Note di Matematica Vol. X -n. 1, 1-35(1990)

FINITE C, GEOMETRIES: A SURVEY
G. LUNARDON, A. PASINI

1. INTRODUCTION

We follow [5], [56] and [45] for all basic notions conceming diagrams, geometries, chamber
systems and coverings, except that we use the word «geometry» in a somewhat stricter sense
than in [5] or [56), assuming the residual connectedness in any case, as many people do.

The reader is referred to [25] for a survey of results on geometries belonging to Lie dia-
grams. This paper in a sense completesand updates [25].

People working in diagram geometry often like the idea that so much of information is
carried by diagrams that classification theorems are implicit in them. Of course, this cannot
be literally true, in generai. In many cases we need to give Some substantiai help to the dia-
grams under consideration, assuming something such as the finiteness or the flag-transitivity
or somethingelse. Having done that, it may happen that a classification theorem is then reach-
able.

However, certain particular diagrams are so rich of information that we can classify all
geometries belonging to them without the aid of any additional hypothesis. Sphericai dia-
grams appear S0 often in S0 many differentcontexts thatitis sensible to believe that the most
of information is carried by them.

Actually, this is true for A,, D, ,E, and also for E,, E,, H, and H, (provided that the
finiteness is assumed in the last four cases). Indeed all geomeiriesof type A,, D, or E, are
buildings and all finite thick geometries of type E, or E, are buildings (see Proposition 6 of
[56), Lemma 3.3 of [53] and [4]; see also {25]). Thick buildings of irreducible spherical type
and rank n > 3 have been classified by Tits [56]; thin buildings are Coxeter complexes and
non thick buildings of sphericai type can be described by means of constructions involving
better known buildings (see [43] and [48); see also (6], (401, [50] and §§7.12 and 10.13 of
[56]). Thus, we are done. Infinite or non thick buildings of type £, or Eg are anyway quo-
tient of buildings, by Theorem 1 of [55]: knowing this is already something,albeit quotients
of buildings are not so easy to classify, in general. Not so much is known of infinite geome-
tries of type H, or H, , but finite geometries of type H, or H, are thin, by Feit-Higman
Theorem [9), and thin geometries of spherical type are not extremely difficult to classify (see
(11]).

On the other hand, the cases of C,, and Fy look a little wilder. The C, -subdiagram is
the source of our iroubles here. If all C, -residues of a geometry I' of type C, or F, are
2-covered by buildings, then " itself is 2-covered by a building ([55], Theorem 1). If we
assume further that I" is finite and has thick lines, then T" is a building (see [4]; see also
Lemma 6 of [33] for F, ) and we are done: thick buildings of spherical type and rank n > 3
are classified in [56], as we have recalled above, and non thick buildings of type C, or F;
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with thick lines are got from thick buildings of type D, or D, in standard ways (§§7.12 and
10.13 of [561).

However, if we cannot get control over C, -residues of I, then we have to stop at the
very beginning of ourjob. Thus, it would be nice to have a classification of all finite-building
C, -geometries (likely, a classification of all non-building C; -geometries, infinite ones in-
cluded, is hopeless). Then, we might hope to be able to study all finite C, or F; geometries
considering all possibiiities for their C, -residues, improving Theorem 1 of (55] in the case
of C, and F,. Propositions 2 and 3 will give examples of how this strategy can work.

Unfortunately we are still very far from such a classification. However, we will see that
what we presently know on finite C, -geometries is already enough to obtain strong conclu-
sionson C, -geometries when n> 4.

We shall not consider £, in this paper. Here is the only strong result that we presently
have on F, : all finite thick flag-transitive F, -geometries are buildings (see [25] or [30]).
The reader is referred to 93 of (33] fora collection of partial resultson F; .

Let us explicitly state two basic results which we have quoted and used in these introduc-
tory notes. We shall again use them a number of times in this paper, sometimes implicitly.

Basic Theorem A. (Tits [55], Theorem 1). Let I' be a geometry belonging to a Coxeter
diagram. The universal 2-cover of T" is a building iff all residues of ' of type C; are 2-
covered by buildings. In particular, " is 2-covered by a building i its diagram does not
contain any subdiagram of type C; or Hjy .

Basic Theorem B. (Tits/55], Prop. 6;Lemma 3.3 of (53], due to Meixner; Brouwer and
Cohen [4]). All geometries of type A,, D, or E, are buildings. Finite buildings of type
E,,Eg,C, or F, with thick lines do not admit any proper quotients.

11 Noiation.

Let us recall some standard notation before going on. The n nodes (types) of a C,, -diagram
are usually marked by integers, as follows:

0 1 2 n—3 n—2 n—1

Elements of type O, 1,2 or 3 are called points, lines, pfanesor solids, respectively, Ele-
ments of type n — 2 are called hyperplanes (or colines) and those of type n — 1 arc called
hyperlines (§6 of [55]) or copoints. Of course, some of these words are synonymous when
n = 3 or4. In these cases the words «line», «plane» Or «solid» will be preferred for «hy-
perplane» (Or «coline») Or «hyperline» (Or «copoint»). We shall freely use phrases such as
«the point p lies on the plane u » (Or «is on u»), «the line = passes through the point p», «the
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lines » and s meet in the point p», and so on. The collinearity relation and the collinearity
graph are defined as usual. We write a_Lb to mean that two distinct points a,b arc collinear.
Analogously, two distinct hyperlinesare said 10 be cocollincarif there is a hyperplane incident
with both of them.

A line is thickif it is incident with at least three points. Otherwise, it is thin. A C,,-
geomelry is ordinary if all its lines are thick. Otherwise, it is degenerate.

The symbols * and 7 denote the incidence relation and the type function, as in (55]; o, is
the i-shadow operator, as in {5]. As for the rest, the same notation is used in (5] and (55] and
we follow it.

12. Characterizationsof C, -buildings

Buildings of type C, can be charactenzed by means of elementary properties: a C, -geometry
I" isabuilding iff the Intersection Property (IP) holds in I" ({55}, 96). We wam that two kinds
of IntersectionPropertiesare consideredin [55] and [5] and they are not equivalentin generai:
property (Int) of (55] is weaker than property (IP) of (5]. Anyway, they are equivalentif only
geometries of spherical type are considered. Moreover, properties rather weaker than (IP) are
sufficient to characterize C,, -buildings:

(LL)([55], 96). Any two distincts lines meet in at most one point.

(0) ([551, §6). given any twoelements a,b oftype i < n—2, wehavea=1b ifoy(a) =
gy (b).

(LL),,, ((25],52.2). Property (LL) holdsinI" andin the residue ofevery flagofI" of
type {0, 1,.,.,i}, foreveryi=0,1,...,n- 4.

We have:

Proposition 1 The following are equivalent ona C, -geometry I :
(i) The geometry I' is a building.
(ii) Both (LL) and (0) hold in I" .
(iii) Property (LL),,, holdsinI",

res

Proposition 1is essentially contained in Proposition 9 of [55], but the reader can see §2.2
of {25) for an elementary proof of it.

When n = 3, properties (LL) and (LL),,, say precisely thesame and (LL) implies (0).
However, when n > 4, some C, -geometries exist which satisfy (LL) and nevertheless are
very far from buildings. For insiance, (LL) holdsin all flat C,, -geometries when n > 4 (see
§1.4 for the definition of flat geometries). Thus, (O) cannot be dropped in (i) when n > 4.
Anyway, (LL) fails to hold in each of the known examples of ordinary non-building C,, -
geometries (See (32); we warn that no ordinary flat C, -geometry is known when n > 4 ).
Hence, we mightask if (LL) sufficesto makea C, -geometry I' abuilding in the presence of
some additional hypotheses quite different from (0): assumingthat I' is ordinary, for instance
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(37]; or that it is already covered by a building ([49], $5); or both. What happcns if (LL)
holds in the O-shadow space of I ? (e.g., see 95.3, Statemeiit 2 and Remark 1; or $5 of [49]).
A number of properties similarto (L L) may be considesed. Here are some of them.

(LL); (wherei=1,2,...,0rn—1). Givenaline r and an element w of typc i, we
have rx w if |og(r) Nog(w)| > 2.

(LL)} (wherei=0,1,..., 0rn=2). Givena hyperplanc u and an element w oftype
i, we have u*w if|o,_; (u)No,_y(w) > 2.

Of course, (LL)} is thedualof (LL),_,_; . Property (LL),_, isthesamcas (LH) of $6
of (55)and (LL), isthesarneas (LL). Itiscasily seen that (L L) and (LL), arc cquivalent
foreveryi=1,2,...,n— 1. Property (LL)s implies (LL) . Moreover, (LL),., holds ina
C, -geometry I' (thatis, I is abuilding) iff (LL); holdsin I" foreveryi =0,1,...,n—1
(we shall again deal with this equivalence in § 1.6).

Properties (LL)g,(LL){,. .., (LL);_, arenotequivalentand (LL); , (dualof (LL))
is the weakest one: indeed it holds in all C, -geometries. The reader is referred to $2.2 of
(26] for further elementary properties of C,, - buildings holding in arbitrary C, -gcometries
as well.

Other ways exist to characterize C, -buildings. For instance, buildings can be character-
ized by means of properties of galleries (e.g., property (P,) of [55], or properties (C,) or
(G,) of $3of [49]), but we will not insist on this here.

