Note di Matematica Vol. X - n. 2, 335-346 (1990)

TETRAHEDRON MANIFOLDS AND SPACE FORMS

EMIL MOLNAR (%)
Dedicated to my father

In an carlier paper [S] I have constructed two interesting concave «tetrahedra» representing
minimally the compact Euclidean space forms E° /P4, and E® /P6,. The method can be
generalized in a natural way and we shall construct an infinite series of tetrahedra 92 with
suitable face identifications (Fig. 1), so that each of them represents a manifold M, with
fundamental group

(1) G, =(a,b— a™ bl = 1= e b)),

The group G, is generated by the homeomorphisms @ and b, identifying the faces of
& in pairs. The relations in (1) will be in connection with the two equivalence classes of
edge scgments of &2, induced by the face identifications. For the natural parameters m, n the
incqualities 3 < n<mare required.

In the cases (m,n) = (4,4) and (6, 3) the fundamental group is isomorphic to the crys-
tallographic group P4, and P6,, respectively, and the homeomorphisms M,, = E° /P4,
M, = E?/P6, hold, as it has been shown in [5].

We remark that G is known as Threlfall’s binary polyhedral group of symbol {(m,n,2)

n

if it is of finitc order 4 (L + L — L)™' in three cases [2, Ch. 6.5). The manifold M,, =
S° /G4, will be the spherical octahedron space (Fig. 3). My = 8% /Gy, and Mg, = 8% /G,
arc also spherical space forms [9, Satz 9], [10, §11 (1930)]). The first is realizable by iden-
tificauons of a truncated cube (with Schlidfli symbol (8,8,3) see also in [6]). The second is
nothing but the famous Poincaré dodecahedron space (Fig. 4). These spherical space forms,
in another desscription, are known also from the classification of spaces of constant positive
curvature [13, Ch. 7].

In Scction 3, Th. 1, we shall prove that the other manifolds M cannot be space forms.
Thus we get a simple infinite series of connected compact manifolds which cannot wear a
complete Ricmannian structure of constant curvature.

It tums out in Sect. 4, Th. 2, that our manifolds M, all are Seifert fibre spaces [9]. The

last infinitc serics are covered by SL, R the universal covering of real 2 x 2 matrices with

determinant 1. This is the 6% Thurston’s gecometry with a locally homogeneous complete
Ricmannian metric [8], [11]. So, we have found a minimally presenting fundamental domain
(in the sense of [5]) for each Seifert fibre space M.

(e ey

(*) Supported by Hungarian Nat. Found. Sci. Research (OTKA), grant no. 424 (1986).
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For the sake of completeness I give a tetrahedron series for the spherical lens spaces
L((m—-1D(n-=1)—=1n-1) = .5'3/}‘{1,1”;ﬂ constructed 1n a similar way (Fig. 5). Here
the finite cyclic groups H_ . are represented by

m.

A

(2) Hmn=(u,b~um‘"lb_1 1=b"'a"1),3Sn
[ thank prof. E. B. Vinberg and the Referce of the former version of this note for calling

my attention to the classical works of Threlfall and Scifert [9], [10].
This note also intends to illustrate an algornithmic method (implemented on computer as
well) searching for manifolds by fundamental domains [6].

1. THE CONSTRUCTION OF THE MANIFOLD M__

In Figure 1 we have described the Schlegel diagram of #° ~ M__ to be constructed. This
is a simplicial complex. We start witha 3-simplex 9?:= A, A, A, A, spanned by the lincarly
independent vectors A, (1 =0,1,2,3) of the rcal 4 -space R*. As usual the inner points
of 2 are represented by vectors X = z°A, + ' A, + 22 A, + 2* A, =: 1A, where the

barycentric coordinates z°, z!, 22,2 > 0 and 2° + z' + 2% + 2> = 1. Onthc edge A, A,

we introduce additional vertices B, = ——5 Ay + 5 A, (r+s=m—-2;0 Sr,seZ) toget
a subdivision into m — 2 edge segments. On A, A, we analogously introduce the vertices
Cy = Ay),Cy,...,C__5,C. 5 = A; toget n— 2 scgments. Furthcrmore, we Lake the
midpoints A,,, Ay, Aps, Aj3 as additional vertices of 2. Morcover, let us consider also the

barycentres S; of the faces opposite to A, and the barycentre S = ;(A4, + A; + A, + A;)
of &°. Now we define the homeomorphisms a and b by

