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CHARACTERIZATIONS OF ALMOST SHRINKING BASES
M. GUPTA, PK. KAMTHAN

1.1. INTRODUCTION AND MOTIVATION

The matenal of this paper depends upon the theory of locally convex spaces, sequence spaces
and Schauder bases in topological vector spaces and as such we refer to [2] (cf. also [9]),
(6] and [7] respectively for several unexpalined definitions, results and terms prevalent in the
sequel. However, we do recall a few definitions and terms relevant to the present paper. So,
we write thorughout X = (X,7T') for an arbitrary Hausdorff locally convex space (1.c.s.)
with X* denoting the topological dual of X and D, representing the saturated collection
of all 7" -continuous seminorms generating the locally convex (l.c.) topology 7" on X . Also
we write the pair of sequences {z; f, } for an arbitrary Schauder basis (S.b.) for X where
z. € X, f, € X*and f _(z.) =6__:m,n>1. AnSb. {z; f } for (X,T) is called
shrinking if {f ;W z_} is an S.b. for the strong dual (X*, 8(X*, X)),¥ being the usual
canonical embedding from X into X** = (X*, B(X*, X))*.

Shrinking bases were essentially introduced for two reasons: (1) to find applications of
Schauder bases in the structural study of locally convex spaces, and (ii) to answer a natural
question concerning the S.b. character of {f,_ ;¥ z,_} for the space (X*, 8(X*, X)) in case
X has already an S.b. {z_; f,_}. Kalton made an interesting observation in [3]: indeed, there
are spaces with S.b.’s for which the strong duals are not even separable (for instance, consider
the space (€', o(£',£°)) equipped withits S.b. {e";e"}, e" = {6,; : j = 1,2,...} where

6,1}. 1S the Kronecker delta) and so it appears that it is too much to ask the S.b. character

of the s.a.c.f. {f } for the strong dual (X*, f(X*, X)) of an l.c.s. X containing an S.b.
{z.: f.}. On the other hand, if an L.c.s. X has an S.b,, {z_; .}, then (X* 7(X* X)) is
always separable (cf. [8]) and hence we are more justified in asking the following property of
an S.b. contained in [3]:

Definition 1.1.1. An S.b. {z_; f.} for an l.cs. (X,T) is called almost shrinking (an
a.s.S.b.) provided {f ;Y z_} isan S.b. for the Mackey space (X* 7(X*, X)).

The next two examples further justify the introduction of almost shrinking bases.

Example 1.1.2. Consider the space (2!, 7(£2!, £*°)) having the S.b. {e™;e™}. Then {e*; e"}
is an S.b. for (£, (£, ¢")); for details, see Section 8, Chapter 2 of [6].

Example 1.1.3. The space (£',0(£',k)) hasan S.b. {e"; e"}. However, {e; e} is not an
S.b. for (k, (k,£')); cf. [6], p. 123 or [7], p. 90.

Remark. ® -uniform bases were introduced in [5] and if ® denotes the collection of all
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balanced, convex and o(X, X*) -compact subsets of an l.c.s. X having an S.b. {z_; f. },
then the concepts of an ® -uniform base and a.s.S.b. are equivalent.

In this paper, we primarily concentrate on two more characterizations of almost shrinking
bases and these results extend those given in [3], which we follow 1n spirit throughout the
sequel.

2.1. CHARACTERIZATIONS

Our first characterization of almost shrinking bases depend upon three celebrated results of

Eberlein, Krein and Smulian in the theory of locally convex spaces and runs as follows.

Theorem 2.1.1. Let (X, 7(X,X")) be quasi-complete. Thenan S.b. {z_; f, } for (X,T)
isana.s.S.b. if and only if for any y, — y in (X,0(X,X"*)) and {n.} in g , the collection
of all infinite subsequences of N = {1,2,...}, the following relation holds.

(2.4.2) Sp (Up) — ¥ in o(X,X"*)

where

S.(z) =) flz)z;, TEX
i=1

Proof. Let {z_; f,.} beanas.S.b. for (X,T).If K = {y,}U{y}, then by Krein’s Theorem

(cf. [9], p. 325), K% is o(X,X*)-compact. Hence for e > 0 and f in X*, there exists
k, such that

j21

Ty
“up (f* E\}’Ii(ﬂf{) (y)| <&, Vk> k.
- 1=1.

