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AROUND THE QUOTIENT BORNOLOGICAL SPACES (*)
L. WAELBROECK

Dedicated to the memory of Professor Gottfried Kéthe

My research is over quotient bornological spaces. Few mathematicians understand why. Quo-
tient spaces have applications. Here, I shall explain how I arrived at the category and describe
it. For the last 10 years, I have worked over it. I have some 200 pages of «drafts», the grammar
is sloppy, several misprints remain. But the theory holds. Around Christmas, I have ended
my last draft. The material will be rewritten. I hope that it will be accepted.

In 1960, I did not know that my These d’ Agrégation was «quotient» (Theése d’ Agrégation
is in German, Halilitdtsschrift).

1. THE HOLOMORPHIC FUNCTION CALCULUS AND REGULAR ELEMENTS

I constructed my first holomorphic function calculus in 1953-1954, Doctorate (1953) pub-
lished [1Wa] in 1954. It was developed in locally convex, complete algebras .# with a joint
continuous multiplication,

It was not based onGelfand, [1Ge], [2Ge], [3Ge], (Mat. Sbornik, July 1941). The U.S.S.R.
was invaded on the 22 June 1941. The issues I needed were not in the libraries to which I
went. I had read the Math., Reviews.

At the College de France, 1946, Leray spoke of Garding’s symbolic calculus [Ga]. If
C C R" is a convex cone, §'(C) is the space of temperate distributions with support in
C, with the convolution. I' C R, is the polar of C, ©(I'") is the algebra of holomorphic
functions on I" + 1R with a polynomial growth at infinity. The Laplace transformation is
approximately an isomorphism ©(I"), - — §'(C), H. I tried to develop a theory similar to
Garding’s.

I introduced «regular elements» a € A4, M € R,: s — a isinvertible if s € C,
Is| > M and ((s —a)~!||s| > M) is bounded in .4 . Later in my Th&se d’Agrégation, I
have studied non regular elements (e.g. 3‘% ).

The spectrum of a € % , regular, is the complement of (z € C|3(s — a) ™!, the inverse
is regular). The resolvent z \, (z — a) ™! is holomorphic on the resolvent set, the spectrum
1S compact and not empty.

Shilov [Sh] has developed a holomorphic function calculus in function of (a,,...,a,),
a; € %, acommutative semi-simple Banach algebra generated topologically by (b,,...,b,),
(the algebra generated by (b,,...,b,) is dense in £ ). He used the Cauchy-Weil formula.

(*) Proofs not corrected by the author.
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When the structure space is not connected, even when .4 is not semi-simple, he has con-
structed an idempotent e.

With their «trick» Arens and Calderon [AC] have shown that Shilov’s results hold even
when _# is not generated topologically by a finite number of elements. With the same con-
struction as Shilov, they solved equations other than «z? — z = 0 ».

My doctorate was between Shilov’s and Arens and Calderon’s papers. Even in therr
situation, I prefer my results. Shilov, Arens and Calderon constructed a mapping © (sp
(ay,...,0,)) — %, showed that it is a homomorphism if £ is semi-simple. Using K.
Oka [OK] and H. Cartan [Ca], I proved that their mapping is a homomorphism though the
algebra 1s not semi-simple.

At present, I use the Gunning and Rossi [GR] lemma 7, chapter I, section VI, and what I
call the Lemma 7bis.

Lemma 7. If P,,..., Py are polynomials of n indeterminates, A = ((2,,...,2,)|Vi =
I,...,nt|z| <1, Mk =1,...,N : |P| < 1), the mapping F(z,y) € & (D™N) onto
F(z,P(2)) € ©(A) is surjective.

They did not include the lemma 7bis. The kernel of the homomorphism is generated by
the polynomials y, — P,(2) . (Appendix).

The following is not exactly my Doctorate. If a € £ is regular, its spectral radius
is p(a) = sup,limv(a®)!/® = max(|s||s € spa). If f = f,2z" is holomorphic on a
neighbourhood of p(a) D, wecanlet f(a) = ) f.a". Inmy Doctorate I used the rationnally
convex spectrum of a = (a,,...,a,) . Here I shall use its polynomially convex spectrum:

sp(ay,...,a,)=(2€C"|VP €CClz,...,2,] : |P(2) < p(P(a)))

(The joint spectrum is not yet defined).

Let U be a neighbourhood of the polynomially convex spectrum. Polynomials P.(z) €
Clzy,...,2,)(k=1,...,N), real numbers r; > p(a;), (¢ =1,...,m), By > p(P,(a))
(k=1,...,N) existsuchthat A CU if A = ((2,...,2,) |Vi:|z] <7, Vk:|P(2)]| <
R,).