(3) ﬂ:AZ{]AuB]...Bm_3A1A11A2(S3) ::fﬂ-i —
b . Aﬂzl‘qzcl ...Cﬂ_:} AEA:}{]A(}(SI) =" fb—l N
— AZCIOZ ”'A3A31A1A12(S{}) - fb

(4)

lincarly piece by piece. That means, e.g.

a . AZDAUS3 — AUBI Sz, IAZ{} + yAO + 333 —

(5)
— TAy + yB, +z.5'2(:c,y,z:§0; r+y+z=1).
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Figure 1

In Fig. 1 we have indicated the two equivalence classes of edge segments by 3= and
—>— . The vertices belong to one equivalence class. The faces are denoted by their suffix
(without f’s). Observe that the orientations, say on the faces f,., and f, induced by the
homeomorphism a, are opposite with respect to a fixed orientation of the surface of &°. The
same is true for b. This is why M_ _ is orientable, and a, b are said to be topological screw

mn

motions.

2. THE FUNDAMENTAL GROUP G,,, AND THE UNIVERSAL COVERING M,

We arc going to describe the fundamental group of M, . which will be denoted by G .
At the same time we shall construct one atlas, consisting of two charts for the points of M___,

and the universal covering space of M_ . which will be denoted by Efmn. The method 18
standard, we only sketch it in our case [1, 9.8], [3], [6], [7], [10].

Take a dirccted edge segment A,y A, and the face f,_, containing it on the boundary.
These are identified by the map a with A, B; and f_, respectively. Then we continue with
Ao B, and f_ ., by the following cyclic scheme

>(Ay0Ag, fo-1) = (Ao By, £,): (A By, fo-1) — (B By, )i ...
(6) |
a” b!
---:(Ag,uqusfu) = (A:;Ausfu—l); (AzAlzaff,) — (Azﬁfqu:fb-l)-
This provides the relator a™~'b~'a~'b~! defined to be 1 the neutral element of G
being described. Similarly, if we start with segment A,, A, from the class —>— we get the

relation 8™ a7 'b~1b~! = 1 and the presentation (1).
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g

Figure 2

As all the vertices of & are G, -equivalent to A,,, we construct a chart &, for M__
around A, , as the generating homeomorphisms a and b dictate gluing the vertex domains
of #°. In Fig. 2 we have designed this chart &, as a simplicial complex, where the surface
of &, (its Schlegel diagram) is combinatorially described on the base of Fig. 1. The vertex
domain %4 ,, of A,, as a spherical digon is fixed by four subsimplices of #*. A,,A4,S,S
rests on the directed segment A,, A, 3= (@ in Fig. 2) and on the face A,, 4,5, C f;-
(this is signed by — at A,S, near the face inside 9°). Now the barycentre S of &° is the
oo point of the figure plane. The subsimplex A,, A, S,; S rests on the face A,,A4,S; C f,-
(this signed by = at A, S, inside &°; the above signs = and — outside 9° would refer o f,
and f,, respectively). Analogously, Ay, A, S, S rests on Ay A, —>— (@ in Fig. 2) and on
the face Ay A, S; C fi-1, the subsimplex Ay, A, 538 restson Ay Ay 83 C f,.

Now we form the a~!-image .;53" = EG of the vertex domain .4, which shall con-
sists of 6 simplices. We see in (6) that

(A Ao, fot) ¥ (Ao By, £
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Thus we define $° in R* (the sum of its coordinates, with respect to the basis A,
cquals to 1) as the a~!-image of the barycentre S of &2, just arbitrarily, so that the simplex

Ay AyS; S joins & from outside, along Ay Ay S; . Then, in the sense of (5), we linearly
dcfine
ﬂ-l : AGBISZS — AZHA{}S:}SGHI ‘

Analogously define the a~'-images of the other 5 A,-simplices by prescribing S;"l :

A%' (© inFig. 2)and $¢™' in order to get non-degenerated simplices, non-overlapping the
previous ones.