In particular,
fCye) = £(S, (y )| <e,  Vk2>k

and this proves the necessity.
The converse makes repeated use of the theorems of Eberlein and Krein. Let W be a
o(X, X?*) -compact subset of X and put

K= K(W) =ngl S [W].

We first show that K is o( X, X*) -relatively compact. Since sequential compactness implies
countable compactness, appealing to Eberlein’s Theorem (cf. [9], p. 313) it is enough to
show that K 1s o( X, X*) -relatively sequentially compact. Consider, therefore, an arbitrary
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sequence {y,} in K. Then y, = Sﬁ(“k):“k € W,k > 1. Since (X*,0(X* X)) is
separable, ( X, o( X, X*)) admits a weaker metrizable locally convex topology by the Hahn-

Banach theorem. Hence by the extended form of Smulian’s theorem (cf. [9], p. 311) we
may assume that {u,} has a subsequence which we denote by itself such that v, — u in
(X,0(X,X")).

If {n,} is bounded, then {y,} C U{S,[W] : n= 1,..., N} and since the latter set
is relatively compact (being finite dimensional) {y, } has a convergent subsequence. On the
other hand, assume that n, — oo, then by the hypothesis, S, (u,) — u. Thus, in any case,

K 1s o( X, X*) -relatively sequentially compact.

Replacing W by a balanced, convex and o( X, X*) -compact subset of X and noting that
K% is o( X, X*) -compact along with the fact that f[S [W]] C fIK®] foreach n > 1
and f in X*, one easily verifies that {S}} is equicontinuous on (X*, 7(X*, X)) . Further,
[f1°=[f,]"=X*, wherc 0 = o(X*, X) and 7 = 7(X"*, X) . The required result now
casily follows, for instance, on¢c may us¢ Theorem 2.1 of [4].

Another characterization

The next main theorem of this section depends upon the characterization of compact sub-
sets of X * under different polar topologies and these results are derived with the help of
several important theorems of Grothendieck. We thus pass on to a few preparatory lemmas.
At the outset, we mention that X = (X,T') stands for an arbitrary l.c.s. with or without
an S.b. and to avoid repetiton of bigger symbols, let us abbreviate hereafter the symbols
o(X,X*),o(X*, X), (X, X*) and 7(X*, X) as o,0,, 7 and 7, respectively.

In order to prove the intermediate lemmas, we need the concept of 7' -limited sets of X ™
(the sequential dual of an l.c.s. (X ,7) ) and related results. A subset K of X* is called
T -limited if for each null sequence in (X, T),

lim sup |f(z,)|=0.
n—I*DDIEK'

Correspondingtoanl.c.s. (X,T),let T denote the finest Hausdorff locally convex topology
on X suchthat T and T have the same convergent sequences. Then X* = (X, T")* and
T* 1s the topology of uniform convergence of all 7 -limited subsets of X ; cf. [11] for all
relevant details.

Givenanlcs. (X,T),let & (resp. &) denote the family of all subsets A of X with
the property that every sequence in A has a 7' -Cauchy subsequence (resp. the family of all
T -null sequences). Further, let us write T (resp. T, ) for the locally convex topology on X"

generated by th polars of & (resp. ¥ ). Then following [1], Exercise 2.2), p. 214, we have



70 M. Gupta, P.K. Kamthan

Proposition 2.1.3. Let (X,T) beanl.c.s.and K C X" . Then the following statements are
equivalent: (i) K is T -limited, (ii) K is T -precompact and (iii) K is T, -precompact.

The next lemma is a simple consequence of Grothendieck’s completion theorem.

Lemma 2.14. Let (X, T) be a Mazur space (X* = X*). Then (X*,0_) is complete; in
addition if (X, T) is quasi-complete, then (X *, 1) is complete.

