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AN INTEGRAL FORMULA FOR CONVEX SETS IN THE EUCLIDEAN PLANE
C. PERI

Abstract. Let K be a bounded, closed, convex region in the Euclidean plane. The main pur-
posce of this papcer is to dctermine the measure of all sets congruent to K which are contained
in a convex polygon. By the application of this result some geometric probability problems
involving lattices of figures will be solved.

1. INTRODUCTION

Let K, K, be two bounded, closed, convex sets in the Euclidean plane of area S, S,
and perimeter L, L, respectively.

We denote by u( K; KNK, # @) the measure of all sets congruent to K which intersect
K,. L. A. Santald has shown that [2]

WK;KNKy#3) =2n(S+8,) + LL,.

[t may be a more difficult problem to find a general formula representing the measure of
all sets congruent to K which are contained in K, . However such a measure is known in
the case where the boundaries of K and K, have continuous radii of curvature, so that the
greatest radius of the boundary of K is equal to or less than the least radius of the boundary
of K, [2].

Moreover M. J. Stoka has determined the measure of all circles with a given radius which
arc contained in a parallelogram K, , [4]). Stoka’s formula has been extended by A. Vassallo
to the gencral case where K is a convex polygon, [35].

Here we assume that K 1s a genenc bounded, closed, convex set and K, is a convex
polygon in the plane. Then we derive an integral formula representing the measure of all sets
congrucnt to K which are contained in K, (formula 3). This result enables us to calculate
such a measure when K, is a parallelogram and K is either a convex set of constant breadth
or a regular convex polygon (formulae 6 and 7).

These formulae have a natural application in geometric probability, especially in connec-
tion with problems related to lattices of figures, where the convex polygon K, is identified
as the fundamental cell of a given latuce. This will be discussed in section 3 where we shall
consider in detail lattices of parallelograms.

2. «CONVEX SET » SHALL HEREINAFTER MEAN «PLANE BOUNDED,
CLOSED, CONVEX SET WITH INTERIOR POINTS»

The position of a convex set K in the Euclidean plane is determined by the position of a
point P(z,y) fixed in K and the angle ¢ formed by a direction r, rigidly associated to K,
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and a fixed direction of the plane. Then in order to measure sets of convex sets congruent Lo
K we can introduce the kinematc density as

(1) dK=dzAdyAdep.

This measure is chosen as being the only measure, up to a constant factor, which remains
invariant under the group of the motions in the plane, [2].

Let us consider a convex set K having a boundary 0K of length L. We recall that a
support line of K 1is a line which intersects dK and does not cut K. Such a line can be
coordinatized as follows. Let us draw the perpendicular straight line from P, let p be the
distance and € be its angle with the direction r. Then a support line is uniquely determined
by (0, p) . Clearly, if we consider any support line, p is a function of . This function p( )
is called the support functionof K .

It follows, from Cauchy’s formula [2], that:

2%
(2) 0)db=1L.

0
We shall now determine the measure of all sets congruent to K which are contained in
a convex polygon K, . Naturally it will be assumed throughout that K can be contained in

K, .

Theorem 1. Let K, be a convex n-gon of area Sy and perimeter L. Let K be a convex set
of area S and perimeter L which never intersects two nonconsecutive sides of K, if n> 3
orall the sides of K if n= 3. Denote by uy( K; K C K,) the measure of all sets congruent
to K which are contained in K, . Then

n 2w
p(K, K C Ky) = 2175'0 — LoL + E(l/sin ai)/ p(0,)p(0,_,)dp+
i=1 0

(3)
n 2%
+(1/2) E(cotgai + cotga,,,) + / pz(ﬂi)d ©,
0

$=]

where, for1 = 1,...,n, a; are the interior angles of K, and (0,,p(0,)) are the coordinates
of the support lines of K parallel to the sides of K, .

Proof. We have to integrate with respect to the density (1) over all values z, y, ¢ correspond-
ing to the positions of K for which K is contained in K, . By fixing ¢, we have

2x

WUIGK CK) = [ Sy(p)dp
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Figure 1

where Sy () denotes the area of the domain drawn by the position point P of K when K
moves by translation inside K, .