With Taylor series, if F € € (][ r;D,]] R, D) we can define F(a,,...,a,, P(a),...,
Py(a)). If f € ®(U), Gunning and Rossi’s lemma 7 gives F' € ®(I[r,D,]] R,) such
that f(z) = F(z,P(2)) nearto A . Lemma 7 bis says that F' belongs to the ideal generated
by the functions y, — P,(2) if F € ©(][;r,D,]1[; B D), F(z,P(z)) = 0, the Taylor
series maps F' onto 0 € % .

We have a homomorphisms ©(A) — # mapping the functions z; onto a; and the
constant function 1 onto the identity of .4 . © (3p(a)) is aunion of algebras & (A ) , we have
a homomorphism 8 (5p(a)) — 4 mapping again 2, onto ¢, and 1 onto 1 (the polynomials
are dense in 8 (sp(ay,...,a,)).
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The Arens and Calderon trick comes now. Let (b,,...,b ) be further regular elements
of # . Consider sp(ay,...,a,,by,...,b_) C C™™, its projection sp,(a) C C", and
Nyspy(ay,-..,a,) . Let f be holomorphic on a neighbourhood U of N,sp,(a)3(d},...,b ),
regular elements of .# such that the projection maps sp(a,b’) into U. The composition of
the mapping 8 (U) — 8 (sp(a,b’)) with the holomorphic function calculus ® (sp(a, b’) —
4 is ahomomorphism 8 sp;, (a)) — 4 mapping z; (the variable) onto a; and 1 onto 1.

Let b,",...,b"_. be other elements of .4 such that the projection C*™ — C™ maps
sp(a, b™) into U. We have another homomorphism 8 (U) — 8(sp(a,b")) — 4. They
factor through the homomorphism & (U) — ©(sp(a,b’,b")) . They are equal. Using again
a union, now 8 (N,sp,(a)) = UB(U), we obtain a holomorphic function calculus, the set
Nysp(a) 1s not empty.

An equivalent definition of the joint spectrum can be given. Let o, be regular. Its joint
spectrum sp(ay,...,a,) isthe complement of the resolvent set {s € C*|3(c;,...,c,) € A4,
regular 1 =) .(s;,—a,) -c;}.

N,sp,(a) is the complement of the set of the resolvent set. Assume that 3(c;,...,c,) €
%, regular such that 1 = ) (s, — a,) - c;. The set 3p(a,c) is contained in ((z,2') €
C*"1=) (z,—s,)-2;), s ¢ spa).

Letb € A™, s & sp(a), Vt € C™, (s,t) & sp(a,b). The polynomially convex
joint spectrum is polynomially convex. Vi € C™ : (s,t) € sp(a,b), 3P € Clz,yl,
P(s,t) =0,V(2,2) € sp(a,b) : P(2,2") # 0. The holomorphic function calculus gives
(P(a,d’)) !, and therefore regular elements ¢, ..., c, of A4 suchthat 1= 3 .(s;—a)) -c;.

The second definition 1s essentially Gelfand’s.

Kothe has reviewed my papers in the Zentralblatt, his reviews where taken in the Mathe-
matical Reviews.

2. BORNOLOGICAL ALGEBRAS

In 1956, I spoke to H. Cartan of my Doctorate, did not know that he should speak at the
Bourbaki Seminar and did not go there.

I met him again after his talk. Bourbaki appreciated my machinery but it could be gener-
alised. I considered complete algebras, could have used quasi-complete algebras.

More important, I used algebras with a joint continuous multiplication. The Banach-
Steinhaus theorem shows that B, - B, is bounded set in .# if B, and B, arc bounded
in % , quasi-complete algebra with a separately continuous multiplication.

Bourbaki wished the multiplication to be also quasi-continuous, if (z,) and (y;) are gen-
eralised sequences, z; — z, y;, — y and either (z,) or (y,) is bounded, then z, -y, — z-y.

Cartan did not tell me, but Bourbaki knew that £, ( E) , the continuous operators £ — E
with the simple (or strong) topology has a quasi-continuous multiplication if E is barreled;
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Z (E) is quasi-complete if E is also quasi-complete. Bourbaki could apply my machinery
to closed commutative subalgebras of £ ,( E) , E barreled, quasi-complete.