1.3. A few remarks on degenerate C, -geometries

Degenerate C,, -geometries (§ 1.1) have been studied by a number of authors (Buekenhout and
Sprague [6], Rees [40], {38] and [43], $3 of [34], Scharlau [48], Surowski [50], Hillebrandt
[11]), but acomplete classificationseems to be still far from reach. Unlike the case of ordinary
C, -geometries, classifying degenerate C; -geometries is not the main problem here. For
instance, finite degenerate C, -geometries have been classified by Rees in [40] (see last lines
of [40), in particular), but this does not help us so much in classifying all finite degenerate
C, -geometries.
Thus, we will not insist on degenerate C,, -geometries in this paper.

1.4. Flat geometries

A C,-geometry I' ,where n > 3, is flatif all elements of " of type less than n — 2 are
incidentwith all hyperlines of I". We warn that our definition of flat geometriesis much more
restrictive than that of [49] when n > 4 ;in [49] Shultrequiresonly thatall points are incident
with all hyperlines.

We are not going to list all elementary properties of flat geometries here. A lot of infor-
mation on this matter can be found in chp. 5 of [42].
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Degenerate flat geometries can be produced easily (see (40], §3 of (34] and [50]). On
the contrary, ordinary flat C, -gcometrics are not so frequent. Finite examples cannot exist if
n> 4 (see[26] or[34]). But some non finite examples of rank 3 existassociated with crdc.ed
fields (92.2 (ii) of (391). However, just one finiteordinary exampleis presently known. namely
the A, -gcometry. This is the only flat C, -geometry with uniform parameter 2

((42], Lemma 5.4). Perhaps, it is the only ordinary finite flat C, -geometry.

Several differentways exist to produce the A, -geometry: see [39], [21], [25] (Example
4 of §2.3) or (16]. The construction given by Rees in [39] by means of maximal exterior sets
looked most interesting, although it is not the simplest one (we give the details of it in §5.3).
Indeed that construction seemed to be general enough to produce several flat geometries other
than the A, -geometry. Actuaily, it does so if we are satisfied of non finite examples ({39],
§2.2.(i1)). However the A, -geometry is the only finite example that can be got in that way
(this follows from Thas [60]).

The A, -gcometry is the only finite ordinary non-building C,, -geometry presently known.
As itis ilat, we might consider the flainess to be the most important pathology that can occur
in C, -gcometries. This point of view is implicit in the following propositions.

Proposition 2. ([34]). Let T be an ordinary C,-geometry and let us assume that every
C; -residue of " is either a building or flat. Then one of thefollowing holds:

(i) The univeral2-cover of T’ @ building.

(i1) The geometry I" is flat.

Here is a sketch of the proof. Residues of points are either quotienis of buildings or flat,
by the inductive hypothesis. If I is not ilat, then, given any point a having flat residue I,
we find a point b non collinear with a and such that the residue I', of b is a quotient of a
building. Next, we can construct a 2-covering from I'y to T', exploiting the flatness of T,
and the fact that b.[a (the reader is referred to (34] for deiails). Thus, all residuec of points of
I are 2-covered by buildings. The conclusion follows from Basic Theorem A.

A number of non finite,examples exist satisfying the hypotheses of Proposition 2 which
are proper quotienis of buindings (see {32]). But, if we assume the finiteness, then (i) and (ii)
can be substituted with a much stronger conclusion. Indeed, by Basic Theorem B we obtain:

Proposition 3. ({26]). Let T" be as in Proposition 2 and let us assume that n > 4 and that
T isfinite. ThenI" isa building.

Thus, it would be nice to succeed in proving at least the following:
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Conjecture 1. All finite ordinary non-building G, -geometries are flat.

If this were true, then finite ordinary C, -geometries would be buildings when n> 4, by
Proposition 3. We should still classify finite ordinary flat C; -geometries and the finite non
degenerate case would be done.

We shail see later that a statementon C, -geometries weaker ihan conjecture 1 would
suffice to obtain the same conclusion in the case of n > 4 (see conjecture 2 of §3.2 and
proposition 3.bis of 93.4).

Of course, we might conjecture even that the A, -geometry is the only non-building finite
ordinary C, -geometry. Theorems 5 and 6 will give some evidence of this.

Anyway, conjecture 1 gives usa motivation forthe following definition: a C;, -geometry is
anomalous if it is neither a building nor flat. Several examples of anomalous G, -geometries
are known ([40] and [32]), but each of them is either degenerate of infinite, of course.

1.5. Parameters

The notion of parameters of a geometry (i-orders in {5]) is a well known one. Anyway, the
reader can find a definition of it in (30] or (26]. Ordinary C, -geometries admit parameters

I,y:

o0—o0—0—————~- —o0—a—o x>1

The letters x,y will aiways denote parameters, as above. A finite ordinary C,, -geometry
" is said to have parameters of known ¢ype if one of the following holds on x and y :

(D x =y (uniform parameter)

(2 y =1 (non thick case)

@ y=2

@ z=v?

G =2

(6) z* =¢* We will see later that
(N x=y-2and 1:23} cases (6), (7) and (8)
(8) y=z—2and y >3 ) arec impossible when n > 3.

Theseare actually all relations occurring between parameters of known examples of finite
generaiized quadrangles with thick lines (see (36] and (35]).

The geometry I has parameters of classical type if one of (1)-(6) holds (n= 2 in case
(6)) and X is a prime power.

The geometry T is Jocally classical if all projective planes and generaiized quadrangles
occurring as rank 2 residues of I' are classical.
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Needless to say that ali projective planes occurring as rank 2 residues in a finite ordinary
C, -geometry are classical if n > 4. Thus, the parameter z is a prime power in that case.
A finite ordinary C, -geometry T is said Lo have parameters of semi-classical type if both z

and y arc powers of the same prime numbcr (of course, y = 1=p° is allowed).

1.6. The Ott-Liebler number

The Ott-Licbler number a of a C, -geometry T" is dcfined inductively as follows [59). If
n =2, then o« = 0, by definition. Let n > 3 and let I' be a C,-geometry. Given a
point-hypcrlinc flag (a,u) of T', let E(a,u) be the number of hyperlines v different from
u, cocollincar with v, incident with a and such that the hyperplane w incident with both
v and v (uniquely determined by (LL)y , of §1.2) is not incident with a. Let o(a) be
the Ott-Liebler numbcr of the residue ', of a (already defined by the inductive hypothesis).
Then (E(a,u) T 1)(a(a) t 1) docs not depend on the choice of the flag (a,«) . Jn particular,
a(a,u) docsnot depend on the choicc of the hyperline w in I',. The reader may find a proof
of this claim in (59). We writc o+ 1 instcad of (@(a,u) + 1)(a(a)+ 1) and @(a) instead of
E(a,u), for short. Thc constant a is thc Ott-Liebler number of T . The numbers a(a) and
E(a) arc respectively the inner and outer local Ott-Liebler numbers of T' at a. Of course,
wehave @(e) =a and a(e) =0 if n=3.

Proposition 4. We have a =0 iff I' is a building.

Indeed we have o = O iff (LL)* of §1.2 holds in I" forevery i = 0,1,...,n— 3.
Property (L L)} holds forevery i=0,1,...,n—3 iff (LL),,, holds. Then a =0 iff I" is
a building, by Proposition 1.

Some interesting rclations cxist between Ott-Liebler numbers and orders of groups of deck
transformations. Let p : I, — I, bca 2-coveringandlet A < Aut(I'y) be the group of
deck transformations of ¢ (see [55)), assuming that I', = I'}/A. Let «;,, be the Ott-
Licbler numbcrs of I, and I, ,respectively. Then we have [59]:

Morcovcr, given a point b of Ty, let «; (b) ,&, (b) be the inner and outer local Ott-Liebler
numbcrs of ', at b and let «, (a),@, (a) havca similar meaning in I, with respectto a =
p(b). Thenwehave: a,(a)+1=|A4,]-(a(b)+1) and @, (a) +1 = (@, (b)+1) - [A: A}]
wherc A, is the stabilizer of b in A. In particular, if I'; is a building (S0 that a; = 0), the
prcvious rclations bccomc as follows:

a, +1=]4], ay(a)+1=]4,] anl @(a) +1=[A: A4,
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From this it is clear that «(a) may depend on the choice of a when n > 4,0 that the
same happens to E(a). The reader is referred to [32] and [S9] for some examples were this
phenomenon occurs. Of course, they are non finite examples.

All previous claims are easy consequences of the following statement [59]:

Let (a,v) beanon incidentpoint-hyperline pair in " . Then there are exactly @(a) + 1
hyperlines w incident with a and cocollinear with v .

Let us briefly explain how that statement implies the previous claims on |A|,|A4,| and
[A:A,] Letp :T, = T,,a;,a, and A be as above. Let (a,u) bea non incidentpoint-
hyperline pair in I", and let (3,%) E p~!(a,u). Let X be the orbit of @ under the action
of A. Theneach b E X — {E} contributes &, (b) + 1 configurations to the computation of
@, (a,u) =a,(a).

Of course, we have &, (b) =&, (E) forevery b E X . Hence

a(a) +([A:A4,]-1) (2 (a) + 1) = @ (a),

that is:
[A:A,] (@ (3)+1)=a,(a) + 1.

The rest easily follows from this.

We note that, when n= 3, the Ott-Liebler number a of I" equals the number of closed
galleries of type 012012012 based at a given chamber of I" . We don’t know any nice way to
generalize this to the case of n > 4. Yet, the constant a first appeared in [24] precisely in
this way, as the number of closed galleries as above, while the definition that we have given
has been inspired by Liebler [16]. However, the constant a arises in both [24] and [16] in the
context of a representation-theoretic approach to finite C, -geometries. Thus, neither Ott nor
Liebler could fully realize how general this concept was and their proofs of the constancy of
« heavily depended on techniques from representation theory, so that they were valid only
for finite C, -geometries admitting parameters.

