ABEL'S FORMULA AND β -DUALITY IN SEQUENCE SPACES WILLIAM A. VEECH (*)

Dedicated to the memory of Professor Gottfried Köthe

1. INTRODUCTION

The real Banach space m (resp. c) can be identified with the set of formal, real infinite series $x \sim \sum_{j=1}^{\infty} x_j$ such that x has bounded partial sums, $S_n(x) = \sum_{j=1}^n x_j$, $n \ge 1$ (resp. x is convergent). Let $||x|| = \sup_n |S_n(x)|$, $x \in M \supseteq c$.

Recall that the β – dual ([K], p. 453) of a linear space E of formal series $x \sim \sum x_j$ is the set of sequences $y = (y_1, y_2, ...)$ such that (x, y) exists for all $x \in E$, where

(1.1)
$$(x,y) = \sum_{n=1}^{\infty} x_n y_n \quad (x \in E)$$

If E = m, the principle of uniform boundedness and Abel's formula

(1.2)
$$\sum_{n=1}^{N} x_n y_n = \sum_{n=1}^{N-1} S_n(x) \left(y_n - y_{n+1} \right) + S_N(x) y_N$$

imply that each $y \in \beta$ -dual (m) satisfies (a) $\sum_{n=1}^{\infty} |y_n - y_{n+1}| < \infty$ and (b) $\psi_0(y) \stackrel{\text{def}}{=} \lim_{n \to \infty} y_n = 0$. In the case of $c \subseteq m$, the requirement (b) is replaced by (b') $\psi_0(y) = \lim_{n \to \infty} y_n$ exists. It follows that the map $y(\cdot)$ which assigns to $(u,t) \in l^1 \times \mathbb{R}$ the sequence $y_n(u,t) = t + \sum_{k=n}^{\infty} u_k$ is an isomorphism onto the β -dual of c with the image of $l^1 \times \{0\}$ being the β -dual of m.

In the present paper we shall define Banach sequence (series) spaces $c(\alpha) \subseteq m(\alpha)$, $0 < \alpha \le 1$, and we shall observe that the β -dual, $l(\alpha)$, of $c(\alpha)$ stands in relation to $c(\alpha)$ and $m(\alpha)$ as $l(1) \simeq l^1 \times \mathbf{R}$ stands to c = c(1) and m = m(1). This relation will be exhibited through a characterization of $l(\alpha)$ in terms of a "generalized Abel's formula", (1.14) below.

In preparation of the definition of $c(\alpha)$ and $m(\alpha)$ let \sum be the group of permutations of $\mathbb{N} = \{1, 2, ...\}$ with finite supports. \sum acts upon m, preserving c, by the rule

(1.3)
$$T_{\sigma}x \sim \sum_{j=1}^{\infty} x_{\sigma^{-1}j} \left(x \sim \sum_{j=1}^{\infty} x_j \in m \right)$$

^(*) Research supported by NSF-DMS-8822875.

 $||\sigma||$ denotes the operator norm of T_{σ} . Define $||\cdot||_{\alpha}$ on m by

(1.4)
$$||x||_{\alpha} = \sup_{\sigma \in \sum} \frac{||T_{\sigma}x||}{||\sigma||^{\alpha}}.$$

Now define $m(\alpha)$ and $c(\alpha) \subseteq m(\alpha)$ by

$$m(\alpha) = \{x \in m | || x ||_{\alpha} < \infty \}$$

$$c(\alpha) = \left\{ x \in m(\alpha) | \lim_{\|\sigma\| \to \infty} \frac{|| T_{\sigma} x ||}{|| \sigma ||^{\alpha}} = 0 \right\}.$$

If $\alpha=1$, then $m(\alpha)=m$ and $||\cdot||_1$ reduces to $||\cdot||$. (In this paper the l^p -norms $||\cdot||_p$ will be avoided, and the notation (1.4) for $||\cdot||_{\alpha}$ should not cause confusion). It will be seen that c(1)=c. If $\alpha=0$, then $m(\alpha)=m(0)=l^1$ is the space of absolutely summable sequences while $c(0)=\{0\}$. If $\epsilon<\alpha$, then clearly $m(\alpha-\epsilon)\subseteq c(\alpha)$. In particular, it will follow that $m(\alpha)\subseteq c$, $\alpha<1$.

 $l(\alpha)$, $0 < \alpha \le 1$, denotes the β -dual of $c(\alpha)$. We shall find that $\psi_0(y) = \lim_n y_n$ exists for each $y \in l(\alpha)$, and we define $l_0(\alpha) = l(\alpha) \cap \psi_0^{-1}0$. In the statement below * and stand for Banach dual and β -dual, respectively.

Theorem 1.6. Let $\alpha \in (0,1]$, and let $l(\alpha) = c(\alpha)^{\hat{}}$. Then

$$c(\alpha)^* = l(\alpha)$$

$$l(\alpha)^- = m(\alpha) \quad (\alpha < 1)$$

$$l_0(\alpha)^- = l_0(\alpha)^* = m(\alpha)$$

$$l(\alpha)^* = m(\alpha) \oplus \mathbb{R} \psi_0.$$

When $\alpha = 1$, only the second line of (1.7) requires modification (replace m(1) by c(1)). As indicated earlier, Theorem 1.6 hinges on a generalized Abel formula which we shall now describe.

Define \mathcal{F}_0 to be the set of finite subsets of \mathbb{N} , and let $\mathcal{F} = \{F \subseteq \mathbb{N} | F \in \mathcal{F}_0 \text{ or } F^c \in \mathcal{F}_0\}$. Define $r(\cdot)$ on \mathcal{F} by r(F) = «connectivity» of F, the number of maximal segments $[a,b) \subseteq F$, $1 \le a < b \le \infty$. Note that $\mathcal{F} = \{F \subseteq \mathbb{N} | r(F) < \infty\}$ and $|r(F) - r(F^c)| = 1$, $F \in \mathcal{F}$. We shall deal with classes of functions $z(\cdot)$ on \mathcal{F} , and in all cases it will be true that $z(\emptyset) = 0$.