I had used Cauchy sequences in the bornological sense: 3B bounded Je, — 0 such
that z, — z,,€ g, B if Vn,W1 > ny. Let E be a vector space, B C E is completant

if it is absolutely convex and its Minkowski functional (or gauge) is a Banach norm on the
vector space Ep absorbed by B. Definition of a bornology is obvious. A boundedness is
completant if VB bounded in ESB’ bounded completant such that B C B’. A b-algebra is
an algebra £ with a completant boundedness and B, - B, is bounded in .4 if B, and B,
are bounded in % .

We can define regular elements of a b-algebra. If (a,,...,a,) areregular, we can define
its joint spectrum, the above construction is a homomorphism © (sp(a,,...,a,)) — #.

In 1956, I had not observed that one had not proved not that the homomorphism maps
bounded subset of 8 (sp(a)) onto a bounded subset of 4 .

It does. The easiest i1s to use a result of Grothendieck [Gr] rewritten in a bornological lan-
guage by H. Buchwalter [Bu]: Let E, % ; a b-space with a countable basis of boundedness;
B C E completant, compatible with all bounded completant subset of E is bounded in E.

[Two completant sets are compatible if B N B’ is completant, i.e. if B + B’ does not
contain a non zero vector subspace of E.

[For Grothendieck, if B is a Banach ball in a vector space and (B,) an increasing se-
quence of Banach balls B, compatible with B such that B = U, B, then B is absorbed

by some Bnu 1.

Let (E, &) be a b-space with a countable basis of boundedness, (F,.# ;) another
b— -space. A bounded mapping u : E — F such that u( E) = F is then surjective in the
bornological sense, i.e. VC € # ,3BF , : u(B) =C.

The boundedness of ®( X, x...x X XY, x...Y)) has acountable basis. The mapping
F(z,y) \, F(z,P(2z)) is surjective ©(X, x ... x X, xY; x...Yy) \, ©(A),1s
therefore bornologically surjective. B bounded in ® (A) can be lifted to B’ bounded in
(X, x...xX_ xY;x...Yy). The Taylor series maps B’ into a bounded subset of % .
The h.f.c. maps B onto a bounded subset of 4 .

My results can be applied to regular elements of a commutative unital b-algebra.
[A topologically vector space is complete enough if B is completant if it is closed,
bounded, and absolutely convex].

All unital locally convex complete enough algebras .4 with a separately continuous mul-
tiplication become b-algebras: .4, has the same sets, with its von Neumann boundedness.
(B is bounded in % if it is absorbed by all neighbourhood of zero in .4 ).

Z(E), the algebra of continuous linear operators £ — E with the equicontinuous
boundedness is a b-algebra if F' is a complete enough locally convex space.
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If E is a b-space, &£ ( F) the bounded mappings £ — E with the equibounded bound-
edness is a b-algebra.
We can apply my results to many algebras.

3. ANOTHER APPLICATION OF BOUNDEDNESSES

Many functional Analysists consider a Banach space E and an operator a : D(a) — F
whose resolvent set is not empty. We assume that 0 € spa, E_; = D(a), with the graph
norm || z ||_y= max(|| z ||,|| ex ||}, E; = E. Then a = a is anisomorphism ay : E_; —
E,.Welet E, ~ (E®E)/gra; gra=((z,az)|z € E_;). Weembed E, C E,,identify
z € E with its class of equivalence in FE, . The operator o : E_; — F, can be extended to
a, : By, — E,, sp(a;) = sp(ay) .

By induction, we construct E,,, ~ (E, ® E,)/gr a,, 0., : E, — E.,,, imbed
E, C E,,,; E_ ~U_E,, as a b-space and a linear bounded mapping a _ : E_ — E_ .

A large part of Functional Analysis about ¢ is about a_, : E_ — E__, (resolvent set not
empty). The operator a__, extends a.

4. A SINGLE NON REGULAR OPERATOR

The following is part of the preparaﬂon of my Thése d’ Agrégation. It is not in it, since more
general results are there.

Welet wy(s) = (1+ |.9|2)'1"2 If Sisopenin C, w,(3) = min(wy(s),|z—s||z ¢ S).
If w is Lipschitz C* — R, and |z|w(z) is bounded, we let S, = (s € Clw(s) > 0),
O(w) = (f € B(S,)|3N € N, M € R, : |lw(s)"f(s)|] < M) with the obvious
boundedness. It is a nuclear b-algebra.

SC Cisspectralfora € A if \z2¢ S, 3(z—a)~! and (wy(2)¥(z—a" |z ¢ S) is
bounded in .4 . The resolvent is bounded on the complement of S, tends to zero for z — oo,

z & S, itis Lipschitz on C \ S, can be extended to C \ S, is holomorphic on the interior of

C \ S. The restriction of the resolvent to the interior of C \ S (or of C \ §) is holomorphic,
4 -valued. Liouville shows that the spectral sets is a filter on C. It has an open basis.
From obvious identities, V» € N3B_ bounded completant such that the restriction of the

resolvent to C \ S belongs io &(C\ S, 4 p).

