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ABEL’S FORMULA AND S8-DUALITY IN SEQUENCE SPACES
WILLIAM A. VEECH (*)

Dedicated to the memory of Professor Gottfried Kothe

1. INTRODUCTION

The real Banach space m (resp. ¢) can be identified with the set of formal, real infinite series
x ~ )iy Z; such that z has bounded partial sums, S, (z) = Y ©_; z;, n > 1 (resp. z is
convergent). Let || z ||= sup,, |S,(z)|, z € M D c.

Recall that the 8 — dual ([K], p. 453) of a linear space E of formal series z ~ ) z; is
the set of sequences y = (y,,y,,...) suchthat (z,y) exists forall z € E, where

j:

(1.1) (z,9) =) z,¥, (z€E)
n=1

If £ = m, the principle of uniform boundedness and Abel’s formula

N N-1
(1.2) Y 20, = Y Su(2) (Un — Une1) + Sn(D) Uy
n=1 =1

imply that each y € B-dual (m) satisfies (@) Y .~ |y, — ¥..1] < oo and (b) ‘wﬂ(y)d;f

Z lim,y, = 0. In the case of ¢ C m, the requirement (b) is replaced by (b") ¥, (y) =
= lim__,__y,_ exists. It follows that the map y(-) which assigns to (u,t) € I' x R the
sequence y, (u,t) =t+ ) ;. u, is an isomorphism onto the B-dual of ¢ with the image of
! x {0} being the B-dual of m.

In the present paper we shall define Banach sequence (series) spaces c(a) C m(m);
0 < a < 1, and we shall observe that the 8-dual, I(«), of c(a) stands in relation to
c(a) and m(a) as I(1) ~ ' x R stands to ¢ = ¢(1) and m = m(1). This relation will
be exhibited through a characterization of [(«) in terms of a «generalized Abel’s formula»,
(1.14) below.

In preparation of the definition of c(«) and m(«) let ) be the group of permutations
of N = {1,2,...} with finite supports. )  acts upon m, preserving c, by the rule

o0 oo
(1.3) TUINZIU_lj INEIjEm
j=1

j=1

(*) Research supported by NSF-DMS-8822875.
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|| o || denotes the operator norm of T°,. Define || - ||, on m by

(1.4) | z ||,= sup

Now define m(a) and ¢(a) C m(«) by

m(a) = {z € m] || z ||,< oo}

(1.5)
c(a):{zem(&)l llllm ”“Tﬁﬂ![ 0}.

If a =1, then m(a) =m and || - ||, reduces to || - ||. (In this paper the [P-norms || - ||,
will be avoided, and the notation (1.4) for || - || , should not cause confusion). It will be seen

that ¢(1) = c. If & = 0, then m(a) = m(0) = I' is the space of absolutely summable
sequences while ¢(0) = {0}. If € < a, thenclearly m(a — €) C c(«) . In particular, it will
follow that m(a) Cc, a < 1.

(a), 0 < a < 1, denotes the B-dual of c(a). We shall find that ¢,(y) = lim_y_

exists for each y € I(a), and we define [y (a) = (@) N5 0. In the statement below * and
stand for Banach dual and -dual, respectively.

Theorem 1.6. Let o € (0, 1], and let I(a) = c(a)”. Then

c(a)* = ()

()" =m(a) (a<1)
(@)™ =lp(a)* = m(a)
l(a)” = m(a) & Ry

(1.7)

When o = 1, only the second line of (1.7) requires modification (replace m(1) by c(1) ).
As indicated earlier, Theorem 1.6 hinges on a generalized Abel formula which we shall now
descnbe.

Define F, to be the set of finite subsets of N, and let ¥ = {F C N|F € F, or
F¢ € F,}. Define r(-) on F by r(F) = «connectivity» of F, the number of maximal
segments [a,b) C F, 1 < a < b < oo. Notethat F = {F C N|r(F) < oo} and
|r(F) — r(F°)| =1, F € F. We shall deal with classes of functions z(-) on F, and in all
cases it will be true that z(@) =0
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If 0 <a<1,define || z ||}, z areal function on F, by

(1.8) |z k=) 12(F)|r(F)°.

FeF

Also, define Z(a) by
(1.9) Z(a) = {z| || z ||5< oo} .

