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ON THE FIXED POINTS OF THE LIE ALGEBRAS
ASSOCIATED WITH A FREE GROUP PRESENTATION

RAINER ZERCK

Introduction. Linear methods are an important tool in group theory. A standard procedure
is to associate Lie algebras t H = P, 7.H /7., H with suitable central subgroup series

{r.H|c > 1} of the group H under consideration. Thus the commutation in groups may be
expressed in terms of (bi)linear forms. Conditions of various kinds on the subgroup series
lecad to different Lie algebra structures. In this paper we are concerned with three types of
central subgroup series (two of them being connected with a prime number p) , which have
the common property that they carry free groups H into free Lie algebras of several type. We
prove (Theorems 1 and 2) that for any group ' given by a free presentation 1 — N —
F — G — 1 the fixed point subalgebras of the three Lie algebras mentioned form a free
subalgebra (G acts on 7.N/7, N by conjugation). For showing that in the two p-cases we
can choose, in fact, the same free generating set we state a more general result (Theorem 3)
concerning the fixed points of free restricted Lie algebras with respect to a homogeneous group
action which is of independent interest. The centres of the groups F/7_, N are described
(Theorems 3 and 4).

1. CENTRAL SUBGROUP SERIES

First we collect some basic facts about central subgroup series and associated Lie algebras
for which we refer to [4], [9], [10].
For an arbitrary non-trivial group H a normal subgroup series

(D H=nH>nH>...

is called central if

(2) (. H,7H)< T, H forc,e>1,

— ‘cte

where (7.H,7,H) is that normal subgroup of H which is generated by all commutators

(g,h) =g~ h~'gh withge 7.H,heH.
The associated graded abelian group

t H = @tcH = E}TEH/TﬁlH

c>l c>1
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carrics the structure of a graded Lie ring (that is a graded Lie algebra over the integers) by
linearly extending the commutation

(971 H, b7 H) :=(g,h) T4 1 H

forgeTH,heTH.
For a prime p a central serics (1) is called restricted p-central if

(T.H)? C Tch

for c > 1. Then t H is a restricted Lie algebra over the pnme field ¥ of characteristic p
with respect to

(p) . TH|T  H— T::pH/TEF"'lH thr,H — hP-rCPHH.

Remind that a restricted Lie algebra over a field k of prime characteristic p is a k-Lie
algebra I over k together with a map

Pl 1
which fulfils the following conditions:

()m)[P] = \P. glP]

(3) [a!?!,b] = (ad a)P(b)

(4) (a+ b)[P] = qlP) 4+ plP 4 Ap(ﬂ,b)

for a,b € L, A € k. Here, as usually, (ad a)(b) = [a,b]. The expression f\p(u,b) 1S a

lincar combination of right-normed Lic brackets of length p with entries a and b. A dctailed
discussion of these matters may be found in [3], Chap. 1, Scct. 11 or in the exercises 19 and
20 in 4], Chap. 1, Sect. 1. In the latter the restricted Lie algebras are referred to as p-Lic

algebras.
The third type of subgroup scrics we are interested in satisfics the conditions

(3) (T.H)F C 1 H
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for ¢ > 1 and is called the p-central series.
In this case the map

w:TH/T  H—71,H/T,sH :hTH — hP1_, H

is well defined. If (p,c) # (2,1), then w tums out to be a group homomorphism. Hence,
if p# 2 and (5) is fulfilled then t H is an Fp[w]-Lie algebra, where w is dealt with as a
transcendent element over F o Asan endomorphism of a graded Lie algebra w is of degrce
1:

w(t H) Ct_H.

The Jowercentral series, the lowerrestricted p-central series and the Jower p-central series
of a group H are defined inductively by

mH =rH=X\H=H and

vH = (. H,H)

x.H = N(~y;H)? (the product is taken over all pairs (4, k) with ip* > c)
MH=O_H H(O_ H)? =

= (q H)? (mH)? ...(v_ H)* (1 H), p#2,

respectively.
We introduce the following notations:

(6) 8 H =7 H/y, H sH=CPs H
c>1
(7) k H=xH/x  H kH=CDr H
c2>l
(8) | H=XH/\, H lH=1 H(p#2)
c>l

Clearly, g , k and | may be viewed as functors from the category of groups to the cate-
gories of graded Lie rings, graded restricted FP-Lie algebras and graded F [w]-Lie algebras
with w of degree 1, respectively.