Let A;,s = 1,2,...,n, be the vertices of K, and let £; be the length of the side with
endpoints A, A;,,,where A_,, isinterpreted as A, .

Let us consider the positions of K, corresponding to a fixed orientation ¢, for which K
1s contained in K, and touches two consecutive sides of K, as shown in figure 1.

We denote by A; the position of P for which K touches the sides A,_, A; and A A,,,,
where A, is interpreted as A, . The points A; are the vertices of a convex polygon Kj
having sides parallel to the sides of K.

Then, for fixed ¢, the convex set K is contained in K if and only if P falls in Kj.
Thus S, () coincides with the area of K.

Inorder to calculate S, () we consider the points B; and C; determined on the boundary
of K, by the sides of K drawn from A}, as shown in figure 2.

A, \ CI B“’ 1\ Al+1
—— \ —————————
B 'l
)\
\
\

Figure 2
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Let Z, be the trapezium of vertices A A,,,C;,,B; and let S(Z,) be the arcaof ;. More-
over let P; be the parallelogram of vertices A;A.C;B; and let S(P;) be the arca of P;.

Then
So() = Sp — Y S(T) + ) S(P).
i=1 i=1
Letus denote by p(0) the support function of K and by (8;,p(0,)) the coordinates of the
support lines of K parallel to the sides of K. Then the distance between the sides A A,

and AA;,, is given by p(6,) and the length of the side B,C,,, is £, — p(0,)(cotga,+

+cotga,-+1) y
Thus we have
S(T,) = (1/2)[21, — p(6;)cotga; — p(6,)cotga,, ,1p(0,),
S(P,) = p(ﬁ‘i)p(ﬁ“-_l)/(sin a;),
so that

So(p) =8, — Eﬁip(ﬂi) +(1/2) Epz(ﬂi)(cmgai + cotga,, )+

g=] 1=]

+ ) {p(6)p(6;_,)/(sin &) }.

i=]

We note that the angle 6, can be expressed by 0, = (7/2) + 4, — ¢, where 4; denotes the

- angle inclination of the side A A. , from the z axis. Hence by (2) we get

1< %1+ 1

2w n n ix
fn [Eeipw,-) dfp=22;£ p(p)dy = Ly L.

g=1] o i=]

Finally, if we integrate S,(¢) with respect to dy over the range [0,2x], by the last
formula we obtain the desired formula.

Remark 1, It is easily seen that
Y {[p(8,)p(6;_1)/(sin &)1 + (1/2)p*(6;) (cotga; + cotgay,;)} =

1=1

= E{[p(ﬁi)p(ﬂm)/(sin ;)] +( 1/2)[1?2(9;') + P2(9£+1)]Cmgﬂi+1 }-

i=1
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Figure 3

Therefore if we write

S(p) = Y {[p(8)p(6;,,) /(sin o, )] + (1/2)[p*(0,) + p*(6,,,) Jcotgay,,, },

i=1
formula (3) becomes

2w
(4) L(K,K C Ky) =215, — LyL + S(p)do.

0

Notice that the expression [p(0.)p(0,,,)/(sina,,)] + (1/2)[p*(6,)+
p? (0., )]colge,,, represents the arca of the region shaded in figure 3.

In addition we assume that K is either a convex set whose boundary does not include
rectilinear components or a polygon of m sides, with m > n— 1,

Then S(p) can be interpreted as the arca of the polygon circumscribing K with sides
parallel to the sides of K.

Next we apply formula (3) to particular classes of convex sets.

Proposition 1. Let K, be a convex n-gon of area S, and perimeter L, . Let K be a circle
of radius R which can never intersect two nonconsecutive sides of Ky if n > 3 or all the
sidesof Ky if n=3. Then

(5) u(K; K C Ky) =278, — 2mnRLy + 27R? ) colg(ay/2).