A holomorphic function calculus can be constructed if a is regular, S is open spectral,
with a smooth border of finite connectivity, i.e. S=S_\ U T, S open simply connected
Vk : T, is closed and connected, T, N T, = © if k # k'.

Let f € ®(w,). Forall 1 € N, Vr,/(z) rational on C whose poles are off S, all the
primitives of f — r,, order 7,7 < 4 are functions on S. Consider D'f(z) € ©(S,),a
rational function R.(2z) exists such that D'f — R, has a primitive. Let F;_, be one of these
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primitives. A function R, , exists such that F; , — R, ; has a primitive F;_, . The rational

function r;(2) = Z},l D7 R,_; is such that all primitives of f — r; are functions of C\S.
If N > 2 and w,(2)"-f(z) is bounded then w,(2) V~! P f(s) is bounded. If w(z) f(2)
is bounded then logw,(z) P f(2) is bounded. (P f is any primitive of f if f has a primitive).
If f € ®(w,), 3N' € N, 3F € #(5,.4), Fg € ©(8),3r rational on C whose

poles are off S such that f = ( i—"';,rF) + r. The Cauchy formula gives the derivative of order
N’ of F,

dV F
f2) =1(2) = 5 F@) = 5 [ ——Srds

We can let

f( )"?‘(ﬂ)+N—'j’f(:st)(a—-:1)“"‘r ~lds

show that it is a linear bounded mapping, 8 (S,) — % , maps z onto a, the constant 1 onto
1, and is an algebraic homomorphism.

If S is open, not bounded, (a is not regular), if f € ©(S,), we can consider 2~V f(2),
N" large enough. Successive primitives of 2~V f, or of (2~V" f — r) give linear bounded
mapping ©(S,_,) — £ . We must again show that it is a homomorphism, maps z onto a, 1
onto 1.

The Stokes formula is another construction of f(a), f € 8(w,), S spectral for a. For

all r € N, the resolvent function z \, (z —a)~! belongs to & (C\S,£p), B, bounded
completant; and ¢(2) = (z —a) ™' = Y ket 27k 1ok 4 277 1™ (z—a)' on C\ S. H.
Whitney [Wh] has extended g € & (C\ S) 1o g, € € (C_), the extension is such that

9,(2) =3 1 2% ek + 277 1a™ h(2) with h € &(C,,, %) (C, = CU(c0)).
If f is holomorphic on S and can be extended to a continuous function with a rectifiable
border,

f(z) = ﬁff(s)(s— 2)"lds.
We replace z by a, (s — 2)~! by g(2), extend g to g,(2), and obtain
1 _.
f(a) = E—Hfff(s)agl(s,dﬁ)ds.
me

It is again bounded, ® (w,) — .# , maps z onto a and 1 onto 1.
It is a homomorphism: © (w, x w,) is the b-algebra of holomorphic functionson § x §

such that JN @ w,( 2)N w,(y) N f(z,y) is bounded. The function f(2) — f(y) belongs
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to the ideal generated by z — y in © (w, X w,): the quotient ( f(z) — f(v))/(z — yv)
has an eliminable singularity when z = y. We must check that it «does not grow too fast»
when 2z and y grow to the border of S. If z and y are relatively far from each other, i.e.
|z — y| > ew,(2) , then 1/|z — y| < M/w,(2), (f(2) — f(v))/(z—y) does not grow too
fast.

if z and y are near each to the other, |z — y| < €'w,(2), the Cauchy formula around a
circle j_ of radius £'w(z) around z gives

25N
o

_z—y f(s) %j‘
A ¢ P 3 M P Temry b %

The result is proved.
The functions f(z2)g(z) and f(z)g(y) are congruent modulo the ideal generated by

z—y:(z— a:::)'«:;ﬁ—gE and (y — a) "593 are d-coborders of functions of class & which vanish
off S, z—y=(a—y)(a—2). The h.f.c. constructed maps f(2)g(y) onto ( f-g)(a), its

direct product maps f(z)g(y) onto f(a)g(a) hence (f -g)(a) = f(a)g(a).