Finally, we gect a surface diagram of &€, (Fig. 2) with 4 nodes A, @, AZQ,AS; B,

AE; 6, according to dircctions of the scgment classes 3= and —>—. Furthermore, we have
m+ n+ 2 «countries» corresponding to the vertex domains. The boundaries of countries are
signed by =, — according to the gencrators a, a~! and b,b~!, respectively. Observe that if
we go around cither @ or @, we can read off the same cycle relation a =™ Vpa b= 1. We
similarly find 5"V a ba =1 if we do that around @ or 6. These relations are equivalent

to those of (1). These facts enable us to close the procedure at constructing the image A 13
of the vertex domain .4 ,, by defining the image of the barycentre S as follows

(7) Sb—lﬂ—lh—luA — S&—n — Su— — Su-lb—lu—lb—l ‘

The second chart for M, will be

n

(8) Z, = PUFS uFr
where the additional polyhedron Fo ,joining at f__,, 1S
(9) P = Ay ApSy 8% UAB;S38% U...UAyAxS, 8%

and the analogous polyhedron %% b7 at f,-1 is defined with the b~'-image of the barycentre
S of 9°. Hence we get an atlas

(10) Int &, U Int &,

providing a ball-like neighbourhood for every pointof M__ . Indeed, M is a manifold.

We briefly describe the universal covering M, . First we form the Cartesian product
P x G, . and define the relation (X, g) ~ (Y, h) iff either
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(i) g=hinG__, X =Y in& or

(i) X € f,..,Y = X% g=ah foragencrator a of G .
This relation extends to an equivalence relation x on @2 x G by defining

(11) (X,9) (Y, h)
iff for some (X, g;) we have

(12) (X,9) =(X,,9)) ~(X;3,9;) ~...~(X,,g9,) =(Y,h).

The equivalence class containing ( X, g) 1s denoted by (X, g) and the quotient space is
denoted by (¢, G ). We can sce that M__, i.e. 9 with identifications, may be consid-
ered as an orbit space (2, G,,,.)/G,,,, where the group G| . acts, by the second component,
discontinuously and freely on the simply connected manifold (£, G, ) =: ﬁmn . This is just

the universal covering of M_ .

3. MANIFOLD M, AS A POSSIBLE SPACE FORM

By the theory [13] every space form is an orbit space .# /G where .4 is one of the
classical simply connected spaces of constant curvature, and G 1S an isometry group acting
discontinuously and freely on . . G is just isomorphic to the fundamental group of 4 /G .

Now our polyhedron & ~ M___ ought to be realized cither in the spherical 3-space S, or
in F; orinthe Bolyai-Lobachevskian hyperbolic space H, . The face pairings a and b ought
o be screw motions, in metric sense, generating the isometry group G, which should act

discontinuously and freely on the corresponding space #?> of constant curvature.

If we find 1n any A3 an isometry group G with its generators a and b such that (1)

is a faithful presentation for G then we can construct the fundamental polyhedron &2 with
great freedom. We choose a suitable point A,, «between the screw axes» of a and b (c.g. on

a shortest transversal to both). Then we form the images A, 1= A3y, 4, 1= A5y, ..., A}y 1=
A%, with
(13) k:=a™=b"=(ab)’ = (ba)?

as (1) and Fig. 1-2 dictate, so we get the vertices of 2. A suitable S; (on the axis of a)
and its a-image S, := §2, then S, (on the axis of b) and the b-image S, := S} will be the
«midpoints» of the faces f 1, f,, fi-1, fy, respectively. The faces themscelves will be unions
of triangles, ¢.£.

(14) f, =8A,B,US,B,B,U...US,ApA,.
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Figure 3

Finally, we shall have a concave polyhedron 92 bounded by these faces.

In [5] we have given this construction for the Euclidean groups P4; and P6, . Both are
generated by screw motions with axes parallel to the translation & in (13). Then ab and so
ba = a~'(ab)a are half screw motions. In the Euclidean cases (13) implies = + + = 2

providing only (m,n) = (4,4) and (6,3).
1

If 1; + - > % then & 18 finite group, and we get well known spherical space forms. In
(13) k = —1 will be the involutive screw motion in the spherical space S°.

The octahedron space ¢@ has been illustrated in Fig. 3 where the characteristic simplex
&o— = CyC,C,Cy with Coxeter diagram are also drawn. Cy, C,,C, are centres of the
body, of a face, an edge, respectively, C, is a vertex of ¢@. The planes m*, opposite to C;,

are characterized by the nodes of the diagram. For istance, m? and m? are connected with
a branch labelled by n,, = 3, indicating the face angle /3 [12]. Thus & has face angles



342 E. Molnar

2w/3. Identfying the opposite faces of ¢ by screw motions z, a, b, ¢ with «translational»
component 2 - C,C; = w/3 and with «rotational» component 7/3, we get 4 edge classes
and the presentation of the fundamental group G 5 by

b=gcz '=abo).