Each 2z € Z(a) 1s absolutely summable, and therefore the operator R . Z(«a) — se-
quences, defined by y = Rz with

(1.10) (Rz); = Y xp(7)2(F)

FeF

is well-defined. As lim; ,  x(7) exists for all F € F, itis true that lim, | (Rz); =

If z € ¢(1), then for each F' € F the number z( F") is well-defined, where

(1.11) 2(F) = ) xp(5)z;.
=1

(This uses the fact T ~ Z;’Zl z; € c¢(1) 1s a convergent series and r(F) < oo, F' € F.)
We shall prove

Theorem 1.12, If 0 < e« < 1, then l(«) isthe R-image of Z(«), i.e.

(1.13) l(a) = RZ(«a).

The duality between l(«) and m(a«) (or ¢(1) when a = 1) is given by

(1.14) (z,9) = ) =(F)2(F) (z€m(a), z € Z(a), y = R2).
FEF

Example 1.15. Let y = (y,,y,,...) be such that ) >°, |y, — y,.,| < oo, and define

Yo(y) = im_,y,. Define z € Z(1) by 2(N) = ¢,(y), 2([1,n]) = y, — Vp
and z( F') = 0 forall other F' € F. For each n we have

(R2), = %o (y) + (yn — lim yw) = Yn

=+ 00
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and therefore Rz = y. If z € c, then Abel’s formula says

o0

(1.15) (z,9) = ) z([1,na)2([1,7]) + z(N)z(N).

n=1

By (1.14) it is true for any z € Z(1) such that Rz = y that (z,y) = ) p.r 2(F)2(F)
((1.14)). We remark that (1.15) makes sense for x € m as soonas z(IN) = y,(y) = 0.
This remains true for all 2z such that Rz = y, ¢,(y) = 0, with (1.14) in place of (1.15).

2. COMPUTATIONS WITH || o ||

If £ € m, define Sz = {S, (z)|n > 1} to be the sequence of partial sums. If o € ), the

operator ST, S~! is an operator on the space of bounded sequences which, since z — Sz is
an isometry, has the same operator norm (=|| o ||) as T, . If a bounded sequence is taken to

be a column vector, the operators S, 7T, and S—1 can be expressed in infinite matrix form. S

(resp. S—!)is lower triangular with 1’s on and below the diagonal (resp. 1’s on the diagonal,
—1's just below the diagonal and 0’s elsewhere). T, is represented by (T7,);; = 6;,1;. Itis

clear ST, S~! is then a matrix whose entries are 0, +1. Therefore, |

o || is the maximum
number of nonzero entries (= maximum [' -norm) of any row of ST,S!.

If i,/ € N, theentry (ST,57);; is1if oj <diand o(j + 1) > 4,-1 if 0j > 1 and
o(j + 1) > 1 and O otherwise. Define v(o) by

(2.1) v(0) = Max Card {jlx(1,9(o7) # x1.0(0(G+ 1) }.

We have

Proposition 2.2. The operator norm || o ||=|| T, || satisfies

(2.3) || o ||= v(0o).

Let o be extended from N toa PL-function on [1,00), and let (o) be the maximum
number of intersections of the graph G( o) with horizontal lines. If 1 is chosen to maximize
(2.1), then v( o) is precisely the number of times G( o) intersects the horizontal y = 1 + ¢,
0 < € < 1. Therefore, u(o) > v(o). On the other hand, if u(o) 1s the number of
intersections of G(o) with a line of height 1 + ¢, 0 < e < 1, each point of intersection
accounts for a ; such that x, ;,(0/) # x(; ;(o(j + 1)) . Therefore,
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Proposition 2.4, With notations as above

(2.5) v(o) =|| o ||= u(o).

Let 7(-) be the «connectivity» function on F as in section 1. Define p(o), o € ), by
(2.6) p(o) = Max, r (c7'[1,1]) .

Fix 1 to maximize (2.6) and let »~'([1,1]) = Ui lag, b)), a; < by <@, <...< b,
The graph (o) crosses the horizontal y = 1+ ¢, 0 < € < 1, twice on each complementary
interval [b;,a,,,), kK < p, onceon [b,,00) and, when a; > 1, onceon [1,q,]. It follows
that u(o) > 2p(o) — 1 1n all cases. Conversely, if G(o) crosses y = 1+ € u(o) times, it

must be that (o~1[1,1]) = [£2=1]. Therefore,
(2.7) 2p(0) =1 <||o||<2p(0) + 1.

In particular, p(o) and || o ||= (o) = v(0o) are of the same magnitude.

Lemma 2.8. Let x € m, and suppose

(2.9) lim I T | =0.
llofj—oo || o ||

Then x ~ ) 32| T; is a convergent series.

