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AN ISOMORPHIC CHARACTERIZATION OF PROPERTY () OF ROLEWICZ
DENKA KUTZAROVA

Abstract. In the paper it is shown that in a separable Banach space there is a norm with
property (8) of §. Rolewicz if and only if there is a norm which is simultancously nearly
uniformly convex and nearly uniformly smooth.

The Kuratowski measure of noncompactness of a set A in a Banach space is the infimum
a( A) of those € > 0 for which there is a covering of A by a finite number of sets A; with
diam(A;) < e.

Let X be a Banach space with closed unit ball B. By the drop D(z, B) defincd by
an element z € X \ B, we mean conv({z} U B) and we let R(z,B) = D(z,B) \ B.
Rolewicz [16] has proved that X is uniformly convex if and only if for each € > 0 there is
ad>0 suchthat 1 <||z||< 1+ & implics diam( R(z,b)) < €. In connection with this he
has introduced [17] the following property.

A Banach space X is said to have property (A3) if foreach € > 0 thercisa § > 0 such
that 1 <||z||< 1+ & implies a( R(z, B)) < e.

The notation of nearly uniform convexity (NUC) has been introduced by Huff [4]). Role-
wicz [17] has given the following equivalent definition,

A Banach space X is said to be (NUC) if foreach € > 0 thereisa §,0 < § < 1, such that

the measure of non-compactness of the slice S(f,8) = {z € X :||z|| €1, f(z) 21 — §}
is smaller than e for each continuous lincar functional f with || f]|= 1.
A Banach space X is uniformly Kadec-Klee (UKK) if forevery ¢ > 0 thereisa § > 0

such that || z || S1 — & whenever z is a weak limit of some sequence {z,} in B with
sep(z,) = inf{||z, —z_||: n¥ m} > e.

Huff [4] has proved that X is NUC if and only if X is reflexive and UKK.

Rolewicz [17] has shown that UC = (f8) = NUC. The class of Banach spaces with
an equivalent norm with property (3) coincides neither with that of superreflexive spaces
(independendy proved by Montesinos and Torregrosa [13] and the author [5]), nor with the
class of ncarly uniformly convexifiable spaces (cf. [6] and [7]).

An isometric characterization of (£) in terms of «crescents» instead of drops is given in
[11].

In [8] and [9] we have defined the notions k — 8, k2 1,and k — NUC, k22, where
1 — B coincides with property (). All of these properties imply NUC and they are even
isomorphically stronger. Morcover, we have shown that Schachermayer’s space [18] is an
example of a k — NUC space with k = 8, which fails to have an equivalent 1 — 8 norm (i.¢.
with property ( 8) ). In [9] we have also given some equivalent formulations of the notations
k — B and k — NUC; in particular, we shall use in the sequel the following characterization
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of property (5) .

Proposition 1. A Banach space X has the property () if and only if for each € > 0 there
exists a 6,0 < & < 1, such that for every element x € B and every sequence {z_} C B

with sep (x,) > €, there is an index i so that ||z + z;|| /2 S 1 - 6.

Sekowski and Stachura [19] and Prus [15] have independently defined the notion of nearly
uniform smoothness (NUS) (see below). They have proved that a Banach space X (resp.
X*)is NUS if and only if X* (resp. X ) is NUC. We shall use also the equivalent definition
given by Prus [15].

A Banach space X is said to be nearly uniformly smooth (NUS) if for every € > 0 there
exists an > 0 such that for each t € [0, ) and each basic sequence {u } in B there is
an 1 > 1 such that

||u; + tu;] <1+ et.

Prus has investigated finite dimensional decompositions of Banach spaces with (p, q) -
cstimates [14], and in [15] he has given a nice isomorphic characterization of NUS and NUC
for Banach spaces with a countable basis in terms of (p, ¢) -estimates. (He has also mentioned
that, using total biorthogonal systems instead of bases, the isomorphic characterization of
NUS can be easily generalized to the case of separable spaces).

Let {z_} be a basis of a Banach space X with coefficient functionals z} € X*. An
element z € X is said to be a block of {z_} if either x = O or the set supp z = {n :
zr(z) # 0} is finite. A family {X_} of finite dimensional subspaces of X 1is a blocking
of {z_} provided there exists an increasing sequence of integers {n.}, n, = 1, such that

Xy = [z;);2)" for each k. We say that blocks y,,...,y, are disjoint (with respect to the
blocking {X,}) if

m o0
min {m :y, € Z){j} < max {m:y,, € EXj} fori=1,...,n—1.
J=1 Jj=m

Next, if 1 < ¢S p < oo, then the blocking {X,} is said to satisfy (p, g)-cstimates
provided there exist positive constants ¢, C such that

n I/p n n
¢ (E ”Ih'”p) é ||E.U;|| i:—- C (E ||Ui”q)

1=1

1/q

for all disjoint blocks y,,...,y..
Moreover, if only the left hand side of the above inequalities holds, then we say that { X, }
satisfies (p, 1) -estimates, and if only the right hand side inequality holds, thcn we say that

{X,} satisfies (oo, g)-estimates.
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Proposition 2. [15] Let X be a NUS space. Then there exist constants ¢ > 1 and C such
that each basic sequence {z_} in X has a blocking {X_} which satisfies (oo, g) -estimates
with the constant C.