These functors carry free objects into free objects. More precisely, let F(X) be the free
group on X , k acommutative ring, L*(X) and R*(X) the free k-Lie algebra and the free
restricted k-Lie algebra (in this case k is assumed to be a field of prime characteristic p) over
k on X , respectively. Then we have
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Theorem 0.

s F(X) = LZ(X") with X7 = {z7, F(X)| 1 € X}
kR F(X) = R'»(X"%) with X*= {2k, F(X)|z € X}
[ F(X) = Ll (XY with X* = {20, F(X)|z € X} (p#2).

The first part of the Theorem is the classical result of Magnus [11] and Witt [16]. The case
k 1is treated by Lazard [10], Theorem (6.5). The I -asscrtion 1s due to Skopin [15] and Lazard
[10], pp. 138/139. It got the form we cited here in the note [1] of Andozhskij and Tsvetkov.
A short explanation may also be found in the paper (6] of Bryant and Kovacs.

2. RESULTS
Assume the non-trivial group GG to be given by the presentation

] — N—F —G—1

with F' a non-cyclic free group. Then by Schreier’s Theorem, the normal subgroup N 1s also
free with some free generating set X : N = F(X). We henceforth assume that N ¢ {F, 1}.

The graded Lie algebras g N, k N and [ N (p # 2) are endowed with a homogceneous
(right) G-module structure by setting

(ur NN = wluwr | N

forc>1,weF,uerN, € {,k,A }. Note that this G-action is compatiblc with the
associated Lie algebra structure, i.e. forg € G,c,e > 1, 7€ {7,k A}, v €T H,vETH
we have

[ur N,v7 N1® = [(ur, N)?, (v, N)?].

Moreover,

((””alN){P])g = ((ux N)Q)!PI

c+ ]

and

(9) (w(ur N =w((ur (N (p#2).

The direct sums (6), (7), (8) turn out to be G-module decompositions for // = N.

The G-modules g _N, k N and I _N are called the cth relation module, the cth re-
stricted p-relation module and the cth p-relation module, respectively.

For a (right) G-module M write M ¢ for the set of those elements of M which are fixed
by all elements of G. We are interested in describing the Lic algebras (g N)©, (k N)€ and
(IN)C.



On the fixed points of the Lie algebras associated with a free group presentation 239

Theorem 1. Forall ¢ > 1 we canchooseasetY, C 4 N \ 7N suchthat Y7 := U, Y]
with Y := {yy.,Nly € Y.} is afree generating set of the free Lie ring (g N)©, that is,
(s N)C = LZ (¥7).

In [18] this Theorem was shown in the particular case of finite X and finite .
The subalgebras (k N)€ and (1 N)¢ may be characterized in a similar manner. The
precise result is as follows.

Theorem 2. For all ¢ > 1 we can choose a set Z_, C 4N \ 7,1 N(q.N)P such that for

5= {2z, N|z € 2.} and Z* := U_,, 2% we have (k N)€ = R¥+(Z*). Furthermore, if
p# 2 thenfor Z} := {z), N|z € Z.} and 2> := U,,,Z} we get (1 N)€ = L*»!*1(Z*).

We shall obtain that the Lie algebras (g N)&, (k N)C and (1 N)€ are, in fact, trivial or
not finitely generated.

Theorem 3. (i) The following assertions are equivalent.

(ia) G is infinite

(i) (g N)¢ =0

(ic) (R N)¢ =0

(id) (IN)¢ =0,

(ii) If G is finite, then the Lie algebras (g N)¢, (k N)© and (1 N)C are not finitely
generated.

The g -part of (ii) is treated in [18] and generalized to free Lie algebras over any principal
ideal domain which are equipped with a homogeneous group action by Bryant [5]. The equiv-
alence of (ia) and (ib) 1s essentially due to Auslander and Lyndon [2]. It was also proved in [2]
that (N/N')€ is precisely the centre of the quotient F/N'. Here we provide a generalization
of this result. By {( H) we denote the centre of the group H.

Theorem 4. Let ¢ > 1. Then
() {(F/741N) = (A N/7, N)¢
(i) ¢(F/k 4 N) = (k N/K  N)C

(i) ((F/A1N) = AN/ NG (p#2)
(0) These centres are non-trivial if and only if G is finite.

The proof of Theorem 2 is based on a result concerning the fixed points of free restricted

Lie algebras which we shall state separately.
Let V be a vector space with basis X over a perfect field k& of prnime characteristic p.
Assume G to be a non-trivial subgroup of GL(V) . The G-action on L¥(X) = R}(X) =

V may be naturally extended to the whole algebras L¥(X) and R*(X). The subalgebras
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L¥(X)C and R¥(X)C are homogencous with respect o the natural graduation of L*¥( X)
and R*(X) . By thecorems of Shirshov [13] and Witt [17] these subalgebras are also free with
homogeneous free generating sets. We shall add to this knowledge by proving the following.