If $0 \le \alpha \le 1$, define $||z||_{\alpha}^*$, z a real function on \mathcal{F} , by

(1.8)
$$||z||_{\alpha}^* = \sum_{F \in \mathcal{F}} |z(F)|r(F)|^{\alpha}.$$

Also, define $Z(\alpha)$ by

(1.9)
$$Z(\alpha) = \{z | ||z||_{\alpha}^* < \infty\}.$$

Each $z \in Z(\alpha)$ is absolutely summable, and therefore the operator $R: Z(\alpha) \to \text{sequences}$, defined by y = Rz with

$$(1.10) (Rz)_j = \sum_{F \in \mathcal{F}} \chi_F(j) z(F)$$

is well-defined. As $\lim_{j\to\infty} \chi_F(j)$ exists for all $F\in\mathcal{F}$, it is true that $\lim_{j\to\infty} (Rz)_j = \sum_{F\in\mathcal{F}_0^c} z(F)$ exists.

If $x \in c(1)$, then for each $F \in \mathcal{F}$ the number x(F) is well-defined, where

(1.11)
$$x(F) = \sum_{j=1}^{\infty} \chi_F(j) x_j.$$

(This uses the fact $x \sim \sum_{j=1}^{\infty} x_j \in c(1)$ is a convergent series and $r(F) < \infty$, $F \in \mathcal{F}$.) We shall prove

Theorem 1.12. If $0 < \alpha \le 1$, then $l(\alpha)$ is the R-image of $Z(\alpha)$, i.e.

$$l(\alpha) = RZ(\alpha).$$

The duality between $l(\alpha)$ and $m(\alpha)$ (or c(1) when $\alpha = 1$) is given by

$$(1.14) (x,y) = \sum_{F \in \mathcal{F}} x(F)z(F) (x \in m(\alpha), z \in Z(\alpha), y = Rz).$$

Example 1.15. Let $y=(y_1,y_2,...)$ be such that $\sum_{n=1}^{\infty}|y_n-y_{n+1}|<\infty$, and define $\psi_0(y)=\lim_{n\to\infty}y_n$. Define $z\in Z(1)$ by $z(\mathbb{N})=\psi_0(y)$, $z([1,n])=y_n-y_{n+1}$ and z(F)=0 for all other $F\in\mathcal{F}$. For each n we have

$$(Rz)_n = \psi_0(y) + \left(y_n - \lim_{N \to \infty} y_N\right) = y_n$$

and therefore Rz = y. If $x \in c$, then Abel's formula says

(1.15)
$$(x,y) = \sum_{n=1}^{\infty} x([1,n])z([1,n]) + x(\mathbb{N})z(\mathbb{N}).$$

By (1.14) it is true for any $z \in Z(1)$ such that Rz = y that $(x, y) = \sum_{F \in \mathcal{F}} x(F)z(F)$ ((1.14)). We remark that (1.15) makes sense for $x \in m$ as soon as $z(\mathbb{N}) = \psi_0(y) = 0$. This remains true for all z such that Rz = y, $\psi_0(y) = 0$, with (1.14) in place of (1.15).

2. COMPUTATIONS WITH $|| \sigma ||$

If $x \in m$, define $Sx = \{S_n(x) | n \ge 1\}$ to be the sequence of partial sums. If $\sigma \in \sum$, the operator $ST_\sigma S^{-1}$ is an operator on the space of bounded sequences which, since $x \to Sx$ is an isometry, has the same operator norm $(=||\sigma||)$ as T_σ . If a bounded sequence is taken to be a column vector, the operators S, T_σ and S^{-1} can be expressed in infinite matrix form. S (resp. S^{-1}) is lower triangular with 1's on and below the diagonal (resp. 1's on the diagonal, -1's just below the diagonal and 0's elsewhere). T_σ is represented by $(T_\sigma)_{ij} = \delta_{j\sigma^{-1}i}$. It is clear $ST_\sigma S^{-1}$ is then a matrix whose entries are $0, \pm 1$. Therefore, $||\sigma||$ is the maximum number of nonzero entries (= maximum l^1 -norm) of any row of $ST_\sigma S^{-1}$.

If $i, j \in \mathbb{N}$, the entry $(ST_{\sigma}S^{-1})_{ij}$ is 1 if $\sigma j \leq i$ and $\sigma(j+1) > i, -1$ if $\sigma j > i$ and $\sigma(j+1) > i$ and 0 otherwise. Define $\nu(\sigma)$ by

(2.1)
$$\nu(\sigma) = \text{Max Card } \left\{ j | \chi_{[1,i]}(\sigma j) \neq \chi_{[1,i]}(\sigma(j+1)) \right\}.$$

We have

Proposition 2.2. The operator norm $||\sigma|| = ||T_{\sigma}||$ satisfies

$$||\sigma|| = \nu(\sigma).$$

Let σ be extended from $\mathbb N$ to a PL-function on $[1,\infty)$, and let $\mu(\sigma)$ be the maximum number of intersections of the graph $G(\sigma)$ with horizontal lines. If i is chosen to maximize (2.1), then $\nu(\sigma)$ is precisely the number of times $G(\sigma)$ intersects the horizontal $y=i+\epsilon$, $0<\epsilon<1$. Therefore, $\mu(\sigma)\geq\nu(\sigma)$. On the other hand, if $\mu(\sigma)$ is the number of intersections of $G(\sigma)$ with a line of height $i+\epsilon$, $0<\epsilon<1$, each point of intersection accounts for a j such that $\chi_{[1,i]}(\sigma j)\neq\chi_{[1,i]}(\sigma(j+1))$. Therefore,

Proposition 2.4. With notations as above

$$(2.5) \nu(\sigma) = ||\sigma|| = \mu(\sigma).$$

Let $r(\cdot)$ be the «connectivity» function on \mathcal{F} as in section 1. Define $\rho(\sigma)$, $\sigma \in \sum$, by

(2.6)
$$\rho(\sigma) = \operatorname{Max}_{i} r(\sigma^{-1}[1, i]).$$

Fix i to maximize (2.6) and let $r^{-1}([1,i]) = \bigcup_{k=1}^{\rho} [a_k,b_k)$, $a_1 < b_1 < a_2 < \ldots < b_{\rho}$. The graph $G(\sigma)$ crosses the horizontal $y = i + \epsilon$, $0 < \epsilon < 1$, twice on each complementary interval $[b_k,a_{k+1})$, $k < \rho$, once on $[b_{\rho},\infty)$ and, when $a_1 > 1$, once on $[1,a_1]$. It follows that $\mu(\sigma) \geq 2\rho(\sigma) - 1$ in all cases. Conversely, if $G(\sigma)$ crosses $y = i + \epsilon$ $\mu(\sigma)$ times, it must be that $r(\sigma^{-1}[1,i]) = [\frac{\mu(\sigma)-1}{2}]$. Therefore,

(2.7)
$$2\rho(\sigma) - 1 \le ||\sigma|| \le 2\rho(\sigma) + 1.$$

In particular, $\rho(\sigma)$ and $||\sigma|| = \mu(\sigma) = \nu(\sigma)$ are of the same magnitude.