Proposition 3. [15] If X isa NUC space, then there exists a constant p > 1 such that each
basic sequence {z_} in X has a blocking {X_} which satisfies (p, 1)-estimates.

Prus has proved counterparts of the above two results, 1.€. about the existence of an equiv-
alent NUS (NUC) norm for Banach spaces with countable basis. Morcover, he has given a
result in the spirit of the averaged norms of Asplund [1].

We shall first prove the following.

Theorem 4. Let X be a Banach space. If the norm is both NUS and NUC, then it possesses
property (3) .

Proof, Let € >-.0 . Since the norm is NUC, it is also UKK and we may find a corresponding
6, > 0 such that

(1) lz|l $1-38,,

whenever z is a weak limit of some sequence {z,, } inthe closed unitball B with sep (z,) >

E.

Applying the definition of NUS, given by Prus, for ¢, = 61/4 there exists a corresponding
n > 0 such that for each ¢t € [0,n) and each basic sequence {u_} in B there is an index
1 > 1 so that

(2) |u; + tu ]| S1+ ¢t
We may choose A\, 0 < A < 1, small enough so that A/(1 — A§,) < /2. Put

Thus, we have t € [0, 7).
We shall show that for the given € > 0 the equivalent definition of (8) 1s satisfied for

§= 26 /4(1 = )).

Let z € B and {z_ } C B with sep (z,) > € be arbitrary, By reflexivity, passing to a
subsequence, we may suppose without loss of generality that {z_} is weakly convergent, say

to an element v, i.e. z, = v_+ v, where {v_} tends weakly to zero. Clearly, ||v || 2.

Morcover, we get by (1) that ||v|| €1 — §, . Therefore,

(1 =Xz + dv]| S1-)X8,.
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Denote
u; = [(1 =X)z+ d]/(1-X§)and u_ =v_/2 for n> 1.

Thus, {u,} C B and {u_} tends weakly to zero. By sep (z,) > e we obtain that lim inf
|u_||> 0 and we may pass to a basic subsequence with first element u, . Then, it follows
from (2) that there exists an index ¢+ > 1 so that

||, + ugl] <1+ 6,

1.c.
(1 =XN)z+ v A <
+ A =1+
I o vl 2

Therefore,
I(1 =Xz +Xz|| S1 X6 +178/2=1-X5,/2.
Then, by the triangle inequality,

T+ 1 1 -2)
” ) ” _”2(1 _}‘) {(l _‘}‘)$+ ’\Ii]+ 2(1 _A)Ii”

S1-X5,/4(1=X)=1-5,

which completes the proof.
The converse of Theorem 4 1s not true isometrically. Property (8) implies NUC but not
necessarily NUS, as we see 1n the following.

Example 5. There exists a Banach space which is uniformly convex but fails to be NUS.
Proof. Consider the function M : R? — R, defined by

M(a,8) = 5-(a> + B)F + 2 (Jz]+ Ju).

Let X be the direct sum of £, with itself with the following norm

ICz, ) IF = M|zl [ly]D,

where || - || is the usual norm of £, . Obviously, X is uniformly convex. On the other hand,
since M is not partially differentiable at the point (1, 0), it follows from [10] that X is not
NUS.
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Yet, one can obtain for () a statement which is similar to the result of Prus, cited here
as Proposition 1. Actually, we shall prove this under the following condition (3, ¢) : In the
spirit of Proposition 1, by (3, ¢) forsome fixed 0 < e < 1 wemean thatthereis 0 < § < 1
so that for every element z € B and every sequence {z,} C B with sep (z,) > e, there

exists an 1 such that ||z + z;|| /2 €1 — &, which implies in particular that
(3) |z +xz,/2]| £3/2 —6.
We shall first prove the following.

LLemma 6. Let X be a Banach space with the property (B,¢) for some 0 < e < 1 and a
corresponding & as above. Then, for every basic sequence {z_} in X and every integer n

there is an 1+ > n such that
l|b, + b,/2|| £3/2 - 6/3

whenever by €.[x;]1.,, b, € [z,;132;, and ||b, ||=][b, |]= 1.