1=1

The proof follows directly from formula (3) by substituting K = p(8;) . This result has
been already obtained by S. Vassallo in [5].



252 C. Peri

Proposition 2. Let K, be a parallelogram of sides a,b and angle o, with o < w/2.

Let K be a convex set of area S and perimeter L having a constant breadth D, with
D < min(asin a, bsin «) . Then

(6) p(K; K C Ky) = 2mabsina— 2nD(a + b) + (27 D?/sin a).

Proof. We recall that K is a convex set of constant breadth D if p(0) + p(0 + 7) = D =
constant , where p( @) is the support function of K . Then we have L = D by formula (2).
In order to apply formula (3) we note that since K, is a parallelogram we have
cotga, + cotga,,, =0, sina; = sina, p(0;,,) = p(0; + w) forall s.
Thus formula (3) becomes in this case

29 4
(K, K C Ky) = 2mabsina— 27D(a + b) + (1/sin a)f Ep(ﬂ,-)p(ﬂi_l)dgp.
0

g=1
Moreover

2« 4 2 y o
A Ep(ﬂ)p(ﬂi_l)dp: o Dp(6,)dyp + . Dp(6, + m)dp = 27 D%,

t=]

This implies (6).
In the case where K is a circle of diameter D, formula (6) has been obtained by M. L
Stoka in [4].

Proposition 3. Let K, be a parallelogram of side a,b and angle o, with o < w/2 . Let K
be a regular polygon with n sides of length £ which can never intersect two nonconsecutive

sides of K . Then
(7) p(K;K C K,) = 2nabsina — 2nl(a + b) + {nl%/[sin asin?(n/n)]}F(n, B),
where the function F(n, B) is defined as follows.
(i) For neven,if jr/n< a < n(j + 1) /a, with j even,and 8 = a — jn/n, then:
F(n,B) = [(w/n) — (B/2)]cosB+ (B/Dcos[(2n/n) — B] + (1/2) sin[(27/n) —
— 1+ (1/2) sin B.

(i) For neven,if jr/n< a < #w(j + 1) /n, with j odd, and 8 = a — j=/n, then:

F(n,pB) = (1/2)[(n/n) + Blcos[(n/m) — B] + (1/2)[(w/m) — Blcos[(w/n) + B+

+ sin(7/n)cos .
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(iii) For nodd,if jn/2n< a < w(j+1)/2n, with j even,and B8 = a— jn/2n, then:

F(npB) =(1/4){[(27/n) — BlcosB + [(w/n) + Blcos[(n/n) — B]+
+ [(w/n) — Blcos[(w/n) + B] + Bcos[(2n/n) — B] + sin B+
+ sin[(27/n) — B] + sin[(w/n) — B] + sin[(=w/n) + B]}.

(iv) For nodd,if jn/2n< a < w(j+ 1)/2n,with j odd,and 8 = a — j7/2n, then:

F(n,B) =(1/49){[(w/2n) + Blcos[(3n/2n) — B] + [(37/27n) + Blcos[(n/2n)—
— Bl+ [(7/2n) — Blcos[(3n/2n) + B) + [(37/27n) — Blcos[(n/2n) + B+
+sin[(3n7/27n) — Bl +sin[(nw/2n) — B] +sin[(37/2n)+ B] + sin[(x/2n)+

+ Bl}.
Proof. Since K, 18 a parallelogram formula (3) becomes

2% 4
(K K C Ko) = 2mabsin & — 2nl(a + b) + (1/sin a)/ Y " p(6)p(6;,5)dp
0

=1

where p(0,,,) = p(0, + w) for all +. We recall that 6; denotes the angle formed by the
direction perpendicular to the 1-th side of K, and the direction r.

Then we label the sides of K, so that §, = @, + . For the sake of brevity we write 8
instead of @, . Since € = y — p, for a suitable constant «, we can express the above integral
by means of the new variable 6 as follows:

2% 4
p(K;KCKﬁ)=21mb5i!1ne—2n£(n+b)+(l/sina)[ Y " p(8,)p(6;,,)d60.
0

1=1

From a geometric point of view, by remark 1, this is equivalent to fixing K in the plane
and to considering all the parallelograms of angle o« which circumscribe K. This approach
seems to be more convenient in order to calculate p(0,) .