For the rest of this paragraph we assume that I' is a finite C, -geometry admitting param-

eters X,y . Then we have a < z?y and:
Proposition 5. We have a = z?y iff T is flat.

The reader may see [27] for the (easy) proof. We will see later that the upper bound
22y > a can be improvedas follows: we have a > m?y where m = min(z,y) (Proposition
9 of §3). Hence, I cannot be flat if z > y (but this statementcan be proved easily in an
elementary way; see Lemma 5.10 of [42]).

Let ny,n,,m, be the number of points, lines and planes of I , respectively. By easy
computations we get:

(1) (a+l)my =(gPy+ 1)(z* +x+ 1)
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(@ (a+l)n =(z*y+ )(zy+ )(z* +z+ 1)

(3) (a+ )y =(gy+ D(zy+ D(y+ 1)
(sec (271). The following proposition is an easy consequence of (1) and (3):

Proposition 6. The number a + 1 divides (1 + z?y)d where

d=g.cd(z? tz+1,(zy+ D(y+ 1))

The Ott-Lieblernumber will be exploited in the context of representation theory (see §3). But
it also has nice elementary applications. We give one of them here.

Given two distinct collinear points a,b of a finite C, -geometry I' | let n(a,b) be the
number of lines of I" through a and b. A point a of I' is homogeneousif n(a,b) =n(a,c)
for every choice of the points b, ¢ collinear with a and distinct from a.

Proposition 7. ([28], Theorem2). Afinite ordinary C, -geometry is either a building or flat
f it admits some homogeneouspoint.

The proof consists of a series of computations involving the Ott-Liebler number. The
reader is referred to (28] for details. Proposition 7 will play a relevant role in the inquiry into
flag-transitive finite C, -geometries ($5).

1.7. Statementsof the theorems

We dcnote the parameters and the Ott-Liebler number of ' by z,y and a ,respectively, as
in §§1.5 and 1.6. In Theorem 1 we consider ordinary non thick C, -geometries (y = 1 <
X) . We examine them separately because they can be classified fairly easily, exploiting the
assumption that y = 1 and the correspondence between non thick polar spaces of rank nand
D, buildings ([56], chp. 7). Thick C,_ -geometries are much harder to study. The remaining
theorcms deal with thcm.

Theorem 1. (Rees[41]). Let T’ be an ordinary non thick C, -geometry. Then one of the
following holds.

(i)The geometry I' is a building.

(i) The geometty T s infinite and it i the quotient of a building T Over an involutory
automorphismof T induced by a diagram automorphismof the D, -building associated with

T. We have ar = 1.
A sketch of the proof of this theorem will be given in $2.

Theorem 2. Let I' be a finite ordinary C, -geometry admitting parameters z,y of known
type. Then either I" isa building or we Aave n=3 and one of thefollowing holds:
(i)Wehave =y and I' is flat.
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(ii)We have z* = y?, the geometry T is flat and the C, -residues of I’ cannot be iso-
morphic with any of the known generalized quadrangles.
(iii) We have = = y* and o = y*. The geometry T is anomalous.

Theorem 2 is contained in [27], [26] and [31]. We will give a sketch of the proof in 993.3
and 3.4. Here are two consequences of Theorem 2.

Theorem 3. Let T be a locally classicalfinite ordinary C, -geometry. Then either I' is a
building or n= 3 and one of thefollowing holds:

(i)Wehave x =y, thegeometry " isflatand T, = Q4(z) for everypoint a of I' (the
points of Q4 (x) are linesof I' through a).

(ii)Wehave z = y%,a =y* (hence,I" isanomalous)and I', & H; (y*) for every point
aof ",

Theorem 4. Afinite ordinary C,, -geometry or rank n > 4 is a building if it admits param-
eters of semi-classicaltype.

Theorem 3 is a tnvial corollary of Theorem 2 (see 93.3). On the contrary, the proof of
Theorem 4 is not so tnvial. Ve will give it in 94. Here we make some comments. If I" is
a finite C, -geometry admitting parameters x,y of semi-classicaltype, then it is easily seen
that xy divides « (see 94). However we cannot say so much more when n = 3. Things
were differentin Theorem 2. Indeed a relation between z and y was assumed in Theorem 2,
S0 that we had only 2 unknowns there, namely « and one of x or y . On the contrary, in the
semi-classicaicase we really have 3 unknowns. However, things become easier when n > 4,
as we will seein §4.

The foliowing theorem is contained in [29], [30] and [20]. We will sketch its proof in
§85.3,5.4 and 5.5.

Theorem S. Let I' be afinite ordinary C, -geometry and let Aut(I") be flag-transitive.

Then T is abuilding or it isthe A, -geometry or we have n= 3 and I" isanomalous.
If " is anomalous, then all thefollowing properties hold:

(a) Residues of planes of I' are non desarguesianflag-transitive projective planes.

(b) The number x iseven, 1+ z + z? isprime, z =2 (mod.3)and z > 103.

(c) Let d=g.c.d.(z*,y). Wehave z > d* and z2 —x > y > (z —1)d? +d. Moreover,
zd divides a, (1+a)xd divides z*y —«, (1+ aXz *+y)z divides (1 zy) (z*y —a) and
(1+a)(z? +y)z divides (1 +22y)(z*y — ).

(d) If Aut(I") acts primitively on the set of points of " ,then y is odd.

Needless to say that conditions (a)-(d) look quite strange. WWe remark also that something
more can be said in (b): z cannot be a prime power (i.e., a power of 2) if < 3006 (see (8],
page 209, footnote 2). Trivially, conditions (b) and (c) are impossible to satisfy if z,y are of
known type or of semi-classical type. Therefore:
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Theorem 6. (Main Theorem).Let I' be a finite ordinary C, -geometry admitting parameters
ofknown type or of semi-classicaltype and let Aut(I") bejiag-transitive. Then I is either
a building or the A, - geometry.

The celebrated theorem of Aschbacher [1] is included in Theorem 6.

2. NON THICK ORDINARY C,-GEOMETRIES

Wk give a sketch of the proof of Theorem 1. This proof (due to Rees [4 13) needs some lemmas,

which are actually fairly stronger than we might believe from [41], as it has been pointed out

by Rinauro [45]). W follow the more general exposition of [45], generalizing it a bit further.
Wk recall that the next pictures

L Jd
o 0 1 O o and o—o

denote the class of partial planes, the class of linear spacesand the class of dual linear spaces,
respectively [S]. A gallery v = (C, ,C,,...,C) of achamber system & is non stammering
if C;_y# C, foreveryi = 1,...,m. Given a non stammering gallery 7 = (G, ,C;,. --,C)

of a chamber system %, the type of ~ is the mapping 7, from {1, ...,m} to the setof types
of & defined as follows: (i) = iff C;_, and C; are j-adjacent (i= 1,...,m).Givena
type j of the chamber system &, the ; -section of - is the inverse image T;‘( 7) of j under

7, and |71 ()] is the j-length of .

Lemma 1. Let ' be a 2-simply connected geometry belonging to the following diagram:

u u m (2K)

0 1 2 n—3 n—2 n—1

where 0,1,...,n— 1 aretypesand k > 2. Let us assume that every element of I" of type
n— 2 isincident with exactly two elements of type n— 1. Then every non stammering closed
gallery of the chamber system &(T") of I' has even (n— 1) -length.

This lemma has been proved by Rees [41] in the particular case of C, , but the argument
by Rees can be easily generalized S0 that to obtain the previous lemma.

LetI" beasin the hypotheses of Lemma 1. Thatlemma says that we can share the elements
of I' of type n— 1 in two disjoint classes so that, if u,v aredistinct elementsof typen — 1
in the same class, then we have o, , (U) NLa (v) = ¢. This suggest that ' might be
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obtained as 0O-linearization ([25], page 317) from a geometry belonging to a diagram as in the
following picture:

oO——O0—O0— —— —— (k)

However, to prove this, we should be able to prove that, given elements u, v, w,a of T
where w hastype n— 2 ,a has typeless than n— 1 and {u,v} =0, _, (w),Wehave a*xw
iff o is incident with both v and v . Of course, if we know that the Intersection Property (IP)
holds in I" ,then we are done. Let us consider (LL) ,first.

Lemma 2. Let T" be a simply connected geometry belonging to thefollowing diagram:

J
O———(ac———

points lines planes

and let us assume that every line of " is incident with precisely 2 planes. Then any two
distinct lines of ' meet in at most one point.

Indeed, otherwise We can construct a closed gallery in I' involving three planes, and we
contradict Lemma 1.
Itis easily seen that (IP) holds in a geometry I" belonging to the following diagram

e o)
points lines planes

if (LL) holds in I" . Thus, (IP) holds in every simply connected ordinary non thick C; -
geometry, by Lemma 2. Then every such geometry is obtained as 0-linearization from an

A, -geometry
0 c<:

by the previous remarks. However A, -geometries are projective geometries (Basic Theorem
B). Hence, we have:

Lemma 3. Simply connected ordinary non thick C, -geometries are Klein quadrics.
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Of course, we could also get Lemma 3 directly from Lemma 2 and Proposition 1. But we
have preferred the way above in order to show how atypicai the non thick case is.