Theorem 5. Every homogeneous free generating set Y of L*(X)€ is also a free generating
set of R*(X)C, thatis, if L*(X)% = L*¥(Y), then R*(X)C¢ = R¥(Y).

3. FIXED POINTS OF FREE RESTRICTED LIE ALGEBRAS

In this section we prove Theorem 5. Let & be a perfect ficld of prime characteristic p and
V be anon-trivial vector space with basis X . For the following facts concerning the structure
of L*¥(X) and R¥(X) we refer to (3] and [4].

We will work in the frce associative non-commutative k-algcbra A*(X) which may be
described as the free k-module with the basis consisting of all (associative non-commutative)
words on X (including the empty word: 1) and the muluplication is given by distributively
continuing the juxtaposition of words. By the thcorem of Poincaré, Birkhoff and Witt the
free k-Lie algebra L*( X) may be characterized as the k-Lie subalgebra (with respect to the
Lie multiplication [a, b] = ab — ba) inside of A¥(X) which is generated by X . Morcover,
the free restricted k-Lie algebra R*¥(X) is the closure of L¥(X) in A¥(X) with respect
o p-exponentiation. In order to construct k-bases of L*(X) and R*(X) the notation of
the frce magma on X 1s introduced as the set I'( X)) of all non-cmpty non-associative non-
commutative monomials on X with multuplication given by (non-associative) juxtaposition.

Assume any € X to be of degree 1. Then I'(X) is the disjoint union of the subsets
I'_(X) consisting of all monomials of degree ¢, ¢ > 1. Denote by X I a Hall set contained

in[(X).La Xl =xTNnr.(x).

Consider themap o, : T'(X) — L*(X) whichis given inductively by o, (z) = z and
ox(uv) = [ox(u),o4(v)]. Then the Hall set xT yiclds a k-basis XL = {ox(u)|u €
%X} of L¥(X) (the Hall basis) and a k-basis X2 = {(o,(u))”|u € XT,r > 0} of
RE(X). Let XL = XL n LY X) = 0, (X]) and X # = X2 n R¥(X). The algebras
A¥(X), L¥(X) and R*(X) decompose into the direct sums of their homogencous compo-
nents:

AK(X) = D Ak(X).

c20

(10) L*(X) = @) LI X)

c>l

and

RY(X) = (D Ri(X).

c>l




On the fixed points of the Lie algebras associated with a free group presentation 241

The sets X » and X ? are k-bases of L*(X) and R¥(X), respectively.
In the sequel we will make use of the following facts.

Lemma 1.

(i) [a,b] € L¥(X) for a,b € R¥(X).

(ii) A(a,b) € L¥(X) for a,b€ R*(X).

(i) Let a,b € L¥(X) andn> 1. Then (a+ b)” =a”" + b + d&¥ + & +...+d
with suitable d, € L*( X) .

(iv) Each element a of R*(X) can be uniquely expressed in the form a = ap + a} +

n

u’; + ...+ af with suitablen > 0 and a; € L¥(X).

Proof. For showing (i) it is sufficient to take a = uP and b= v* withu,ve X%, 5> 0.
If r = 3= 0, thenclearly [a,b] € L¥(X). If one of the exponents r, s does not vanish, say

r > 1,then [a,b] = [(uP")P,v”'] = (ad (v*)P)(v*) = (ad (v* )P(v*") by (3) and
induction yields the desired result.
Assertion (11) may be immediately deduced from (1) and the fact that Ap(a, b) is a linear

combination of Lie brackets with entries a and b.

Assertion (iii) may be easily shown by induction on n and is based on (ii) and (4). The fact
(iv) that any ¢ € R*(X) may be written as a sum of p‘-th powers of elements of L*(X)
figures up in Lazard’s paper [10] as Theorem (6.1). It can be verified by subtracting those
summands in the X ©-decomposition of a € R*(X) which are of highest exponent and then
applying (iii) and the induction hypothesis. Here we need the field & to be perfect.

For showing the uniqueness-part of (iv) assume a = ag+af +...+af" = by+ b5 +...+ bP"
with n > m, a,,b; € L*(X), a, #0,b_ # 0. By comparing the X L-decompositions of
a, and b weconclude m=nanda_ = b_. n

The proof of Theorem 5 splits into two parts. Let Y be a homogeneous free generating
set of L*(X)€. Then we have to show:

(a) The restricted Lie algebra S generated (inside of A*(X))by Y isfrecon Y.