To fix K in the plane is just the same as to fix a frame in the plane. Therefore we take the
centre of the circumcircle of K as the origin O and a line drawn from O to a vertex of K as
the z-axis, as shown in figure 4 where n= 6.

Morcover we identify the position point P of K with O and the direction r with the
z-axis. Hence p(0;) represents the length of the projection of the radius of the circumcircle
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Figura 4

of K in the direction determined by .. Further, any configuration corresponding to a value
8, with @ > 27 /n, can be obtained from a configuration corresponding to a suitable value of
@, with 0 < 0 < 27 /n, by arotation of a multiple of 2w /n around the origin O.
Therefore the function p(8,) is a periodic function of period 2 7/n. Thus it is sufficient
to determine p(6;) for § € [0,27/n].
Let us assume that n is even.
Then, if jr/a< a < w(j+ 1)/nand 8 = a — (jn/n), we distinguish the following
cases.
I) Let j be even. Then:
a) for 6 € [0,(m/n) — B],p(0,) = p(63) = Rcosd,p(0,) = p(8;) = Rcos(0 + f);
b) for 6 € [(w/n) — B,w/n],p(0,) = p(63) = Rcos0,p(0,) = p(b,) =
= Rcos[(2n/n) — 0 — B];
c) for 0 € [nw/n,(27/n) — Bl,p(0,) = p(0;) = Rcos[(2n/n) — 0],
p(0,) = p(0,) = Reos[(2n/n) — 6 — ],
d) for0e[(2n/n) — B,2n/n],p(0,) = p(0;) = Rcos[(2n/n) — 0],

p(0,) = p(0,) = Reos[0+ B — (2w/n)]

where R denotes the radius of the circumcircle of K.
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I[T) Let j be odd. Then:

a) for § € [0,(n/n) — B],p(0,) = p(6;) = Rcosf,p(0,) = p(b,) =
= Rcos[(w/n) — 6 — B];

b) for 0 € [(n/n) — B,n/n],p(0,) = p(0y) = Rcosb,p(0,) = p(0,) =
= Rcos[0+ B — (n/n)];

c) for 0 € [n/n,(2n/n) — B],p(0,) = p(8;) = Reos[(2n/n) — 0],
p(0,) = p(0,) = Reos[0+ B — (w/m)];

d) for 6 € [(2n/n) — B,2n/n],p(0,) = p(63) = Rcos[(2w/m) — 0],
p(0,) = p(6,) = Reos[(3n/n) — 6 — B].

Let us assume that n is odd.

Then,if jn/2n< a < 7w(j+1)/2nand B = a—(jn/2n), we distinguish the following
cases.

I) Let j = 4h. Then:

a) for 6 € [0,(n/n) — B1,p(0,) = Rcosd,p(0,) = Rcos(8 + B),p(8;) =
= Rcos[(n/n) — 0),p(8,) = Rcos[(w/n) — B — O],
b) for 6 € [(w/n) — B,n/n),p(6,) = RcosO,p(6,) = Rcos[(2n/n) — B — 0),p(6;) =
= Rcos[(n/n) — 0),p(0,) = Rcos[@+ B —(n/n)];
c) for 6 € [n/n,(27/n) — B,p(6,) = Reos[(2n/n) — 6],p(6,) = Reos[(2m/n)—
— B — 61,p(03) = Rcos[8 — (w/n)],
p(6,) = Rcos[0+ B — (n/n)];
d) for@ € [(2n/n) — B,27/n]),p(0,) = Rcos[(2m/n) — 0],p(6,) = Rcos[0 + B—
— (2nw/n)],p(6;) = Rcos[@ — (w/n)],
p(0,) = Reos[(3n/n) — 6 — B].