We can prove Theorem 1 now. By Lemma 3 and Basic Theorem A, every ordinary non
thick C, -geometry T is 2-covered by abuilding. Let o :T — T be the universai 2-covering
of I' and let A be the group of deck transformations of I" . As D, -buildings do not admit
proper quoticnts (Basic Theorem B), every non identical elementof A acts as an involutory
diagram automorphism on the D, -building associated with T ([56], 57.10). Then A has
order 2. Theorem 1 follows from this and from Basic Theorem B.

3. PARAMETERS OF KNOWN TYPE

Most of what we will say in this section will depend on representation theory. Classical matrix
theoretic techniques need some regularity assumptions on the adjacency graph of " in order
to work, or on some other graph related to I (see [9], [4] or §§1.2.2, 1.4, 1.9 or 1.100f [36]).
Representation theory is rather more generai.

Two differentapproachesexists to the algebraic representation of C, -geometries: the one
of [24], which is an application of the very generai theory by Ott [22] and [23]; and the one by
Liebler {191, which developes previous work by Hoefsmit [13] on representationsof groups
with BN -pair of classical Lie type.

Hoefsmit used ideas and results taken from papers by Carter, Curtis, Iwahori, Kilmoyer,
Steinberg, Tits and other ones. He developed those ideas to a very far reaching point and gave
effective procedurestoexplicitly find all irreducible components of the induced representation
1§ of a finite Chevalley group G admitting a BN -pair (B ,N) of type A,, D, or C,. The
algebra affording 1§ is the Hecke algebra H ( G ,E?) of G with respect to the Borel subgroup
B of G. The algebra H#(G,B) is presented by a nice set of relations (see (1) of 53.1) and
Hoefsmit fully exploited also this fact, of course. Finally, he computed the multiplicities of
the irreducible representations of #(G,B) in almost all cases. An inquiry into F, in this
style has been done by Surowski [51] shortly afterwards.

Hoefsmit focused onto groups rather than onto geometries. Thatis, his work immediately
fits for any building of classical Lie type but not for any possible geometry of that type. The
job to adapt that work for geometries of Lie type (in particular, for C, -geometries) has been
done by Liebler in [19]). Unfortunately, a gap occurred in one part of [19] and the author
decided not to publish anything of [19), though it still remained a good and useful paper. We
will use a numbcr of things from {19].

In (22} and (23] a different approach to this matter is developed, which could in princi-
ple be applied to any chamber system, even far from buildings of Lie type. However, be-
cause of its very generaiity, this approach cannot immediately give us effective proceduresto
computc everything in every case. Ott applied that machinery to finite C; -geometries with
uniform parameter in [24]. Rees and Scharlau [44] continued that work, considering finite
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G, -geometries with parameters of classical type and could settle the cases listed as (3), (5)
and (6)in $1.5. Unfortunately, they did not publish their work. They could not get any satis-
factory result in case (4) of $1.5and, perhaps, they thought that this was a fault in their work
(actually, it was not really such: see $1.7, Theorem 2.(iii) and Theorem 3.(ii)).

We shall pragmatically mix the previous two approaches together so that to get the most
of profit from each of them.

3.1. Hecke algebrasof geometries

Let I" be a (residually connected) geometry over a finite setof typcs | ={0,1,...,n — 1},
admitting finite parameters z,, z,...,z,_, and let (I") be the set of chambcrsof I" . Wc
can define a vector space V. over the complex field taking &(I") as a basis of V. . Lct
Z(Vr) be the algebra of all linear mappings of V- . Foreverytype i =0,1,...,n—i,let
o, be the linear mapping of V- actingon &(I") as follows:

o, (C)= Y X
X~C

(where ~ means i-adjacency of chambers).

Let H(I') = (o;]¢+ = 0,1,...,n — 1) be the subalgebra of £ (V) gencrated by
{o4]t = 0,1,...,n—=1}. The algebra H(I") is the Hecke algebra of I" ([22] and (23)).
It is semisimpleif I" is finite (see [23]).

Denoted by | the identity mapping, we define n"(o,,0;) inductively as follows:

{ 770(0,.,0]«) = Jl

1 (o,,0)) = o;-m"(0;,0;)

(R ) Jr s

Let us assume further that T" belongs to a Coxeterdiagram & = (my;[i,7 =0,1,...,n=1).
Then the generators o; of H(I") satisfy the following relations:

o?:(zi—l)ci‘Fz,-I (i=0,1,...,n=1)
(D {

n"i(oy,0;) =ai(0;,0,) (4,7 =0,1,...,n- 1;i#))

1

Let us write X = (z4,z;,...,7,_,), for short, and let Hg 5 be the algebra over the

complex field presented by the set of relations (1). If I" is a finite building defined by a
BN -pair (B,N) of agroup G, then Hgoyy = H(I'). Indeed, in this case H(I") is the
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Hecke algebra //(G,B) of G with respcct to B and the relation H(G, B) & Hegx is
well known.

In general, H(TI") is a homomorphic image of Hex and ali irreducible representations
of /7(I") of finite degree appear among the irreducible represeniations of Hegoy of finite

degree. We can also study relations between the multiplicities that such a representation has
when it is viewed as a possible componentof two distinct Heckealgebras H(T",) and H(T,)
of two finite geometries I'; ,I", relative to the same pair (&7, X ) ([19], §2). Translating these
things into general and effective computing procedures is not easy at ail.

However, other tricks can be found to compute multiplicities of irreduciblerepresentations
of H(I') in special cases and C, is one Of those Iucky cases.

Remark. Since this paper is a continuation of [25], we must warm the reader that the
second relation of (1) is stated in a wrong way in (25], as (o;,0;)™i = I, which holds in
Coxeter groups, not in Hecke algebras.

3.2. Hecke algebras of C, -geometries
Hocfsmit [13) gives us methods to compute all irreducible representations of Hex when

& =C, A, or D,. We already know that all geometries of type A, or D, are buildings
(Basic Theorem B). As for C,(n > 4), if we getcontrol over C; -residues, then we are done.
Thus, we shall consider only the case of C; : henceforth T will be a finite C, -geometry
admitting parameters z,y. Hence, we have X = (z,z,Yy) and

1 3 2
%[3 1 4}
2 4 1

Hocfsmit [12] has provcd that there are exactly 10pairwise inequivalent irreduciblerepresen-
tations of //g-x . Each of them is associated toa doublepartition of the setof types {0, 1,2}

and here are all double partitions to be considcrcd:
((0,1,2);¢), ((0,1),(2);¢), ((0),(1),(2);4), ((0,1);(2),

((0),(1:(2)), ((0;(1),(2), «(0:(1,2)), (¢:(0),(1),(2),
(4:(0,1),(2), (¢:(0,1,2))

We dcnote them by the following shortened symbols: 3/0, 2 .1/0, 13/0, 2/1,
12/1, 1/1%, 172, 0/1%,0/2 - 1 and 0/3, respectively.

Hocfsmit attaches a representation to each of these double partitions constructing repre-
sentative matrices for o,,0, and o, with the aid of certain sequences of Young diagrams
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related to the double partition that he is considering (the reader is referred to chps. 1and 2 of
[13] for details) and proves that those are actuaily all irreducible representations of H g .

We now listall of them. Henceforth 4, (t) will denote the following matrix:

1 [:5—1 F it + 1
ft+ 1 Lrkt+z zh(z— 1)

Here are the representations.
1) (Index representation). 3/0. Degree 1.

O0p 2 I,0, = I,0, — Y.

2) 2-1/0. Degree 2.

3) 13/0. Degree 1.

og = —1l,00 = —-1,0, =Y.

4) (Reflection representation). 2 /1. Degree 3. This representation appears also in [24] in a
seemingly different form (but we have equivalentrepresentations, of course).

y 0 O
A, (y) 02,1 T 01_2
gy — ,0p — ,o, = |0 y 0 |,
01,2 T ¥

where 0, , is the null r-by-s matrix (r,s = 1,2).
5) 1%2/1. Degree 3.

y 0 O
Ai(y) 0y, -1 0,
0,, -1 0, A(y)
0 -1
6) 1/12. Degree 3.
y O 0

[—1(!/) 0,,
gy, —
’ 0, Ay (y)
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7) 1/2. Degree3.

I 012

02.1 Ao(y)

On —

8) 0/1%. Dcgree 1.

9) 0/2 .1. Dcgree 2.
z 0 -1 0
gy = Ay(=1),0) — , 0y — .
0 1

10) 0/3. Dcgree 1.