S. SYSTEMS OF n OPERATORS

Toconstructthe h.f.c. in (aq,...,a,) € A", wemustdefine «spectral sets» of (aq,...,a,).
A set § C C™ is spectral if Ju; with polynomial growth such that 1 = Y .(2; — a;) u;(3)
off S. We must prove that the spectral sets is a filter, that the empty set is not spectral. I use
a lemma, called Fundamental Lemma in my These d’Agrégation [2Wa], and a Preliminary
Lemma at a talk at the Operator Theory = meeting [7Wa].

Let # be a unital b-algebra, o a two-sided b-ideal, (u,) a sequence of elements of
% ,(v,) a sequence of elements of o such that Vk : u, +v, = 1,3IM € R, u, =

0 2(M¥),3reR,,0<r<1,v,=0,(r*). Then A4 = a.

In its proof, we use the fact that 5" (M rV)* < oo if M7V < 1.

The lemma was again used to show that if Ju,(2),y(2), 1= ) (2, —s,) + y(2) u,(2),
y(z) of polynomial growth, y(z) vanishes off S, 3ul(z), 3y'(2),ofclass & of C*\ S,
of polynomial growth whose derivatives have a polynomial growth, ' vanishes off S and
1=).(z,—a)u(2) +y'(2).

The ideal was introduced here. It stayed there. For geometric reasons, I introduced w :
C" — R, spectralif 1 = ) .(2; — a)u;(2) + v(2) + w(2)yy(2), u,(2) and y,(z) of
polynomial growth C* — 4% , v(z) of polynomial growth C* — «.

VYw spectral for (a,,...,a_ ) mod o, 3w’ Lipschitz, even of class ", such that all its
derivatives of order k, |k| < r are bounded, w' spectral for (aq,...,a,) modulo «, such
that w’ < w. And Ju, € & (C*, . A4), v € F(C*, o) Ty, € & (C*,4) such that
1 =Y (2, — a))u;(2) + v(2) + w'(2)yy(2). The derivatives of u,; and y, are bounded
% -valued, those of v are bounded «-valued.
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If w: C* — R, is a Lipschitz spectral function, f € ©(w), I constructed f(a) if
f € 8 (w) . This was not an element of .4 but one of % /«.

Why introduce spectral functions?

u € °(R,,#) is asemi-group of class °, R, — #,if Vs,t € R,: u(s+
t) = u(s) - u(t). Its infitesimal generator is a = g-:—([]),. The resolvent set of a can be
empty, but a has an asymptotic resolvent, 1.e. 1 = (z — a)u(z) + w(2)y,(2), w(z) =
min(wy(2),exp(—Re 2)) . And we can construct exp( sa) = u(s) when s > 0.

6. THE BANACH SEMINAR

Before 1960, two French mathematicians (Ch. Houzel and Overaert) have thought of spaces
with a structure defined by bounded sets. They were happy that I had used boundedness and
results.

In 1962-63, Ch. Houzel has organized a seminar, the «Séminaire Banach» (with the col-
laboration of J.P. Ferrier, H. Jacquet, L. Gruson and G. Schiffman).

I would have liked to collaborate. I have gone every week to Paris between 1963 and
1967, the second semester. Their results have been written in 1967, and published in 1972
[Ho]. My Thése d’Agrégation cannot be formulated in their language.

I considered a b-algebra A4 = (4,% ,) anda b-ideal a = («,.F,) of A4 ,ie. a
is a two-sided ideal of £ , H C.F g,andboth B-CandC-Be H if Be F 4,
Ce#,.

The Banach Seminar did not study b-subspaces of b-spaces. Let E = (E, %) and
F=(F, %) be b-spaces. Then F is a b-subspaces of E if F is a vector subspace of E,
and F, C Fj.

[In the two paragraphs above, I use my present notations. A b-space is E = (E, £ p),
E is a vector space, & 5 is a completant boundedness on E].

7. QUOTIENT PROBLEMS

I did not have any application of the b-ideal. The computations went through modulo the
ideal. Iread Godement [Go] in 1962, learned what abelian categories are. No abelian category
is applicable to Functional Analysis. A month or two later, I had the abelian category of
quotient bornological spaces.

For three months,I tried to develop Functional -Analysis in it, and could not do it, I did
not have any application either. My Theése d’Agrégation was «quotient» but that 1s not an
application.

A few years later I gave my 1962 notes to G. No€l. In his Doctorate, 1969, [1No], he gave
another definition of the category, wrote the tensor product of g-spaces [2No]. The functor 1s
right-exact, as the tensor product of modules. He showed that all b, -spaces can be embedded
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in g-spaces. (A b-space is a union of Banach spaces, a b, -space is a union of normed space,
a g-space is the formal quotient E|F of a b-space by a b-subspace).