II) Letj =4h + 2. Then:

a) for 6 € [0,(n/n) — B),p(8,) = Rcosf,p(8,) = Rcos[(n/n) — B —0],p(0;) =
= Rcos[(mw/n) — 0],p(8,) = Rcos(0 + B);
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b) for @ € [(w/n) — B, w/n],p(6,) = Rcosd,p(8,) = Rcos[0+ B — (n/n)],p(0;) =
= Rcos[(w/n) — 0],p(8,) = Recos[(27/n)—
— B — 61
c) for6 € [n/n (2nw/n) — B],p(6,) = Rcos[(2n/n) — 0],p(8,) = Rcos[0 + B—
- (m/n)],p(0;) = Rcos[0 — (w/n)],p(0,) =
= Rcos[(2n/n) — B — 0];
d) for 0 € [(27/n) — B,2x/n),p(8,) = Rcos[(27/n) — 0),p(8,) = Recos[(3m/n)—
— 0 — B1,p(0,) = Reos[0 — (n/m)],
p(0,) = Rcos[@+ B — (27/n)].

IIl) Let j =4h+ 1. Then:

a) for 8 € [0,(w/2n) — B],p(0,) = Rcos@,p(0,) = Rcos[(w/2n) + B+ 0],p(0,) =
= Rcos[(w/n) — 8],p(0,) = Rcos[(nw/2n) — B — 0];

b) for @ € [(w/2n) — B,n/n),p(0,) = RcosO,p(0,) = Recos[(3n/2n) — 0 — 3],
p(0;) = Reos[(m/n) — 0),p(6,) = Kcos[0 + B—
—(m/2n)];
c) for@ € [n/n(3n/2n) — B],p(0,) = Rcos[(2n/n) — 6],
p(0,) = Reos[(37/2n) — B — 0],
p(05) = Rcos[0 — (w/n)],
p(04) = Rcos[0+ B —(w/2n)];
d) for 0 € [(3n/2n) — B,27/n),p(0,) = Rcos[(2n/n) — 0),p(0,) = Rcos[0 + B—
—(3n/27n)],p(03) = Rcos[0 — (n/n)],p(0,) =
= Rcos[(S7/2n) — 0 — B].

IV) Letj = 4h+ 3. Then:

a) for 0 € [0,(7/2n) — B],p(0,) = Rcosf,p(0,) = Rcos[(n/2n) — B—0),p(8,) =
= Rcos[(m/n) — 0],p(0,) = Rcos[(w/2n) + 0 + B];
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b) for 8 € [(w/2n) — B, n/n},p(0,) = Rcosd,p(8,) = Recos[+ B — (w/2n)],
p(05) = Reos[(m/n) — 01,p(0,) = Reos[(3m/2n)—
- B -0l
c) for@e€[n/n (3n/2n) — B],p(0,) = Rcos[(2n/n) — 0],p(6,) = Rcos[@ + B—
—(27/n)],p(0,) = Rcos[@ — (m/m)],
p(0,) = Rcos[(3n/2n) — B — 0];
d) for @ € [(3n/2n) - B,2n/n]),p(0,) = Rcos[(2n/n) — 0],
p(0,) = Rcos[(5n/2n) — 6 — B],
p(0;) = Rcos[f — (mw/n)],
p(0,) = Rcos[0+ B — (37/2m)].

Notice that by integrating with respect to d @ the cases I and I, as well as the cases IIT and

IV, give the same intcgral.
Hence we obtain the formula (7) satisfying the requirements (1) - (iv) by micgrating the

function )::.Ll p(0,)p(0,,,) withrespect to d @ and by substituting £/(2 sin(w/n)] for R.