Lemma 2.8. Let $x \in m$, and suppose

(2.9)
$$\lim_{\|\sigma\|\to\infty}\frac{\|T_{\sigma}\|}{\|\sigma\|}=0.$$

Then $x \sim \sum_{j=1}^{\infty} x_j$ is a convergent series.

Proof. To say x is not convergent is to say that there exists $\epsilon > 0$ and, replacing x by -x and relettering, if necessary, $a_1 < b_1 < a_2 < b_2 < \dots$ such that $\epsilon < x([a_k, b_k)) = \sum_{j=a_k}^{b_k-1} x_j$. For each N define $i_N = \sum_{k=1}^N (b_k - a_k)$ and let $\sigma_N \in \Sigma$ be constructed so that (1) $\sigma_N(\bigcup_{k=1}^N [a_k, b_k)) = [1, i_N]$, (2) σ_N is supported on $[1, i_N] \cup \bigcup_{k=1}^N [a_k, b_k)$ and (3) σ_N is monotone on $\bigcup_{k=1}^N [a_k, b_k)$ and on its complement in $[1, i_N]$. $G(\sigma_N)$ has at most 2N (maximal) intervals of negative slope, and therefore $||\sigma_N|| = O(N)$. As $||T_\sigma x|| \ge x(\sigma^{-1}[1, i_N]) > N\epsilon$, (2.9) cannot be true. This is a contradiction, and we conclude x is convergent.

Proposition 2.10. If $\alpha = 1$, then $c(\alpha) = c(1)$ is the space c of convergent series.

Proof. Lemma 2.8 and the definition (1.3) imply $c(1) \subseteq c$. Conversely, let $x \sim \sum_{j=1}^{\infty} x_j$ be a convergent series. Given $\epsilon > 0$ choose i so that $|x([a,b))| < \epsilon$ if $[a,b) \subseteq [i,\infty)$. If

 $\sigma \in \sum$ is such that $||T_{\sigma}x|| > ||x||$, there exists i_0 such that $||T_{\sigma}x|| = |x(\sigma^{-1}[1, i_0])|$. As $|x(I)| < \epsilon$ for any component I of $\sigma^{-1}[1, i_0]$ which is contained in $[i, \infty)$, we have

$$||T_{\sigma}x|| \leq \sum_{j=1}^{i} |x_j| + r(\sigma^{-1}[1,i_0]) \epsilon.$$

Now divide by $||\sigma||$ and let $||\sigma|| \to \infty$. By (2.7) the lim sup in (2.9) is at most ϵ . Letting $\epsilon \to 0$, the proposition obtains.

In what follows we use $e_i \sim \sum_{j=1}^{\infty} \delta_{ij}$ to denote the «unit vectors» in m.

Proposition 2.11. The set $\{e_i|i \in \mathbb{N}\}$ is a Schauder basis for $c(\alpha), 0 < \alpha \leq 1$. More precisely, if $x \sim \sum_{j=1}^{\infty} x_j \in c(\alpha)$, then $x = \sum_{j=1}^{\infty} x_j e_j$ in $\|\cdot\|_{\alpha}$.

Proof. Fix $0 < \alpha < 1$ and $x \in c(\alpha)$. Let $\epsilon_0(t)$, t > 0 be a function such that

(2.12)
$$\|T_{\sigma}x\| \leq \epsilon_{0}(\|\sigma\|) \|\sigma\|^{\alpha} \quad \left(\sigma \in \sum\right)$$

$$\lim_{t \to \infty} \epsilon_{0}(t) = 0.$$

Given $\epsilon > 0$, use the fact x is a convergent series (Lemma 2.8) to find n such that $|x(I)| < \epsilon$ for any segment $I \subseteq [n, \infty)$. Let $\widehat{x} = x - \sum_{j=1}^{n-1} x_j e_j \sim \sum_{j=n}^{\infty} x_j$. We shall prove that

$$||\widehat{x}||_{\alpha} \leq \epsilon^{\alpha} + 2\epsilon_0 \left(\epsilon^{\alpha-1}\right).$$

Since $\alpha < 1$, (2.13) and (2.12) yield the desired result. (For $\alpha = 1$ the statement is obvious and standard.) To establish (2.13) let $\sigma \in \Sigma$ be such that $||T_{\sigma}\widehat{x}|| > ||\widehat{x}||$ (since $||\widehat{x}|| < \epsilon!$), and choose N so that $||T_{\sigma}\widehat{x}|| = |\widehat{x}(\sigma^{-1}[1,N])|$. Decompose $\sigma^{-1}[1,N]$ into $r = r(\sigma^{-1}[1,N])$ maximal segments I_1,\ldots,I_r , from left to right, and let $s \le r$ be the least s, if any, such that $I_s \cap [n,\infty) \neq \emptyset$. Replace I_s by $I_s \cap [n,\infty)$ and reletter so that now $\widehat{x}(I_j) = x(I_j)$, $s \le j \le r$ and

$$||T_{\sigma}\widehat{x}|| = |\sum_{j=s}^{r} x \left(I_{j}\right)| \leq (r-s+1)_{\epsilon}.$$

Construct $\tau \in \sum$ as in (1)-(3) of the proof of Lemma 2.8 so that

where $\tau(\bigcup_{j=s}^{r} I_j) = [1, A]$. By (2.12) and (2.14) we have

$$||T_{\sigma}\widehat{x}|| \leq \min\left((r-s+1)\epsilon, \ \epsilon_0(||\tau||) \ ||\tau||^{\alpha}\right).$$

By construction $||\tau|| \ge r - s + 1$ and $||\sigma|| \ge r \ge \frac{1}{2} ||\tau||$. If $(r - s + 1)\epsilon > \epsilon^{\alpha}$, then $\frac{||T_{\sigma}\widehat{x}||}{||\sigma||^{\alpha}} \le 2\epsilon_0(\epsilon^{\alpha-1})$, while if $(r - s + 1)\epsilon \le \epsilon^{\alpha}$, $||T_{\sigma}\widehat{x}|| \le \epsilon^{\alpha}$. Now (2.13) is true, and the proposition is proved.