I gave another problem put in my Thése d’ Agrégation to I. Cnop, who also presented his
Doctorate under my direction. If w Lipschitz, C* — R, , -logw p.s.h, is w spectral for
(24,...,2,) in the algebra ® (w) . Using a theorem of L. Hormander [HO], he said that it
was true [Cn].

I went to Nancy, spoke with J.P. Ferrier, told him that the function f(z) — f(y) belongs
to the ideal generated by the functions 2z, — y. if w is Lipschitz, -logw p.s.h. He said that
the difference belongs to the closure of the generated ideal. My These d’Agrégation was
«quotient». The difference belongs to the ideal. Ferrier needed the fact [Fe].

This 1s my first «quotient» application.

In 1977, at Warsaw, [3Wa], I spoke of quotient Banach spaces. Thanks to the closed graph
theorem, we can identify a quotient Banach space with the vector space E/F, object of the
category gBan, I spoke of a sketch of proof given by J.L. Taylor [Ta], which he could not
use. His spectrum has the projection property. One should consider a vector space, it is not a
Banach space. It is quotient Banach space, Taylor’s sketch is valid. He gave another proof.

F.H. Vasilescu attended my talk. He is interested in Fréchet spaces, studies now quotient
Fréchet spaces. He [1Va] and I [6Wa] have independently defined the category of quotient
Fréchet spaces. Our categories are naturally isomorphic.

In 1977, 1 obtained another application. At the Banach Institute, Y. Domar spoke of ideals
of the disc algebra .4 ( D) such that Hull « C D° . Primary ideals whose hull belongs to the
open disc are closed. (Primary ideals have a unique element in their hull).

The next day I said that ideals of % ( D) whose hull is disjoint from the circle are closed.
The essential of my answer is that if o is an ideal of a unital Banach algebra whose hull
X = X, U X, is not connected, Je € £ such that e’ — e € a, e(m) = i if m € X;.
[4Wa], [SWa]. This is Shilov’s theorem if « is closed.

8. OTHER APPLICATION

In 1967, [HH] Helton and Howe have constructed a functional calculus in function of a, b
«nearly commuting» self-adjoint operators on a Hilbert space; a and b commute nearly if
their commurator [a, b] is of finite trace.

The essential spectrum of (a,b) is

sp,(a,b) = ((s,t) € Rzl(u+ ib) — (s + it) is invertible in £'(H) mod .%"(H))

% (H) is the ideal of compact operators H — H . They constructed f(a,b) € Z(H)/
n(H) if f € oé([sp,(a,b)]), a germ of class & on a neighbourhood of the essential
spectrum. (If E|F isa g-space, o( B|F) ~ E/F, £([sp.(a,b)]) is aquotient bornological
space). |
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M. Berkani’s Doctorate [Be] comes from Helton and Howe’s functional calculus.

The continuous germs, the germs of class °°, the germs of distributions near to a compact
subset are not vector space even with a separated convergence structure. They are quotient
bornological spaces.

Vasilescu [1Va] has observed that the hyperfunctions is a quotient Fréchet space. It is also
a quotient bornological space. (Hyperfunctions come from Sato’s papers 1958, 1959, [15a],
[2Sa]; before my These d’ Agrégation).

The singularities of distributions on U , i.e. &'(U)|¢(U) , the distributions on I/ modulo
the functions of class & is a g-space.

In Oberwolfach, 1981, J.F. Colombeau presented his New Generalised Functions, an alge-
bra $(U) containing &'(U), AU) =~ &, (D(U)AU), AU) a b-ideal of
£ (Z(U)) . He could not prove that #{U) is closed in §,,(U) ,but F(U) is a g-algebra.
He encouraged me creating the category of quotient bornological spaces and algebras.

The space of pseudo-differential operators modulo the regularising operators 1s a quotient
space. I know that microlocalisation is a quotient problem, but cannot microlocalise.

9. THE CATEGORY ASIT IS

I must recall my notations. E = (E, &) is a b-space: E is a vector space, & is a
completant boundedness over E. A b-subspace of E is F' = (F, % ), F avector subspace
of E, # is a completant boundedness over F', &, C # . |

An object of the category g is a couple (E, F), E is a b-space, F' is a b-subspace of
E. We write E|F = (E,F). g is a category, its objects are formal quotients: E|F ~ 0
if E = F, By = &y, E|F # 0 though E = F if & is stronger than &, (i.e.
B CBg).

Vasilescu considers quotient Fréchet spaces. If E and F' are Fréchet, and £ = F then
Yy = 95 (closed graph, open mapping theorem). One can say that E|F = «E/F', object of
the category qFré».