Now, as an example of this result, we consider the case where K, is a rectangle of sides

a and b.
o If n=2(2k+ 1) then @ = #(y + 1)/n with j = 2k and there follows from (7)

u(K; K C Ky) =27mab—2nl(a+ b) + [nl?/sin®(xw/n)1[(n/n)cos(x/n) + sin(m/n)].
If we denote by S the area of the circumcircle of K and by S the area of K, then the
above formula becomes

p(K; K C Ky) =2mab—2nl(a+ b) + 4sec(nw/nm)(S+ S).

e If n=4k thecn @ = wn(j+ 1)/n, with j = 2k — 1, and there follows from (7)

u(K; K C Ky) =2mab—2nl(a+b) + [nlz/sinz(ﬂ/n)][(ﬂ/n) + sin(w/n)ycos(w/n)].
Thus, by using th¢ same notation as above, we get

u(K; K C K,) =2mab—2nl(a+b) +4(S+ S).

e Finally, if n is odd and consequently oo = #n(j + 1) /2n, with j = n— 1, there follows
from (7)

u(K; K C Ky) =2mab—2nl(a+ b) + [nl?/sin?(w/2m)}{[2 sin(7/2n)][1—
—sin’(n/2n)]}.
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3. The results of section 2 will apply to problems involving lattices of figurcs with a convex
fundamental cell, as described below. We recall that a «lattice of fundamental regions» is a
sequence {A, },n of regions A, such that:

1) every point of the plane belongs to exactly one region A _;

ii) every region A_ can be transformed into the rcgion A, by a motion of the Euclidean
plane which transforms any A; into another region A, i.e. a motion which Ieaves the lattice
invariant as a whole.

The region A, will be referred to as the «fundamental cell» of the lattice.

We now prove:

Theorem 2. Let K, be a convex polygon of area S, and perimeter L, which is the funda-
mental cell of alattice L. Let K be a convex set of area S and perimeter L which can never
intersect two nonconsecutive sides of Ky if n> 3 of all the sides of K, if n= 3. Suppose
that K is randomly located on L. Then the probability that K intersects the boundary of a
fundamental region of L is given by

Lol = Jy" S(p)dp
Z'TTSG ’

(8) p=

where S(yp) has the same meaning as in remark 1.

Proof. The probability p corresponds to the probability that K, with its position point P
inside K, , intersects the boundary of K.

Let g be the probability that K is containedin K. Thenp=1 —gq.

Let us denote by u( K; P € Ky) the mcasure of all positions of K for which P € K.

Then
_w(K;, K C Ky)

- w(K;P€EKy)'

g

By (1) we get

p(K;PEKﬂ):/ dzdydyp =2nS5,.
{(PEK,}

Thus, there follows from formula (3) and remark 1

PR 7% 2 M (COLY:
Z'HSD '

We now consider the particular case where the fundamental cell of the lattice 1s a paral-
lelogram.
More precisely we prove
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Proposition 4. Let L be alattice of parallelograms of sidesa,b and angle o, with a < w /2 .
Let K be a convex set of constant breadth D, with D < min (e sin a, b sin «) , randomly
located on L. Denote by p;,3s = 0,1,2, the probability that K intersects exactly 1 lines of
L. Then

absin? a — D(a + b) sin a + D?

9 -
(%) Po absin? o ’
D(a + b) sin a — 2 D?
(10) Py = ( ) .2 *
absin‘ «
D2
11 = .
(11) P2 absin? «

Proof. Since p, = q, where q is the probability determined in the previous proposition, then
by (6) and (8) we have

_ p(K; K C Ky)  absin® a— D(a + b) sin a+ D?
Po p(K;P € K,) absin? o |

Let us consider the polygonal line I'y consisting of two consecutive sides of a parallelo-
gram of L. All sides of the parallelograms can be obtained by moving I'y so that L remains
invariant as a whole.

Them from a well-known formula involving lattices of curves [2], we get

2(a+ b)D
absin o

E(n) = ,
where n 1s the number of intersections of K with the straight lines of £ and E(n) is the
mean value of n.

Notice that the positions of K with n odd constitute a set of zero measure, because they
are positions of contact, determined by two parameters (set of motions of dimension 2) while
the kinematic measure refers to sets of motions of dimension 3.

