.a. Therefore, A,  = fA(A),  A,  = fjs(A),  and

pcf(A)  = pcf(Ac)  =: C,,pDf(A)  = p,f(A,)  =: D,  are isomorphic to Ac,A,  via

pc f,  pD  f,  respectively. Conversely, pA f -l induces  isomorphisms CA + A,,  DA  --+ A,,
whence,again by 1.1.2.a,p,f-‘ICA  and p,f-‘ID,  areconstant. Let B,  := pBf-l(C),

BD := pBf-‘(DM&  := pcf(Bc),D B := pDf (BD)  ; then, by 1.2.3, the multiplications
Bc~BD-tB,CA~CB-+C,DA~D,-tDaresurjective.

13.1 Lemma. mult: A,  @I AD --t  A is un  isomorphism.

Prcxf:  Denote by x the composition

Then  PC,xjA, =  PCfjAPAf-‘jC?%fjAlA, =  PCfjAfAIA,  and  pD,xjAD  =  PDfjAPAf-’

jDPDfjAIA, = pD  f jA fJ,  IAD  are isomorphisms. By 1 .1.2.c,  x is surjective and thus bijective,

whencc  mult: A,  @ AD  + A is injective and hence  an isomorphism. 0
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1.~2 Lemma. (p,f-'p,fjBD  -+ B,) = idBD,(pDf~,f-‘lDB  -+ DB) = idei, ad
p,f-l p,flnc  is constant,  and the corresponding statements hold after  interchanging  C and

D, In particular,  B, and C, , as well as B, and D, are isomorphic via pCf, pDf, with
the respective inverse given by pn f -’ .

h-od.  Let 3 E mcBD. Then pBf-'pDfpBf-'(8)  = psf-'pof(f-'(3)  + (Pnf-l(s).-

f-‘(s)))  = Pnf-‘P&J), since  pDf(pBf-'(s) - f-'(s))  E pDf(mA CS BI = D *
mDA and P,f--lIbA  is constant. Thus p,f-'pDfpBfmlIC  = p,f-'p& iscons~t,and

p,f-‘P,fP,f-‘I,  = p,f-‘ID and we conclude that pB f-'pDflBc is constm  and

PBf-lPDflB, = idn,. Then also Pbf-‘pnflb,  = idD8,  since  p,flB,  --+ DB is w-
jective by definition. 0

1.3.2.a Corollary. The multiplications B, @  B, -f B, C, 8 C, -P C, DA 63  D, + D are
isomorphisms.

x := (CA@CBmutt  Cf-2cA@B f,&%f~Pefia  A, @  B,) .

-mn P~,x&, = fA 0 P,qf -‘&  and  P,~x~c, = pef-lpcfpBf-'  IC,  = pBf-l IC,  ae
isomorphisms, and hence SO are x and mult (see 1 .1.2.c).

Symmetrically, mult:  D, @ D, -+ D is an isomoxphism.
Finally, mult 8 mult: (A, @  A,) @  (B, @  B,) -+ A @ B is surjective, mult @ mult:

(CA @I CB) @ (D, @ DB) --P C @ D is an isomorphism, and A, 8 A, @  B, @  B, E
CA @ CB @ DA @ D,. Thus mult: B, @ B, t B is an isomorphism as well. 0

In total,  we have shown:

1.3.3 Theorem. Let f : A 18  B --+ C@  D be un isomorphism in sK with A artinian. Then
rhere exists a commutative diagram of isomorphisms in 2ZK

(AcwJ,)@Oc@B,) f  (C,@C,)  @(D,@D,>
1 mult@mult 1 mult@mult

A@B f C@D

where RA = pnf(A) = Pnf  (Au), B, = Pnf  -’ (R) = Pnf -‘(Rn), RB  = Pnf( BR) >
A, = pAf-l(RA) for R E {C, D}. Inparticular, R, 2 S, for R E {C, D},S E {A, B}.

1.33a  Corollary. (Cancellation theorem, see  [6]).  Let R, R’, S E 2YK such that R, R’ or
S is artinian.

IfR@Sg  R’@S, then RZ R’.
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Pt-crof  We may assume that S is indecomposable. Then either R, E SR = K = RS 2 S,
or R, 2’ SR = S = SR,  % Rk. In the first case, R g RR, 2 Rh ?Z  R’, and in the second
oneRZRn,@Rs~R~@R~~R’. 0
1.3.3.b Corollary.  (Decomposition theorem, see [6/).  Every S E 9, admits a unique
decomposition (up to reordering) S % S, ~0  . . . @ S,,  8 S’  with indecomposable artinian
S, , . . . , S,,  E 9, \ (K) and with S’  E %‘n  having no artinian factor # K.

proof:  Of course,  we need only verify the uniqueness part. Using induction on n, it suffices

to show: If S 2 5, @ . . @ g, @ S” is another decomposition of the same type, then there

exists 1 < Y’  2 n with S, g 5, and @,+,  SV @ S’ E S2 @ . . . @ S,,,  @ S” .
The case n = 0 being trivial,  we may assume that the assertion is proven for some n- 1 2

O.LetB:=~vt2Sv64S’,D:=~p>,Sp~S”andletf:S,~Bj~,~Dbesome

isomorphism. If S, = (S,& thenlet y’ := 1. Otherwise, S, @...@S,,@S’ = B g

5;1c3B,- S,~D,andS,~...~~~~S”=D=S,~Dg~S1~Bo.Fromthe

induction hypothesis, we infer that 5, E S,,, c&,,+~~~  S, @ S’ E Bo for some 2 2 Y’  2 n,

and hence @,+,, SV  63 S’ = S, 8 B, = D = @& gP  8 S” 0

In view of the applications we have  in mind, it is advisable to reformulate 1.3.3 in terms
of quotient algebras.

13.4 Theorem. L,et  f : A@ B -i C@ D be an isomorphism in 29, with A artinian, and let
R,,S, be as in 1.3.3,  where R E {A, B}, S E {C, D}. L.et  {R, R’} = {A, B},{S,S’)  =
{C, D}. Then

0) h 0 fjR : R + C[C, @ DjD,,  and kan o f-’ js : S -+ AIA,, 8 BjB,  are
isomorphisms.

PSfjR(ii)  The composition R- + S “3 S/Sn,  factors through R + R/Rs, with an iso-

morphism R/R,  + S]S,,,  and S PBfA’jS  B ‘3 B/B,  factors through S -t S/S, with
an isomorphism SjS, -+ BjB,,.  The homomorphism fA : A --t A resp. f; : A + A
factors through kan : A + AIA, resp. kan : A + AIA, and the resulting  composition
AIA, + A + AIA, resp. AIA, -) A + AjA, is an isomorphism.

pnzof:  kanIR,  + R/Rs,kan[SR+ S/S, are isomorphisms, since  SO are mult: R, @
Rs, + R, mult : S, @ S,, -) S.

(i) Let

and
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J-IMI  P~~~,$Q&  : Rs + S/S,, and pR/Rs4SjSR  : SR -+ RjR,, are isomorphisms,

whence SO are 4*, tic, $o by 1.1.2.~.
From the commutative diagram

B,  c-1 B Psf C
1 km 1 km 1 km

K L, B/B, 3 C@,

(compare 1.2.2 and the definition of CA, EI,),  we infer that pcIcA4B  jB, is constant; sym-

metrically,  so is poIDA +B jB, . In particular,  the Jacobian of 4B is surjective, and hence SO

is dB.
(ii) The case R = B follows from 1.2.2 and the definition of B,, B,, C,, D,. The

case R = A follows from SA = psf(A) and psf(As)  = K for {S,S’}  = {CD}.
The morphism fA is constant on A, and hence factors through A + AIA,; furthermore,
f,(A) = A, and A, -P A/A, is an isomorphism. The corresponding statement for fA
follows symmetrically. 0

1.4. Germs of complex spaces with zero-dimensiona1  factors

1.4.1 Theorem. Let 4 : X x Y + U x V be un isomorphism between  germs of complex
spaces, and assume lhaf X is zero-dimensional. Le(  {S, S’} = {U, V}, {R, R’} = {X, Y},
and denote  by

Xs X-+S’+X

Y.s
sx

the fibre of
Y --t  S’s --f y -t s

SY S+X

(where each  arrow denotes  the corresponding partial  map given by 4 or 4-l).

Then
(i) ps$lX, x Ys + S and p,q5-‘IU,  x V, -f R are isomorphisms.
(ii) The partial  map S + R akjines  un isomorphism S, + R,, thepartial map Y + S

defines  un isomorphism Ys -+  S,, and the composition of parrial maps X -t S -t X
factors through the inclusion X, -+ X, inducing  un isomorphism X, + X,.

The proof is evident by 1.3.4.

1.4.1.a Corollary.  Let X, Y, Z be germs of complex spaces such that ut least one  of them is
zerodimensional.
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1.4.2-b Corollary.  Every  germ U of a complex space admits a unique decomposition (up to
reordering) U - U, x . . . x U,, x U’ with zero-dimensiona1 inakcomposable  U,#  Co and

with U’ having no zero-dimensiona1 factor f C ‘.

2. FAMILIES OF HOLOMORPHIC MAPPINGS

When considering  the complex analytic cancellation problem, one  is faced immediately with
various families of holomorphic mappings - eight at first sight. but actually a lot more. In this
chapter,  we prepare the way for dealing with them.

2.1. The simultaneous Stein factorization

Let 4 : W x U + V be a holomorphic map between connected complex spaces. Then W
and U can be interpreted as parameter spaces of holomorphic maps from U or Vv imo V
with evaluation map 4. In general, we consider  U to be the common domain of the maps
parametrized by W . Sometimes, however, it is advisable to interchange the roles of the two
factors, and it will be done  without further comment.

Mostly, we shall not distinguish between w E W and the partial map +( w, .)  (or between

u and dd.,u)).

2.1.1 Lemma and Definition. Assume fhat @ := (pw,  4) : W x U + W x V isproper.
Then the partial maps w E W admit a simultaneous Stein factorization, i.e. the Stein

factorization @ = ( W x U -0,  S, J% W x V) satisfies r@ = id,x r,,&(w,  .) = (pw,YiF)

for al1  w E W, where w = (U 3 S, 5 V) is the Stein factorization of w E  W.

Roof: By ([5],  4.3),  the assertion is true for reduced  U, W. Thus there  exists  for every w E W
a commutative diagram

wxu -0,  s,
1 id xTr /  hw

w  x  s,

with some homeomorphism h,.  The mapping h, is biholomorphic, since  both  id x rw and
r& are quotient maps. 0

For the remainder of this  work, we let therefore 7r+  := ru : U --t  U,+ := S,,, for w E W

xbitrary, ad 4,t :=p,o~:wxu*-tv.

2.2. Effectively parametri&  families

Let 4 : W x U + V be a holomorphic map between connected complex spaces, and let
Hol(U,V) := {(Y : U t V : <y holomorphic}, Ho1 (U) := Ho1  (U, U),  Aut( U) := {a  E
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Ho1  (U) : CY  biholomorphic) . The evaluation map Ho1 (U, V) x U + V will be denoted
by E,,,,  or by E,, if U = V (or by E,  if the meaning is clear from the context). For

u E U, U’ c U,  H c Ho1  ( U, V),  wedenote by .u  thecomposition E,,voj,  : Ho1 (U, V) -t

Ho1  (U, V) x U  4 V, and we let HU’  := E,,v(  H x U’), and Hu := H(u).  We shall say

that W is (afmusl)  enCective1y parametrized,  if the natural map p+ : W 3 w H f#~(  w, .)  E
Ho1  (U, V) is injective (or, respectively,  has discrete fibres).

Let 4, : W, x V + V,  be another holomorphic map between connected complex spaces.
When no ambiguity can arise,  we denote  by W, oW the image of W, x W under p4, o( id w,  x

4); inparticular,~oW:={cu}oW=p,~(W) foraEHol(V,Vi).
lf U  is compact, then Ho1  (U, V) admits a unique complex strutture such that Eu,,

and al1 possible p+ are holomorphic; if U is moreover  reduced, then the complex space

Hol(  U, V) carries the compact-open topology (see [2]). For compact U , we henceforth tac-
itly assume Ho1  (U, V) to be endowed with this complex strutture.  Note that then, according
to 0.2, NU’ and p+( W’) carry  the analytic image strutture,  whenever H L,  .Hol (U, V) ,

U’ -P U,  W’ ut W, with proper  Eu,, IRXu,  or p61W’.
It is well known that Aut (U) is open in Ho1  (U) for compact U  ; if, in addition, U  is

reduced, then Aut (U) is also closed in Ho1  (U) .

2.2.1 Lemma. Suppose that (p,,  4) : W x U  -f U  x V isproper.
(i) Let W be almost effectively  parametrized. Then dim W 5 dim V. Ifmoreover  every

irreducible  component  of W contains a surjective w : U  -+  V,  then dim W 5 d,(V) =
min dim v V.
VEV

(ii)  tfsome  uO  E  U  isjinite  (resp. surjective), then every  u E  U  isfinite  (resp. surjective).

Roof: We may assume that U, V, W are reduced; furthermore, a trivial argument shows that
W can be assumed  irreducible. Applying 2.1.1 to the family (d(  .,  u)),cLI  yields (ii) and
the first part of(i). Let V’ be an irreducible component  of V. If w E W is surjective, there
exists  an irreducible component  U’ of U with w( U’) c V’. Then $( U’ x W) c V’, whence
dim W 5 dim V’ by the first part of(i).