Corollary 2.16. Let $l(\alpha)$ be the β -dual of $c(\alpha)$. Then $l(\alpha)$ is also the Banach dual of $c(\alpha)$.

Proof. Clear.

3. EQUIVALENT NORMS ON $m(\alpha)$

Associate to each $\pi = (\pi_1, \pi_2, ...) \in \mathbb{N}^{\mathbb{N}}$ the natural partition of \mathbb{N} into segments $I_j = I_j(\pi), \ j \ge 1$, ordered from left to right with $|I_j(\pi)| = \pi_j$. π determines a contraction $Q_{\pi}: m \to m$ by

$$Q_{\pi}x \sim \sum_{j=1}^{\infty} x \left(I_{j}(\pi) \right) \qquad (x \in m)$$

(Since $I_j(\pi)$ is finite, $x(I_j(\pi))$ makes sense.) The partial sums of $Q_{\pi}x$ being a subsequence of the partial sums of x we have $||Q_{\pi}x|| \le ||x||$ for all π, x .

 \sum acts upon $\pi \in \mathbb{N}^{\mathbb{N}}$ by $(\sigma \pi)_j = \pi_{\sigma - 1j}$. Given $\sigma \in \sum$ and $\pi \in \mathbb{N}^{\mathbb{N}}$, define $\tau = \tau(\sigma, \pi) \in \sum$ by requiring (a) $\tau I_{\sigma - 1j}(\pi) = I_j(\sigma \pi)$ and (b) τ is monotone on $I_k(\pi)$ for each k. Since $|I_j(\sigma, \pi)| = \pi_{\sigma - 1j} = |I_{\sigma - 1j}(\pi)|$ (a) makes sense. Observe the relation

(3.1)
$$T_{\sigma}Q_{\pi} = Q_{\sigma\pi}T_{\tau} \qquad (\tau = \tau(\sigma, \pi)).$$

Indeed, $(T_{\sigma}Q_{\pi}x)_j = (Q_{\pi}x)_{\sigma^{-1}j} = x(I_{\sigma^{-1}j}(\pi)) = x(\tau^{-1}I_j(\sigma\pi)) = (T_{\tau}x)(I_j(\sigma\pi)) = (Q_{\sigma\pi}T_{\tau}x)_j$.

Lemma 3.2. If $\sigma \in \sum$ and $\pi \in \mathbb{N}^{\mathbb{N}}$, and if $\tau = \tau(\sigma \pi)$ is as above, then

(3.3)
$$|| \sigma || \le || \tau || \le || \sigma || + 2$$
.

Proof. Define k(i), $i \ge 1$, to be the number of j such that $I_j(\sigma\pi) \subseteq [1,i]$. Let $I_{k+1}^0 = I_{k+1}(\sigma\pi) \cap [1,i]$, and define $I_{\sigma^{-1}(k+1)}^0 = \tau^{-1}I_{k+1}^0$. We have $\tau^{-1}[1,i] = I_{\sigma^{-1}(k+1)}^0 \cup I_{\sigma^{-$

 $\bigcup_{j=1}^{k(i)} I_{\sigma^{-1}j}(\pi) \text{. As } I_{\sigma^{-1}(k+1)}^0 \neq I_{\sigma^{-1}(k+1)}(\pi) \text{, by definition, we have } r(\sigma^{-1}[1,k(i)]) \leq \\ \leq r(\tau^{-1}[1,i]) \leq r(\sigma^{-1}[1,k(i)]) + 1. \text{ When the left equality holds, } G(\tau) \text{ and } G(\sigma) \\ \text{intersect the horizontals } y = i + \frac{1}{2} \text{ and } y = k(i) + \frac{1}{2}, \text{ respectively, the same number of times. When the right equality holds, } G(\tau) \text{ and } G(\sigma) \text{ intersect the horizontals } y = i + \frac{1}{2} \\ \text{and } y = k(i) + \frac{1}{2} + 1, \text{ respectively, either the same number of times or else } l \text{ times for } G(\tau) \\ \text{and } l - 2 \text{ times for } G(\sigma) \text{. (The latter occurs when } I_{\sigma^{-1}(k+1)}(\pi) \text{ joins the left side of some } I_{\sigma^{-1}j}(\pi), j \leq k(i) \text{.) Now (3.3) is proved.}$

Proposition 3.4. For each $\pi \in \mathbb{N}^{\mathbb{N}}$ and $\alpha \in [0,1]Q_{\pi}$ has norm at most 2^{α} on $m(\alpha)$.

Proof. Fix $\pi \in \mathbb{N}^{\mathbb{N}}$, and below let $\tau = \tau(\sigma, \pi)$ as σ varies in Σ . Lemma 3.2 implies

$$||Q_{\pi}x|| = \sup_{\sigma \in \sum} \frac{||T_{\sigma}Q_{\pi}x||}{||\sigma||^{\alpha}} =$$

$$= \sup_{\sigma \in \sum} \frac{||Q_{\sigma\pi}T_{\tau}x||}{||\sigma||^{\alpha}} \le$$

$$\leq \sup_{\sigma \in \sum} \left(\frac{||\sigma|| + 2}{||\sigma||}\right)^{\alpha} \frac{||T_{\tau}x||}{||\tau||^{\alpha}}.$$

Since $\sigma = \text{Id implies } \tau = \text{Id}$, and since $\sigma \neq \text{Id implies } ||\sigma|| \geq 3$, the proposition follows. If $x \in m$ and $F \in \mathcal{F}_0$ (i.e., $|F| < \infty$), define $|x|(F) = \sum_{i \in F} |x_i|$.

Lemma 3.6. There exists a constant $c < \infty$ such that if $x \in m(\alpha)$, then

(3.7)
$$\sup_{\substack{F \in \mathcal{F}_0 \\ F \neq \emptyset}} \frac{|x|(F)}{|F|^{\alpha}} \le c ||x||_{\alpha}.$$

Proof. Order the positive terms in x as $x_{n_1} \ge x_{n_2} \ge \dots$ For each N define $\sigma_N \in \sum$ to have support $[1, N] \cup \{n_1, \dots, n_N\}$ and to satisfy $\sigma_N n_j = j$. As $||\sigma_N|| = O(N)$ is clear, we have

$$Nx_{n_N} \leq \sum_{j=1}^N x_{n_j} \leq ||T_{\sigma_N}x|| \leq ||\sigma_N||^{\alpha} ||x||_{\alpha} = O(N^{\alpha}) ||x||_{\alpha}.$$

It follows $x_{n_N} = O(N^{\alpha-1})$. A similar argument for the negative terms and the fact $\sum_{i=1}^k j^{\alpha-1} = O(k^{\alpha})$ establishes (3.7). The lemma is proved.

