ON BANACH ALGEBRAS WITH A JORDAN INVOLUTION BERTRAM YOOD

Dedicated to the memory of Professor Gottfried Köthe

Let A be a Banach algebra. By a Jordan involution $x \to x^*$ on A we mean a conjugate-linear mapping of A onto A where $x^{\#} = x$ for all x in A and

$$(xy + yx)^{\#} = x^{\#}y^{\#} + y^{\#}x^{\#}$$

for all x, y in A. Of course any involution is automatically a Jordan involution. An easy example of a Jordan involution which is not an involution is given, for the algebra of all complex two-by-two matrices, by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{\#} = \begin{pmatrix} \overline{a} & \overline{b} \\ \overline{c} & \overline{d} \end{pmatrix}.$$

In this note we provide one instance where a Jordan involution is compelled to be an involution.

Say $x \in A$ is #-normal if x permutes with x^* and #-self-adjoint if $x = x^*$. Let y be #-normal. Then

$$2(y^{\#}y)^{\#} = (y^{\#}y + yy^{\#})^{\#} = 2y^{\#}y$$

so that $y^{\#}y$ is #-self-adjoint. By [5, pp. 481-2] we know that

$$(x^n)^\# = (x^\#)^n$$

for all $x \in A$ and all positive integers n. Also $e^* = e$ if A has an identity e.

Berkson [1] and Glickfeld [4] independently showed the following

Theorem. Let A be a Banach*-algebra with an identity. If $||x^*x|| = ||x^*|| ||x||$ for all normal elements x in A then A is a C*-algebra.

Our aim is to extend this result in the following way.

Theorem 1. Let A be a Banach algebra with an identity and a Jordan involution $x \to x^*$. Suppose that

$$|| x^* x || = || x^* || || x ||$$

332 Bertram Yood

for every #-normal x in A. Then A is a C*-algebra with $x \to x^*$ as its involution.

Lemma. Suppose that the Jordan involution $x \to x^*$ has the property that x = 0 whenever $x^*x = 0$ for a #-normal $x \in A$. Then any #-normal element is contained in a maximal commutative #-subalgebra of A which is closed.

Proof. Suppose that $x \neq 0$ is a central nilpotent. Then $w = x^{\#}x$ is a non-zero #-self-adjoint nilpotent. Let m > 1 be the smallest positive integer such that $w^m = 0$. As w^{m-1} is #-self-adjoint by (1) then $0 = (w^{m-1})^{\#}w^{m-1}$ and $w^{m-1} \neq 0$. This is contrary to our hypotheses so that A has no non-zero central nilpotent.

It follows from [5, p. 481] that if xy = yx then $x^{\#}y^{\#} = y^{\#}x^{\#}$ and therefore

$$2(xy)^{\#} = (xy + yx)^{\#} = x^{\#}y^{\#} + y^{\#}x^{\#}.$$

Thus

$$(xy)^{\#} = x^{\#}y^{\#} = y^{\#}x^{\#}$$

whenever xy = yx.

We see that $Z^* = Z$ when Z is the center of A. Let V be a commutative #-subalgebra of A. If $y \in A$ permutes with every $z \in V$ then y^* permutes with every $z \in V$. Suppose that this y is # normal. Let K be the subalgebra generated by V, y and y^* . Each element of K is a finite sum of elements of the form $w = vy^r(y^\#)^s$ where r and s are non-negative integers and $v \in V$. In view of (1) and (3) we see that $w^\# \in K$ so that K is a #-subalgebra.

By standard arguments each #-normal element is contained in a maximal commutative #-subalgebra which must be closed by the reasoning of [6, Theorem 4.1.3].

We now turn to the proof of Theorem 1. Let H be the set of #-self-adjoint element of A. Of course $A = H \oplus iH$. Let $h \in H$. In view of (2) the lemma applies to show that h lies in a maximal commutative #-subalgebra B of A. But we know that B is a commutative C^* -algebra in the involution $x \to x^{\#}$ on B. Therefore $\| \exp(ith) \| = 1$ for all real t. Hence A is a V-algebra in the notation of [2, p. 205]. Applying the Vidav-Palmer Theorem ([2, Theorem 14, p. 211] or [3, Theorem 45.1]) we see that A is a C^* -algebra with involution $x \to x^{\#}$.

REFERENCES

- [1] E. Berkson, Some characterizations of C*-algebras, Ill. J. Math., 10 (1966), pp. 1-8.
- [2] F.F. Bonsall, J. Duncan, Complete normed algebras, Springer-Verlag, New York, 1973.
- [3] R.S. DORAN, V.A. BELFI, Characterizations of C*-algebras, Marcel Dekker, New York, 1986.
- [4] B.W. GLICKFELD, A metric characterization of C(X) and its generalization to C^* -algebras, III. J. Math., 10 (1966), pp. 547-556.
- [5] N. JACOBSON, C.E. RICKART, Jordan homomorphisms of rings, Trans. Amer. Math. Soc., 69 (1950), pp. 479-502.
- [6] C.E. RICKART, General theory of Banach algebras, D. Van Nostrand, Princeton, 1960.

UNIVERSITA' STUDI DI LECCE

FAC. DI SCIENZE DPT. MATEMATICO

N. di inventario 3032

Red. Nuovi Inventari D.P.R. 371/82 buono
di carico n. 170 del 06-12-93

foglio n. 170

Received January 17, 1991
B. Yood
Department of Mathematics
Pennsylvania State University
University Park, PA 16802
U.S.A.