2.2.2 Lemma and Notation. If W is compact, then the analytic quotient W + p6(  W) ex-
ists. pg(  W) together with this complex strutture  will be denoted by pd[  W] . The evaluation

map Eu,, : PJWI + V is holomorphic.

rr,xid
ProuiLet4=(WxU + W4  x U  % V) be the simultaneous Stein factorization of
the partial maps u : W -t V. Obviously, p+  factors through m+, and p+  defines an analytic
equivalente  relation on W . If p+( W) is endowed with  the quotient topology, then the natura1
map W+  -) p+(W) and the orbit maps .u  : p+(W) -+ V are finite; hence,  by ([8],  49.A
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13), the analytic quotient PV+ t p+(W)  exists. Denote  the corresponding complex space by

p+[Wl; then p+ : W -, p+[W  and P+ x id, are quotient maps, since  bW, = ( 9r6)*BW.

In particular, the evaluation map is holomorphic. 0

Note that,  if U is compact, p+[ W] need not coincide with the complex subspace
p+(W) c-, Ho1 (U, V) -in general, the latter strutture is a substructure of that on p+[ W]
Nevertheless, for non-compact U,  when no such rivalry can occur, we shall introduce the
notion  of a reduced connected complex subspace  of Ho1  ( U, V) :

2.23 Definition. Assume that U is non-compact. lf W is compact, reduced and weakly
normal, and if W is effectively parametrized, then W is called  a reduced connected compact
wmplex subspace  of Ho1 ( U, V) , expressed by the symbol W (2) Ho1  ( U, V) .

2.23~3  Remarks.
(i) If W is reduced and compact, then the weak normalization of p4[ W] is a reduced

compact complex subspace  of Ho1 ( U, V) .
(ii) Let W, (T;c>  Ho1  (U, V) , W, (2) Ho1  (V, V, ) . Then W, o W, carries a unique struc-

ture  of a reduced connected compact complex subspace  of Ho1  ( U, V, ) , with which we shall
always assume it to be endowed. Note that, in contrast  to the case U compact, the inclusion
W, o W,  + W, o W, need not be an embedding; it is, though, if it is bijective.

2.3. Action of compact complex Lie groups

Let U be a connected complex space.

23.1 Lemma and Notation. There  exists A(U) (Tee)ut Hol(U)  with id, E A(U) such that

the following condition holds: If 6 : W x U -+  U is holomorphic with reduced compact
connected W,  such that id r, E p+(W),  then p+(W)  c A(U) and p+  : W -+  A(U) is

holomorphic.
In particular, A(U) admits no proper complex substructure, with respect to which the

evaluation map Eu remains holomorphic.

A(U) is a compact complex Lie group and A(U) is a norma1 subgroup of Aut ( U) ; if
U is compact, then A(U) is centra1 in the identity component  Aut O ( U) of Aut ( U) .

Pfou~  By 2.2.2 and 2.2.1(i),  there  exists an irreducible A(U) (2) Ho1  (U) of maximal di-

mension  with  id u E A(U) . Then id r, E A(U) o A(U) (2) Ho1  ( U) , whence the inclusion

CY  o A(U) + A(U) o A(U) is bijective and therefore biholomorphic for al1 CY  E A( U) .
Thus A(U) c Aut (U) and A(U) is a compact complex Lie group.
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Let W (2, Ho1  (U) with id LI  E W,  and let W’ be an irreducible component  of W that

meets  A(U). Then the composition A(U) ? w.  o A(U) + W’ o A(U) is bijective and
hence biholomorphic for al1 w.  E W’nA(  U) . Thus IW’l c A(U) and hence IWi c A(U) .

On the other hand, the composition W 3 W o id, t W o A(U) = A(U) is injective and

holomorphic, whence (PV,  @$,) L, A(U) for a suitable complex substructure $+,  of 8,.

By 2.1.1, the orbit  maps A(U) 3 A( U) u ut U are finite and hence locally biholomorphic.
Thus no reduced  subspace  of A(U) can admit a proper  complex substructure with respect  to
which the evaluation map remains holomorphic. We conclude that,  if 4 : W .x  U -+  U is as
postulated, then p+(W) c A(U) and the inclusion p,[ W] + A(U) is holomorphic, and
hencesoisp+: W-A(U).

A ( U )  isnormalinAut(U),sinceaoA(U)oa-‘(zJAut(U) foreveryaEAut(U).

If U is compact, then A(U) is a compact connected complex subgroup of the connected
complex Lie group Auto ( U) and hence is cent.& 0

In the last chapter,  we shall make use of the following generalization of the above result:

2.3.2Lemma. Let  . . . -t  Un+,  2 U, --t  . . . 2 Vo be a sequence of coverings, and let

w, (2) I-Io* ( un+  1 9 Un) with CY,  E W,,~E  N.

Then  IW,,l c A(U,J o CY, for n » 0, and (he inclusion is holomorphic.
In parlicular,  any W (2) Ho1 ( U) confaining  a covering  CY  lies in A(U) o CY.

proof:  We may assume that al1 W, are irreducible. It suffices to show that W, o . . . o W,, c
A(U,.,)oc~,o..,o(~~~ for some k > 1, since the CZ,  are surjective and locally biholomoxphic.
On the other hand, by 2.2.1(i),  W,, o . . . o Wn+, 0.. . o W,,+k+l  = W, 0.. . o W,,  o CX~~+~  o
. . . o CY,,+~+~  for al1 n,  1, and for k sufficiently large (depending on n). Thus, after suitably
condensing  the given sequence, we may assume that W,, o W,, = W, o <Y~+~  for al1 n,
whence, in particular,  dim W,,+, _< dim W,, . Cutting off a sufficiently long initial sequence,
we can assume that dim W, = dim Wn+, for al1 n. The inclusion W, o cuti1  + W,  o W,,
is bijective and hence biholomorphic, and, utilizing its inverse, we obtain a holomorphic

(fl :=  (W,  x wn+, --+ w, O’Wn+l : w, 0 Qn+l -5 WJ

with +(.,cr,,)  = idwm. Thus  p+( Wn+  1  ) c  A( W,,) and p4 is finite, since SO is W,, -t

% OWn+l. From dim W, 2 dim A( W,)  2 dim W,, = dim W,,  we infer that W, %

A( W,)  is a torus.  Denote  by g,,  : C k -+ W, the universal covering  and assume that gn( 0) =

a,.Let&+, := Eu LIr,,  ” o(g,l xid,*,)  : CkxU,+,  -+ U,,, anddenoteby h,  : Ck --)  Ck
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the linear lifting of 4( (Y, , .)  : W,, --f  PV,. Thenthereexistsaunique EL, : Ck~Un+l  +
un+, with cy,,  o EL, = Q+,  and EL, (0, .)  = id”*,  .

The simple-arrow par-t  of the diagram

iscommutative,andfrom  E,,(O,.) = cyMl  = k$+r o(h,x c+t)(O,.),  weinferthatthe

entire diagram is commutative, since Q, is a covering. Thus pE*( C k,  o cy,  = PV,  (as subsets

of Hol(U,,+,  , U,,)),  and we can endow V, := pE: (C k,  with the complex strutture given by

the bijection V, --f  V, o cx,  = W,,.
The diagram

v,,  x u,, EurL  u,,

is commutative with locally biholomorphic vertical  arrows;  thus ,?3”*1 is holomorphic,

whence V, (2, Ho1 ( U,,)  . As id u, E V,,  the assertion follows. 0

23.2a  Remark.  Assume that U and W are compact and that some w0  E W is a covering
u -i v.

If p+(W)  c Hol(V)  0 wo, then the corresponding map p : W + Ho1 ( V) is holomor-
phic  with image in Aut (V) .

Pro& Evidently, p+  = ( W 3 Ho1  (V) + Hol(V)  owo  ~-1 Hol(U,V)), and Hol(V)  -+
Ho1  (V) o w.  is biholomorphic, since 20~ is surjective and locally biholomorphic. Further-
more, Ip(  W) 1 c A( V) , and Aut (V) is open in Ho1  ( V) . 0

2.33 Definition. Let g : U -+ V be a holomorphic map between connected complex spaces,
and let T c A(U).

gisT- equivariati,  if there  exists  a map g, : T -+ A(V) with g,(O) = 0 and
g,(cr)og=go(YforallcuET.

g is T - T”  equivariant,  if g is T equivariant  with g,(T) c T”  c A( V) .
233a  Remarks.  Let g be a T -equivariant.

(i) g, is uniquely determined and is a homomorphism of complex Lie groups.
(ii) If fmdg = 0, then g, is finite.
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proof:  Let va E U and consider  the commutative diagram

T -t AtU

1 ‘% 1 4%)

TUO -8+  A(V)d

The mapping .g( uo)  is locally biholomorphic and g*( 0) = 0; thus  g* is a homomorphism of
complex Lie groups. In particular, g, is uniquely determined by the  equation .g( uo)  o g, =
g0.q).

If g is finite in u.  , then g, is finite in 0 and hence  everywhere. 0

2.3.4 Lemma. Let g : U -) V be a holomorphic map between connected complex spaces.
(i) Let T C A(U), T” 5 A(V) such that g(Tuo)  c T”g(uo)  for some u. E U. v

“2” T”,( “) -- 0 (e.g. if g is surjective), then g is T - T” -equivariant.

(ii) t’f  g is proper with g,@‘,  = &‘v  , then g is A(U) -equivariant.
(iii) Let T” C_ A(V) . If g is a covering, then there  exists a unique  T 5 A(U) such  that

g is T - T” - equivariant. In particular, dim A(U) 2 dim A(V) .
(iv) Let h : V + V”  be a covering, and let T c A(U). lf  g is surjective and h o g is

T -equivariant,  then g is T -equivariant.

Pt-oof: (i) We may assume g(Tuo)  = T”g( uo) . Then T” o g o T (=cc,  Ho1 (U, V) with

(goT)uo=(T”ogoT)uo=(‘T”og)uo;thus T” o g o T = T” o g = g o T by 2.2.1(i),
and we conclude that g(Tu)  = T”g(  u) for al1 u E U. The maps gu := (glTu  + T”g(  u))
are A(Tu) equivariant  with (g,,),  : A(Tu) -f A(T”g(  u)) = T”/T”g(.).  As every Tiiu,

is finite and II  T”LE”  oc4 = 0, there  exists  a holomorphic homomorphism g,T + T” such

that every composition T kz A(Tu) ‘%*  T”/Tii,, factors through gt. By construction,
g,(a)og=gocrforallaET.

(ii)Let4:=goE”=(TxU
idxã,
+ T x Ud 3 V) be the simultaneous Stein factoriza-

tion.  Then every +,r(t, .) is biholomorphic, since 8, = g,@‘”  = g,t,@‘, = ~$(t,  .),@,  =

4,*(&  J*(Q)*@” = $~,r(  t, .),@“,  By 2.3.1, the assertion follows with g+ := pdd.

Assertion (iii) follows from (i) by applying Lemma 2.3.2 to the sequence  of coverings

. . . +u-tu+... -buotv
with PV,  := T”og.

Assertion (iv) is evident by (i) and (iii). 0
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23.4~1  Corollary. A( U  x V) = A(U) x A(V),

J?oot  The inclusion A(U) x A(V) c A( U  x V) is obvious. TO show the converse, let

C#I := pv o E = (A( U x V) x (U x V) “*zd A, x (U x V) 2 U) be the simultaneous
Stein  factorization, and let + := 4, o (id%  x j,,)  : A, x U  -f A,  x (U x V) + U

for some fixed vo E V. Then id, E p+(A,),  whence p+(A,)  c A(U) by 2.3.1, and
therefore pv  ( A( U  x V) ( u,uo))  = (p+(A,))u  c A(U)u  forall IL  E U. ByLemma2.3.4(i),
pa  is A( U  x V) -equivariant,  and, symmetrkally, SO is pv  . Evidently, (( p”)+,  ( pv),)  :
A( U  x V) + A(U) x A(V) is injective,  and the assertion follows. 0

2.3.4.b Corollary. L.et  T,T’ be tori and let  4 : T’  x U  -f T be a holomorphic. If some
4( t, , .)  : U  + T is constant,  then 4 factors through pr.

Roof We may assume t, = O,&t,,  .) = [O]. T’ acts effectively on T’ x U  via addition
in the first factor.  By Lemma 2.3.4(i), 4 is T’-equivariant; thus [ 0] = $1(0, .)  = (4 o
(-Q)(k  .)  = 4,(--Q  04(& .),  ie.  446 .) = #,(Q. 0

Let T c A(U). By ([7],  Satz  IV.lO.l), there  exists a holomorphic strutture on IUl/T
such that the quotient map g becomes holomorphic. Replacing this strutture by g,@“,  we
conclude that the analytic quotient U -t IUl/T exists; it will be denoted by gr : U  t U/T.
We shall employ the following notation: ( Qa : U  + U,)  := ( gACLI)  : U  --)  U/A( U)) .

23.4.~ Corollary.

0) QllxV = Qu x Qv.
(ii)  The mapping U  + U,  is functorial with respect IO  proper  holomorphic mappings

that sati&  g.B,  = 8,.
(iii) There  exists a covering  U’ -t U  such that  every covering  g : U,  + U’  is A( U,)  -

equivariant. In particular,  there  exists a covering  g,  : (U,),  -f (U’),  with g,  o Qrr,  =

Qa 0 9.

huof: (i) follows from 2.3.4.a,  (ii) from 2.3.4(ii).  to prove (iii), note that,  by 2.2.1(i),  every
covering  U’  + U  satisfies dim A( U’) < d,  (17’)  = d,(U) . Thus. if U’ + U  is a covering
with dim A( U’) maximal. then every covering  U, --t U’ is A( U,)  -equivariant by 2.3.4(iii)
and 2.3.4(i). 0

2.4. Torsion  bundles over tori

Let U  be a connected complex space.

2.4.1. Definition. Let ‘IT : U  + T be holomorphic, T a k-dimensiona1 torus. We shall say
that R is a forsion  bundle  over T with  fibre Vo  , if A is a Vo -bundle  with finite strutture
group such that the total space of the associated  principal bundle is connected.



On product  decompositicns of complex spaces 177

Notation. (7~ : U + T)  E Yk with fibre U,,  . Sometimes we also say U f Tk, if there
exists (n : U + T) f Yk with some fibre. With this convention we let F= $ Yk.