As a corollary to the estimate $x_{n_N} = O(N^{\alpha-1})$ we have

Proposition 3.8. If $\alpha < 1$, then

$$m(\alpha) \subseteq \bigcap_{p > \frac{1}{1-\alpha}} l^p.$$

Proposition 3.4 and Lemma 3.6 imply that the norm $|||\cdot|||'_{\alpha}$ is dominated by $||\cdot||_{\alpha}$, where

(3.10)
$$|||x|||'_{\alpha} = \sup_{\substack{\pi \in \mathbb{N}^{\mathbb{N}} \\ \emptyset \neq F \in \mathcal{F}_0}} \frac{|Q_{\pi}x|(F)}{|F|^{\alpha}}.$$

By the closed graph theorem the equivalence of $||| \cdot |||'_{\alpha}$ and $|| \cdot ||_{\alpha}$ is a consequence of Lemma 3.11. If $x \in m$ is such that $|||x|||'_{\alpha} < \infty$, then $||x||_{\alpha} < \infty$.

Proof. Let $\sigma \in \sum$ be such that $||T_{\sigma}x|| > ||x||$. Choose n such that $||T_{\sigma}x|| = |x(\sigma^{-1}[1,n])|$ and suppose $\sigma^{-1}[1,n] = \bigcup_{j=1}^r I_j$, where $r = r(\sigma^{-1}[1,n])$. By (2.7) $r = O(||\sigma||)$. Choose $\pi \in \mathbb{N}^{\mathbb{N}}$ with $I_j = I_{l_j}(\pi)$, $1 \le j \le r$, and let $F = \{l_1, \ldots, l_r\}$. We have

$$|| \ T_{\sigma}x \ || = |x \left(\sigma^{-1}[1,n]\right) \ | \leq |Q_{\pi}x|(F) \leq |F|^{\alpha}|||x|||_{\alpha}' = r^{\alpha}|||x|||_{\alpha}' = O(||\sigma||^{\alpha})||x|||_{\alpha}'.$$

Therefore, $||x||_{\alpha} < \infty$ (and $||x||_{\alpha} \le C|||x|||_{\alpha}'$ for a universal constant $C < \infty$). The lemma is proved.

As noted earlier, Lemma 3.6 and 3.11 imply

Proposition 3.12. The norms $\|\cdot\|_{\alpha}$ and $\|\cdot\|'_{\alpha}$ are equivalent on $m(\alpha)$.

The norm $||| \cdot |||'_{\alpha}$ is closely related to a norm $||| \cdot |||_{\alpha}$ which we define by

$$|||x|||_{\alpha} = \sup_{\substack{F \in \mathcal{F}_0 \\ F \neq \emptyset}} \frac{|x(F)|}{r(F)^{\alpha}}.$$

In fact,

Proposition 3.14. If $0 \le \alpha \le 1$, then

$$(3.15) \frac{1}{2}|||x|||'_{\alpha} \le |||x|||_{\alpha} \le |||x|||'_{\alpha}.$$

Proof. To prove the right hand inequality, let $\emptyset \neq F = \bigcup_{j=1}^r I_j \in \mathcal{F}_0$, with r = r(F), and select $\pi \in \mathbb{N}^{\mathbb{N}}$ with $I_j = I_{l_i}(\pi)$, $1 \le j \le r$. Let $E = \{l_1, \ldots, l_r\}$, and observe

$$|x(F)| \le |Q_{\pi}x|(E) \le |E|^{\alpha}||x|||_{\alpha}' = r(F)^{\alpha}||x|||_{\alpha}'.$$

Therefore, $|||x|||_{\alpha} \leq |||x|||'_{\alpha}$. To prove the left-hand inequality let $\pi \in \mathbb{N}^{\mathbb{N}}$ and $F \in \mathcal{F}_0$, and select $E \subseteq F$ such that $(Q_{\pi}x)_j$, $j \in E$, has constant sign and

$$|Q_{\pi}x(E)| \geq \frac{1}{2}|Q_{\pi}x|(F).$$

In general, r(E) < |E|, but we may alter π without changing $|Q_{\pi}x|(F)$ or $Q_{\pi}x(E)$ so that r(E) = |E|; simply collapse maximal segments of E to points using a «coarser» π . This alteration decreases |F|. We now have

$$\frac{|Q_{\pi}x|(F)|}{|F|^{\alpha}} \leq 2 \frac{|Q_{\pi}x(E)|}{|E|^{\alpha}} = 2 \frac{|Q_{\pi}x(E)|}{r(E)^{\alpha}} \leq 2 |||x|||_{\alpha}.$$

Now sup over $F \in \mathcal{F}_0$. The proposition is proved.

We conclude this section with a remark. Let $0 < \alpha < 1$, and define $\lambda(\alpha) \subseteq m(\alpha)$ by

(3.16)
$$\lambda(\alpha) = \left\{ x \in m | Q_{\pi} x \in l^{\frac{1}{1-\alpha}}, \text{ all } \pi \in \mathbb{N}^{\mathbb{N}} \right\}.$$

It is easy to see directly that each $x \in \lambda(\alpha)$ is a convergent series, and this plus a sliding hump argument implies $||x||_{\lambda(\alpha)} < \infty$, $x \in \lambda(\alpha)$, where

$$||x||_{\lambda(\alpha)} \sup_{\pi \in \mathbb{N}^{\mathbb{N}}} ||Q_{\pi}x||_{p} \qquad \left(p = \frac{1}{1 - \alpha}\right).$$

(On the right side of (3.17) the $||\cdot||_p$ -norm is the traditional l^p -norm.) Hölder's inequality implies $|||\cdot|||'_{\alpha}$ is dominated by $||\cdot||_{\lambda(\alpha)}$, but the two are not equivalent. Also, the sliding hump argument yields

$$\lim_{N\to\infty} \sup_{\pi\in\mathbb{N}^N} \sum_{j=N}^{\infty} |(Q_{\pi}x)_j|^p = 0 \qquad (x\in\lambda(\alpha)).$$

The reader can check that this implies $\lambda(\alpha) \subseteq c(\alpha)$. The results of this section, including Propositions 3.4 and 3.8, imply

(3.18)
$$\lambda(\alpha) \subseteq c(\alpha) \subseteq m(\alpha) \subseteq \bigcap_{\beta > \alpha} \lambda(\beta).$$

All inclusions are strict. For example, $x \sim \sum_{j=1}^{\infty} (-1)^j j^{\alpha-1}$, $\alpha < 1$, belongs to $c(\alpha)$ but not to $\lambda(\alpha)$. And $x \sim \sum_{j=1}^{\infty} (-1)^j (\log) j^{\alpha-1}$, $\alpha < 1$, belongs to $\lambda(\beta)$, $\beta > \alpha$, but not to $m(\alpha)$.

