ON JUST INSEPARABLE FINITE GROUPS

G. ILARDI

Abstract. A finite group is called *«just inseparable»* if every proper subgroup of G has a complement if and only if it isn't normal. We show that a group is just inseparable if and only if it is a cyclic group of prime power order or is isomorphic to the quaternion group.

Definition 1. A finite group is inseparable if no normal proper subgroup of G has a complement in G.

Let **B** be the class of finite inseparable groups.

Denote by A the class of finite groups in which every non-normal subgroup has a complement.

Definition 2. A finite group G is "just inseparable" if $G \in A \cap B$, that is if has the following property: a proper subgroup of G has a complement iff it isn't normal.

Denote with E the class $A \cap B$ of just inseparable finite groups.

In this Note we characterize the just inseparable finite groups. Precisely, we prove that a finite group is just inseparable iff it is a cyclic *p*-group or it is isomorphic to the quaternion group.

All groups considered in this Note are supposed finite.

We have immediately:

If $G \in A$, every subgroup of G and every epimorphic image of G is in A too.

Lemma 1. Every just inseparable group G is a p-group with $\Omega_1(G) \leq Z(G) \cap \Phi(G)$.

Proof. Let p the smallest prime divisor of |G| and P a Sylow p-subgroup of G. Let X be a subgroup of G or order p. If X is not normal, then G = XC with C subgroup of G and $X \cap C = \langle 1 \rangle$. So C has index p in G, hence it is normal, and has X as complement, contradicting the hypothesis. Therefore X is normal in G. Since |X| = p with p the smallest prime divisor of G, then we have $X \leq Z(G)$. But X has no complement because it is normal, so $X \leq \Phi(G)$. From that it follows $X \leq Z(G) \cap \Phi(G)$, so $\Omega_1(P) \leq Z(G) \cap \Phi(G)$. Let \overline{P} be a conjugate of P. Since P is normal, then we have $\Omega_1(\overline{P}) = \Omega_1(P)$, hence $\Omega_1(P)$ contains every subgroup of order p of G.

Now we distinguish two cases:

a) P is normal in G. If $P \neq G$, then because of the Schur-Zassenhaus theorem, P has a complement, contradicting the hypothesis. So P = G and lemma 1 follows.

98 G. Ilardi

b) P is not normal in G. Then, by hypothesis exists a subgroup H of G such that PH = G and $P \cap H = \langle 1 \rangle$.

So H is a Hall p'-subgroup of G. If $\Omega_1(P)$ is normal in $G, \Omega_1(P)H$ is a subgroup of G. If $\Omega_1(P)H$ has a complement $D \neq \langle 1 \rangle$, then D is a p-group and contains a subgroup of order p, necessarly contained in $\Omega_1(P)$, but that is impossible, because $D \cap \Omega_1(P)H = \langle 1 \rangle$. So $\Omega_1(P)H$ has no complement, hence it is normal in G.

Because of $\Omega_1(P) \leq Z(G)$, we have $\Omega_1(P)H = \Omega_1(P) \times H$ and so H is characteristic in $\Omega_1(P)H$. Moreover, since $\Omega_1(P)H$, is normal in G, then H must be normal in G. If $H \neq \langle 1 \rangle$, then H has P as a complement, contradicting the hypothesis. Therefore $H = \langle 1 \rangle$, that is G = P, and $\Omega_1(G) = \Omega_1(P) \leq Z(G) \cap \Phi(G)$.

Lemma 2. If G is not cyclic and just inseparable then $G = \langle s, c \rangle$ with $o(s) = p^a, o(c) = p^b, a \ge 2, b \ge 2, G' = \langle [s, c] \rangle$ and |G'| = p.

If G is not isomorphic to the quaternion group, then $\langle s \rangle \cap \langle c \rangle = \langle 1 \rangle$.

Proof. By lemma 1, G is a p-group and $\Omega_1(G) \leq Z(G) \cap \Phi(G)$.

In particular every subgroup of order p of G is normal. If every subgroup of G is normal, then G is isomorphic to the quaternion group hence lemma 2 is true for p=2, a=b=2. In the opposite case let H be maximal among the non normal subgroups of G. Then, by hypothesis, H has a complement C in G. So we have $G=HC, H\cap C=\langle 1\rangle$. Also C is not normal in G, because it has H as a complement. Therefore, there exists a cyclic subgroup $Y\subseteq C$ that is not normal in G. So we have G=XY with $X\cap Y=\langle 1\rangle$, and X subgroup of G. So $C=Y(C\cap X)$. Let now $Y_0=\Omega_1(Y)$. Then Y_0 is normal in G, because it has order p, and HY_0 is a subgroup of G, which is necessarily normal by the maximality condition on H. Since $HY=(HY_0)Y$ with HY_0 normal, then HY is a subgroup of G, which is necessarily normal by the same maximality condition. Then we have $G=HC=HY(C\cap X)$. Furthermore we have $|G|=|H||C|=|H||Y||C\cap X|=|HY||C\cap X|$ and so $(HY)\cap (C\cap X)=(1)$. Since HY is normal in G, then G=HY, that is Y=C, and G is cyclic. Let G0 be maximal in G1. Since every subgroup of order G2 of G3 is in G4, then G4 has no complement in G5.

So M is normal in G. Since H is not normal in G, then M is the only maximal subgroup of G including $\Omega_1(H)$. So $H/\Omega_1(H)$ is cyclic, and moreover H is abelian, because of $\Omega_1(H) \leq Z(H)$.

So we have $H = S \times L$, with S cyclic and L elementary abelian, hence fulfilling $L \leq \Omega_1(G)$. From that we find $H\Omega_1(G) = S\Omega_1(G)$.