2.4.19 Remarks,  examples,  and notations

(i) Every connected complex space lies in re. If ( R : U + T) f Yk with fibre Ve, and
(7: V + T’) E q with  fibre Vo, then T x T E Yk+l with  fibre U, x Ve. In particular,
U x V E Yif U  E Yor V E J? We shall see later on that the converse holds, too.

(ii)LetT:=C/Z+iZ andletrrj:T+T/
0
f be the Z, -principal bundle given

by the Z, -action Zs x T 3 (n, t) ut+-~T,wherel<j<4.foreverycomplex
5

space U, with non-trivial Z,  -action, the U,,  -bundle  T~(U,-,)  associated to rj is a torsion

bundle over T/ f
0

with fibre U,,  . The bundles 7rj(U,) and ~s-j(Uo)  are isomorphic via

t H -t, whereas TT~(U~)  and nk(UO) are not isomorphic for kf 5,5 - j. The associated
fibre spaces, however, and, a fortiori, their total spaces, may be isomorphic. For instante,
if U, = V5 for some V, where Z,  acts by cyclic permutation  of the coordinates,  then the
fibre spaces associated to the 7rj (U,) are al1 isomorphic. On the other hand, if U, = P, with

Z,-action  (n,(q,  : zr)) H (z, : ~‘kct) wherec=  exp y
( >

, then not even the tota1

spaces of x1 (Pt) and ‘ITI (Pt) are isomorphic (see [SI,  6.2).
(iii) Let (x : U + T) E Tk with  fibre U, , and let T’ : T’ + T be the associated

principal bundle. Then T’ is a k-dimensiona1 torus  and x’ is a covering. We may assume
that 7r’  is a homomorphism and identify the strutture group r of n with Ker r’. Assume
that the r -action on T’ is given by (7, t) H t + z(7) with some 2 f Aut( and
define x : r + Aut ( VO) by x(7)  := X-l (-7) (where we consider r as a subgroup of
Aut(U Then thenatural map T’ x U, --+ U  given by (t,u)  N (t+ j37),(-7)(u)),
coincides  with the quotient map q : T’ x U, + ( T’ x U, ) /graph  (x) . Consider the cartesian
square

T’xU,,  0, U

and let T’ act on T’ x U, via addition in the first factor. Applying Lemma 2.3.4(iv)  to

T’x  {ut,)  -5 dT’x  {ut& 5 T, we infer from 2.3.4(i) that q is T’equivariant.  Moreover,
q,  is injective, since  Ker q, c r and q,(y,  u) # q,(y’,  u) for al1 7,7’ E r ,7# 7’.

Therefore, we shall from now on consider T’ E A(U) in this sense.
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(iv) Let S be a k-dimensional torus, and let x : r -f Aut (Ve) be a monomorphism
from a finite subgroup r of S into the automorphism group of some complex space U,.
Then, evidently, the map (S x U,,) /graph( x) + S/T  , given by (s, u) H s + r , is a
torsion  bundle over S/T  witb  fibre U,,  .

Conversely, by (iii), every m E Yk arises in this way.
09 La (71 : U + T) E Yk with fibre U,, and let V be a connected component of

d (0) S  U,,  . Denote  by A c T’ c A(U) the isotropy  group of V ; then A c r := Ker x’

(x’  as in (iii)), and A stabilizes every connected component of n-l(O).  In particular, A

contains every isotropy group r, for u E 7r-l(0).  Thus 7rr  = 7r’  = (T’  ‘3 z-y-,  X, T)
with some homomorphism X, and the  restrictions n : T’u -f T, u E n-l(O)  , al1 factor
through X. As U  is the disjoint union of the T’ti,  u E A-’ (0)) we obtain a map (of sets)
7~~  : U  + T’lA with m = X o 7rc;  rrc  is holomorphic, since  X is locally biholomorphic.

The  commutative diagram

T’  x U,, + T’xV  0,  U

immediately yields that R, E Fk with fibre V and strutture group A. If U  = (T’ x
U,)/graph(x)  (according  to (iv)), then U  = (T’ x V)/graph(rlf)  , where $ := (xlA -+
Aut(V

Note that for compact reduced  U the equation ‘IT = X o 7rc  is just the Stein factorization
of 7r.

The following characterization of Fk is one  of the essential ingredients of the investiga-
tions  performed in Chapter 5:

2.4.2 Lemma. L.et  7~  : U  + T be a holomorphìc map ìnto a k -dimensiona1  torus  T,  and
assume that there  exists a k dimensiona1 T’ c A(U) wìth x( T’uO  ) = T for some u. E  U.

Then m  E  Yk  withjibre  ~F-‘(x(u~)) =: Vo.

Pro& By Lemma 2.3.4(i), the map x is T’  equivariant  with rr,(  T’) = T; in particular, 7r is
locally trivial, and the diagram

T’  x Vo 4’ U
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commutes. Again by 2.3.4(i), Eu is T’-equivariant (with respect to the addition in the first
factor),  whence E,  is a covering. Thus every t E T’  defines a map xt : r = Kerrr, +

Aut suchthat Ei’(E,(t,u))  = xt(T)u fora11 u E U. Now t(ELI(~,xO(~)(u)))  =
t(E,(O,W  = E&O)  = E,(t+7,xtWu)) = W$,hxtWbW  form E Th E
U, whence xt = x0 for al1 t E T’; in particular,  x := x0 is a homomorphism, since
x(7  + 7’) = x,(7’)  0x0(7)  = x(7’)  0x(7) forall 7,7’. Evidently,  Eu  : T’ x U,,  + U

factors through T’ x U, kanzid (T/Kerx)  x U,,  , and we conclude that Kerx  = 0. Therefore
7~  can be represented as in 2.4.l.a(iv).

2.4.2.a Corollary. Let  (Y : U + A(U) be holomorphic. Fix some u,,  E  U  and define

CV,,  : U  + U  by ct, := (U = A(U) 3 U)“foralf  né  N.
There  exists k E  N such thal  ((~‘0  Q ,,:U+a(a,,(A(U)q,)))  EYkforalln>O.

Pr~f:Wemayassumec~(u,)=O.ThenT,,:=~(c~,(A(U)u~))  cA(U)andT,,+t CT,,
whence T,,  = T,,+, for n B 0. Letting k := dim T,,  for n B 0, the  assertion follows from
Lemma 2.4.2, since (Y, : U  -f U factors through .uO : T,, + U. 0

2.4.2.b Corollary. Let U  x V E  Yk.  If V $!  z then U  E  Yk.

Roof Let (n : U x V --)  T) E Yk. Composing rr with some covering  T + T’, we
may assume T c A( U  x V) (compare 2.4.1 .a(iii)),  and that R, : T + T is homothetic.

Fix some ( uO,  ve) E U x V and considering  g := (A( U  x V) = A(U) x A(V) ‘Cupo’

U x V 5 T); evidently, g(T) = T. For S E {U,  V} let d, := lim dim Im(T ‘3
-CO

A(S)i,A(U)xA(V)o,T)"; tben S E Yds by 2.4.2.a,  whence d,  = 0. Thus the lifting

9 : A(u)  x AP) -+ ? to the universal coverings with F( 0 ,O) = 0 satisfies the condition

of 0.3.2.a,  and we conclude that T ‘2’ A(U) 1,  A( U  x V) 3 T is surjective, whence
d,  = k. 0

2.4.3 Definition. Let (7~~ : Uj --f  Ti) E Yk, with fibre Vj, i = 1,2.  A holomorphic map

f : U, + U, is a Xmorphism,  if it is Ti - Ti equivariant  and fibre-preserving  witb  respect

to Tl I r2.
For brevity of expression, we employ the notation: f : rrl  + 7r2.
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2.4.3a Remarks.
(i)If f: 7r,  +7rz, there  exists a commutative diagram of holomorphic mappings

(ii) f : U, + U, is fibre-preserving, if f maps at least one  fibre of n1 into one  of 7r2.
(iii) A surjective holomorphic f : Ur + U, is a Smorphism,  if and only if it maps some

fibre of 7r1  imo one of 7r2  , and some orbit  of T{ into one of Ti.

Bo& (i) The existence of the righthand rectangle is obvious. Let f0 := fl7r;’  (0) -i

n;‘(O).  Then the lefthand rectangle commutes, since  q2(f+(t),  f,,(u)) = q2(f*(t)
(O,f,(u)))  =  f*WQ2(W&a)  =  f*(Q(f(ql(O,U)))  =  fw7#w))  =
f(q1(&  4).

(ii) and (iii) follow from  2.3.4.b.  2.4.l.a(v), and from 2.3.4(i). 0

3. PRELIMINARIES ON ISOMORPHISMS BETWEEN PRODUCTS

Let f = (If,  rf) : X x Y -+ U  x V be a biholomorphic map between connected complex
spaces.  This is the starting position for both the cancellation and the decomposition problem.
We shall now develop some techniques for reducing the situation to a simpler one.

3.1. Relations between the partial  maps

3.1.1 Lemma. Let  (5,  y) E X x Y, (u, U) := f( Z,  y) .

(i) c = rf(  .,  y) induces  a bihblomorphic  map jiom F := b-’  ( u) onto E’-l  ( y) , whose

inverse is given by G = lj-’  ( u,  .)  .

(ii)  If 5  is biholomorphic in x , then  E’  is biholomorphic in v .

(iii) If every 2, where y’ E  Y,  is biholomorpic, then SO is  every  2, where u’  E  U.

Pt-oof  (i) From idPxiy) = f-r o flFxjy)  = f-’ o ([ ul,  rf) IFxfv) we infer L y IF  = id,

and z G Ip = [ yl IF,  and the assertion follows with a symmetry argument.
Assertion (ii) is evident by 1.2.1 .a.

(iii) The partial maps yi resp. 2 are al1 biholomorphic, if and only if (Zf,  py) : X x Y -t

U  x Y resp. ( pU, rf-l) : U  x V -P U  x Y is biholomorphic. Thus the assertion  follows

fmm  (~~~f-9 of= (Kr+). 0
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3.1.la  Corollary.  Ifall  G are biholomorphic, then Y 2 V.

3.1.1.b Remark.  Let
XXY  f, u x v

1 PI  XPI 1 PIXQl

X’XY’  rr, U’  x V’

be commutative and let y’ := q1  ( y) .

neri iTop1  = ~~~of’o(~~ xql)(.,y> =puto(p2  xq2)of(.,y) ‘~~0;.  Inp~cub

if p, is surjective, then 2 is constant, if y is.

3.2. Degenerating isomorphisms

3.2.1 Definition. Let (5, y) E X xY, (u, u) = f( z, y). f degenerafes  withrespecf  fo( z,  y) ,

if the reduction  of the map ( tsG,)n  is constant for n z+  0. We say that f degenerate&  if
f degenerates with  respect to some (5, y) .

3.2.la  Examples.

(i) If f is a product of isomorphisms X + U, Y t V,  then e.g. every G, u E V, is
constant, whence f degenerates with respect to  every (CC,  y) .

(ii) Let X = Y = U = V be a one-dimensional torus, and let f be given by f (5,  y) =

(22+  y,z+ y). Then (tZ~)(z’) = 2s’+ 3s+4y forallz,~’ E X,y  E Y,(u,u)  =
f ( CC,  y) Thus f does not degenerate.

3.2.1.b Remarks.
(i) If f degenerates with respect to (5, y), then .7  o f o J degenerates with respect to

( y, s) , and J o f -’ degenerates with respect to (u,  u) = f (z,  y) . It is not ckar, whether
e.g. f-r degenerates.

(ii) Let X be compact, (zar  y,, uO  ,uO) E X x Y x U x V. If I(t;,  5,T;,  y,)nl is

constant for some fixed n E N , then SO is every I( t g; y)ml (compare Lemma 2.1.1). In
particular,  if f degenerates with respect to some (q, , yO)  , men f degenerates with respect
to every (5,  y) , and the minimal n from the definition does not depend on (5,  y) .

(iii) Let
XXY 1, u x v

1 PI XPI 1 P2xq2

X’ x Y’ f: U’ x V’

be commutative with surjective p1 and biholomorphic f’, and assume that f degenerates
with respect tosome (z,  y).  Then, by 3.1.l.b, f’ degenerates withrespectto (pl  xq,)(z,  y).
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3.3. Simultaneous subdecompositions

33.1 Lemma and Notation. LA Y,  := Y x V, y, := ( y , u) E  Y,  , und fer  s,  f : x x Yl  +

X x Y,  be  given by  S, f := (f-’ x id,) o J, o (f x id,). For ra 2 1 lef Ywl :=

Ya  x  Y,,  Y,l := (y,,y,)  und Sn+,  f := S,(S,f).  Then
0) S,,+,f  oS,,f = idxxyn,,  and

WpxoS,lfLv,,)  =G)“”
forali n>O.

Pro& It suffices to consider  the case n = 0 _ Then (i) is evident from the definition of S, f,
and (ii) follows  from S,f(.,(y,u))  = (f-’  x id) o J o (f(.,y),[u])  = (f-l  x id) o

(If(.,y>,[ul,rf(.,y))  = <Gi,GG>. 0

3.3.2 Definition. Let (z,  y) E X x Y, (u, u) = f (5, y) . We shall say that (5,  y) decomposes
f , if the following conditions are fulfilled:

(i)For  {(A,B),(C,D))=  {(X,Y),(U,V)}  with  a,b,c,dE  {s,y,u,u}  accordingly,
the systems of complex subspaces

{((di)")-'(a)  : nE N}, {((Zb)")-l(a) : nE N},

{((dZ)n)-l(b) : nE N), {((c’O)“)-l(b)  : nE N)

have  maximal elements A,,  A,, B,,  B,;  respectively.
(ii) For {(A, B),  {C,D}}  = {{X,Y},{U,  V}) with  A E  {X, U}, the maps Ac x

B,  + C given by pc o f (if A = X) or by pc o f-l  (if A = U)  are biholomorphic.