I have three isomorphic definitions of the category ¢. (I do not keep my 1962 definition).

a) Begin my defining g( E|F, E'|F') . A strict morphism u : E|F — E'|F' is induced
by u, : E — E', linear bounded mappins E — E' whose restriction to F is bounded
F — F'; u,; induces the zero strict morphis iff it is linear bounded E — F'. The strict
morphisms are a category.

I also need «pseudo-isomorphisms» s : E|F — E'|F’, strict morphism induced by s, :
E — E', «bornologically surjective» (VB' € B ,3B € Fp : u(B) = B’) such that
s7! F' = F in the bornological sense (B is bounded in F if B is bounded in E and s, (B)
is bounded in F').

All pseudo-isomorphisms are isomorphisms of ¢, a strict functor ® : ¢ — Cat (Cat a
category) can be extended to a functor @ : ¢ — Cat if and only ®(s) is an isomorphism of
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Cat for all pseudo-isomorphisms s of g.

b) The second definition is due to Vasilescu. He considers the category qFré of quotient
Fréchet spaces. A similar definition of the category g can be given.

A morphism u : E|F — E'|F’ has a «lifted graph», a b-subspace of E, E’ such that
G(u) N (F x F'Yy = F x F' in the bornological sense, the restriction of the projection
E x E' — EG(u) is bornologically surjective.

Vasilescu considers quotient Fréchet spaces. A Fréchet subspace F' = (F, %) of a
Fréchet space E = (E,Y) is a vector space F of E, with a Fréchet topology &5 sucht
that inclusion F' — FE is continuous. F; N F, is a Fréchet subspace if F; and F, are two
Fréchet subspaces of E , its topology is the weakest stronger than those induced by those of F;
andof F, . And F, + F,, is isomorphic to the quotientof Fy®F, by ((z,—z)|z € E;NE,).
It is also a Fréchet subspace of E'. The set of Fréchet subspaces of F 1is a lattice with N as
inter and + as joint.

In a similar way, a lattice of b-subspaces of ab-space E can be defined. Its elements are
the b-subspaces of E. Theinteris N, Ey\ NE, = FFNF,, Fpp = Fp NFp . And

Fi+F =F, +F,, Bisboundedin Fy + F, iff 3B, € #Fp , 3B, € H such that

B C B, + B, . We have a lattice of b-subspaces of E.
¢) The third definition is due to G. Noé€l [INo]. If E is a b-space and X a set, we
let B(X,E) the mappings u : X — E such that u(X) is bounded in E. If E|F is a

g-space, (X, E|F) ~ B(X,E)/B(X,F). If X and Y are two sets, we call £'(X,Y)

the bounded linear mappings u : £'(X) — £!(Y). With the obvious composition £ is a
category. We make o8( X, E|F) afunctor (£')% x ¢ — q. The category g is isomorphic to
the category of morphism of functors £' — EV, E|F \ oB(-, E|F) (EV is the category
of vector spaces and linear mappings).

b is a full subcategory of ¢q: b(E,F) ~ q(EIO,FIO) if E, F are b-spaces. In b a
complex (u,v) : E - F — G isexactif VB € #, v(B) = 03B, € # such that
u(B;) = B. Itis exactin ¢ iff it is exact in b. (A b-space FE is identified to the g-space
EIQ).

If Cat is an abelian category, a functor ¥, : b — Cat is exact iff (¥, (u),¥,(v)) is
exact in Cat when (u,v) is exact in b. It can be extended in a unique way to an exacat
functor ¥ : ¢ — Cat.

A right-exact functor ¥, : b — Cat has a unique right exact extension ¥ : ¢ — Cat.
No similar theorem is proved about left exact functors b — Cat. I know left exact functors
W, : b — Cat with several not isomorphic left exact extensions ¥, W' : ¢ — Cat. I am
convinced that a left exact functor ¥, : b — Cat exists without extension ¥ : ¢ — Cat.

G. No&l has defined the tensor product E|F ® E'|F' of g-spaces. It is right exact, often
difficult to compute. Two Banach spaces E and F' exist such that £ ®, F' is not a Banach
space. Let F be areflexive dimension of infinite dimension. The unit ball X of its dual space
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E’ with the topology induced by o( E', E) is a compact space. $(X)/E = F is a Banach
space and E' ®_ F is a genuine Banach space.

He has proved that EQ F ~ E@F if E is aBanach % -space [SNo]. If .#is a nuclear

b-space, #/'®, E ~ #/BE.

The tensor product is right exact in the category ¢. A right exact functor respects direct
limits. Bonet [Bo] has shown that the projective tensor product does not respect direct limits.
I consider this a reason for studying the tensor product in the category q.