Oy = I,0, = I,0, = — 1.
Let us come to thc multiplicities. We switch to [24], now. Given an irreduciblerepresentation
p of H X let x,, be the character afforded by ¢ and let m, be the multiplicity of ¢
when ¢ is viewed as a component of H(I"). Of course, m, = 0 is allowed. We also

recall that //(I") consists of lincar mappings of V.. Let x, be the (characterof) the index
reprcscntation. For every elcment w of thc Coxeter group W of type C, , we define

Mw) =0,.0, , ...0;

whcre

w :T" T"l ...T,‘n

is a representation of w as a reduccd word of W with respect to a given system (ry ,7y ,73)

of gcncrators of W . The elcment A(w) of H#(T") does not depend on the representation
choscn for w ,once when (rg, 7 ,7,) is given. Let us define [Xpi Xp] S follows:

(W) x,(AM(w™))
[X‘p,X‘p]: E Xop w) )X, w

(2) @)

wew

(sce [24], (13)). Let wy be the non trivial clement of the centerof W, let v be the number of
chambcers of T (i.e., thc dimension of V) and let a be the Ott-Liebler number of I' (§1.6),
so that we havc

(1+tz+2)(1+ 22y (1t zy)(1+ D) (1+y)
14+«

(3) 7=
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(see (1). (2) and (3) of $1.6). Then we have:

(M(wp))
(4) m (X Xy] = 7 [xv,(k(l)) + m‘—wxéy—;“"—

This relation has been proved by Ott ([24], (26)) in the particular case of z = y, but that
proof can be extended to the general case. Relation (4) already appears in [13] with a = 0
(corresponding to the case of buildings). Rees and Schariau have extensively used (@)in
[44]. They did not know ihe work by Hoefsmit, and they made all computations only for the
reflection representation (by the way, Ott did the same in [241). Thus, they had troubles with
the case of = = y?, where the reflection representation does not help us so much. Actually, we
know all possible irreducible representations of H(I") : we have just to look for them among
the 10irreducible representations of H g5 . We can compute [x,,, x,,) and m, using (2),
(4) and (3). Computing [x,,x,] is a very tiresome job, but it can be done. As far as we
know, Liebler [58] has been the first one to apply the method described here S0 that to get the
list of the multiplicities of the irreducible representationsof H(I"). Hereis that list:
3/0 m, = 1

_ (it2y(ta)(’ ta

2-1/0 m, (z+y)(1+a)
3 _ (1+zy)(l+z2y)(16+a)
PR me e (D
21 _(1+x+1;2)(1+ ry)(z?y — @)
My = (z+y)(l1+ @)
12/1 _ (l+z2y)(l+z+zz)(m4y—a)
¢ (22 + y) (1 + @)
1/12 _(1+:cy)(1+z+n:2)(m4y2+a)
v (z+y)(1+ )
1/2 _(l+zzy)(1+x+zz)(zzy2+a)
/ @ (2?2 + y) (1 + @)
6,3 _
0/1° mwz%g

m. = (1+z)(1+ zzy)(z3y3 — )

0/2-1 L4 z(z+ y)(1 + @)

0/3 m. = (1+zy)(1+ 22y (y* — )
(z+ 9)(z? + 9)(1+ )

Multiplicities must be non-negative integers. So, by the fifth or the seventh of these rela-
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tions we have:
Proposition 8. xd divides a, where d = g.c.d.(z? ,y).
By the fourth of the tenth relation we have:
Proposition 9. a < m?y, where m = min(z,y).
Finally:

Proposition 10. Wehave H(T') ¥ Hgrx iff @ < m?y, where m =min(g, y).

(Of course, = here means isomorphism of abstract algebra). Indeed, if a < m?y, we
have m,, > 0 inany case, so that none of the simple factorsof Hg-y is lost when we pass

to H(T") . The following conjecture now looks quite sensible:

Conjecture 2. Let x > 1. Thegeometry " isabuilding iff H(I') & Hex . Thatis, either

a =0 (T isabuilding) or a =m?y (Where m = min(z, y)).

We remark that the statement of conjecture 2 is true for finite ordinary C; -geometries
with parameters of known type (Theorem 2). But it may be falseif z = 1 is ailowed. Indeed
every anomalous C, -geomelry with z = 1 < y is a counterexampleto that statement (and a
lot of such gcometrics exist: see [40]).

3.3. Finite ordinary C, -geometries admitting parameters of known type

Most of what we say in this paragraph rests on the fact that the multiplicities ™, (93.2) must
be non-negative integers,

Let I" be a finite ordinary C; -geometry admitting parameters of known type. Case (1) of
§ 1.5 has already been settled by Theorem 1. In cases (2), (3), (5) and (6) of §1.5 very easy and
short computations, exploiting the divisibility conditions stated in Proposition 6 and 8, show
that T is either a building (a = 0) or fat (a= z2y). The reader may find details in $4 of
[27]. We also remark that a divisibility condition even weaker than that stated in Proposition
8 would be sufficient here: xd” divides a (where d° = g.c.d.(X,Y) ), 8 we can See by the
relation for the multiplicity of the reflaction representation 2/1. On the other hand, we have
z <y in flat gcomeltries ($1.6, remarks following Proposition.5). Then I' is a building in
case (6). However thick C, -buildings have been classified by Tits in (55], and none of them
has parameters as in case (6). Hence case (6) is impossible. We remark that this conclusion
could also be got directly, exploiting the formula for m,, in the case of 13/0.

If T is fat, then the set of lines through two distinct points a,b of I" is an ovoid in the
residue I, of a. Indeed there are exactly zy + 1 lines through a and b and no two of them
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are coplanar. Generalized quadrangles of order (z,z?) have no ovoids ([36], 1.8.3). Hence
" is a building in case (3).

Cases (7) and (8) are shown to be impossible by elementary computations: in each of them
some of the multiplicities m,, cannot be a non-negative integer ([27], $4).

Incase (4), a=0 and a =y’ are the only surviving possibilities ([27], $4).

Furthermore, H,(z) has no ovoids ([36), 3.4.1(iii)). Then, if T is flat in case (5), we
have I", % H,(z) foreverypoint a of I" . However H,(z) is the only known generalized
quadrangle of order (¢2,t3), where t2 = = (see [36] and [35]). Hence I", cannot be of any
of the known typesif I" is flat in case (5).

The part of Theorem 2 conceming the rank 3 case is proved. As for (i) of Theorem 3, we
recall that W(z) has noovoids if z is odd ((35], 3.4.1(i); note that @, (z) has alot of ovoids
if z is even). We are done.

Case (2) has been the first to be settled (by Ott (24], but using an argument fairly different
from the one sketched here). Next, cases (3), (5) and (6) have been solved by Rees and
Scharlau [44]. The rest appeared in [27].

Remark 1. The geometry I does not admit any homogeneous point in (iii) of Theorem 2,
by Proposition 7. Other strange propertiescf I' can be discovered in this case, but they are
not yet sufficientto give us any contradiction.

Remark 2. If T is asin (i) of Theorem 2, then the planes and the lines of I' form a linear
space L(T') with (z* + 1)(z + 1) points (planes of T'), (z2 + 1)(z% + z + 1) lines and
parameters (z, z> +z) (see(57]), asif L(T") werea 3-dimensionalprojective space of order
I.

We remark that L(I") is a 3-dimensional projective space iff I" is obtained from a max-
imal set of points exterior to a Klein quadric as in [39] (see also §5.3). The «if» part of this
claim is trivial. Let us prove the «only if» part. Let L(I") be the system of points and lines
of PG(3,z) (hence z is a prime power). Then the planes of I" form one of the two fami-
lies of planes of Q3 (z) and the lines of I" are the points of Q5(z). The set of linesin ",
where a is any point of I" ,is the set of lines of a generalized quadrangle ", (dual of I",),
embedded in PG(3,z) . The generalized quadrangle I';’ is classicai ([36], chp. 4), hence it
is of type W(z) ((i) of Theorem 3). Itis well known that the set of lines of a generalized
quadrangle of type W(z) embeddedin PG(3, z) is the set of points of a hyperplanescction
HNQs(z) of Q3(z) by a hyperplane H of the projective geometry PG(5,x) in which
Qs (z) is naturally embedded. Given apoint a of I' ,let H be the hyperplaneof PG(5 ,x)
defining '} as a hyperplane section of Q: (z) and let f(a) be the pole of H, with respect
to the quadratic form defining Qs (z) in PG(5,z). If a#b, then H,NH,N Q5 (z) consists
of the % + 1 lines of T through the points a,b and is an ovoid both in H#, N Q#(x) and in
H,NQ%¢(z). Now itis not sodifficult to check that X = {f(a)| a pointof I" } is a maximal



Finite C, geometries: a survey 21

exterior set with respectto Qs (x) and that I' is isomorphic with the geometry obtained from
X asin [39).

Thus, if we succeeded to force L(I") to be a projective space, we would have proved that
the A, -geomeltry is the only surviving possibility in (i) of Theorem 2 (See § 1.4).

What about the other «possible» flat case (namely, (ii) of Theorem 2)? Does some contra-
diction arisc from the existence of many ovoids in residues of points?

Remark 3. By Theorem 2 and Basic Theorem B we immediately obtain thatall ordinary finite
C, -geometries with parameters of known type are simply connected. However it would be
nice to find a direct proof of this fact.

3.4. Thecaseof rank n > 4.

Let I bc a finite ordinary C, -geometry admitting parameters z,y of known type and let
n > 4. By what we have already seen in 93.3 and by Proposition 3, we immediately obtain
that T" is a building in ali cases but when z = y2, where a = y* might hold in some G, -
residues of I" . Anyway, thc following lemma is proved in [31]:

Lemmad4. Let I' be a finite ordinary C, -geometry admitting parameters X,y where X >y
and let us assume that,for every point a of I" , we have either a(a) = 0 or a(a) = ¢
(where a(a) is the inner local Ott-Liebler number of " at a). Then " is a building (hence
a(a) =0 inany case).

The proof consists of a long series of computations involving inner and outer local Ott-
Licblcr numbers and a non trivial rcsult by Liebler [19] is used, concerning Hecke algebras
of finite C, -geometries. The rcadcr is rcferred to [31] for deiails.

What rcmaincs to prove of Theorem 2 easily follows from Lemma 4 and Basic Theorems
A and B.

We remark that the following improvement of Proposition 3 immediately follows from
Lemma 4:

Proposition 3 bis. Let I' be a finite ordinary C, -geometry where n > 4 and let us assume
that t/e statement of conjecture 2 of $3.2 holds inall C; -residues of T' . ThenT" isabuilding.