(iii) The isomorphism 7 : U, x U,  x V, x IL, + X, x YU x X, x YV induced  by f
via (ii) satisfies:

Each of the partial maps R, + SR, SR + R,  given by 7,y-l and x, y, u, u (where R E

{U, V}, S E {X,Y})  is biholomorphic (i.e. the composition U,  -f U,  x {(u, u,u)}  2

X,xYuxX,xYvPtXU,etc.).
f induces a simuffaneolrs  suMecomposiCion,  if some (x, y) decomposes  f .

3.3.2.a Remarks.
(i) The condition 3.3.2(iii)  is well-defined, since  by construction s E SR n SR for al1

possiblecombinations (i.e. t g(z) = lf-‘(lf(x,y),u)  = If-‘(f(x,  y)) = x etc.).
(ii) f as in 3.2.l.a(i)  induces a simultaneous subdecomposition, f as in 3.2.l.a(ii)  does

not.
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(iii) If ( 5, y) decomposes f , then ( z, y) also decomposes Jof, and f( z, y) decomposes
f-1.

(iv) Assume that f induces  a simuhaneous subdecomposition and that X E U is inde-
composable.  Then Y k’ V.

In fact, if X 7 C O,theneitherX=XLI,andhenceU=U,,orX=XVandU=Uy.
In the first case, we conclude V = V,  ?’ Yv  = Y; in the second  one,  Y G’  U,  x V,  =
UxV,~XxY,=X,xY,~V.

3.3.2.b Example. With the notations of 2.4.l.a,  let X = U = T, and Y be the totaI space of
71, (PI ) , V that of ‘ITI (PI ).  Then X ?Z  U  is indecomposable,  X x Y is isomorphic to U  x V
ViathemapinducedbyT  x T x P, 3 (s,t,z) 1--+(3~+5t,s+2t,z) ~TxTxP,,but
Y is not isomorphic to V .

3.3.3 Lemma. Ler
XXY r, u x v

1 PIXR 1 91 XQZ

X’ x Y’ -5 U’ x V’

be a commutative diagram of holomorphic maps between connected complex spaces with f’
biholomorphic. Assume that p, = id, or p2 = id,, and that q1  = id u or q2 = id “.

If (z’, y’) = (pl  (z) , pz  ( y)) akcomposes  f’ , then (z,  y) decomposes f .

proof:  By 3.3.2.a(iii),  we need only consider  the case pz  = id *, qz = id v. Then Vx  and YV
exist and are equal to Vi, resp. Y&. From the  commutative diagram

(compare 3.1.1 .b), we infer that V,  exists and is equal to Vi,,  and that X, exists and is equa1

to  p;*(x;,).

Symmetricahy:  YV exists and is equa1 to Yi,, and Ux exists and is equal to q;‘(  Ujy,)  .
From the commutative diagram

y-‘(,) 2
Z’(Y)

1 Pl 1 id,

;-‘(u/) @  ;yy’)
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(compare3.1.1.(i)).weinferthatplI;j-l(u)  -+ yi-’ ( u’) is welldefinedand biholomorphic.
Let now SJ, S,,f’ be as in 3.3.1. By construction, the diagram

x x Y, sAf x x Y,

1 pI  xid 1 ‘In  xid

X’xY,I  Y X’xYi

is well-defined and commutative.
Applying the above remark  to S,  f, we conclude that

P1IY&) + YY;‘(z’) .IS  well-defined and biholomorphic (where &= IS,  f ( . , y,) :
X --t X). Thus, by 3.3.l.(ii), X, exists and pr 1X, + X;, is well-defined and biholomor-
phic. Symmetrically: U, exists and q, IU,  + U&, is well-defined and biholomorphic.

From the commutative diagram

X” XY” 2 v

“1  p, x i d Il
x;, x Y;, -: V’

E

we infer that rf 1X, x Yv --P V is biholomorphic. Symmetrically: rf-‘IU, x V, -+ Y is
biholomorphic.

The commutative diagram

X”XY”  3 u

1 PI xid 1 91

x;, x Y;, 2 U’

s

yields that Zf 1X, x Yrr -P U is biholomorphic, since  X, x Yr, = (p, x id) -’ (Xb,  x

Y&),  U = q;‘(U’).  Symmetrically, lf-’ IU,  x V, --t X is biholomorphic.
TO verify condition 3.3.2.(iii),  let R E {U, V}, S E {X, Y}, and denote by j : Rs -B

U, x V, x U, x Vy the natura1 embedding given by (u, u) (i.e. U, + U, x {(u,  u, u) }
etc.), with corresponding j’ : R”, -t Vi, x Vi,  x Uh,  x VG,.  Consider the commutative
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diagram

RS - Rk,

l i 1 i’

u, x v, x uy x vy
P
- vi,  x  v;t  x  u;,  x  vy,

\ rp  xrf-’ J

x XY  pI  X’x  Y’

l i Ir lf lf

u x v
q* u, x v/

/  lfxrf 2

X”XY”XX,XY” Q
x;,  x Yb,  x x;,  x Yb,

1P 1P

SR - Sk

withP:=q, xid xq, xid,Q:=p, xid xp, xid.
If R,  # U, , then P, Q define  isomorphisms j( Rs) -t j’( Ri,)  , resp. j( SR) --t j’(  Sh,)  ,

whence p o 70 j : R,  + SR is biholomorphic.
Let now R, = U,. The diagram

X”XY”XX,XY” Pt X”

1Q 1 PI

Xb,  x  Yb,  x  x;,  x  Y;,  P, X&

is clearly cartesian,  and from f< j( U,)) = Q-l (f( j’( Vi,))) we infer that plf( j( U,))  -t

X, is biholomorphic, since  plf( j’( Vi,)) -t X;, is. 0

3.4. Dimension-decreasing constructions

3.4.1. Consider at first the double-arrow part of the diagram

XXY 4 u x v f;: XXY

\p’xid \id x q’ \p’xid

u (U.PY) X’  x  Y  u (P”r/-‘) u x V’  u (If,py) X’  x  Y

J J J

UXY
i d
=+ UXY

id
=+ UXY
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which is clear commutative. In particular,  (If,  py) is proper,  if and only if SO is ( pu, ?-f-l ) .

Assume now that (Zf,  py) and ( pu , rf-‘)  are proper,  and let their Stein factorizations be
given by the simple arrows (compare 2.1.1). As p’,  q’ are quotient maps, the above diagram
can be commutatively enlarged by uniquely determined holomorphic arrows f’ : X’ x Y +
u x V’, (f-l)’ : u x V’ -+ X’ x Y which are obviously inverse to each other.

Interchanging U and V , ifallowed (i.e. if the corresponding arrows are proper),  we obtain

XXY 4 u x v f-g XXY

\fxid \p’xid \p”xid

u (r>usfl X” x  Y  Jl  (rf-‘,p$r) U” x  v  u by.‘fl X” x  Y

J J b/

YXV s YXV g YXV

and again we can insert unique holomorphic maps f’ : X” x Y + U” x V, (f-l)” =
( f”) -l : U” x v -t X” x Y.

3.2.1.b (iii) and 3.3 immediately yield:

3.4.1~1  Remark.  Let (z,  y) E X x Y, and let (z’, y’) = (p’( cc), y) , (z”,  y”) = (p”(z) , y) .

(i) If f degenerates with respect to (5,  y) , men f’ degenerates with respect to (z’, y’) ,
and f” degenerates with respect to (z”,  y”).

(ii) If (CC’,  y’) decomposes f’, or if (z”,  y”) decomposes f”, then (5,  y) decomposes

f-

Assume now that X is compact, Le. that both constructions can be performed. We shall
see that they commute  (in.the  obvious sense). Applying the “-constmction  to f’e yields just
as above

X’ x Y & u x V’ f;’ X’ x Y

\(d)“xid \p”xid \(#)“xid

u (PYd) (X’)” x  Y  4 (rf-‘p$/,) U” x V’  J.  (py,rf’) (X’)” x  Y

J J J

Y x V’
i d

=% Y x V’ z Y x V’

since  the Stein factorization of ( rf’-1 , id “,) is evidentiy given by the corresponding simple



On product  decompositions of complex spaces 187

arrows. Symmetrically, we obtain:

X” x Y & U” x  v f;: X” XY

\(p”)‘xid \id xq’ \WSx~

u (V,Py) (X”)’ x  Y  l+l  (pU,r,rf”-1) U” x V’ 4 (lf”*) (X”)‘XY

J J J

U” x Y g U” x Y i d
=s U” x Y

and we conclude that (f’)” = (f”)‘.
Let now If := (f’)” : 1X x IY + IU  x IV (although Y = IY,  it is convenient to mark

each entry with  the same symbol), and let IP := (lp  x id,) := ((p’)” x id,) : X x Y -f
1x  x IY,  IQ  := (q” x q’) : u x v + IU  x IV.

3.4.1.b Remark.  Let (5,  y) E X x Y,  and let (lz,I~)  = (P(z,  y).
(i) If f degenerates with respect to (z,  y) , men If degenerates with respect to ( 15, Jy).
(ii) If (15,  Iy)  decomposes If,  then (5,  y) decomposes f.

(iii) The Stein factorization  of every G & : X -+ U  --t Y and every t $ : X -+ V --f Y

(witharbitrary(u,v)~UxV) hastheformXzIX+Y.

Roof: (i) and (ii) follow again from 3.2.l.b(iii)  and 3.3.
(iii) By construction, al1 partial maps U” + Y, V’ -+ Y, (X”)’ -f U”, (X’)” -t V’ are

finite, and hence  SO are the compositions IX -+ IU + IY = Y, IX + IV -f IY  = Y. On the
other hand, Ip is a quotient map with  connected fibres. 0

3.4.2. We shall now present a similar construction that will take care of the non-compact
factors.

Let (z,y) E X x Y,(u,v)  = f(s,y),  denote  by X,,Y,,U,,V,  theorbits  A(X)s,

A(Y)y,A(U)u,A(V)v,  andlet f0 := j/X,, x Y0 -t U,  x Vo  (compare 2.3.4.a). Applying
the ‘-construction (3.4.1) to f0 o J, we obtain a commutative diagram

x0 xv, 2 vo x vo
1 idx’p,, 1 id x’qo

x,  XYO 2 vo  x vo

E

As Y. , Vo  are orbits  of A(Y) , A(V) , respectively, there  exist connected compact complex
subgroups A’ C_ A(Y), B’ C_ A(V) such that ‘p.  = ( qA, : Y. + Yo/A’)  and ‘q. = ( qg, :
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Vo  + V,/B’)  (compare2.3.4.c). Applying2.1.1 tothecomposition (X xY)  xA(Y)  idcE

XxY%hndto(UxV)xA(V)idU=EU~V”-’-+  X, we see that A’, B’ do not depend
on the choice of (5, y) . Moreover, by 2.3.4.(i), f is A’ - B’ -equivariant. Thus, denoting by
‘p,’ q  the quotient maps Y + Y/A’,  V --t  V/B’, respectively, we arrive  at a commutative
diagram

XXY -6 uxv t XXY

1 id x’p 1 id x’q 1 id x’p

X x Y/A’ li, )-, x V,B,  ‘(2) X x Y/A’

where ‘f and ‘(f-i) are holomorphic and inverse to each other.

Again,  we may interchange U  and V to  obtain

XXY f u x v

1 id x”p 1 “qxid

X x Y/A” of U/B”  x  V

Finally, we can construct “(‘f) and ‘(“f), which again  coincide, and will be  denoted by
fl:XIxYI~UIxVI.ThequotientmapsXxYjXIxYI,UxV-tUIxVIwill
be indicated  by PI = (id, x pl),  QI = (“q x’ q), respectively.

3.4.2.aRemark.Let(s,y)  ?? XxY,andlet(sl,yl)=Pl(s,y).

(i) If f degenerates with respect to (5, y) , men fl degenerates with respect to (51,  yj) .

(U)If (zj,yl) decomposes fj, then (z,y) decomposes f.

(iii) Every t 5 : Y + X and every G 5: Y + X factors through pi : Y -+  Y 1 such that
the corresponding map Y 1+ X is finite on the images pI( A( Y) y) of the orbits  of A(Y) .

3.43. Let now X be compact and let f: := I( fl) : x x y + u x v (which does not coincide
with (In I!);  moreover, let p := l(Pl)  : X x Y t r x Y,  and Q  := I(QI)  : U  x V -t

i7 x v.
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Summing up, we arrive at the commutative diagram

XXY F+ 3F.Y

\id XPI /hid

XI  x YI

Ir Iri 17

Ul x VI

/ \

u x v Q
UXV

3.4.3.a Remark.  Let (5,  y) E X x Y, and let (55, y) = p( z, y) .
(i) If f degenerates with respect to (z,  y) , then 7 degenerates with respect lo (S,  y) .

(ii) If (5,  y) decomposes 7, then ( 5,  y) decomposes f .

4. COMPLEX SPACES WITH ZERO-DIMENSIONAL FACTORS

This  chapter  provides the connecting link between the locai and the global situation.
Let f : X x Y --f  U x V be a biholomorphic map between connected complex spaces,

and assume that X, ={s}.Fory~Y letjj:=(s,y).