4. DUALITY

The objects $||\cdot||_{\alpha}^*$, $Z(\alpha)$ and R have been defined in (1.9)-(1.11). The formal adjoint of R is

(4.1)
$$(R^*x)(F) = \sum_{j=1}^{\infty} \chi_F(j) x_j = x(F).$$

The natural domain of R^* is c(1) = c. In this section we shall establish the expected relation

$$(4.2) (x,Rz) = [R^*x,z] (x \in m(\alpha), z \in Z(\alpha), \alpha < 1$$

where

$$(x,y) = \sum_{j=1}^{\infty} x_j y_j$$

$$[w,z] = \sum_{F \in \mathcal{F}} w(F) z(F).$$

When $\alpha = 1$, (4.2) is true for $x \in c(1) = c$ and $z \in Z(1)$.

Let $N \ge 1$, and define $\mathcal{F}_N = \{F \in \mathcal{F} | F \cap [1, N] \neq \emptyset\}$. $\mathcal{F}_N \nearrow \mathcal{F} - \{\emptyset\}$ and $\mathcal{F}_N^c \setminus \{\emptyset\}$ as $N \to \infty$. Recalling that $x(\emptyset) = 0 = z(\emptyset)$, we shall ignore \emptyset .

If $F \in \mathcal{F}_N$ define $A_F = F \cap [1, N]$ and $B_F = F \cap [N+1, \infty)$. If $x \in m(\alpha)$ (c(1) when $\alpha = 1$) and $z \in Z(\alpha)$, $[R^*x, z]$ exists as an absolutely convergent sum. Moreover, because $x(F) = x(A_F) + x(B_F)$ with $r(A_F)$, $r(B_F) \leq r(F)$, we can write

$$\sum_{F \in \mathcal{F}_{N}} x(F) z(F) = \sum_{F \in \mathcal{F}_{N}} x(A_{F}) z(F) + \sum_{F \in \mathcal{F}_{N}} x(B_{F}) z(F) =$$

$$= \sum_{A \subseteq [1,N]} \sum_{F \in \mathcal{F}_{N}} x(A) z(F) \delta_{AA_{F}} + \sum_{F \in \mathcal{F}_{N}} x(B_{F}) z(F) =$$

$$= \sum_{j=1}^{N} x_{j} (Rz)_{j} + \sum_{F \in \mathcal{F}_{N}} x(B_{F}) z(F).$$

Let $\epsilon > 0$ and $r < \infty$ be fixed. Since x above is a convergent series, N can be chosen so that

$$(4.5) |x(B)| < \epsilon (B \in \mathcal{F}_N^c, r(B) \le r).$$

We divide the sum on the right in (4.4) according to $r(B_F) \le r$ and $r(B_F) > r$. The contribution from the first grouping is dominated by $\epsilon \parallel z \parallel_{\alpha}^*$. As for the second grouping

$$\left|\sum_{\substack{F \in \mathcal{F}_{N} \\ r(B_{F}) > r}} x\left(B_{F}\right) z(F)\right| \leq \left|\left|\left|x\right|\right|\right|_{\alpha} \sum_{\substack{F \in \mathcal{F}_{N} \\ r(F) > r}} \left|z(F)|r(F)^{\alpha}\right|$$

which tends to zero as $r \to \infty$. Finally, $[R^*x, z]$ differs from the left side of (4.4) by a sum over \mathcal{F}_N^c :

$$\Big|\sum_{F\in\mathcal{F}_N^c}x(F)z(F)\Big|\leq |||x|||_{\alpha}\sum_{F\in\mathcal{F}_N^c}|z(F)|r(F)^{\alpha}=o(1)$$

where o(1) is as $N \to \infty$. Collecting results, we have proved

Proposition 4.7. If $0 \le \alpha < 1$ and $x \in m(\alpha)$, $z \in Z(\alpha)$, or if $\alpha = 1$ and $x \in c(1)$, $z \in Z(1)$, then

$$(4.8) (x,Rz) = [R^*x,z]$$

where (\cdot, \cdot) and $[\cdot, \cdot]$ are defined by (4.3).

5. CHARACTERIZATION OF $l(\alpha)$

Recall that $l(\alpha)$ is defined to be the β -dual of $c(\alpha)$. If $\varphi \in c(\alpha)^*$, define $y_i = \varphi(e_i)$, $e_i \sim \sum \delta_{ij}$. Since $x = \sum_{i=1}^{\infty} x_i e_i$, the series converging in the $c(\alpha)$ norm, we have

(5.1)
$$\varphi(x) = \sum_{i=1}^{\infty} x_i y_i = (x, y) \qquad (x \in c(\alpha)).$$

Conversely, every $y \in l(\alpha)$ defines $\varphi \in c(\alpha)^*$ by the uniform boundedness principle. In what follows we shall characterize $l(\alpha)$ as $RZ(\alpha)$.

Lemma 5.2. If $x \in m(\alpha)$, then $x \in c(\alpha)$ if, and only if,

(5.3)
$$\lim_{r(F)\to\infty} \frac{x(F)}{r(F)^{\alpha}} = 0.$$

Proof. If $F = \bigcup_{j=1}^r I_j$, r = r(F), is a union of maximal segments, then $x(F) = (T_\sigma x)[1,n]$ for an appropriate n and $\sigma \in \sum (\sigma^{-1}[1,n]=F)$. As we have seen before $||\sigma||$ and r(F) are comparable, and therefore (5.3) is true if $x \in c(\alpha)$. Conversely, if x satisfies (5.3), and if $\sigma \in \sum$ is such that $||T_\sigma x|| > ||x||$, select n such that $||T_\sigma x|| = |x(\sigma^{-1}[1,n])|$. Then $||\sigma||$ dominates $r(\sigma^{-1}[1,n])$, and therefore (5.3) implies $\lim_{||\sigma|| \to \infty} \frac{||T_\sigma x||}{||\sigma||^\alpha} = 0$. The lemma is proved.