4. PARAMETERS OF SEMI-CLASSICAL TYPE
In this section T' will bc a C, -geometry admitting parameters of semi-classical type x = p”
and y = p* (p prime, z > 1).

By [36] (1.2.2) we have that, if h < k,then k& = (1+ M) g and h = Ay for suitable
positive integers A and p. If h > k,weobtain h = (1+ Xpu and £ = g (X, g asabove,
but now X =0 is allowed).
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Let n = 3. Then y = g.c.d.(z?,y). Hence zy divides a, by Proposition 8. But we
cannot go so much further exploiting the machinery of $3.2.

Let n = 4. Letus fixaflag F = (a,r,u) of type (0,1,3) in " . Given a point b E
oo (1) —{a}, letv and w be asolid and a plane, respectively, both incident with 4 and such
that wxw v *7 and r ¢ o, (w). Then u and v are non concurrent lines of the generalized
quadrangle I, , residue of the flag (a,r) . Let B # b be another point in oy (r) — {a} and
let v/, w’ be chosen in the residue of b’ similarly as v, w in the residue of b. Wc have v # v'.
Indeed, if v =+, then w = w' by (LL); of $1.2 (we have n — 2 =2), hence r x w(=w’)
in I", and this contradicts our choice of w . Then we have:

Y o) <zy?

beXx

where a(b) is the inner local Ott-Liebler number of T' at b and X = o, (1) — {a}. Indeed
zy? is the number of lines of T, (i.e., solids of ' through r ) that are not concurrent with u
inT,,. Let &* = min(a(b)[b E X). From the above we have za* < zy*. Then o < y?
and either o* = 0 or z < y, because zy divides a(b) for every point b of T" (see thc
beginning of this paragraph).

If «* =0, then I' has parameters of classicaltype, because some of the C; -residues of
" is a building (Proposition 4). Hence, I" is a building by Theorem 2.

Letus assume that o* > 0. Then z < y. We can also assume z < y (otherwise I" is a
building by Theorem 2). Then we have k = (1+X)z and A = Mg for suitable positive intcgcrs
A\, . If A =1,theny =22 and T is abuilding by Thcorem 2. Let us assume > 1. Wc havc
o* =ap? D forsomepositiveinteger @, because zy divides o*. Letusset ¢ = p#, sothat
2y+ 1=t 22 1o+ 1=t 40+ Land (zy+ D(y+ 1) =332 4220 g1+
Itis easily seen thatthe g.c.d. of t2* +¢* + 1 and 322 +¢22*1 +¢2*1 + 1 divides > —¢ +1.
Then @t?**! + 1(= o* + 1) divides (¢*> —t + 1)(¢***! + 1), by Proposition 6. Hcncc,
F23+1 T 1 divides (¢ — t+1)(t* —@). Asa® < y® and X > 1,we havc & < t*
Therefore @2**! + 1 < t**2. Hence t2**! < t**2. This coniradicts our assumptionson X.

Therefore, I is a building.
Theorem 4 easily follows from this and from Basic Thcorcm A and B.

5. FLAG-TRANSITIVITY

In this section we give a sketch of the proofs of Theorem 5 and 6. We will use results on
flag-transitive projective planes, on generalized quadrangles and propertics of primitive or
2-transitive permutation groups.

5.1. Flag-transitive projective planes
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It has been conjectured that a finite projective piane with a flag-transitivecollineation group
must be desarguesian. A weaker version of this conjecture has been proved by Kantor [14],
using the classification of primitive groups of odd degree. More precisely, we have:

Theorem 7. (Kantor [14], TheoremA). Let w be a finite projective plane of order x and let
G be a flag-transitive collineation group of = . Then one of thefollowing holds:
(i) Theplane = is desarguesianand G contains PSL(3,X) inits naturalactionon .
(ii) G is a Frobeniusgroup of order (x+ 1)(z* + x+ 1),x isevenand z2 +x + 1 is
prime.

We remark that m may be desarguesian in (ii) only if x = 2 or 8 ((8], 4.4.16). In this
case we have G = Frob (21) or G = Frob(73.9), respectively, and these possibilities actuaily
occur in PG(2,2) and PG(2,38).

Let us give a short sketch of the proof by Kantor for Theorem 7.

The following properties of collineation groups of a finite projective plane « of order x
are known.

(1) ([8], 4.1.9). Let o be an involutorial collineation of «. Then either a is a central
collineation or il pointwise fixes a Baer subplane of 7.

(2) (181, 4.4.10). If H is apoint-transitivecollineationgroup of = containinga non-trivial
central collineation, then = is desarguesian and H contains PSL(3,X) in its naturai action
on .

(3) ([8], 2.3.7a). Flag-transitive collineation groups of = are point-primitive and line-
primitive.

Moreover, by §§4.4.11-4.4.20 of [8] we have:

(4) Let G be a flag-transitive collineation group of = and let us assume that either = is
not desarguesianor G 2 PSL(3, z). Then one of the following holds:

(@) z* + x + 1 is prime, z is even and G is a Frobenius group containing a sharply
Bag-transitive (Frobenius) subgroup F .

(b) x is a square and either x is even or X is a fourth power.

Eliminating (b) (and forcing G = F in (a)) is the problem solved by Theorem 7. The
proof runs as follows.

Thegroup G is point-primitive, by (3). If G has anormal abelian subgroup, then =% +z+ 1
is prime and G is a Frobenius group of order (x+ 1)(z? + x + 1) (Lemma6.5 of [14]).
Thus, we assume that G has no normal abelian subgroups (apart from the trivial one, of
course). The group G is primitive of odd degreeand primitivegroups of odd degree having no
normal abelian subgroupsare known ([14] or [17]). They have even order. Hence G contains
involutions. By (1) and (2) we may assume that each of the involutionsof G pointwise fixes
a Baer subplane of 7. Assuming this, Kantor finds a contradiction for each of the primitive
groups of odd degree having no normal abelian subgroups and he proves Theorem 7 in this
way.
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Something more can be said in (ii) of Theorem 7: by 4.4.4.c of (8] wehave z+ 1 =0
(mod. 3). Moreover, z cannot be a prime power if z < 3006, except of coursewhen z =2
or 8, (8], page 209, footnote 2).

Very deep relations exists between sharply flag-transitive collineation groups of finite pro-
jective planes and finite chamber systems & belonging to the following diagram

(4;) A

and admitting a group of special automorphismstransitive on the set of chambers of & (finite
flag-transitiveﬁ2 -chamber systems, for short; flag-transitivetriangle geometries in (47]). We
are not going to insist on this here. The reader is referred to (47], (53] and [54] (3.3 and 3.4)
for details.

5.2. Remarks on flag-transitivegeneralized quadrangles

All classical generalized quadrangles have flag-transitive automorphism groups. Non classi-
cal flag-transitivefinite generalized quadranglesalso exist. Let / be apiane in PG(3,q),q
even, and let O be a hyperoval of H (i.e., a (g t 2)-arc). Let 7(0) be the generalized
quadrangiedefined by 0 as in 3.1.3 of [36]. The generalized quadrangle 75 (0) has param-
eters (¢ — 1,¢ + 1) and is not classical if ¢#2 (if ¢ = 2, then T, (0) is a dual grid). Let
G be the stabilizerof 0 in PI"L(4,9) and let K be the pointwise stabilizerof 0 in G, so
that G = G/K is the action of G on 0. The group K is transitive on the ¢2 lines of T (0)
througha given point of 0, and on the points of each of those lines. Therefore, if G is transitive
on O, then the group G is flag-transitive in 75 (0).

Hyperovals0 as above, such that G is transitive on O, exist iff g = 2,4 or 16. ([12], page
177). Thus, non classical flag-transitive generalized quadrangles are obtained of order (3, 5)
and (15, 17) (or (5, 3) and (17, 15), dually). However none of them can occur as a rank 2
residue in a finite ordinary C, -geometry (Theorem 2).

In $5.1 we have remarked that Frob(21) < PSL(3, 2) and Frob (73.9) < PSL(3, 8) are the
only possible examples of subgroups of PI"L(3,q) acting flag-transitively on PG(2,q)
and non containing PSL(3, ¢) . The analogue of this resultis known for classical generalized
quadrangles. Here are the only possible examples of groups acting flag-transitively on a thick
classical generalized quadrangle S but non containing the classical simple group naturally
associated with S ((15], Theorem C.7.1): A, actingon W(2)(= Q,(2)),2% - A;,2% - S
or 24 . Frob(20) actingon W(3) and PSL(3,4)-2 or PSL(3,4)-2?% actingon H,;(3?%).

Non surprisingly, an analogue of Theorem 7 is not yet known for generalized quadrangles.
Thingsare even worse. An analogue of (1) of $5.1 can be obtained for generalized quadrangles
using §82.3 and 2.4 of [36], but the conclusions we get are rather weaker than in (1) of $5.1.
Simiiarremarks can be made for (2) of § 1.5 (see chps. 8and 9 of [36]). Finally, the analogue of
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(3) is false for generalized quadrangles. Apart from groups of automorphisms of grids, which
never can be line-primitive, the groups 24 . A¢, 24 . S5 and 24 .Frob( 20) are flag-transitive
but point-imprimitive in Q,(3), PSL(3,4) .2 and PSL(3,4) .22 are flag-transitive
but point-imprimitive in Q3 (3). Flag-transitive but line-imprimitive groups are also easily
recognized in the 7> (0) examples described before, wheri g =4 or 16.