Proof. To say z is not convergent is to say that there exists e > 0 and, replacing = by
—z and relettering, if necessary, ¢, < b; < a;, < b, < ... suchthat e < z([a;,b,)) =

~ 2?"_1 z;. For each N define 1), = Efﬂ(bk —a;) and let o), € ) be constructed

so that (1) oy (U [ag, b)) = [1,iy], (2) oy is supported on [1,4,] U N, [a,,b,)

and (3) o, 1s monotone on Ui’;l[ak,bk) and on its complementin [1,4,]. G(o,) has at
most 2 N (maximal) intervals of negative slope, and therefore || o, ||= O(N) . As || T,z ||>

> (o1, 1y]) > Ne, (2.9) cannot be true. This is a contradiction, and we conclude z 1S
convergent.

Proposition 2.10. If a = 1, then c(a) = c¢(1) is the space ¢ of convergent series.

Proof. Lemma 2.8 and the definition (1.3) imply ¢(1) C c. Conversely, let z ~ ) 7, z; be

a convergent series. Given € > 0 choose 1 so that |z([a,bd))| < € if [a,b) C [1,00). If
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o € ) issuchthat || T,z ||>|| z ||, there exists 3, such that || Tz ||= |z(o~'[1,1,])]. As
|z(I)| < € for any component I of o~'[1,14,] which is contained in [, c0), we have

i
| T,z ||< E |z, + 7 Ca [1,4,]) €.

j=1

Now divide by || o || and let || o ||— oco. By (2.7) the lim sup in (2.9) is at most .
Letting e — O, the proposition obtains.
In what follows we use e; ~ )2, §;; to denote the «unit vectors» in m.

Proposition 2.11. The set {e;|t € N} isa Schauder basis for ¢(a),0 < a < 1. More
precisely, if z ~ 3 2, 1, € c(a), thenx = ) 32  ze; in || - ||,

Proof. Fix 0 < a < 1 and z € c(a) . Let ¢5(t), t > O be a function such that

1Tz l<ollaD ol (€3)

lim €,(%) =

t—oco

(2.12)

Given € > 0, use the fact z is a convergent series (Lemma 2.8) to find n such that

|z(I)] < € for any segment I C [n,00). Let T = = — E; C) Tie; ~ ) 2. z;. We shall
prove that

(2.13) | Z || < €* + 2¢, (271).

Since @ < 1, (2.13) and (2.12) yield the desired result. (For o = 1 the statement is
obvious and standard.) To establish (2.13) let o € ) besuch that || T,z ||>]| Z || (since

| Z ||< €!), and choose N sothat || 7,7 ||= |Z(c~'[1, N])|. Decompose o~'[1, N] into

r=r(o~'[1, N]) maximal segments I,,...,I, fromlefttoright,and let s < r be the least
8, if any, such that I, N [n,00) # @ . Replace I, by I, N [n,00) and reletter so that now
E(Ij) = I(Ij): s<j<rand

(2.14) IT,21= Y= (L) | < (r—s+1),
j=s

Construct 7 € Y _ as in (1)-(3) of the proof of Lemma 2.8 so that

(2.15) | T,z ||= |T,z([1,A])| = |z (+'[1, A]) |
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where r({Jl., I,) = [1, A]. By (2.12) and (2.14) we have
| T,z ||< Min (('r— s+ e, ()| 7D || 7 [|") .

By construction || 7 ||> r—s+ 1 and||o||>r> % || 7]|. If (r — s+ 1)e > €, then

%@J < 2¢y(€* '), whileif (r —s+ 1)e < €, || T, 7 ||< €*. Now (2.13) is true, and the
proposition is proved.

Corollary 2.16. Let l(«a) be the B-dual of c(a). Then l(«) is also the Banach dual of
c(a).

Proof. Clear.

3. EQUIVALENT NORMS ON m(a)
Associate to each w = (m,,7,,...) € N¥ the natural partition of N into segments I, =

= I;(w), J > 1, ordered from left to right with ”j(’")l = m;. 7 determines a contraction
Q,:m— mby

Q“INEI(Ij(ﬂ)) (z € m)

(Since I j(w) is finite, z( [ J-(’:r)) makes sense.) The partial sums of Q) _z being a subsequence
of the partial sums of z we have || Q. z ||<|| z || forall =, z.