Set up the space $\mathcal{F} \times \mathbb{N}$, and embed $\mathcal{F} - \{\emptyset\}$ in the product as the graph of $r(\cdot)$. Define X to be the closure of this graph when \mathcal{F} is endowed with the product topology as a subset of $\{0,1\}^N$. X is precisely the set

(5.4)
$$X = \{(F, r) \in \mathcal{F} \times \mathbb{N} | F = \emptyset \text{ and } r \ge 1 \text{ or } F \ne \emptyset \text{ and } r \ge r(F)\}$$

X is a countable, locally compact metric space.

Each $x \in m(\alpha)$, $\alpha < 1$, determines a function f_x on $\mathcal{F} \times \mathbb{N}$, where

$$(5.5) f_r(F,r) = x(F).$$

Lemma 5.6. The map $x \to f_x|_X$ sends $m(\alpha)$, $\alpha < 1$, to a subspace of C(X).

Proof. It is sufficient to prove that if $\lim_k (F_k, r(F_k)) = (F, r)$, then $\lim_k x(F_k) = x(F)$. Clearly, $r(F_k) = r$, large k, and $r(F) \le r$. This means one or more segments of F_k may «slide» to ∞ . Since x is a convergent series and $r(F_k)$ is bounded, $x(F_k) \to x(F)$ (=0 if $F = \emptyset$). The lemma is proved.

Define $B_{\alpha}(X)$ to be the set of continuous functions f on X such that $f(\emptyset, r) = 0$ and

$$||f||_{\alpha,\infty} = \sup_{\substack{(F,r) \in X \\ F \neq \emptyset}} \frac{|f(F,r)|}{r^{\alpha}} < \infty.$$

Define $C_{\alpha}(X)$ to be the closed supspace of $B_{\alpha}(X)$ consisting of f such that

(5.8)
$$\lim_{(F,s)\to\infty} \frac{f(F,s)}{s^{\alpha}} = 0.$$

The map $f \to \frac{f(F,s)}{s^{\alpha}}$ sends $C_{\alpha}(X)$ isometrically onto a subspace of the continuous functions vanishing at ∞ on X. It follows readily that $C_{\alpha}(X)^*$ is identified with the space of functions w on X such that

(5.9)
$$||w||_{\alpha}^* = \sup_{\substack{(F,r) \in X \\ F \neq \emptyset}} |w(F,r)|r^{\alpha} < \infty$$

(and $w(\emptyset, r) = 0, r \ge 1$).

It is clear that if $\alpha < 1$, the map $x \to f_x$ is an isometry between $(m(\alpha), ||| \cdot |||_{\alpha})$ and a subspace of $(B_{\alpha}(X), ||\cdot||_{\infty,\alpha})$ which sends $c(\alpha)$ to a closed subspace of $C_{\alpha}(X)$ (even when $\alpha = 1$).

Theorem 5.10. Let $0 < \alpha \le 1$, and let $Z(\alpha)$ be as in section 1. Then

$$RZ(\alpha) = l(\alpha)$$

where $l(\alpha)$ is the β -dual of $c(\alpha)$.

Proof. Proposition 4.7 implies $RZ(\alpha) \subseteq l(\alpha)$. For the reverse inclusion let $y \in l(\alpha)$ determine $\varphi \in c(\alpha)^*$. Regard $c(\alpha)$ as a closed subspace of $C_{\alpha}(X)$, and make a Hahn-Banach extension Φ of φ . Φ is represented by w with $||w||_{\alpha}^* < \infty$ ((5.9)). We have setting $z(F) = \sum_{(F,s) \in X} w(F,s)$ (a sum over $s \geq r(F)$ if $F \neq \emptyset$)

$$(x,y) = \varphi(x) = \Phi\left(f_x\right) = \sum_{(F,r)\in X} x(F)w(F,r) = \sum_{F\in\mathcal{F}} x(F)z(F).$$

Now $|z(F)|r(F)^{\alpha} = |\sum_{s \geq r(F)} w(F, s) r(F)^{\alpha}|$, and therefore $||z||_{\alpha}^* \leq ||w||_{\alpha}^* = ||\Phi||$. ($||z||_{\alpha}^*$ refers to the norm on $Z(\alpha)$.) It follows y = Rz, $z \in Z(\alpha)$, and the theorem is proved.

We remark that because $||z||_{\alpha}^* \ge ||\varphi|| = ||\Phi|| = ||w||_{\alpha}^*$ above, it must be that w(F, s) = 0, s > r(F). Also, we have proved that $|||\cdot|||_{\alpha}$ and $|||\cdot|||_{\alpha}^*$ ((1.10)) are dual norms.

6.
$$l(\alpha)^* = l_0(\alpha)^* \oplus \mathbb{R} \psi_0 = m(\alpha) \oplus \mathbb{R} \psi_0$$
.

We begin with the observation that the Banach dual to $(Z(\alpha), ||\cdot||_{\alpha}^*)$ can be identified with the set $W(\alpha)$ of functions $w(\cdot)$ on \mathcal{F} such that $w(\phi) = 0$ and $||w||_{\alpha}^{**} < \infty$ where

(6.1)
$$||w||_{\alpha}^{**} \sup_{\substack{F \in \mathcal{F} \\ F \neq \emptyset}} \frac{|w(F)|}{r(F)^{\alpha}}.$$

Remark 6.2. If $\alpha < 1$ and $x \in m(\alpha)$, or if $\alpha = 1$ and $x \in c(1)$, then

(6.3)
$$|| R^*x ||_{\alpha}^{**} = |||x|||_{\alpha}.$$

It is only necessary to observe that R^*x is defined on $\mathcal{F}_0 \cup \mathcal{F}_0^c = \mathcal{F}$ and the definition (3.13) is unchanged when \mathcal{F}_0 is replaced by \mathcal{F} .