5.3. The flat case

We begin with the descriptionof the construction of flat C; -geometries by means of maximal
exterior sets given by Rees in [39]. A maximal exterior set X with respectto QF ) is a set
of ¢> +q+1 points of PG(5,q) such that each line of PG(5 ,q) joining two distinct points
of X does not meet Q3 (q) . Given a maximal exterior set X with respect to Q% (q) we can
define a flat C; -geometry T (X as follows. X is the set of points of ' (X)and the lines
of I (X)are the points of Q% (q). The set of planes of I (X )is one of the two families

of planes of Q% (q). The incidencerelation is defined as follows. Every point of T' (X )is
incidentwith all planes of T ( X)A point p and aline r of T ( X are incidentiiff » belongs
to the polar plane of p with respectto Qz (q) .

The geometry ' (X)is flat of type C; ([39], 92).

Thisconstruction can be generalizedto the infinite case, modulo some minor changes (see
[39)). But we are interested in the finite case here. When q = 2, a maximal exterior set with
respect to Q3 (2) existsand T (X )is the A, -geometry (91.4). However, this is the only
possibility in the finite case (Thas [60]).

Let I' be a flat Cs -geometry with parameters z,y. We can define a partial linear space
M) = (L% asfollows. I’ isthesetof linesof I' and % is the set of point-plane flags
of I" . A lineand a point-plane flag of I" are said to be incidentas elementsof [T(I") precisely
when they are incident in T". In short, TT1(T") is the point-line system of the linearization of
" with respect to the centrai node of the diagram ([25], page 317).

Proposition 11. (Rees/39], (3.3)).Let " be a flat C, -geometry with uniform parameter X.
If =(T") isisomorphic to the system of points and lines of Qs (q) , then a maximal exterior
set X exists with respectto Q5 (q) suchthat T = T (X)

Now we are ready to prove the part of Theorem 5 of § 1.7 that concems the flat case.

Theorem 8. ([20]). The A, -geometry is the only flag-transitive flat finite ordinary C; -
geometry.

We give a sketch of the proof here. Let I' be a flat finite ordinary C, -geometry and let

z,y be the parameters of I' . As T is flat and ordinary, we have 1 < x <y < 72 — X,
by 1.2.50f[36] and Theorem 2. If z = 2, theny = x = 2 and T is the A, -geometry by
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Lemma 5.14 of [42]. Let us assume z > 2 and let A = Aut(I") be flag-transitive,by way
of contradiction.

Using Theorem 7, a theorem of Bumnside on permutationsgroups of prime degree and the
classification of 2-transitive permutation groups and exploiting the inequaiity z > 2, we can
prove the following:

Statement i. Let K be the kemel of the actionof A = Aut(T") on the set S, of the points
of I and A =A/K be the actionof A on S,. Then z is a prime power and PSL(3,z) <
A < PIL(3,z). Moreover, if A, is the stabilizer in A of a plane u of I' and 4, =
A,/(KNA) istheaction of A, on theresidue I', of u, then PSL(3,z) < Zu (that is,

case (ii) of Theorem 7 never occurs On A, ).
By statement 1 we easily obtain the following:

Statement 2. If two lines r,s of I' meet in two distinct points, then oo(7) = g (s).
Thatis, T is obtained from PG(2,z) repeating its lines z2 *+ 1 times, counting the plane
PG(2,z) itself (2% *+ 1)(z + 1) times and defining the line-plane incidence in a suitable
way.

We remark that statement 2 is false in the A, -geometry. Statement 2 essentially depends
on the inclusions 4, > PSL(3,z) < A< PT'L(3,z), which cannot be proved if z = 2.

Indeed, if z = 2, then we have A = A, > PSL(3,2) = A, as further surviving
possibility, and this in fact corresponds to the A, -geometry.

Using statements 1and 2 and exploiting the flag-transitivity again, we can prove the fol-
lowing:

Statement 3. Given a plane u and a line r ¢ o;(u), apoint a,, of u is uniquely
determined such that the lines incident with u and coplanar with r are precisely the lines of
u through a,, .

Using statement 3, it is not so difficult to prove that il (I') is a rank 3 polar space. The
polar space IT(I') is classical by (56] and has parameters z, z as follows

where z = z” and r =0,1/2,1,3/2 or 2. As the points of TT(I") are the lines of I" and
as y < £* — 7, we obtain that either z = 1 or 2% = z, by easy computations. If z = 2?
then y = z* and residues of points of " are isomorphic with #, (z2). However H, (z%)
has no ovoids ([36], 3.4.1(iii)), whereas, given any two distinct points a,b of " ,the set of
lines of I through & and b is an ovoid in the residue I'", of a. Therefore z = 1,y = z and

I(T) = Q5(2).
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By Proposition 11, a maximal exterior set exists with respect to Q¢(z) suchthat I' &
' (X). Hence z = 2 by [60]. The final contradiction is reached and Theorem 8 is proved.

Remark 1 The situation descnbed in statement2 actually occurs in non finite flat geometries
I'(X) where X is aplane of PG(5,K) exteriorto O (K) (such a plane exists iff K is
an ordered field: {39], 2.2ii). It occurs also in all flat C, -geometries with all thin lines (see
[40]).

Are these the only possibiiities? If we were able to obtain statement 3 directly from state-
ment 2, without using groups or finiteness assumptions at ail, then we would be very close to
a positive answer. Indeed the reamining part of the proof of Theorem 8 could be generaiized
in some way. Itis worth remarking that properties like that of statement 2 occur in a number
of examples of rank n > 4 (see(32]) and [49], $5). Moreover, the A, -geometry is the only
known flat gcometry where statement 2 faiis to hold. Thus we might even hope to succeed to
prove that statement 2 is a conscquence of the flatness whenever z# 2.

Remark 2. 1t may be interesting remarking that, if we tried to prove that the system L(I")
of planes and lines of a flat C, -gcometry I with uniform parameter z is a projective space
($3.3,Remark 2), then we would soon get stuck with statements which, in one form oranother,
say the same thing as statement 3. This is not surprising in view of Remark 2 of 93.3, of
Proposition 11 and of the final part of the proof of Theorem 8.

54. The anomalous case

We finish the proof of Theorem 5 of § 1.7. In this paragraph I' is an anomalous finite ordinary
C, -geometry with parameters z,y and flag-transitive automorphism group A = Aut(I") .
Sy, S, and S, arethe sets of points, lines and planes of I", respectively. K is the kemel of

the action of A on S, and A = A/K is that action.
For cach plane u, iet A, and N, be the stabilizer of u in A and the kemel of the action

of A, on the residue I', of u, respectively. Thus, 4, = A,/N, is the action of A, on T,.
We remark that A, N K < N,, but the equality might fail to hold, as far as we know (indeed
" isnot flat). Finally, « is the Ott-Liebler number of " .

Proposition 12. For everypoint u of T', A, isa Frobeniusgroup, sharplyflag-transitive on
r

That is, (ii) of Theorem 7 occurs for every u E S,. Indeed, otherwise we have A, >
PSL(3,z) forevery u E S, , by Theorem 7. Hence A is transitive on the set of pairs of
distinct collincar points of T". Therefore, the number of lines through two distinct collinear
points a,b of T does not depend on the choice of the collinearpair (a,b). Then I' is either
a building or flat, by Proposition 7. On the other hand, " is anomalous by assumption and
we have the conuadiction.
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Proposition 13. (Arithmetic conditions). All thefollowing hold:
(i) x iseven, 1+ x + z2 isprimeand x + 1= 0 (mod.3).
(ii) x <y <z —X.
(iti) (x+ y)(a + 1) divides (1 + sy) (xy- %) and (z? + y)(a * i) divides

o4

(z2y+ 1) <m3y _ -) fd=ged. (z2,y), then
xr

(fina) d* < X.

(iii.b) (x=1Dd>+d<y.

(iii.c) xd divides a.

. Ty o« vy, o?
(iii.d) ot 1 divides both T d and q + 27

Property (i) follows from Proposition 12 and Theorem 7 (see4.4.4.c of [8]for x + 1 =
0 (mod. 3)). Property (ii) follows from Theorem 2, from 1.2.5 of [36] and from (iii.b).
Property (iii.c) is nothing but Proposition8. All remaining properties listed in (iii) arc obtained
exploiting (iii.c) and the factthat 1+ x + z2 is prime in the divisibility conditions given by
the formulas for the multiplicities m, of the irreducible representationsof thc Hecke algebra
of I (53.2); the reader is referred to [29] for details of these computations. W warn that thc
two divisibility conditions in (iii.d) are equivalent.

It may be that some way exists to reach a contradiction taking all previous propcrties
together with the divisibility condition of §1.2.2 of [36] and with the well known Bruck-
Ryser condition on the order of a finite projective plane. One of the authors has tried to do
this by a computer some time ago, testing all values of x < 1000. It tumed out that none of
them worked. Therefore:

Proposition 14. We have s > 1000.
By Proposition 12and 14 and by 4.4.16 of {8}, we immediately have thc following:
Corollary. For everyplane v of I ,I", isnot desarguesian.

Thus, as we have already observed in § 1.7 (remarks following the statemcnt of Theorcm
5), x cannotbe a prime power if z < 3006. We remark that, by Proposition 12, the previous
Corollary amounts to say that z# 2, 8. Thatis, X = 2 or X = 8 do not fit with Proposition
13. Of course, this can be checked even «by hand», without using computcrs.

The next step is collecting information on involutions. Unfortunately, the information we
have is very weak when vy is odd.

Proposition 15. (Involutions).Let o be an involution of A and let I, be the set of elements

of ' fixed by o.Then one of thefollowing hoids:
() The configuration T, consists of exactly one plane v and of its residue I',. We

a

have y = 0 (mod. 2) in this case.