On the other hand since D < min(a Sin a, b sin «) , it follows that n < 4 . Therefore

the above formula becomes
2(a+ b)) D

absina

2p, +4p, =

Hence we can derive the desired formulas (10) and (11) noting that p, + p; + p, = 1.
Similarly we can prove the following
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Proposition S. Let L be a lattice of parallelograms of sides a,b and angle o, with a < m/2 .
Let K be a regular polygon with n sides of length l. Assume that K is randomly located
on L and can never intersect two nonconsecutive sides of the parallelograms of L. If p; is
defined as in the previous proposition, then

~ . nl(a+Db) nl”
(12) Po =1 wabsin o ¥ 2 wabsin? asin? (7/n) F(n A),
nl(a + b nl?
(13) p = at’) F(n, ),

wabsina  wabsin? asin?(n/n)

nlz
14 = F |
(14) P2 2 wabsin? asin? (7 /n) (nF)

where F(n, B) is defined as in Theorem 1.

The proof follows from the same argument as in the previous proposition, noting that in
this case

2nl(a + b)
wab sin o

E(n) = , and u( K; K C K) is represented by (7).
We now regard a lattice of parallelograms as a union of two lattices consisting of strips of

constant breadth.
Then we have the following results.

Proposition 6. Let L be a lattice of parallelograms of sides a, b and angle o, with a < © /2 .
Let L, be the lattice of strips determined by the lines of L parallel to the side of length a.
Similarly, let L, be the lattice of strips determined by the lines of L parallel to the side of

length b.

Let K be aconvex set of constant breadth D , with D < min(a Sin «, b sin «) , randomly

locatedon L.
Denote by I., with 1+ = 1,2, the event which happens when K intersects the straight

linesof L. Then I, and I, are independent events.

Proof. Let p(I;) be the probability associated to I;. Since the density (1) is invariant under
inversion of the motion, we can assume that K is fixed in the plane and £ moves at random
in the plane. Then p( I,) is equal to the probability that a line of L, intersects K.
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Let us assume that K is surrounded by two circles C; and C, of diameter a sin o and
b sin o respectively. The circle C; is always intersected by one straight line of £.. Then
p( I;) represents the probability that a straight line of L, intersecting C;, also intersects K.
By a well-known formula, [2], the probabilities p(I;) and p(I,) are given by

p(I,) = D/(b sin a) and p(I,) = D/(a sin a).

Moreover let I = I, U I, and let p(I) be the probability associated to I. From (8) and
(6) we get
D(a + b) sin o — D?

I =
p(1) absin? o

Thus

DZ
2 =p(Il)p(I2)l

absin® «

p(IrNL) =p()) +p(L,) —p(I,Ul) =

giving the desired result.
In the particular case where K is a disk of diameter D, this result has been already ob-

tained by M. 1. Stoka in [4].

Proposition 7. Let L bea lattice of parallelograms of sides a,b and angle o, with a < /2.
Let K be a regular convex polygon with n sides of length £, which can never intersect two
nonconsecutive sides of the parallelograms of L.

Suppose that C,,L,, I,, I, have the same meaning as in the previous proposition. Then
there exists a value of « such that I, and I, are independent events.

Proof. Using the same argument as above, by formulas (7) and (8) we obtain

nl nl
p(1}) = wbsin a’ p(fy) = ma sin o’
2
o merd) R p)

mabsina  wabsin? ﬂ:SiI’lz(ﬂ/ﬂ) '

where F(n, 8) is defined as in Theorem 1.
Then p(II)P(Iz) — p(Il M Iz) if and Only if

(15) F(n,B) = (2n/7) sin®(x/n).

Consequently, we have to prove that equation (15) has a solution B,with0 < B < 7/n
forany n> 3 evenand with 0 < 8 < m/(2n) for any n odd.
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Let us consider the following functions:

®,(z) = z+ (1/2) sin 2z — (2 /z) sin? x;

®,(z) = z cos z+sin z — (2 /1) sin? z;

V. (z) =(1/4)(2z+2 zcos z+sin2z + 2 sin z) — (2/z) sin? z;

W, (z) = (1/2)[(3/2) zcos (z/2) + (z/2) cos (3z/2) + sin(z/2) + sin(3z/2)]—

— (2 /1) sin? z.