Lemma 6.4. Let $z(\cdot)$ be summable on \mathcal{F} , and assume Rz = 0. Then

$$(6.5) \sum_{F \in \mathcal{F}_0^c} z(F) = 0.$$

Proof. Define $(R_0z)_j=\sum_{F\in\mathcal{F}_0}x_F(j)z(F)$. Clearly, $\lim_{j\to\infty}(R_0z)_j=0$. For each N we have

$$0 = (Rz)_N = (R_0 z)_N + \sum_{F \in \mathcal{F}_0^c} \chi_F(N) z(F) = o(1) + \sum_{F \in \mathcal{F}_0^c} \chi_F(N) z(F).$$

As $\lim_{N\to\infty}\chi_F(N)=1$, $F\in\mathcal{F}_0^c$, (6.5) follows from the bounded convergence theorem. Now we shall analyze $l(\alpha)^*$, assuming $\alpha<1$. To this end fix $\psi\in l(\alpha)^*$, and define $\Psi=\psi\circ R\in Z(\alpha)^*$. As noted in connection with (6.1), Ψ is represented by an element $w(\cdot)\in W(\alpha)$, and w satisfies

$$[w,z] = 0 (z \in Z(\alpha) \cap \ker R).$$

To exploit (6.6) let $F_1, F_2 \in \mathcal{F}$, and construct a test element $z \in \ker R$, supported on the four points $F_1, F_2, F_1 \cup F_2$ and $F_1 \cap F_2$, by

$$z(F) = \begin{cases} 1 & F = F_1 \cup F_2, F_1 \cap F_2 \\ -1 & F = F_1, F_2 \\ 0 & \text{otherwise} \end{cases}.$$

Since Rz = 0, (6.6) implies

(6.7)
$$w(F_1 \cup F_2) = w(F_1) + w(F_2) - w(F_1 \cap F_2).$$

Since $w(\phi) = 0$, $w(\cdot)$ is additive on the ring \mathcal{F}_0 . Define $x_j = w(\{j\})$, and observe that by definition (3.13)

$$||x||_{\alpha} \le ||w||_{\alpha}^{**} = ||\Psi|| = ||\psi||.$$

It follows that $x \in m(\alpha)$, and since by assumption $\alpha < 1$, $R^*x \in W(\alpha)$. Let $w_0 = w - R^*x$. By construction, w_0 is supported on \mathcal{F}_0^c . If $F \in \mathcal{F}_0^c$, then $F^c \in \mathcal{F}_0$, and (6.7) implies

(6.9)
$$w_0(\mathbb{N}) = w_0(F) + w_0(F^c) = w_0(F).$$

That is, w_0 is constant on \mathcal{F}_0^c , and we have for y = Rz

(6.10)
$$\psi(y) = \Psi(z) = [w, z] = [R^*x, z] + w_0(\mathbb{N}) \sum_{F \in \mathcal{F}_0^c} z(F) = (x, y) + w_0(\mathbb{N}) \psi_0(y)$$

where

(6.11)
$$\psi_0(y) = \sum_{F \in \mathcal{F}_0^c} z(F) \qquad (y = Rz).$$

Lemma 6.4 implies (6.11) is well-defined on $l(\alpha)$ and therefore $l(\alpha)^* = m(\alpha) \oplus \mathbb{R}$ as exhibited in (6.10)-(6.11). We define

(6.12)
$$l_0(\alpha) = \{ y \in l(\alpha) | \psi_0(y) = 0 \}.$$

Theorem 6.13. Let $0 \le \alpha < 1$. The β -dual of $l(\alpha)$ is $m(\alpha)$. $m(\alpha)$ is the Banach dual of $l_0(\alpha)$ while $m(\alpha) \oplus \mathbb{R} \psi_0$ is the Banach dual of $l(\alpha)$.

Proof. We already know from Proposition 4.7 that $m(\alpha) \subseteq \beta$ -dual $l(\alpha)$, $\alpha < 1$. Conversely, suppose (\overline{x}, y) exists for all $y \in l(\alpha)$. The uniform boundedness principle and the preceding discussion imply there exist $x \in m(\alpha)$ and $t \in \mathbb{R}$ such that

(6.14)
$$(\overline{x}, y) = (x, y) + t\psi_0(y) \qquad (y \in l(\alpha)).$$

We must show that t = 0 and $\overline{x} = x$. The proof of Lemma 6.4 shows that

$$\lim_{n\to\infty}y_n=\psi_0(y) \qquad (y=Rz\in l(\alpha))$$

and therefore if we replace \overline{x} by $\overline{x}-x$ and reletter, the question reduces to the nature of a sequence \overline{x} such that

$$(\overline{x}, y) = t \lim_{n \to \infty} y_n \qquad (y \in l(\alpha)).$$

Considering $y = e_i \sim \sum \delta_{ji}$, we find $\overline{x} = 0$, and therefore t = 0. It follows $m(\alpha)$ is indeed the β -dual of $l(\alpha)$. The relation (6.10) identifies $m(\alpha)$ with $l_0(\alpha)^*$ and $m(\alpha) \oplus \mathbb{R} \psi_0$ with $l(\alpha)^*$. The theorem is proved.

Remark. If $\alpha=1$, l(1) is identified with $c(1)^*$ by Abel's formula as in the first paragraph of section 1. l(1) is the image of $l^1 \oplus \mathbb{R}$ under the map $(u,t) \mapsto y, y_k = t + \sum_{j=k}^{\infty} u_j$. Given $\psi \in l(1)^*$, associate to ψ and $\Psi = \psi \circ R$ an element $w \in W(1)$, and use w to determine an element $x \in m(1)$ just as in the proof of Theorem 6.13. However, R^*x does not exist naturally as a function on \mathcal{F} unless $x \in c(1)$. In fact, x belongs to the β -dual of l(1) only if $x \in c(1)$. It remains the case that the β -dual of $l_0(1) \cong \{(u,t)|t=0\}$ is m(1) (Remark 1.16), and the dual of l(1) is isomorphic to $m(1) \oplus \mathbb{R} \psi_0 \cong l_0(1)^* \oplus \mathbb{R} \psi_0$.

REFERENCES

[K] G. KÖTHE, Topological vector spaces I, New York, Springer-Verlag, 1969.

Received January 24, 1991
W.A. Veech
Department of Mathematics
Wiess School of Natural Sciences
Rice University
P.O. Box 1892
Houston, Texas 77251
U.S.A.

Email: Veech @ rice.edn