(b) R*(X)¢ CS.

Consider a Hall set 3 .C I'(Y) and define o, and § * C L*(Y) C L*(X) analogu-
ously to o, and X “.

The set Y is homogeneous with respect to decomposition (10), hence 3 © is so. Let
ﬁf =¥Ln L,f(X). The k-basis P © of L¥(Y) may be extended to a k-basis Z L of

L*(X) by adding a suitable number of elements. Assume Z L to be linearly ordered includ-
ing ¥ L. The Theorem of Poincaré, Birkhoff and Witt yields the set

ZA4 = {w,...w|s >0, ijZL, w, >...2w,}
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to be a k-basis of A¥(X) . In particular,
¥h:={w]i>0, we g} Cc £

is linearly independent. So the restricted Lie algebra S generated by Y is free. Thus assertion

(a) 1s shown.
We turn to (b). Take a € R¥(X).ByLemma 1(iv) a =gy +af +...+a? . Forg € G

we get a9 = ad + (a})9+ ...+ (aP )9 = af + (a])P+ ...+ (a?)" , hence a9 = a if and only
if o/ = a, for all i by the uniqueness-part o f Lemma 1(iv). Thus, if a € R¥(X) is a fixed
point, then a; € L¥(X)¢ = L¥(Y) and a € R*(Y) follows. =

Remark. Note that
g4= {w;...w,| s 20, w, eyl w, > .ng,}gi‘q

is linearly independent, too. Consequently, the associative algebra generated inside of A¥( X)
by Y is also free. But A¥(Y) # A¥(X)C, in general. For example, if X = {z,,z,,Z:},
char k # 2 and the symmetric group S, acts on V by naturally permuting the z}s, then
X0 =X,%3 ={lz,5,],[7,53),[35,53]}, Y1 = {9, =3, + 3, + 13}, Y7 = O
But A¥(X)C = ky,, A5(X)C = ky? @ k(z? + 5 + z3) and 22 + z2 + 22 ¢ AK(Y),
hence A*¥( X)C is not contained in A*(Y). So assertion (b) is not self-evident.

4. THE FIXED POINTSOF g N,k N AND [N

The crucial point in proving the Theorems 3 and 4 is the following assertion.

Lemma 2. The G-action on N[k, N isfaithful, thatis, the group G, = {9 € G|(ur,N)9 =
usy, N for all uk, N € N/, N} is trivial.

Proof. Let h = fN € G, . Denote by F, the subgroup of F' generated by f and N. The
group F, /x, N is centre-by-cyclic, hence abelian and the inclusions F; < 5, N = N'N? and
F,/N'< (N/N")? = N'N?P/N' follow. On the other hand, the group N/Fj is frec abclian as
a subgroup of F},/F; . Thus the exact sequence 1 — F}/N' — N/N' — N/F; — 1
splits. So F; /N’ is a direct summand of N/N'. But a non-trivial direct summand cannot be
contained in (N/N')?, hence F; /N’ = 1. By [2], Cor. 1.2. this implics that F, = N, hence
G, = {1}. m

If fky, N € ((F/r,N),then forall us, N € N/k, N we have fux, N = ufs, N, or
equivalently, (ux, N)/¥ = ux, N. Hence, f € N by Lemma 2 and the inclusion
(11) ((F/1yN) CN/7 Nforc>1and 7€ {7,5,A}

follows.
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Lemma 3.
(12) ((N/74N) =7 .N/7,,N.

Proof. By (2) (7.N, N) C 7, N hence 7. N/7_ N is a subgroup of the centre.
Now take ur_,,N € {((N/7_,,N). Then

(13) (u,v) €7, ,N forany v € N.
Assume

(14) v €T N\7,,Nwithe<c—-1.
By (13)

(15) [ur,, N, v, N] = (y,v)7,,,N=17,,N

for arbitrary v € N. The (restricted) Lie algebra t N is free on X7 (by Theorem 0) and
as such may be embedded in the free associative algebra A¥ (X ™) on X7 over k™ by the
Theorem of Poincaré, Birkhoff and Witt, where k7 = Z , k* = F, and k* = F_[w]. From

(15) we conclude that u7,,, N is in the centre of A¥(X7). But the centre of A¥ (X7)
is trivial, whenever X7 contains more than one element. A proof of this is outlined in [12],
Problem 5 on page 333. Hence u7,,, N = 1N, what is a contradiction to (14). Consequently,
the element u is contained in 7. N . 5

The case T = «y and the 1dea of proving Lemma 3 1s due to Witt [16].