By using the Taylor expansion at O of these functions we verify that for any z € (0, 1]

there follows
¥, (z) > ®(z) >0.01z° >0,

d,(z) < -0.022° <0,
¥,(z) <2d,(z/2) <O0.

Let
G(n,B) = F(n,B) — (2n/x) sin?(n/n).

For fixed n, G(n, B8) is acontinuous function of 8. Morcover by the definitionof F(n, 8)
we have

e incase (i): G(n,0) = ®,(n/n), G(n,7/n) = D,(7/n);

e incase (ii): G(n,0) = d,(n/n), G(n,7/n) = P,(7/n);

e in case (iii): G(n,0) = ¥, (n/n), G(n,n/2n) = ¥Y,(7/n);

ein case (iv): G(n,0) = ¥, (nw/n), G(n,n/2n) = ¥,(nw/n).

Thus in cases (i), (ii) the function G(n, 8) changes sign in [0, 7/n] and in cases (iii),
(iv) it changes signin [0, 7w/2n].

Therefore there exists a value 8 such that G(n, 8) = 0 where 8 € (0, n/n) for n even
and 8 € (0,w/2n) for n odd.

These conclusions complete the proof.

Following M. I. Stoka [4], we now assume that the sct K is random both in its position
and in its geometric character.

Then we prove

Proposition 8. Let L be a lattice of parallelograms of sides a, b and angle o, with o < /2 .
Let K be a convex set of constant breadth A , with 0 < A < D < min (asin a,bsin o),
where A is a random variable having a probability distribution with density f(A) and sec-
ond moment E(A?).

Assume that K 1s randomly located on L and dcnote by p;, with1=0,1,2, the proba-
bility that K intersects L in exactly 1 lines.
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Then
(16) ~ absin®* a — E(A)(a+ b)sina+ E(A?)
& ﬂbSiI’lza )
E(A)(ﬂ-"'b)Sina_zE(AZ)
17 _ |
( ) & ﬂ.bSinza
E(A?)
18 _ |
( ) P2 ﬂbSiI’lza

Proof. Let us denote by p, () the probability that K does not intersect the lines of £ when
A = ). Then

D
2o =f0 po(X) FOA)AA.

Thus, by virtue of formula (9) we get

f(A)dA =

-/‘” |tc1.bsin2 a— Ma+b)sina+ A\
Po
0

absin? o

Il

absin’ o — E(A)(a+ b)sina+ E(A?)

absin? o |
Similarly, we¢ obtain from (10) and (11) the desircd formulas (17) and (18).
In the sam¢ way we can prove

Proposition 9. Let L be a lattice of parallelograms of sides a, b and angle o, with ¢ < 7/2 .
Let K be aregular convex polygon with n sides of length A , where A is a bounded random
variable having a probability distribution with density f(A) and with the second moment
E(A?).

Assume that K is randomly located on C and it can never intersect two non-consccutive
sides of the parallclograms of L. Then if p; has the same meaning as above, it follows that

(a+B)E(A)  nF(nB)E(A?)
mab sin o 2 mabsin?® asin?(m/n)

(19) Dy = 1

_nla+ B)E(A)  nF(nB)E(A?)
~ mabsin o nabsin? asin?(n/n) "’

(20) P

nF(n, B)E(A?)
2 wabsin® asin?(m/n)

(21) P =

where F'(n, B) is defined as in Theorem 1.
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Remark 2. In this section we have assumed that KX moves at random in the plane while the
lattice L is fixed. Since the density (1) is invariant under the inversion of the motion, the
previous results hold even if we fix K and move L. Then the probability p; can be regarded
as the probability that £ cuts K by exactly s lines.

The latter approach is generally adopted in the stereological applications, where K is a
convex set whose geometric properties are studied by exploring K with random lattices of
lines (or planes). Then Propositions 8 or 9 enable us to estimate the moments E(A) and
E(A?).
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