Theorem. f induces a simultaneous  subdecomposition.
More explicjtly,  we have:
(i) Every ( x, y) E X x Y decomposes f .
Oi)ki Y= (x,y) E X x Y,(u,v) = f(Y).  For R E (X,Y),S E {U,V)  aknoteby

R,(g)  , SR( Y, the subfactors  given by jj accordi@ to 3.3.2. then

and t induces an isomorphism U, ( y) --+ X,( jj) ;

V,(Y) = (Zip(v), X,(Y) = Gx’tx>,

and L induces an isomorphism V,(J) + X, (5) ;

uy<y>  =f (x), Y”<y>  =g-’  tu>,
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and G induces un isomorphism Uy ( jJ) + Y,( ij) whose inverse is given by z;

V,(J) =:-l(z), Y”<Y, =:-’ (4 I

and E’ induces un isomorphism V, ( jj) -+  Yv( ij) whose inverse is given by g .
(iii) Let y’ E Y, S E {U, V}. Then X,(y) = X,(a) =: X,, and E&(y) = Sy(y’)  =:

SY.

proof:  Let y E Y be fixed, and let S E {U,V}.  By Theorem 1.4.1, X,(jj) and SIy(j7)
exist, and

(1) the relations postulated in (ii) are satisfied.
(2) If-’  defines an isomorphism V,(y) x Vx( jj) + X,

tt c-4
(3) the compositions X,(y) ut X “2 X,(J)  and X,(y) ~1 X “2 X,(3  are well-

defined and biholomorphic.
Let now Y’ be the irreducible component  of Y that contains y and assume from now on

that y satisfies the following condition:
(*) For every y’ in some neighbourhood of y , any embedding X,(  jj’) ut X,(  jj) is an

isomorphism.
Such points y exist, since  dim X = 0.

Cs-
Let 4 := (U x V ‘c X 2 X,(y)). Then +( .,u)JU,(jj)  + X,(y) is biholomorphic

by (1) and (3); therefore ‘#‘(  .,  u’)  IVx(  y”) -f X,(J)  is an embedding and hence, by (1)
and (*), an isomorphism for (u’,  y”) sufficiently close to (u, y) . Using 1.1.2.a,  we conclude
that C#J(  u”, .) is constant on V,(g) for (u”, y’) sufficiently close to (IL,  y) ; in particular,

if y’ is close to y and (u’, u’)  = f(s, y’), then X,(g)  = ~(V,(y’)) c X,(y),, and
as shown above,  X,(  7j’) ?? X,(g). On the other hand, by (1) and (2), X is isomorphic
to every X,(r) x Xy(j”‘),y”  E Y; thus X,(g)  = X,(y) for y’ close to y. This

means (see (1)) that 2 2 is constant on X,(J)  for y’ close to y and hence for al1 y’ E Y’.
Thus, if y is chosen according  to (*), then X,(3  is contained  in every X,(jj’), for y’
close to y or y’ E Y’; in partkular, any embedding X,(g)  ~1 X, (7j) is an isomorphism
for y’ close to y . We can therefore interchange U and V in the above considerations and
obtain that every X,(g)  contains X,(y) for y’ E Y’. Using again (2) we conclude that
X,(jj’) = X,($,XV(y’) = X,(y) for al1 y’ E Y’, and hence, as Y is connected:

(4) X,(jj’) = X,(u) =: X, and X,(jj’) = X,(y) =: X, fora11 y’ E Y.

Let $J  := lf-’ o (lf o (id, x p,),rf o (id, x p2)) : X x Y x Y + X; then
$( .,  (y, y)) = id, for al1 y. Using 1.1.2.a, we see that $(s, .,  .)  is constant on some
neighbourhood of the diagonal in Y x Y, and from the lemma in 0.2.2 we infer that ev-
ery partial map $( z, ( y, .)), I/.J(  z, (.,  y)) is constant. Thus f( CC,  .) defines an embedding
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: Y + X is constant.

On the other hand, by 3.1.1, the maps 5,; induce isomorphisms 5-l (u) -t L-’  (5) ,5-t

(u) --+ f(z), respectively, for al1 (u,  u) E U x V. We conclude that ‘v-l ( z) , t-’ ( z)

do not depend on (u,  u) , and that f( 5, .) defines an isomorphism Y + f-’ (s) x u +-l(s)

with inverse rf-’  1 t-‘(z) x t-’ (5) + Y. This yields

z-l  (u) = ((i.G)“)--l(y), 5-l (li) = ((Z)“)-‘(y),

G-l (z) = ((ut)“)-‘, t-’ (5) = ((;;)“)--‘(u),

for al1 n 2 1.  Thus
(5) S,(J)  and Y,(y)  exist for S E {U, V} and satisfy the relations postulated in (ii).

Furthermore,
(6) S,(  jJ =: S, does not depend on y , and f( z, .) defines an isomorphism Y -t

U,  x IL,  whose inverse is given by rf-’ .
(5) and (6) immediately yield:
(7) Y,(Y)  = Y,tY’>  far 2-a Y’ E Y,(Y).
By 1.4.1, therestriction IfJX,(Y)  x Y,(y> + U is biholomorphic in (5,  y) , and hence,

by (4) and (7),  is biholomorphic in every (5, y’) with y’ E Y,(Y,.  On the other hand, the

r~ucrh ttV)dI(XU(Y) x Yu<VI>~~ -+ Ud) = Uft~,.)ItYutY)>d -f W4.d is
biholomorphic by (5). Tbus:

(8)  VIX”  x Y”(Y) + U  is biholomorphic, and, symmetrically, SO is rflX, x Y,(y) +
V.

Collecting what we have  shown up to now, we observe that
(ii) is proven by (1) and (5).
(iii) is proven by (4) and (6),  and,
by (ii),  (iii), (2), (6) and (S), every (z,  y) satisfies the conditions 3.3.2.(i) and 3.3.2.(ii).
TO complete the proof, it remains to verify the condition 3.3.2.(iii).  Consider the commu-

tative diagram of biholomorphic mappings

w,<y> x V,(F)>  x <uy  x vy> 1,  (X(I x Y”<F>> x (X,  x y,ty>>
1 lf-’  xrf-’ 1 Prf

XXY f u x v

and denote every partial embedding &(Y) - u,m x V,(Y)  x uy x V*&(Y) -
x, x Y,(g)  xX, x Yv(y>  byj (Le. U,(Y)  +U,(Y,  x {(~,u,u))  eE.>.
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By (ii),  there  exists a commutative diagram
ux(y> x Iv)  ~f(.~P>)

X” x Y”(Y)> t->  X” x {Yl

1 v-’ 1 u Jv

XcJ
rrL+d u

with biholomorphic vertical  arrows. Thus 170  j maps Ux( g) biholomorphically onto X, x

{Yl.
Al1 we have used to derive this diagram from the preceding one.  was the  fact that L

induces  an isomorphism Vx( y) + X,. Hence,  by (ii).  the same type of diagram exists,
mutatis  mutandis, for V,  ( y) , V, , V,  , Yr,( y) , YV (g) , and we conclude:

rfoi V,(y> xv  x  {Yl

1Toj U,(Y) {x1  x  Y”<y>

~-70  j. maps V,(J)  biholomorphically onio  {x} x Y,(Y,

~-7-l  0 j Y”(Y) UY x {VI

r7-l 0 j Y”(Y) {ul x VY.

Finally, there  exists a commutative diagram

U -5 X + Xcl

(compare (3) for the diagonal in the lefthand rectangle), and we conclude that lf=’ o j maps

X, biholomorphically onto Ux( y) x {v}. Symmetrically: ~7-t o j maps X, biholomor-
phically onto {u}  x V,  (j7).

Thus, an even stronger condition man 3.3.2.(iii)  is fulfilled. 0

5. COMPLEX SPACES WITH COMPACT FACTORS

Generalizing the situation of the preceding chapter,  weconsider now biholomorphic mappings
f : X x Y -) U  x V with compact X . As demonstrated  by Example 3.2.l.a(ii)  (see also
3.3.2.a(ii)),  f need no longer induce a simultaneous subdecomposition; it will, however, if
{X,Y, U, V} @ rk for al1 k 2 1 - a condition that is of course  fulfilled, if dim X =
0. This result is the basis for the subsequent  investigations conceming cancellability and
decomposability.
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5.1. The strutture  induced  by two decompositions

Let f : X x Y + U x V be a biholomorphic map between connected complex spaces,
andassumethatX  iscompact. Fixsome(sO,yO)  EX xY, let(u,,u,)  := f(s,y),  and
consider  the squence  of holomorphic maps

- - - - +(*)... ,XJQJ~Y~V~X~U-L..

TO simplify the notations, we denote by S ‘-f’ S’ the map S --)  S’ given by a subsequence
of (*) that starts at S, consists  of 1 arrows, and ends at S’ (where {S, S’} c {X, Y, U, V}) ;

(* 0furtherrnore, we let (S (y’  S) := id,, and we say that S i S’ contains S, (*Z) Si,  if

(S ‘2’ S’) = (S  (2’  SI ‘*z’ Si ‘? S’) with suitable k,  71.

5.1.1 Lemma. Let {S, S’} c {X, Y, U, V} wirh corresponding s. , SO E {x0,  y. , uo, iro}.

(i) lj 1 2 2, then IS ‘2’  S’I fuctors through *SO : Ho1  (S’) + S’ with s. H id s.

(ii) ff S ‘-+lt’  S’ con(ai~  X (*-p) Y, then S ‘2’  S’ factors holomorphically through
SI, : A(S’) -+  S’ with s. H id,,.

Proof See 7.1.4. 0

S.l.2 Proposition. Lef lf := lim dimIm(  X ‘*Pt” X) .n-+00

For every S E (X, Y, U, V} rhere exisfs ( rITs : S + T,) E q, with some connected

fibre F,.
In pariicular,  if {X, Y, U, V} @ qk  for al1  k 2 0, rhen f degenerates  with respect to

(xo,fJo).

Roof: By 5.1.1.,  2.4.2.a and 2.4.l.a(v), the map S (*z)  S gives rise to some (nrs : S -)

T,) E qCsj  with connected fibre F,. As S (*‘4z4) S contains X ‘*Pt.’  X, we conclude

that I(S) = 1(X) = lf for al1 S E {X, Y, U, V}. 0

5.1.2.a Remark.  Let S E {X, Y, U, V} with corresponding s. E {zo, y,, uo,  uO},  and let

=S : S + TS be as in 5.1.2 with corresponding TL  & A(S) (compare 2.4.l.a(iii)).  By

construction, S (*eI  S factors through the inclusion T&so  ~1 S of the orbit Tiso for

n w 0 .  Furtherrnore,  yl (Tizo) = T~u,,v~  (TU,) = Tk,yO,x;  (Tby,) = T;vo,&
(T;uo) = T;xo.
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5.1.2.b Corollary.  If dim Im(X (2’  X) = dim X, then ( nx)&  : Xd -t T, is bihofo-
morphic.

PruoL  By 2.2.1, dimX  2 h(X) 2 dim A(X), and by 5.1.1.(i)  and 2.3.1, dim A(X) 2
dimX.  Thus X, = A(X)z,  and dim X = lf, and we conclude that ( 7~~)~  is locally

biholomorphic, and hence  biholomorphic, since Fx is connected. 0

Recali now the diagram

XXY

Ir

uxv

that was constructed in 3.4.3.

F+

\id XPI /Ilpxid

Xl  x YI

lfl

Ul  x  VI

f \

0

XXY

17

VXV

S.l.3 Lemma. There  existjinite holomorphic maps g, h : x -P X such that

(i) the Stein factorization of X ‘2’  X is given by (X ‘2’ X) = g o lp,  and

(ii)  the Stein factorization of 4 & G  < : X -t X is given by 6 & 4 g = h o lp.

Pool Consider the following commutative diagrams derived from the above one:

X ci;z>  y (2)  x

Il SPI f Il
XI -)  YI + 4
SIP  7 Il
x + Y
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+- c c
X uof) vo =oY + x

Il 1PI 7  Il

XI * YI + Xl
LIP  / Il
x + r

By 3.4.l.b(iii),  the  diagonal arrows x + YI are finite for both diagrams; moreover, by
3.4.2.a(iii),  the diagonal arrows Y 1t X arefiniteonevery (pl)(A(Y)y).  Now,byKl.l.(i)
and 2.3.1, the image of X under (*, 2) is contained  (set-theoretically) in the orbit A(Y) y,  ,

and, for symmetry  reasons, (~1  ~0) (X) c A(Y) y,,  as well. Tbus, if we denote  by g resp.
h the composite of the diagonal arrows in the corresponding diagram, the assertion is proven,
since  Ip is a quotient map with connected fibres. 0

5.13.a Corollary. 1f dim x = dim X, then ( nx)&  is biholomorphic.

proof  Evident by 5.1.2.b. 0

5.1.3.b Corollary. If f degenerates,  then SO do J o f and f -’ (compare 3.2.1.6(i)  and (ii)).

PJ-oof Evident by 5.1.3 and 3.2.l.b(i). 0

Let now ( 7rR : R + TR) E <, be as in 5.1.2 (where R E  {X, Y, U,  V)) , with corre-

sponding Th C A(R) (compare 2.4.1 .a(iii)).

5.1.3.~  Corollary. f is Ti  x Tb  - Th  x Tb  -equivariant.

R-u& The group  isomorphism f, : A(X) x A(Y) + A(U) x A( V) is given by a matrix

(: 6) withinverse (z: 50)  . From 5.1.2.a,  we infer (Y(T~) = Tb and 6(T&) = Tb;

obviously, it remains only to show that p( Tb)  c  Tb and r( Tfr)  c Th.  Applying 5.1.2 and
5.1.2.a  to J o f,, we obtain subgroups Ti c A(R) (where R E  {X, Y, U,  V}), with Tg =
Im ( CY’/~&‘Y)” for 7~  > 0 and T{ = y(T$j,T;  = S’(T;),T;  = ,B(Tfr),T;  = cy’(T;f).
Now, 7’~  + 6’7 = 0 and cr’p  + P’S  = 0, whence u’j%‘~  = /~‘S’~‘CY.  We conclude that
Ti  = Ti,  whence, for symmeuy reasons, TL = Th in aI1 other cases,  and the assertion
follows. 0

In general, however, f need not be a Smorphism  between 7rx  x 7~~  and 7rr, x mV :
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5.1.4~1  Example. Let T be a one-dimensional torus, and let X = Y = U = V = T x
PZ , where P2  ut C denotes  the double point. Defining f : X x Y + U x V by
f((s,z),(t,y))  :=((2s+t+sy,s),(s+t+sy,y)),oneeasilychecksthat(~R:  R-t
TR) = (pi  : T x P2 --f  T) for al1 factors R. Thus f is not fibre-preserving with  respect to
!JTx x ?Ty,lru x 71”.