Definition of a sheaf is more difficult. A function f is continuous, is of class & , is of
class & if it has the property locally. The reader should know what sheaves are.

Icandefine &( X, F), X metrisable locally compact space. The functor &(X,:) : b — b
1S exact, can be extended to a functor ¢ — ¢. If 2 is a o-finite measure space, we can define
LP(€2, -),1t1s an exact functor b — b. It can be extended to an exact functor ¢ — gq.

Both functors behave O.K. with the tensor product by a nuclear b-space:

NQ, E(X,) ~ E(X,HQ, ) A ®, LP(Q2,) ~ LP(-,4B,).

We must speak of sheaves. We know spaces of functions. If X is a topological space, for each
U open in X, we can define 4(U). If V C U, we have a restriction #(U) — #(V).
If W C V C U, the restriction 3(U) — F(W) is the composition of the restrictions
F(U) - (V) —» F(W). This is a presheaf.

If X = (X,dy) is metrisable, locally compact, &( -, E|F) ~ &(-, E) &(-, F) isasheaf.

In his Doctorate, using the results of Frampton and Tromba [FT], B. Aqzzouz [Aq] has
defined &1-, E|F) ~ €(-,E)&(.,F),whenr € R_/N.

Also in his Docotrate, M. Berkani [Be] has defined €7 -, E|F) when r € N, the manifold
we study is of dimension 1. He used J.L. Taylor’s construction, could have defined &'~ or
"1™ if he had needed them.

Both Aqzzouz’s and Berkani’s presheaves are sheaves.

I define the sheaf of holomorphic functions. I regret that holomorphic functions do not
have the unique continuation property.

The choice of sheaves and their construction have asked much time. No book can be
written so long they are not chosen.

APPENDIX. PROOF OF LEMMA 7BIS

I have used the Gunning and Rossi lemma 7, chapter I, section VI and what I call the lemma
7bis. I shall prove the lemma 7bis, using the lemma 7.

Let P,,..., P, be polynomials on n indeterminates, DV ¢ C™¥ ,A = (z € C*|Vi :
12,] £ 1,Vk : |P.(2)| < 1). Let F be holomorphic on a neighbourhood of D™¥ . Then
e(F)(z) = F(z,P(z)) 1s holomorphic on a neighbourhood of A. The mapping ¢ is
surjective: @ (D™V) — 8(A).
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Lemma 7bis. The kernel of the homomorphism ¢ : ©(D™V) — 8(A) of algebras is
generated by the polynomials y, — P,(z).

Let F € 8(D™N, F(z,P(z)) = 0. Consider next o, (F)(z2y,...,2,,P(2),...,
Py _;,yy) . Itis holomorphic on a neighbourhood of Ay _, = ((z;,...,2,,9)]||%] < 1,
v, | <1,Vk=1,...,N —1:|P(2)] < 1).

The function ¢, (F)(2z,y,) 1s such that ¢, (F)(z,Py(2)) = 0. Therefore
gn(z,yn) = (e (FY(2,y5)) /(yy—Py(2)) is holomorphic on a neighbourhoodof A, _; .
A function G, (z,y) € ©(D™N) exists such that g, (2,yy) = Gn(2,Py,---, Py_1,Un) »
and F(2,P,(2),...,Py_1,yn) = (yy — Py(2))Gp(2, Pi(2),...,Py_1(2),yy) -

We have found functions G,,,,...,Gy € ©(D™¥) such that F(z,P,(2),...,

PeyVYerr-- Un) = Efﬂ(yr“ P (2))G.(2,P\(2),...,P(2),Yps1s-- -, ¥n) ON Byyy.
We consider A, = ((21,..+,2,,¥,-- ) IVr = 1,...,k 1 |P(2)] < 1). The func-

tion F(znpl(z):"':Fk(z):yk+ll”‘:yﬂ) T Eﬂﬂﬂr o Pf(z))Gf(z:aP](z): '“:Pj;(z):
Yee1s .-+ Yy) vanishes when we replace y, by P.(2z). We let

yk(z.ym,m,yﬁ) =
_ F(zlpl(z):“'rpk_l(z):yki"':yﬁ)_

Vi "“‘Pk(z)
. _Efl-l(yr _Pf(z))Gr(z:Pl(z):'”ipk(z):yk+1:“':yﬁ)
yk“‘*P;;(z) | |

It is holomorphic on a neighbourhood of A,, , , can be lifted to G, € © (D™¥) . The lemma
7bis 1s proved by induction.
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