(15) Gp = (z,0,b,c—1=baz ' =cbz"

Expressing z = ba,c = b~'a™! and changing b~! «— b, we find that G5 ¥ G, is
just the binary tetrahedral group consisting of 24 elements.

We also know that the Threlfall binary octahedral group G4, of order 48 can be faithfully
presented by (1) in 83 and so is the binary icosahedral group G, of order 120.

My, = §° /Gs;y is just the Poincaré dodecahedron space &7 described in Fig. 4, indicating
the generating screew motions u, v, w, z, y, 2 with «rotation and translation componcnts» of
n/5 . We get 10 edge classes providing the defining relations:

1

euyr™ =1, vzl = l,,——:v—u.!u:l:'1 = ],

1 = yum"l =zwr ' =vulz=wr = yw“lu = zy‘lw = uz_ly.

This presentation can be reduced by eliminating w = u™'v, y = v 'uly,

z=v 'u" vy, 2= u"'vu. We have

(16) G@=(u,u—1=uvuv_lu_lu"l=uu_2vuu"1u).

Introducing new generators a := u,b := u=?v~! (i.e. u = a, v=b"'a?), we just obtain
G = Gy -

Now we formulate our

THEOREM 1. The identified tetrahedron 9 ~ M, is a compact manifold for every
3SnSm € Z. Iis fundamental group is isomorphic to G, = (m,n,2) with pre-

sentation (1). M_. is not homeomorphic to a space form except for the cases (m,n) =

(3,3),(4,3),(5,3),(6,3),(4,4).
Proof. It remains to prove that G, cannot be isometry group in the hyperbolic space H? in
cases # + % < % We start with the following equivalent presentation

(17) G, =(ab—a™=b"=(ab)?=(ba)?),3SnSmeZ.

We know from the classification of motions in H> that we should have a screw motion
k in (13), i.e. 1n the relations of (17). Then the screw motions a and b should have the
same screw axis, and G, would be cyclic group. But then G, could not have a compact
fundamental domain. Q.E.D.
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4. M__ AS SEIFERT FIBRE SPACE

For the exceptional manifolds M_ . in Th. 1. arises a natural problem, how to describe
their topological structures, and wether these M can wear locally homogeneous complete
Ricmannian metric. Discussing about my construction (1988 October), E. B. Vinberg called
my attention to the Scifert fibration [9] and the eight geometries of Thurston [11]. I received
the same questions from the Referee to the former version of my note (1989 August). After
having studied Scifert’s classic [9] and the excellent survey paper of P. Scott [8, §3-5], I can

formulate the answer as follows:

THEOREM 2. Each manifold M__ is homeomorphic to a Seifert’s fibre space, namely, to

n
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the circle bundle over a 2-orbifold #* /[ m,n,2)* where #? is either the sphere S*(>)

or the Euclidean plane E*(=) or the hyperbolic plane H*(<) if L+ L L respectively

The universal covering space Hmn IS just the universal cover of the unit tangent bundle
Tl(_,ﬁz) which is isometric to S*(>), E*(=) and Sf;R(-::) , respectively.

Here [ m, n, 2] denotes the Coxeter group generated by reflections in the side lines of the
triangle withangles X, £ ¥ and [m,n, 2]" isitsrotational subgroup of index 2. T ()

consists of all the unit vectors at the points of the plane #* of constant curvature.

Proof. We do not cite all the arguments from [8], [9], [11]. See particulary pp. 479-480 of
[8]. By formulas (13) and (17) we derive that the cyclic group K generated by k is the centre
of &G, . Factorizing by K , we get the presentation

(18) G,../K=@@b-3"=b =(ab?=1)

which is just isomorphic to [m,n,2]* and it can be realized as isometry group of Y by
Th. 2. So we get the orbifold .#2% /[m, n,2]* as the base of the bundle (Zerlegungsfliche).
The cyclic group K characterizes any (regular) circle fibre (the circle of the unit vectors at
a point of .#* different from any rotation centre). G, . acts by isometries on T, (.# %)
discontinuously and freely and the quotient is T (4 : /Ilm,n,2]*) asin Th. 2. The cyclic

group K winds up the real line R about every circle fibre. The isometry TITEZ) o .STI_:; R
is described, e.g. in [8, §4] and [11]. Q.E.D.

A2

Figure S
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Summarizing, our construction gives a geometric (simplicial) picture for an interesting
class of Seifert fibre spaces.
In Fig. 51 have described another tetrahedron, identified by topological screw motions

a and b. This & ~ S __ analogously lcads to the spherical lens space mentioned in the
introduction.
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