Now we return to the proof of the Theorems 3 and 4. By (11) and (12) we have {( F/_, ,
N) C (1.N/7_,,N) and, of course, {( F/7,,N) C (7.N/7,,,N)C. The inverse inclusion
1s obvious. This proves the assertions (i), (i1) and (ii1) of Theorem 4.

For finite G the free abelian group (g { N)C has at least two generators (see [7]). Hence,
(t . N)¢CF0forc>1,t € {g,k,I}.

Now assume G to be infinite. Then, by Shmel’kin’s Theorem (4.1) in [14], the centre of
F/71 N is trivial. This gives assertion (i) of Theorem 3 and assertion (0) of Theorem 4. It

rcmains to show the Theorems 1, 2, and 3 in the case of a finite group G only.
The homogeneous subalgebra (g N)¢ is the kernel of the G-module homomorphism

gN—rgN:ﬂ—r|G|-u—Eug.
geG



244 R. Zerck

Since g N is a free abelian group, the subgroup (g N)€ turns out to be a Z -direct sum-
mand of g N. By Witt’s Theorem [17] on subrings of free Lie rings, these conditions are
sufficient for (g N)© to be free with homogeneous free generating set. Thus, Theorem 1 is

shown. m

Now we tumn to the proof of Theorem 2. For this purpose we introduce h N := g N ®
F, = 7N/ N(N)P. Then y N = @b N is a free F -Lie algebra on XX :=
{z7, N(7; N)P| z € X} = X* = X*. The fixed point subalgebra (§ N)€ is homogenecous.
Then by Shirshov’s Theorem [13] (h N)C is free on a homogencous subset: (h N)C =
L¥#(2%) with Z, C AN \ 7. N(1N)?, Z¥ = {27, 1 N(1.N)?| z € Z.} and Z* =
U128

Now consider the map

e:h N =LV (XX) — kN = R¥»(X")

U"_rﬁlN(’]’cN)p — uﬂc+1N.

Clearly, e embeds the free I -Lie algebra in the corresponding free restricted F p-Lie
algebra. The map e is obviously a G-module homomorphism. Consequently, we are in the
position to apply Theorem 5. We get: (k N)C = R¥»(Z*) with z% ={2s_N| 2z € Z_}
and 2% =U_, 2.

On the other hand, in case p # 2 we have

[N = [Fll( X = @w" LY (X)),

i>0

By (9), the G-action and the w-action on [ N commute. Hence

(1N = Pu'- ((LFP(){*))G) = Pu' - L¥(2*) =

i>0 i>0

= [Pl Z%)

with Z> = {z)_,N|z € Z_} and Z* = Uc;_,IZS‘ and this completes the proof of Thcorem
2. 5

Example. Define 7 : F(t,,t,) — G : t; — p;t, — 1 10 be a presentation of the group

G = {1,p,p*} of order 3. Take X = {z, = t,; T, = t] t,t;; Ty = t] t,t3; 7, = t3}.
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Then (2,7, N)? = 2,7 N, (2,1, N)P = 237 N, (237, N)? = 2y, N, (24, N)P =
z47, N . Suppose p= 3. Then

|Y1|=|Zl|=2
,|=12,|=1

}/3 =2:|ZBI=3
Yo 1=9,12,]1=7.

The last two lines show that there 1s no way of choosing a compatible Y and Z.

Our last duty is to give the proof of Thecorem 3(iii). If G and X are finite, then (g N)©
and ( N)@ (and themselves (k N)© and (I N)©) are not finitely generated by Theorem A
of Bryant [5].

If G is finite and X is infinitc we consider the relation scquence (see [8))

0 — N/N' — [ QLG — I — 0

with I, = ker(ZG — Z) the augmentation ideal of G. Then (I;)® = 0. Moreover,
(Ip ® FP)G = 0 if p does not divide |G| and (I, ® FP)G =F, . EQEGQ otherwise. We
get the exact sequences

0 — (EIN)G————}(IF®FZG)G—rU

and
0 — (§;N)® — (I, ®x F,3)¢ — (I F )°.
The ranks of ([, ® ZG)¢ and (I @ FPG)G are equal to the rank of the free group

F', which is supposcd to be infinite. Hence, (g lN)G and (h IN)G arc not finitcly generated
as abclian groups. This completes the proof of Theorem 3. s
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