Fortunately, nothing of this kind can happen in the reduced case:

5.1.4  Lemma. f is a Smorphism mx  x 9+ -+  7ru x rITy,  if  one  of the following conditions
is ful’lled:

(i) 7  : 7Fyxly+7F~xlr~.
(ii)  nx is biholomorphic.
(iii) X is reduced.

huof By 5.1.3.q we need only show that f is fibre-preserving.

(i) Let X, : S -t 3 be the canonical  projection (i.e. X, = lp etc.). As S (2’  S
factors through X,,  the construction  of xs immediately yields ns = ~30 X,.  Thus, if (TV x

TV) o 7 = TO o (q x 71~)  with  a suitable holomorphic f0 : Tx x Ty  + Tu  x TV,

then (7~”  x 7ry) 0 f = (7rv  x 7rv) 0 (X,  x X,) 0 f = (7rv  x 7rv) 0 7 0 (X,  x X,) =

TO o (UFF  x UFF) o (X,  x X,) = T0  o ( 7rx x 7rITy),  i.e. f is fibre-preserving.
(ii) Let S E {U, V}. Every composition X + S -t Y of partial maps is an immersion

of the form Tx -+ T+ y with suitable y ; therefore every Y 4 S 4 X factors through

=Y .* Y -+ Ty  . We conclude that 5 resp. 5 maps every fibre of xy into one of 7~” resp. 7rV;

inotherwords, lf(x;‘~~(z)  x m;‘my(y))  = If({z) x ~FF’TT~(Y))  c  ~~~~~(lf(z,y)),

and rft~;1~x(4 x @Tu) c qh&-fk~>>.
Assertion (iii) follows from 5.1.3.a  and from (i) and (ii) by induction on dim X - dim Tx ,

since  Ty  = T,  . 0

5.1.5 Theorem. Let f : X x Y -$ U  x V be a biholomorphic map between connected
complex spaces  with X compact.

If f degenerates, rhen :-ve7  (x, y) E  X x Y decomposes f .
In particular,  f induce5  a sizultaneous  subdecomposition, if  (X,  Y,  U,  V)  g  yk for al1

k> 1.

Roof: We proceed by induction on dim X, noting  that the case dim X = 0 has been settled
in Chapter 4.

Let dim X 2 1. Then dim x < dim X by Corollary 5.1.3.a,  and 7 degenerates by
- -3.4.3.(i). Thus, by induction hypothesis, every (x, y) E x x y decomposes f, and the

assertion follows from 3.4.3.(ii). 0
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5.1.5a Corollary. If f is a Smorphism  nx x my  + zLI  x 7~” (e.g. if X is reduced),
then the corresponding isomorphism F, x Fy + F, x F, between the jibres induces a
simultaneous subdecomposition.

Roof: Clearly, F, x F, -t Fu x F, degenerates. 0

Note that in Example 5.1.4.a,  there  stili exists some isomorphism F, x Fy  -+  Fu x F,
that induces a simultaneous subdecomposition. It would be (mildly) interesting, whether at
least this statement remains true in general.

5.2. Cancellation

5.2.1 Theorem. Let g : X x Y -+  X x Z be a biholomorphic map between connected
complex spaces, and assume that X, Y or 2 is compact.

If(X,Y,Z)q!~~forallk~l,then YZ.27.

&oof: We may assume that X is indecomposable. Then the assertion follows  from 5.1.3.b,
5.1.5 and 3.3.2.a(iv). 0

5.2.la  Examples. X cancels in the sense of 5.2.1, if dim X = 0, if X has vanishing first
Betti number or non-vanishing Euler characteristic, if dim A(X) = 0 (in particular,  if X
admits at most countably many holomorphic automorphisms), if X is Stein, etc. Further
examples (with X compact and reduced) can be found in ([53,  1.3).

Conversely, G. Parigi has shown that for any X E ythere exist non-isomorphic Y, 2
with X x Y EX x 2 (see [ 111; he States this fact for compact reduced X only,  but his proof
is easily seen to work for general X as well).

An interesting question  arising in this context is the following: If X x Y E X x 2,  what
is the relation between Y and 2 ?

In view of Example 5.1.4.a,  it seems reasonable to restrict one’s attention at first to the
reduced case, where one  can find at least some structural similarity. By 5.1.2,5.1.4  and 5.1.5.a,
we obtain then commutative diagrams

(F x FI) x (F” x FI’) 5 (FxFI’)  x(F”xF,)

1% 1%

7r;‘7rx(z)  x7+ry(y) ? T~‘Tx(Z’) x ?T,‘x,(r)
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However, there  is no reason for di’ xX(z)  and ril 7x(  z’) to be isomorphic. Thus  we are
faced with a much more difficult question  than the decomposition problem, namely:

Given(7rj:X+Tj) ETkwithfibreXj,j= 1,2,  such that there  exists a Smorphism

h : TT, + 1~~ with h,( Ti) = Ti, what is the relation between X, and X,  ?
In Chapter 7, at least a necessary  condition for Y, 2 to satisfy X x Y E X x 2 with

suitable X will be given.
A more restricted version  of the cancellation problem is the ques tion  of whether X x X ?

X x Y implies X S’ Y. No counterexample with compact X, Y seems to be known. Shioda
proved  that no counterexample with tori X, Y can exist ([12]).  Parigi?  varieties Y 7 2 with
X x Y %’ X x 2 satisfy by construction Y 7 X y 2.

5.3. Decomposition with respect to 9’-categories

Denote  by E’ the category of al1 compact connected complex spaces.
53.1 Definition. A subcategory X c %’  is a zF’-category,  if it has the  following property:
X xY EXifandonlyifX,Y EX.

53.1.a Remarks  and Examples.
(i) Co lies in every non-empty @-category.  The intersection of g-categories  is a p-

category.
(ii) Each of the following is a p-category:  %F, S&  := {X E $5’ : X = X,}, Fo :=

{X E F: dimX  = O},F\T( see 2.4.2.b),  {X E %’  : X projective), {X E F : X
Moisezon}, {X E F: trdegd(X)  = 0}, {tori}.

53.2 Theorem. Let U  be a connected complex space, and let X c flYbe  a P-category.
There  exists a unique  decomposition U  g U,  x U’  with U,  E  X such that U’  has

no factor  in 37 \ {C O  } .
Vf  = (V,rf)  : u%- x U’  -+  Ux  x U’  is biholomorphic, then every partial  map

lfj( .,  u’) , rfj(  u, .)  (where j = fl ) is biholomorphic, and every  composition (lfj( u, .) o
rf-j(  .,  u’))” is constantfor n sufjciently  large.

hwL Let  f : ux x U’ -+ U&  x Vi  be biholomorphic, where U,,  Uk  E  X,  such

that U’, Vi  have no factor  in X \ {Co }. f degenerates with respect to every (u, u’)  E
U,  x U’, since  X c F\J? Therefore, every ( u, u’) decomposes  f , and hence gives rise
to a commutative diagram
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according  to 3.3.2 (we choose  this  new notation, in order to avoid e.g. U&  appearing as
an index; moreover, we do not distinguish between the subfactors  that are biholomorphically
correlated  by 3.3.2.(iii)).

If If(.,u’)  were not biholomorphic, then FI,  E X \ {Co} or FI-’  E X\ {CO},

whence Vi or U’ would admit a factor  in X \ {CO}.

Thus al1 If( .,  u’) and, symmetrically, al1 If-’  ( .,  IL:)  are biholomorphic, whence, by

Lemma 3.l.l.(iii),  so are al1 rf-’ ( ur , .) , rf( .,  u) .

The theorem is now completely proven, since, in particular,  U, S’ F; g Uk  and

U’  E FI;  % Vi  (compare 3.3.2.(i)). 0

53.3 Lemma. Let f : X x Y + U  x V be an isomorphism in %7,  and assume that X # Co
is indecomposable and not contained  in r

There  exists a unique  S E  {U, V} with S g X x SO  such that the resulting isomorphism

f : X x Y + X x (SO  x S’) (where {S, S’} = {U, V)) satisfies:  Every.partial  map

lT’(  .,  b) , rTj( x, .)  is biholomorphic, and every  (l?-‘(  x, .)  o rT’(  .,  b))” is constantfor n >
>O(whereb~Yorb~S~xS’,accordingasj=lorj=-1).

h-oof;  Fix some (x0,  yo) E X x Y and consider  the diagram corresponding to the simulta-
neous subdecomposition given by (x0,  yo) (note that f degenerates):

m, x x,>  x w, x Y”> + <ux xuy>  x0-x xvy>
1 1

XXY + u x v

We may assume that X = X,, since X is indecomposable; denote  by 7 the resulting iso-

morphismXxY=XIIxY~Uxx(U,xV,)~Xx(U,xV,).ThenIf(.,yo)and

Zf’ ( .,  T-T<  x0,  yo)) are biholomorphic by 3.3.2.(iii).  As Aut (X) is open in Ho1 (X) , the

holomorphic maps Y 3 y H lf( .,  y), U, x V,  3 (u,  u)  H iT-‘(  .,  (u,  u))  both have their

imageinAut(X). ThusallIf(.,y),If-‘(.,((~,v)) are biholomorphic, whence, by 3.1.1, SO

are al1 ~-7-l ( x, .) , T?( x, .) Now X is indecomposable and (x0,  yo) decomposes  f; there-

fore (compare 3.3.2.(i), (ii))  al1 (d(  x, .) o T?-‘(  .,  b))”  become constant  for n sufticiently
Iarge.

Assume now that in addition V = V,  g X x Vo with al1 the postulated properties for the

resulting isomorphism ? : X x Y + X x (U x Vo)  = X x (X x U,  x Vo).  Fixsome

(u,u)  E U, x Vo,  andlet 4 := Zf'-'(.,(.,u,u))  : X xX +X. Byconstruction,both
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4( z, .) and d( .,  s) are contained in A(X) for al1 z E X, which can only happen, if every
orbit map G : A(X) -P X, is biholomorphic and if X is reduced  in every smooth point

of X, (see 1.1.2.b). Thus Co # X %’ A(X) in contradiction to X 6 K 0

53.4 Theorem. Let  X E &7\3?
Then X admits a unique  decomposition (up to reorakring)  X 2 Xi  x . . . x Xi such that

X’ % Xp with nx  2 1 and X, # Co indecomposable and pairwise non-isomorphic for

1;xg.
v f E Aut (X) , then every partial map Xi + Xl\  given by f or f-’ is biholomorphic,

(

n

and every composition of partial  maps X;, + n Xi + Xl,, is constant for n z~  0.
W’

Moreover, there  exist permutations ox of { 1,  . . . , nx) such  that

f := (Jo,  x . . . x Jm,)  of : x,,,  x . ..xx.,, x . ..XXl., x . . . xX1,?  + x,,,  x. . . x x,,q

(where X,  y = X,) satisfres:  Al1  partial  maps X,,”  -t X,,”  given by 7 or 7’  are bi-
n

holomorphic, and al1 compositions X,,,, -f n X,, -t X,,#, are constant for
(X,d+(X’P’)

n>O.

PruoK Evident by Lemma 5.3.3. 0

53.4.a Let now % := %‘\  qU, := U, and U’ according to 5.3.2, with U, = Xi x . . . x

X:=X? X... x XF according to 5.3.4. Every isomorphism U g X;i x . . . x XT x U’
will be called a standard  decomposition of U .

5.4. Some Examples

Let p,  q with p# q be primes, and let A, B be connected complex spaces such that Zp acts
non-trivially on A and Z,  acts non-trivially on B . Fix some generators  cy  E Zp, p E Z,,

andletT:=C/Z+iZ.
For 1 5 7 5 p - 1,l 2 s 2 q - 1 define  (Y, E Aut(T  x A) by (~,(t,  a) :=

(t+t,cJ(,)),f18EAut(TxB)by@S(t,6):=  (s+i,/Y(a)),andlet+ytAut(Tx

A x B) begivenby r(t,a,b) :=
(
t+ i,a(a),fi(e) .

)
Then the quotients Ar := (T x

AVa,,  B, := (T  x B) //3,,  AB := (T x A x B)/r are total spaces of torsion  bundles  over
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5.4.1 Lemma.
(i) T x A, rTxA,,forallr,r’E{l;...,p-1).
(ii)A,xB,~A,xB~forallr~{1,...,  p-l},ands,s’E{l,...,  q - l } .

(iii) A, x A,  Z A,  x A,  if r2 E frr2  (modp).
(iv) Assume that p = 2, q  = 3 , and let  C, D be connected complex spaces with non-trivial

Z, -resp.  Z,  -action. Then AB x CD 2 AD x CB.

Bo&Let<1,  :TxT+TxTbegivenbythematrix

(0 where r’p  E r- (mod p), and (X - X’)p + Xp  = 1,

AP+1  PQ
(ii) >where s’p = s (mod q), and Xpp + pq = 1 - p,

AP cLQ+P

(iii) , where r’  = pr and pp2  = Xp2  f  1,

Then
(i) 0 x id, (ii)@ x  i d , , ,

(Ci)@ x id,,, W@ x idAxBxCxD

induces  an isomorphism as postulated. 0

From now on assume that
(1) A and B are indecomposable,
(2) there  exists no non-constant holomorphic A x B + T,
(3) T does not act non-trivially on A/Z, x B/Z,,
(4) every composition of holomorphic maps (A + B t A)” is constant  for n w 0.

5.4.2 Lemma.

(i)  Every A, is inakcomposable.
(ii)  AB has no non-trivial compact factor.  lf in addition  A or B is compact, then AB is

indecomposable.