Since they have no complement in H, then $S\Omega_1(G)$ and $C\Omega_1(G)$ are normal in G. Furthermore, since $H\cap C=\langle 1\rangle$, we have $H\Omega_1(G)\cap C\Omega_1(G)=\Omega_1(G)$. From that we find: $\frac{G}{\Omega_1(G)}=\frac{H\Omega_1(G)}{\Omega_1(G)}\times\frac{C\Omega_1(G)}{\Omega_1(G)}=\frac{S\Omega_1(G)}{\Omega_1(G)}\times\frac{C\Omega_1(G)}{\Omega_1(G)}$ with $\frac{S\Omega_1(G)}{\Omega_1(G)}$, $\frac{C\Omega_1(G)}{\Omega_1(G)}$ cyclic groups.

Let $S = \langle s \rangle$ and $C = \langle c \rangle$. Then $s\Omega_1(G)$ and $c\Omega_1(G)$ are generators of $\frac{G}{\Omega_1(G)}$.

Now, by lemma 1, we find $\Omega_1(G) \leq \Phi(G)$. Hence $s\Phi(G)$ and $c\Phi(G)$ are generators in $\frac{G}{\Phi(G)}$, hence s and c are generators in G.

Since $\frac{S}{\Omega_1(G)}$, $\frac{C}{\Omega_1(G)}$ are normal and cyclic, then $G/\Omega_1(G)$ is abelian so we have $G' \leq \Omega_1(G) \leq Z(G)$.

From there we have $[s,c] \in Z(G)$, so [s,c] is permutable with s and c, and $G' = \langle [s,c] \rangle$. Since $G' \leq \Omega_1(G)$, then [s,c] has order p and |G'| = p.

Therefore the lemma is proved with p^a , p^b orders of s and c recpectively.

Proposition 3. A group G is just inseparable iff it is a cyclic p-group or it is isomorphic to the quaternion group.

Proof. Cyclic p-groups and the quaternion group have only normal subgroups, so they are inseparable; hence just inseparable.

To prove the converse, let G be a just inseparable group which is neither cyclic nor isomorphic to the quaternion group. Now, by lemma 2, we find: $G = \langle s, c \rangle$ with $s^{p^e} = c^{p^b} = 1$; $G' = \langle [s, c] \rangle$ and $|G'| = p \langle s \rangle \cap \langle c \rangle = \langle 1 \rangle$. We suppose $a \geq b$ and set $S = \langle s \rangle$ and $C = \langle c \rangle$. Then SG' is a normal subgroup of G, and SG'C = G. So $SG' \cap C \neq \langle 1 \rangle$ because SG' cannot have a complement. Hence $c^{p^{b-1}} = s^m[s, c]^n$ with $0 \leq n < p$. Now $n \neq 0$ because of $S \cap C \neq 1$, therefore $1 \leq n < p$.

Since $[s,c]^n$ and $c^{p^{k-1}}$ have order p and are permutable, then also we find $(s^m)^p = 1$, hence $m = hp^{a-1}$, with $0 \le h < p$. Therefore we have $[s,c]^n \in \langle s^{p^{a-1}},c^{p^{k-1}}\rangle$ and moreover, since [s,c] is a power of $[s,c]^n$, we have $[s,c] \in \langle s^{p^{a-1}},c^{p^{k-1}}\rangle$, that is $[s,c] = s^{kp^{a-1}}c^{tp^{k-1}}$, with $0 \le k < p, 0 \le t < p$. From there we find G = SC.

Now we have $k \neq 0$, otherwise $[s, c] \in C$, and C is normal, though it has a complement, contradicting the hypothesis.

Similarly we have $t \neq 0$. We set $w = s^{kp^{a-b}}c^t$. Then $w^{p^{b-1}} = (s^{kp^{a-b}}c^t)^{p^{b-1}} = s^{kp^{a-1}}c^{tp^{b-1}}$ $[s,c]^{-kt}p^{a-b}(p^{b-1}) = [s,c][s,c]^{-kt}p^{a-b}(p^{b-1})$.

Since $b \ge 2$, then excluding the case a = b = 2, p = 2, $-ktp^{a-b}(p^{b-1})$ is divisible for p. So $w^{p^{b-1}} = [s,c]$, that is, $W =: \langle w \rangle$ is normal in G. On the other hand, $\langle s,w \rangle$ contains s and contains s and contains s.

Since $1 \le t < p$, then c is a power of c^t , so $\langle s, w \rangle$ also contains c. Hence it follows $G = \langle s, w \rangle = SW$.

But $w^{p^{k-1}} = [s, c]$, cannot be in S, otherwise S is normal, although having a complement C. Hence it follows $S \cap W = \langle 1 \rangle$, with W normal in G, contradicting the hypothesis.

100

Therefore we have p=2, a=b=2, hence $[s,c]=w^2=(s,c)^2=s^2c^2[s,c]^{-1}$, hence $s^2c^2=[s,c]^2=1$, that is, $s^2=c^{-2}$, with $s^2\neq 1$.

So $\langle s \rangle \cap \langle c \rangle \neq \langle 1 \rangle$, contradicting the hypothesis. The proposition is proved.

REFERENCES

- [1] H. BECHTELL, Inseparable finite soluble groups, Trans. Amer. Math. Soc. 216 (1976), 47-60.
- [2] H. BECHTELL, Inseparable finite soluble groups II, Proc. Amer. Math. Soc. 64 (1977), 25-29.
- [3] A. SCARSELLI, On a class of inseparable finite groups, J. Algebra58 (1979), 94-99.
- [4] A. Scarselli, Su una classe di gruppi finiti inseparabili, Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur. 68 (1980), 22-25.
- [5] A. Scarselli, Su una classe di gruppi dotati di una serie di spezzamento principale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 70 (1981), 198-202.