Proof. Assume the contrary, i.e. that there exists a basic sequence {z_} for which there is an
integer n and two sequences of blocks {b, ,,} and {b, ..} of normone with b, .. € [z,]%,,

b, m € [z;]72,, forall m and such that

”bl,m + bZ,m/zll:) 3/2 o 6/3

Passing to a subscquence, there is no loss of generality in assuming the {b, _} is a nor-

malized block basic sequence of {z_,} and moreover that {b, .} tends in norm to some

b - [IJ]JIL] ' |

bl|= 1. We may also suppose that for all m,
(4) b+ b, ,./2||>3/2-6/2.

Since (S, ¢€) implies (NUC, ¢), which in turn implies reflexivity if 0 < € < 1 (cf. e.g.
[12]), then every basic sequence in X converges weakly to zero. Thus, b, - — 0 weakly.
Therefore, passing once more to a subsequence, we may assume that the basic constant K of
{by m} isless than 1/e. For the inclination k of a basic sequence {u,,}, i.e.

k= inf_ dist(S, . ,[y;:]>m]),

where S stands for the unit sphere of the corresponding space, we know that kK = 1 (see
(2, p. 134]), where K is the basic constant of {u_ }. Thus, if we denote by & the inclination
of {b, ,,}, we obtain that k > ¢. Therefore, by the definition of k, we get immediately that

sep (b, ) 2 k > €. Then, according to (3), there is an index 1 such that

16+ by /2] £3/2 -6,

which contradicts (4). This ends the proof of the claim.
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Theorem 7. Let X be a Banach space with the property (B,¢) with 0 < € < 1. Then there
exist constants ¢ > 1 and C such that each basic sequence {z_} in X has a blocking {X }
which satisfies (0o, q)-estimates with constant C .

Proof. Having proved Lemma 6, we may proceed as in [15]. Let {z_} be an arbitrary basic
sequence in X . According to Lemma 6, we can construct inductively a sequence 1 = n; <
n, < ... for which

ly, + v, /2|1 £3/2 - 6/3

whenever y, € [zi]:’:fl , v, € [z02, ,and ||y, ||=]ly, l|= 1. In particular, for every X
with |1 — M| < 1/2, we have

|y, + Ay, || S lyy + v2 /2] +(X = 1/2) ||y, || S1+)-6/3.

Since 2 — 6/3 < 2, there existsa ¢ > 1 such that (2 — §/3)? < 2. Then by the
continuity of the functions A — (1+ A — §/3)? and A — 1 + A9, there exists a v with

0 < v < 1/2 suchthat
(1+2-6/3)T< 1+ )\

for all A with |1 — A\| < v. For such )\ we also have

ly: + Az |I< (1 + 2914

In light of the theorem of N. and V. Gurarii (cf. [3] or [2, p. 135]), this implies that there

exists a constant K such that if X, = [:ri]::;:"l , then each of the sequences {X,,_,} and

X, .} satisfies (oo, ¢q)-estimates with constant K .
2k
Thus, if the blocks y,, ...,y, are disjoint with respect to the blocking { X, }, then

n n 1/q
||E vl S ZIM(”E Y251 |I? + HE yz;*”q)w S2'/7K (Z ”yi”q) :

i:l I=1

where 1/¢' + 1/g = 1. Setting C = 2/9 K , this ends the proof.
Putting together the results of Prus and Theorems 4 and 7, we immediately obtain the

following.

Corollary 8. Let X be a separable Banach space with the property (B, ¢) for some 0 <
e < 1.Then X has an equivalent NUS norm.

In the next statement we repeat Theorem 4.3 [15], adding a new equivalent condition
concemning (3).
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Corollary 9. Let X be a Banach space with a basis {e_}. Then the following conditions are
equivalent.

(i) X admits an equivalent norm with property ().

(ii) X admits an equivalent NUS norm and an equivalent NUC norm.

(iii) There are constants p2 ¢ > 1, C, ¢ > 0 such that each basic sequence {z_}in X
has a blocking {X_} which satisfies (p, ¢)-estimates with the constants ¢, C.
(iv) The basis {e,} has a blocking {E,} which satisfies some (p, g)-estimates with

1 <gq < p < 00.
(d) X admits an equivalent norm which is both NUS and NUC.

Remark 10. In [9] we have shown that Schachermayer’s space fails to have an equivalent
NUS norm. Thus, Corollary 8 (or 9) provides another proof of the fact that this space does
not admit an equivalent norm with the property ( 4) .
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