(iii) A, 2 A,  ifand only ifthere exists +y  E Aut ( A) with 7 OQJ  = ~8  07. In particular,
if Z,  is centra1 in Aut (A) , then A, 7 A,,  for r $ fr’ (mod p).
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Roof: Let S E {A,, AB) with S g S, x S,. By 2.4.2.b,  we may assume that mere  exists

(S,  2 Z”,)  E q with some fibre Si and with  ?“, isogenous to T. By (2) and (3),  every
isomorphisms S -+ 5, x S,  is a smorphism  x + K, o ps, (where 7~  denotes  the given

torsion  bundle A, --t T/Z, resp. AB -f TlZ,).

(i) Clearly, A,  cannot be flisomorphic  to T x A. Thus Si # C ’ , and we conclude that

S,  = Co, since A %’ Si x S, is indecomposable.

(ii) Again, AB is not flisomorphic  to T x A x B, whence Si # Co. By (4), the iso-
morphism A x B + Si x S,  between the fibres degenerates and therefore induces  a si-
multaneous subdecomposition, if A, B, S, or S, is compact (see 51.5). Denote this iso-

morphism by f , and assume that S, or S,  is compact with S, # C ‘. Then either al1 par-
tial maps rf( 0,  .) : B + S,  or al1 rf( .,  b) : A -+ S, are biholomorphic by (1). On
the other  hand, it is evident that rf( CY( a) , /3(b)  ) = rf( a, b) for al1 ( a,  b) ; in particular,
rf(a,B2(b)>  = rf(a,b> = rf( a3 ( a) , b) , a contradiction. Thus S, = C ‘.

Assertion (iii) is obvious, since every A,  3 A, is a Kmorphism. 0

For k 2 2 let .sk  := exp andlet Z,  acton P,,  via (n,s) H (E$E~ : zi : . . . .

zn) . If we want to indicate this action, we let Z(k)  := P, in what follows. By blowing up

x E P,  1+ 1 times, where 12 1, we mean: blow up x1 times and then blow up (once) any
point in the exceptional curve.

Let X(k) be the manifold that arises  from  P,  by blowing up (once) every ( +co  : 1 : 0))
1 2 s 2 k, by blowing up 1+ 2 , times the points (0 : 1: 1) for 0 2 12 2 and by blowing
up five times the point ( 1 : 0 : 0). The Z,  -action on P, lifts  to X(k) and also restricts
to the complement U(k)  c X(k) of the inverse image of ( 1 : 0 : 0). It is easy to see
that Z, = Aut (X( k)) and Z, = AuC( U( k)) . Thus,  by 5.4.2.(iii),  A(p), g A(p),, (where
A E {X, V}), if and onlyif r z r’  (mod p).

Clearly, every pair (A(p) , B(q)) with A, B E {U, X, 2) satisfies  the conditions (1) -

(4).

5.43. Examples.
a) There  exist indecomposable connected complex spaces X, U, U’ with X compact, and

with  U, U’ having no compact factor  # C ‘, such that U  ‘$f  U’ and X x U  g X x U’ : X :=

T, U  := U( q)l,  U’ := U( q)2 with q 2 5 (see  5.4.1.(i),  5.4.2.(i)).
b) There  exist indecomposable connected complex spaces X, X’, U  with  X, X’ compact,

and with  U having non compact factor  # Co, such that X 7 X’ and X x U  -%  X’ x U  :
u := U( q)1 )X := X( p)1, X’ := X(p),  with p 2 5 (see 5.4.l.(ii), 5.4.2.(i)).

c) There  exist indecomposable connected complex spaces X, X’, U, U’ with X, X’ com-
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pact,  and with U, U’ admitting no compact factor # Co, such that X y X’, U r U’, and
XxXrX’xX’,UxU~U’xU’:

X := X( 5), ,X’ := X( 5)2,  U  := U( 5), , U’ := U(5),  (see 5.4.l.(iii),  5.4.2.(i)).

d) There  exist connected complex spaces X, U, V, W, with X + Co  indecomposable and
compact, and with U,  V, W having no compact factor # Co, such that X x U  g V x W :

X := X(2)2(3),U  := U(2)U(3),V := X(2)U(3),W  := U(2)2(3)  (see 5.4.l.(iv),
5.4.2.(ii)).

e) There  exist X, Y, U,  V with X # Co # Y compact, and with U, V admitting no com-
pact factor # Co, suchthatdimX#dimYandXxUEYxV:

X := X(2)2(3),Y := X(2)X(3),U  := U(2)X(3),V  := U(2)2(3)  (see5.4.l.(iv),
5.4.2.(ii)).

In particular,  we see that for general U  , there  is no possibility of introducing a reasonable
notion  of a unique maximal compact factor.

Choosing A, B, C appropriately, one can show in a similar way that a general X E g
does not admit a unique maximal factor in any of the P-categories  listed in 5.3:l.a(ii)  other
than Fo or S?\J?

6. AUTOMORPHISMS OF PRODUCTS

Let U  be a connected complex space with standard decomposition U  g U, x U’ S’  Xi  x

. . . x X; x U’ (compare 5.3.4.a),  and let 4 E Aut (U) . By 5.3.2 and 5.3.4, every partial map

u,  -) u,,xl, -+ xp -) U’, given by 4 or 4-l is biholomorphic. In general, however.
Q need not be a product of isomorphisms between the individual factors. For every 4 to be
a product of automorphisms of U,  and U’, it is necessary  that there  exist no non-constant
holomorphic mappings U’ + Aut ( U,) , U, + Aut (U’) . In the reduced case, this condition
is easily seen to be sufficient  as wcll; in general, it is not.

If U  SS reduced and compact with  A(U) = 0, then evidently al1 4 E Aut (U) are
products of isomorphisms between the indecomposable factors of U.  This assertion does no
longer hold for non-reduced U  ; for instante,  the automorphism of PZ x PZ ( PZ ut C the
double point) given by (5, y) H ( z + sy, y + sy) is not a product.

In view of these difficulties, wc henceforth restrict our attention to the compact reduced
case.

6.1. Decomposition-preserving automorphisms

Let X be a reduced compact complex space with a decomposition f : X + Y1 x . . . Y,,.

6.1.1. Defìnition. An automorphism 4 of X preserves  fhe decomposition f, if al1 partial
maps Y, -t Y,( 1 5 v 5 n) given by $J and 4-l are biholomorphic. We let Autf(X) :=

(4 E Aut : 4 preserves j}.
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6.1.1~3 Remarks.  From 5.3.2 and 5.3.4, we infer:
(i) If Y,,  and YP have  no positive-dimensiona1  common factor  for al1 1 5 p, v 2 n, p # Y,

and if at most one Y, is contained  in K then Aut (X) = Aut f( X) .

(ii) If Yi - . . . E Y, @ yare indecomposable, then Aut (X) = u
uES(n)

J, o Autf(  X) ,

where 9’(n)  denotes  the group of al1 permutations of { 1, . . . , n}) .

We shall now - in the case n = 2 - demonstrate how to construct Autf(  X) from
Aut (Yi ) x Aut ( Yz) . Then, using the above  remarks,  one can build up successively Aut (X)

1 1
from n( Aut( x Aut (X’) , where X S’

x=1 ( )
n Xx xX’ is a standard decomposition
x=1

of x .
TO simplify the notation, we consider  reduced  compact complex spaces Y, 2 with Y $ K

and we let Aut+(Y x 2) := Aut,y,,(Y x 2). Then, by 5.1.2, every  4 E Aut+(Y x 2)

degenerates.
Let 4 E Aut+(Y x Z), and fix some (y,,,  .zO) E Y x 2.  By Theorem 5.3.2, there

exist (CU,@  E Aut x Aut( and p’ E Hol(Z,A(Y)),7’ E Hol(Y,A(Z)) with

BGo> = idr,,7’(y,)  = id,, such ht ~(YJ>  = t$(z)(at~)),r’t~)(~(~>))  far dl
(y, z). As A(Y x 2) is norma1 in Aut( Y x Z), there  exist p E Ho1  (2,  A(Y)) with
/3(zo> = idy and 7 E Hol(Y,A(Z))with 7( y,,) = id, such that CV  o /3(z)  = p’(z)  o CY
and 6 o 7(y) = 7’(y) o 6 for al1 y E Y, z E 2.  Evidently, the quadruple (c~,p,7,6)  is
uniquely determined by these  properties.

We shall now derive a necessary  and sufficient  criterion for such a quadruple ( CY, p, 7,s)
todefine4 E Aut+(Y x2) inthewaydescribedabove. For (/3,7) E Hol(Z,A(Y)) x

HW’,A(Z))  define  (P,r> : Y x 2 -, Y x 2 by (YA  H (P(z)(Y),~(Y)(~). Evi-
dently, it suffices to find  out under which conditions (p, 7) E Aut (Y x 2).

TO begin with, we reduce the situauon to the case where Y, 2 are tori:

6.1.2. Lemma and Detìnition.Thefunctor  SFrCd -f 8ns,Z H u{Hol(Z,T) : T aforus),

is represenfed  by albo : 2 H (albi : 2 + Albo(Z)).

albi is calfed  fhe weak Albanese map of 2.

The proof can be copied  word for word from the corresponding one  for smooth varieties.
Note that albi = alb z, if 2 is smooth.

Let (s,,y,)  E Y x 2 with albO(so,yo)  = 0 and let (P,7)  E Hol(Z,A(Y)) x

Hol(Y,A(Z)) with p(zo)  = id,,7(y,)  = id,. Then alb’((/3,7))  : Alb’(Y x 2) -t

Alb ‘(Y x 2) is a holomorphic homomorphism. Moreover, if we let p be the campo

sition (Albo(Z)  ‘b?’ Alb’(A(Y)) = A(Y) “3 A(Alb’(Y)) = Alba’(Y)), and
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7 : Alb ’ (Y) --t Albo (2) accordingly, then albo ( (/3,7))  = (a,  r>)  .

6.1.3 Lemma. The map (p,  7)  is  biholomorphic, ifand  only ifso  is  (s,  7).

prcrof: Let (a,  r) be biholomorphic (the other implication is trivial). It suffices to show that
(p, 7) is injective; for this, in turn, we need only show that (/3,7)  is injective on every fibre

of alb;,,.

Let Y. x 2, besomefibreof albe,, = albt x albi. Then PI,  = [/3(z1)],71y0  =

ET( forw .q E Z,,Y, E Yo, and mefore  (P,~)luoxz,, = B(.d x ~(YJI~~~~,, is
injective. 0

LetnowY:= Alb’(Y),Z:= Albo(Z).

6.1.4 Lemma. (P,r)  is biholomorphic, ifand only if (p  o 7)” = 0 for n w 0.

Proo~  Let 0 := -fi,  r := ?F;  then o is nilpotent, if and only if SO is 7. The homomorphism

(p, 5) is an isomorphism, if and only if there  exists an endomorphism of y x z given by a

matrix (; !:) suchthat (~~~~“~  @II’) = (0 0) .Ifaisnilpotent,then

Q!’ /T’
id - u and id - r are invertible, and a simple computation shows that the matrix

( )7’ 6’ ’
givenby&= (id-u)-‘,6’=  (id-T)-],@’ = -cy’B,  7’ = -6’7 defines an inverse of

(SB 7).
Conversely, if (p, ;r> is invertible, then SO is (/3,7)  and (/3,7)  degenerates, since  U $-

9? By 3.1 .l .b,  (p, 7) degenerates as well,  i.e., if ( (a,  3) 1 is given by
Cd 8’

( 1
, then

7’ 6’

(y%y~z~z<~)n=()  for~wO0.Now~‘=-<y’p=-~~‘,7’=-~‘~=-~(y’,

and we conclude that CY’C&  = (~‘pcj’;Y  = P’7’ = p&l’r~’ = &<y’cy’;  thus  P’7’ is nilpotent, if
and only if SO is -fi. 0

For(@,T) E Hom(Z,A(Y)) xHom(Y,A(Z)), letBx7 := (Boalbi) x(?oalbb) :

ZxY --+A(Y)xA(Z),andpx~:=(alb;o~)x(alb~o$  :Zxr+A(Y)xA(Z)  =
F x z.

Summing up, we obtain:

6.1.5 Theorem. L.et  Y,  Z be reduced  connected compacl  complex spaces with Y @  z and

let%‘(Y x2) := {(<y,j,q,6)  E Aut xHol(Z,A(Y)) xHol(y,A(Z)) xAut(Z) :

B;r nilpotent}.
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Then the map .W(  Y x 2) + Aut+W  x 21,  @en@  (cc8,T,Q  ++  (Q  x Q o(/Zr>,
is well-dejined  and bijective.

6.2. Automorphisms of projective varieties

6.2.1 Lemma. Let U  be a connected complex space, and let T be a connected compact
complex subgroup  of A( U)  . Assume there  exists a line bundle L on U  that is ample on some
orbit Tu0  of T.

Then there  exists (U + T) E q, where 1 := dim T.

BUON Denote  by 2 the line bundle ( ,!3;  L) 8 (( .uo  opr)*L)-’  on T x U  (where E = E,

denotes  the evaluation map). Evidently, &xI,,l is topologically trivial for al1 u E U; thus

u H j:z defines a holomorphic map r : U + Pic,(  T) . Let TO  denote the connected

component  of 7-l ?-( uo)  rlTuo that contains u.  . As 2 istrivialalongevery Tx{u},u  E TO,

there  exists a line bundle L,  on TO  with &.,,,  = pT,L,; thus  E’LIT  x TO  = P;~L,  @

(-uo  o pT)*L.  We conclude that L,  is ample, since  SO is E*LIj,I,TO  S  p;OL,If,O}xTO.

Tbus  E*L[,,TO  is ample, i.e. EIT  x TO + E(T  x TO)  = Tuo  is finite, whence TO  = { uo}.