Lemma 2.1.5. Let (X,T) be a Mazur space such that ( X, 1) is quasi-complete. Let K C
X*, then the following statements are equivalent.
(i) K is o-limited
(ii) K is o_-relatively compact.
If (X,T) also satisfies the condition that X* is o, -separable or alternatively, (X, T)
admits a weaker metrizable locally convex topology, then (i) and (ii) are equivalent to
(iii)) K is T -relatively compact.

Proof. For the equivalence of (i) and (ii), use Proposition 2.1.3 and Lemma 2.1.4.

(1) = (11). By Krein’s Theorem, o, C 7,.

(1) = (). By Proposition 2.1.3, K 18 o_-precompact. Hence from Smulian’s Theorem,
K is 7, -precompact and now use Lemma 2.1.4,

Lemma 2.1.5 and the external construction of o* (cf. second paragraph of this subsection)
now immediately yield.

Lemma 2.1.6. Let (X,T) be a Mazur space such that (X, T) is quasi-complete and X* is
o, - separable. Then o™ is equivalent to the locally convex topology generated by the polars
of all T,-compact subsets of X*.

Finally, we pass on to the main

Theorem 2.1.7. Let (X,T) be a Mazur space having a S.b. {z,; f.} such that (X, 1) is
complete. Then the following statements are equivalent:
(i) {z. f, }isanasS.b.

(if) {f,;Yz_} isane-Schauder base for (X*,1,).

(iii) {z_; f.} is e-Schauder for (X,a") .

Proof. The implications (i) <> (ii), especially the first one are contained in the proof of the
second half of Theorem 2.1.1.

(i) = (iii). It is enough to show that {S_} is o -equicontinuous. In other words, by
Lemma 2.1.6, given a 7, -compact subset K of X*, we have to find a 7, -compact subset J
of X* such that

(%) sup [(S,(2), f)| < sup [{z,g)|, VzeX
fEK geJ
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To prove (*), let us observe that
P(S.(N)<qe(f); VYV feX",n2>1

where p and ¢ are 7, -continuous seminorms on X * such that p is arbitrary and ¢ depends
upon p. If r = max(p,q), then for each ¢ > 0 we can find g,,...,g,, in K so that
K C{g9y,---,9,,}+ {9 € X*: r(g9) < €/3}. Further, there exists N so that p(S;(9;) —

g;) < €/3 forall n > N and each j with 1 < 7 < m. Also for f in K,m(f—g9;) <ég/3
for some j, in {1,...,m}. Hence p(S:(f) — f) < ¢ forall n> N uniformlyin f € K.

Thus, if

H= U S:[K],
m>1

it follows that S;( f) — f uniformly on H relative to 7,. Since S H] is 7, -precompact

foreach n > 1, H is 7, -precompact by a result of [10]. Therefore by Lemma2.14, J = H
IS 7, -compact. Finally, for z in X,

sup [(S,(z), f)| = sup [{z, S;())| < sup |(z, g)|.
fEK JEK geJ

(1) = (1). This follows from Theorem 2.1.1.

3.1. CONCLUDING REMARKS

It 1s clear that a shrinking basis is always an a.s.S.b. and the converse is known only for
Banach spaces in an elegant result of (3], where one only, requires a justifiable restriction on
the dual X*, 1.e. that 1t i1s norm separable; that 1s, in such Banach spaces, both notions of a
basis ar¢ equivalent. However, this result does not seem to have an analogue for more general

spaces.

There exists a good relationship between unconditional and shrinking bases (cf. [7] and
(8], Chapter 9) and so one would be tempted to know a similar relationship between an a.s.S.b.
and one of the bases of the types — unconditional, subsernies or bounded muluplier. In this
direction, we offer the following simple.

Proposition 3.1.1. Every subseries base {z_; f,.} for an S-space (X,T) is an a.s.S.b.

Proof. If f € X*, then
=3 f(z)f,

n>l

the series being subseries convergent in ( X*, o(X*, X)) and the required result follows by
the well-known Orlicz-Pettis theorem (cf. [6]).
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Remark. The condition that ( X*, o( X*, X)) is sequentally complete in Proposition 3.1.1.
cannot be dropped, for consider

Example 3.1.2. This is the space (£',0(£',k)) considered in Example 1.1.3 and observe
that this space is not an S -space.
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