Finite C,, geometries: a survey 29

(ii) The configuration I'; consists of a nonempty set of pairwise non coplanar lines,
together with all their points. Wehave y = 1 (mod. 2) in this case.

The reader is referred to (29] (Lemmas 6, 7, 9, 10and 11) for the case of y even. As
a by-product of (i), we obtain a similar statement for Sylow 2-subgroups of A in the case
of y even ([29], Lemma 9). This provides a very useful geometric interpretation of Sylow
2-subgroups of A in this case.

As for the case of y odd, a second possibility were left open in (29] (Lemmas 6 and 7)
besides (ii) above, namely the following one:

(iii) There is point p fixed by o such that the configuration ("), fixedby o in T, isa
grid with parameters z, 1 :

lines planes
a—Do
X 1

and y is odd.

Wk rule out this case here.

Let ug, ...,u; ,ug, «..,u; be the two familiesof planes (linesin I',) of the grid (T',),
Let  be aline through p (pointin I',) not belonging to (T,),. Foreach i=0,1,...,z,
there isaline r, in u; through p suchthat r and r; are coplanar. The lines r,r;,...,r, are
mutually non coplanar (i.e., they form an (z + 1)-arc in [,). Let ¥ =a(r). As r does not

belong to (T,) , we have r # r*. The set (r*)* N+ of the lines through p coplanar with both
7' and r contains the lines o, 7y ,...,7, and y —z further lines s, . ..,s,_,. As ' =a(r),

the involution o fixes (r')* N+ and, as it fixes each of the lines ry , ...,r,, it permutes the
lines sy,...,s,_,. Howevery is odd, whereas z is even. Hence o fixes some of the lines
Sy Sy o VB have a contradiction, because none of these lines belongs to (T, .We are
done.

The group K is studied in [29] only in the case of y even. Itis proved that | K| is odd if
y =0 (mod. 2) ([29], Lemma 8). e give a more complete result here.

Proposition 16. (Propertiesof K). The group K has odd order and acts as a Frobenius
group on each of its orbits on the set of planes of T".

Given planes u,v of I, let K, = A, N K be the stabilizer of v in K and let K, =
K, N K, be the siabilizerof both u and v in K.

Let u,v belong to the same orbit of K and let ¢ E K,,. As v E K(u), we have
oo(u) = ay(v) and a bijection f of o, (u) onto o,(v) exists such that ' = f(r) iff
oo(r) =ao(7) (r Eo(u),” Eo,(v)). Letr E g,(u) —0o,(v). Foreverypointa of r
aline-plane flag (7,,4,) is uniquely determined in I', suchthat r* v, and r, *v. Itis easily
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seenthat u,# u, if a# b (a,b E oy(r)). Moreover, g fixes everything in the residues of
vandv,asg E K,,. Hence g fixes r, for every point a of = and, as it fixes r too, it fixes
u, (a E gy(r)) Therefore there are at least z + 1 planes through r fixed by g other than
u. As g fixes the residue of every plane that it fixes, the configuration elementwise fixed by
g in T, (where a is a point of v) is a subquadrangleoforder (z,t), whecre t > = + 1 ({36],
§2.4). By §2.2.2 of {36] we obtain t = y. Therefore g fixes everything in the residue of a,
for every point a of u.

Let now p be a point such that g fixes everythingin I',. If b is a point distinct from p
and joined with p by two distinct lines s, s’, then s and s’ are not coplanar and ¢ fixes all
planes incident with either s or . Therefore g fixes everything in the residue of b ,by §2.4
of [36].

Next, let b# p be joined with p by precisely one line s. Let w be a plane on s. As
a > 0, two line-plane flags (sps wp) ,(sy, w;) existsuch that wpaé w# Wy, S, % W * 5,5, ¢
o1 (p),sy & 01(b),p*w, and bx* w,. Itis easily seen that none of w, Or w, Is incident
with s. Hence wp# wy, aS s is unique line through p and b. Let ¢ bc a point incident with
both s, and s, (wecan find c in T, and we have c# p,b). Let s, s", be the lines through
p and c in w, and w, respectively,and let s, s", be those through b and ¢ in w, and w,
respectively. We have s;# s", and sy # s", by (LL); of §1.2.and because p ¢ o (s,) and
b ¢ o4(s;) . By the previous argument, g fixes everythingin I", because it fixes everything
in I, and c is joined with p by two distinct lines. Next, g fixes everything in Ty, as it fixes
everything in I', and b is joined with c by two lines.

Then g fixes everything in I', as soon as b.Lp. lterating this argument, g fixcsall of T".
K, =1.

We have proved in this way that K acts as a Frobenius group on each of its orbits on S, .
Let us prove that K has odd order. Let a be an involution of K , by way of coniradiction.
Let u be a plane such that a(u) # u.

Let us assumethat u and a(u) are not cocollinear. The planes v and a(x) havcthe samc
set of points, because o E K. For every point a in « (and in a(u) ), thcreare z +1 planes in
I", cocollinear with both « and a(u) . As z is even, a fixes at least one of those planes. On
the other hand, there are 2 +z+ 1 points in v and, using (LL); of $1.2,itis easily seen that,
if a,b are distinct points.of u and u,, v, are planes in ", and I',, respectively, cocollincar
with both u and o(u), then u,# u,. Hence there are at least z2 + z + 1 plancs fixed by
a. However this contradicts Proposition 15. Therefore, for every plane v, « and o(u¢) are
cocollinear and, if u # a(u), then the line incident with both v and o(u) ($1.2, (LL);) is
fixed by a. Howeveritis easily seen that this contradicts Proposition 15if y is even. Hence y
is odd and, for every point a, the lines through a fixed by a form an ovoid in I',. Therefore,
given any plane u, for every point a of u there is exactiy one line of u through a fixed by
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a. On the other hand, at most one of the lines of u is fixed by o (Proposition 15 (ii)). We
have reached a contradiction.

Therefore, K has odd order.

Proposition 16is proved.

Proposition 16 makes it easier to study Sylow 2-subgroups of A : they can be identified
with those of A, and A should be easier to study than A itself.

Another prime number has considerablerelevance here besides 2, namely p = 1+ z + 22
(Proposition 13, (i)). We have:

Proposition 17. ([29], Lemmas 2 and 3). The Sylow p-subgroups of A have order p and
act semi-regularly on the set of pointsof I .

So far we go without making any extra assumption on A . If we assume the primitivity of
A, then we have the following partial result (which completes the proof of Theorem 5 of 1.7
in the rank 3 case):

Proposition 18. (/29], Theorem 1.C). If A is primitive, then y is odd.

We give just a sketch of the proof.

Let A be primitive and let L be its socle. The number n, of points of I is neither
prime nor a proper power (see (1) of §1.6 and the arithmetic conditions of Proposition 13).
Therefore L is a nonabelian simple group. As p = 1+ z + 22 is pnme (Proposition 13) and
z > 10% (Proposition 14), the order of L is divisible by a prime factor bigger than 109.
Then L cannot be sporadic (the classification of finite simple groupsis used here, of course).
By straightforward computations ([29], proof of Lemma 4) we can see that L cannot be an
alternating group either. Hence, we have the following:

Statement 1. L is simple of Lie type.

Therefore L contains involutions. Let y be even. By Proposition 15 (i), we have that L
has a strongly embedded subgroup([29), proof of Lemma 12). Hence, using a theorem of Ben-
der ([3], Theorem 4.24), we obtain that L is one of the following groups: SL(2,2") (n >
2),PSU(3,2") (n>2) or 215’2(22"‘“) (m > 1). Exploiting this information it is
possible to prove that p? divides |A|, where p = 1+ ¢ + 22 (see [29), end of the proof of
Thcorem 1). But this contradicts Proposition 17. Therefore,

Statcment 2. y is odd.

Remarks. When vy is odd, Proposition 15(ii) does not give us so much of information and
we are in troubles.

As for the imprimitive case, it is casily seen that, if A is imprimitive on S, then, given
an imprimitivity class X for A and a piane v of I', we have |[X Noy(u)| < 1. Unfortu-
nately remarks like this do not seem to be very deep. Furthermore, imprimitive flag-transitive
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automorphism groups of finite thick generalized quadranglesexist (see $5.2) even if they are
exceptional phenomena. We can guess from this that assuming the imprimitivity on A will
hardly give us contradictions for free and some work will be,needed to reach any of them.

5.5. Thecase of rank n > 4.

In this paragraph T is a finite ordinary C, -geometry with n > 4 and flag-transitive auto-
morphism group Aut(I") .

Theorem 9. Thegeometry T is a building.

This theorem completes the proof of Theorem 5 of $1.7. It appeared in [30]. Itcan be
proved in a number of different ways. A very short proof can be given using Proposition
12, the Corollary of Proposition 14, Proposition 7 and Proposition 2, but here we recall the
proof given in [30], which is not long either, does not depend on Theorem 7 or on Proposition
13; it uses a celebrated theorem by Seitz (see [15], Theorem C.7.1). As n > 4 ,residues of
hyperlines of I" are desarguesian projective geometries of dimension n— 1> 3 and z is a
prime power. By Seitz’s theorem ([15], Theorem C.7.1), the stabilizer A, of aflag F of '
of type {0, 1,...,n—4,n—1} acts on I, as aclassical group. Henceall C; -residues of
I are either buildings or flat, by the same argument used in the proof of Proposition 12 and
by Proposition 7. Therefore I" is a building, by Proposition 2.
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