This  shows that TIFO, is finite and hence  surjective. In particular,  there  exists some finite

holomorphic homomorphism /3 : Pic,T  -+ T such that a! := p o r satisfies the condition of
Lemma 2.4.2. 0

6.2.1.a Corollary. L.et  X be a projective varie&  Then there  exists (X --t  A(X)) E  Ta,
where a := dim A(X) .

6.2.1.b Corollary. Let X be a projective variety with standard decomposition X P X,  x

X’ E Xi x . . . x X;  x X’ = XF  x . . . x XT x X’ (compare 5.3.4.a).

Then Aut 2
ci 4

Aut x Aut x Hol(Alb’(X,),A(X’)) (where the

isomorphism is given by 6.15), and Aut g <rE$x) J, o (Aut (X,))%  (compare

6.1 .I .a(i i ) ) .

6.2.1.~  Example. Let T, be a two-dimensional torus of algebraic dimension 1, and let r :
T, -t T denote  its equivariant algebraic reduction. Let C -) T be a surjective holomorphic
map from a compact Riemann surface of genus 2 2 onto T,  and let X := T, xT C. Then
X is a two-dimensional compact Kahler manifold, A(X) 2 Kerr  is one-dimensional,  and
X$9?
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7. ISOGENY DECOMPOSITIONS

In Shioda’s as well as in Parigi’s examples for X x Y % X x 2,  the varieties Y, 2 always
admit coverings S -t Y, S + 2 (with the same S) and thus are stili closely related to each
other. We shall now see that this fact is not accidental.

7.1. Isogenous products

7.1.1 Definition. Let St , S,  be connected complex spaces.
(i) S, and S,  are isogenous,  if there  exist coverings (i.e. locally biholomorphic finite

mappings with connected domain) S + S, , S + S, .
Notation: S, - S,  . A diagram S, t S -t S,  of coverings is called an isogenybetween

SI and S,.
(ii) S, is an isogeny factof  of S,  , if S, - S, x Si with suitable Si.  S,  is strongly

indecomposable,  if it admits no isogeny factor # C ‘, S,  .

7.1.1~3 Remarks.  (i) - is an equivalente  relation.
(ii) If (7~ : U -+ T) E fl then T is an isogeny factor of U.

7.1.2 Lemma. Ler Q  : S + X x Y be a covering.

Then there  exist coverings (Y  : X’ + X, p : Y’ + Y with the following properties:
(i) cy  x p factors through 4.
(ii)  If 7 : X” --t  X, 6 : Y” + Y are coverings such that 7 x 6 factors through 4,  then

7 factors through (Y  and 6 factors fhrough  /?.
(iii) lf C$  is biholomorphic, then Q!  = id, and /3 = id,.

h-oof:Leta:X+X,P:Y-t Y be the universa] coverings with deck transformation
groups GE n,(X),H  2 rrI(Y).  Then G’ := Gnrr,(S),H’ := Hnrr,(S)  havefinite
index in G, H, respectively, and G’ x H’ is a subgroup of T,  (S) . Tbus  there  exist factor-

izations G = (2 + x/G’ 5 X),  p^ = (p t F/H’ 8,  Y) , and the assertion follows with

X’ = f/G’, Y’ = i+I’.

Let now X x Y t S 5 U x V be an isogeny (between connected complex spaces), and
construct the triangle

X’XY’ 5 s

XXY

asabove.Let(f, :X2 xY2 +U1 xV,):=(rC,o~':X'xY'-,UxV),andapplythe
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same construction to fi, thus obtaining

Iterating this proctxlure,  we ai-rive at

. . . -+ x2n+2  xy2n+2
s*P+Pl, x,,  x Y2,  . . .

lfh, \fM /fh

. .  . u2n+3  x  v2n+3
%I~Bhl

U2n+l XV2n+l + . . .

By construction, if some jn is biholomotphic, then SO are al1 f,,,  for m 2 n, and f,,,  and

fm+ i are then inverse to each other.

bt ((z~~,Y~,,))  E n(X2,,  x Y2,J  with a2n(~2n+2)  =  52n,P(~2n+2)  =  y2,,,  andlet
-1

CU 2n+l) uzW1) := f2w1  (z~,,+~ ,Y~,,+~). Consider thesequence

and denote by R,,+l 2 Rk the map given by a subsequence of length 1, where R, R’ E
{X, Y, U, V},  appropriately.

7.13 Definition. The isogeny X x Y-t S --t U x V degenerales  (with respect to the family

((52n, y2,,))), if the reduction  of R,,+l (3 R,  is constant for 1 > 0 and al1 n.

7.1.3.a Remark.  If ( X2+4k Ir!  X2)rcd is constant, then SO is ( R,I  -) q)rcd  for al1 n and
all1>4k+6.

proof: ClearlY. ‘y2*2  OF&&+4  = Yzn+2 OQ~~+~,  and cormsponding relations hold for z, u, u.

Thus  (&+2 (2 x,)  0  (Y,Jk+2  0.  . . 0 <YZ,+,$k  = a’J 0..  . 0  (YZ,, 0 (&,&k+2  (’  &,+2),

whence Xak+2 2 X2 is constant, if and only if so is X2,,+4k+2 (2 X2*2. Furthermore,

every subsequence of (*) of length 2 4 k + 6 contains some X2,,+4k+2 2 X2n+2 . 0

From now on assume that X is compact.
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7.1.4 Lemma. (compare 5.1.1).

(i)  ,f  1 2 2, then  IR,, -! R” 1 factors (set-rheorefically) through Ho1  ( Rk+2  , Rk)  ‘f*
Rn with T,,+~  H r,,, where 7 E  {CY,  p}  according  as R’ E  {U,  X} or R’ E  {V, Y} with
corresponding r,  T’  E  (5, y, u,  u}.

(ii)  If n w 0 and if  ( R,l  -!  Rn)  contains  (X,,.,+,,,  2 Y,)  , then R,l  ‘2 RL  factors

holomorphically through A( Rn)  3 Rn with r,,+l  H  id %.

RTXI~  The proof of (i) does not require X to be compact; thus we may assume Rn = X, for
symmeuy reasons.

Let~:=~fno(iYn+,  OPI,,,&,)  :Xn+2  xYw2 -+X,; ~end&+2,.) =&+, z,,

and K,Y,z) = Kofn+~L~n+z) = Q,.
Thus we obtain a commutative diagram

1 14 f%t*

% E HoU,,+,  > X,)

which proves (i).

Consider now $ := (X,,  x X,, id*) X,, x Y,,+2  * X,), let w,,  := p+[X,,  ]

(compare 2.2.2).  and denote by PV,, the wcak normalization of ( @m)ti.  Applying 2.3.2 to

the sequence  . . . -t X,, 2 X,  -f . . . , we conclude that ITV,l  c A(X,)  o CN,,  and from

2.3.2.a we infer that the natural map W, -+ Ho& X,) is holomorphic with image contained
in Aut(  X,) . This yields a commutative diagram

X n+8
(*)  x

n+4
(*) x

n

1 1 Td TA

Aut  (X,4  > (Al+4 Ld --+  4X,)

and we conclude that X,, 2 X,  factors through ‘5, : A(X,)  + X,, since  the orbit map

3,,+4  : AN&+4  > -t X,4 factors through (X,,  )rcd ut X,, .
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From the commutative diagram

Rn+l -) Xm+8
(*) X, ‘2 Rrrcz

(*)
Ga

we infer that there  exists V, (2) Ho1 ( RLz  , Rn) with rn E V, such that X,,,+s -! RL

factors holomorphically through +-kz  : V, -+  Rk. Now assertion (ii) follows by applying

2.3.2 to the sequence  . . . -f R’W2  2 RL t . . . and to the family (V,) . 0

7.1.5 Proposition. Le; 1 := frnmdim  Im(  X2+4k (2 X,).

Then there  exists an 1 -dimksional  torus  T which is an isogeny factor of X, Y, U and V .
In particular,  if X, Y, U and V do not admil  a common torus  isogeny faclor  (of positive

dimension), then  every isogeny between X x Y and U x V degenerates.

proof:  Evidently, 1 = iirnmdim  Im( S,,,+k ‘2 Sk) for al1 m E N and al1 S, S’ E

{X,Y, U, V} (compare 7.lLa).
By Lemma 7.1.4.(ii),  there  exists a commutative diagram

Sm+2k
(*) s, (*) s,,

m+k + m

1 /Id+, \ T-k

A( S&+k) 4 S:>

for m sufficiently large and k 2 16. Increasing k, we may assume that dim Im ( Sm+Zk  ‘2

Sm) = 1; then Im(Sk+, ‘2 Sk) coincides  with the image of the orbit A( Sk+ k) SA+  k and
hence  is the orbit of some T( Sm)  c A( Sm). Thus, fora11 m z& 0 and al1 R E (X, Y, U, V>,

there  exists an I-dimensional T( R,) E A( R,) such that every Rk+k  (i! R, factors
through -7;, : T( R,) -t R,,, , if k is sufficiently large. Using Lemma 2.4.2 and 7.l.l.a(ii),
we conclude that T( R,) is an isogeny factor of R,,- clearly, T( R,.,,) and T( RL) are isoge-
nous for al1 R, R E {X, Y, U, V}. 0
7.1.6 Lemma. Ifthe  isogeny X x Y t S + U x V degenerates,  lhen  f,, is a degenerating
isomorphism for n w 0.

h-oof:  By 7.1.2(iii) and 7.1.3.b,  it suffices to show that f, is biholomorphic for n w 0. For
this, in turn, we need only show that f,, induces  an isomorphism between the corresponding
fundamental groups.
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Let G,, = n1(x2n),H2n  = ~~U’d,%+,  = ~~(UZ,,+I)>&+I  = q(&+d. BY
construction  of the sequence ( f,,)  , the sequence (G, x H,) satisfies the condition of Lemma
0.3.3, if the isogeny X x Y t S + U x V degenerates. 0

7.2. Cancellation

7.2.1 Lemma. Let U, , U, be connected complex spaces, and let T, , T2 be tori such  that

r, x u, - T, x T,.
If there  exists no positive-dimensiona1 torus that is un isogeny factor of both U, and U, ,

then T, - T, a n d  U, -U,.

Pr-o&  It is easily seen (e.g. by using 7.1.2) that every isogeny factor of a torus is isogenous
to a torus. Thus, by 7.1.5, every isogenous between T, x U, and T, x U, degenerates. By
7.1.6, we may assume that there  exists a degenerating isomorphism f : T, x U, + T2 x U, ,
which, by 5.1.5, induces  a simultaneous subdecomposition. As neither U, nor U, admits a
positive-dimensional torus factor, we conclude that (with the notations  of 3.3.2) Tl = TIT,  E

T2T, = T, and U, = U,, = U2”, = U,. 0

For any connected complex space U denote  by t(U) the maximal m E N such that
there  exists an m -dimensiona1 torus that is an isogeny factor of U . Thus U is isogenous to
T( U) x U+ , where T(U) is a t( U) -dimensionai torus and U+  is a connected complex space
with t(U+) = 0.

7.2.1-a Corollary.

(i) Let U - T x U’ with some torva T. lf dim T = t(U) or if t( U’) = 0, then T(U) - T
and U+ N U’.

(ii)T(U)xT(V)-T(UxV)andU+xV+ - (U x V), for al1  connected complex
spaces U and V .

Roof: The assertion (i) is obvious by 7.2.1. TO prove (ii),  consider  any isogeny between
U+ x V+ and T x Y, where T is a torus and Y a suitable connected complex space. By
7.1.5, this  isogeny degenerates, and using 7.1.6 and 5.1.5, we conclude that U+  and T or
V+ and T possess  a common isogeny factor. Thus dim T = 0 and we can apply 7.2.1 to
T(U  x V) x (U x V), -(T(U) x T(V)j  x (U+ x V,). 0

7.2.2 Lemma. Let T,T, , T, be tori with T x T, - T x T2.  Then TI - T,.

Pro& We proceed by induction on dim T x T, . In the induction step, we may assume that
dim T, > 0, and that T, and T, have  no common torus isogeny factor. Then, by 7.1.5, any
isogeny ktween  T x T, and T x T2 degenerates, whence, by 7.1.6,  we may assume that there
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exists a degenemting isomorphism T x T, + T’ x T, with some torus T’ - T. From 5.1.5
we infer T E T, x T, and T’ %’ TT,  x T, , since T, and T, have  no positive-dimensional
common factor. Thus T, - T, by induction hypothesis. 0

7.23 Theorem. L.et  X, Y, Z be connected complex spaces,  such  that X, Y or Z is compact.
If X x Y and X x Z are isogenous, then SO are Y and 2.

mL By7.2.l.a,  wehave T(X) x T(Y) - T(X x Y) - T(X x Z) - T(X) x T(Z)
and X,  x Y+ - (X x Y),  - (X x Z), - X,  x Z,. Thus T(Y) - T(Z) by 7.2.2. By
7.1.5, every isogeny between X,  x Y+ and X,  x Z+ degenerates (note that X,  , Y+ or Z,
is compact). Using 7.1.6, we may assume X,  x Y+ 2 X,  x Z, , whence Y+ g Z, by 5.2.1.
l-bus  Y - T(Y) x Y+ t.,  T(Z) x Z+ - Z. 0

7.2.3.a Corollary. If X x Y P X x Z with X, Y or Z compact, then Y and Z are
isogenous.

73. Decomposition

73.1 Theorem. Every connected complex space U admits a unique isogeny decomposition
(up to reordering) U - X, x . . . x X,, x T(U) x U’(n> 0), suchthat

(i) T(U) is a (possibly zero-dimensionai) torus and U’ has no compact isogeny factor

#CO,
(ii) every X,, 1 5 u < n, is compact, strongly indecomposable, # C ‘, and not isogenous

to any torus.

RooK Evident by 7.2.1-a,  7.1.6, and 5.3.4. 0
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