Given o € § and 7 € N, define
T = 7(0,m) € ) by requiring () 7I,_;(7) = I;(om) and (b) 7 is monotone on [, ()

Y acts upon 7 € NN by (om); = my_y;-

for each k. Since |Ij(n,-n)] = My_yj = II,,_U-(*:T) (a) makes sense. Observe the relation
(3.1) T,Q,=0Q,.T, (t=1(0,m)).

Indeed, (T,Q,z); = (Q,2),1; = (1,1 ;(m) = z(77 [(om)) = (T,z)(I;(om)) =
= (QoxTrT); -

Lemma3.2. [fo€) and 7 € NYN andif = r(on) is as above, then

(3.3) o [I<IF7lI<]l o ]l +2.

Proof. Define k(1), + > 1, to be the number of ; such that I(om) C [1,1]. Let IE+1 =

= It (om) N[1,4], and define 1), ,,,, = 77'I},,. Wehave 7'[1,i] = I, ,,,,U
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UUSY Ty j(m) . As IO 1) # Ipergrany (), by definition, we have r(o='[1,k(4)]) <

< r(7711,4]) < r(o~'[1,k($)]) + 1. When the left equality holds, G(7) and G(o)
intersect the horizontals y = 1 + % and y = k(1) + %, respectively, the same number of
tmes. When the right equality holds, G(7) and G(o) intersect the horizontals y = 1 + %

and y = k(1) + %—+ 1, respectively, either the same number of times or else [ times for G( 1)
and [ — 2 times for G(o). (The latter occurs when [ o~1(k+1) () joins the left side of some
Iy,(7), 7 < k(4).) Now (3.3) is proved.

Proposition 3.4. For each m € NN and o € [0, 11Q, has norm at most 2% on m(«a) .

Proof, Fix m € N™_ and below let 7 = (o, ®) as o varies in ) . Lemma 3.2 implies

” QtI || - Sl.lp ” TG'QII ” —
o€) | o
T

(35) = sup ”QU‘H‘ .;E ” g
LTEE || g ll

ol +2

: sé‘f:( o) e

Since o = Id implies 7 = Id, and since o# Idimplies || o ||> 3, the proposition follows.
If z € m and F € F; (ie., |F| < 00),define |z|(F) = ) ;cp|z,].

Lemma 3.6. There exists a constant ¢ < oo such that if x € m(«), then

F
(3.7) sup ) oy,
rer, |F|
PO
Proof. Order the positive terms In = as T, 2 T, 2> ...Foreach N define o), € ) to

have support [1, N]U {n,,...,ny} and to satisfy oyn; = j. As || oy ||= O(N) is clear,
we have

N
Nz, <3 5y <ITo,zlI<lloy %1l 2 lla= O(N®) || 2 |, -
j=1

It follows z, = O(N a1y A similar argument for the negative terms and the fact
):f,l 71 = O(k*) establishes (3.7). The lemma is proved.
As a corollary to the estimate z, = O(N -1} we have
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Proposition 3.8. If a < 1, then

(3.9) m(a) C ﬂ IP.
P>
Proposition 3.4 and Lemma 3.6 imply that the norm |||-|||., is dominated by || - ||, where
F
(3.10) llelll, = sup (2Tl
‘HENH IFl
@< FEF,
By the closed graph theorem the equivalence of ||| - |||, and || - ||, i a consequence of

Lemma 3.11. If z € m is such that |||z|||., < oo, then || z ||, < oo.

Proof. Let ¢ € ¥ be such that || T,z ||>]| = ||. Choose n such that || T,z ||= |z(o~*

[1,n])| and suppose o~'[1,n] = |Ji_, [;, where r = r(c~'[1,n]). By 27) r =

= O(|| o ||} . Choose m € NN with I; = Iljl(qr), 1<j<randlet F={l,...,[.}. We
have

I Tz = |z (o711, 7) | < 1Qual(F) < [FIllI=lll, = rlllzllly = OCll o [M)1Illl,.

Therefore, || z ||, < oo (and || z || ,< Cl||z]||,, for a universal constant C < oo). The
lemma is proved.
As noted earlier, Lemma 3.6 and 3.11 imply

Proposition 3.12. The norms || - ||, and ||| - |||., are equivalent on m(«).
The norm ||| - |||, is closely related to a norm ||| - |||, which we define by
|z(F)|
3.13 z|||, = Su .
(3.13) lallla = sup o
PO
In fact,

Proposition 3.14. If 0 < a < 1, then

1
(3.15) 5zl < lllzllla < [l
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Proof. To prove the right hand inequality, let @ # F' = J;_, I, € F,, with r = r(F), and
select m € N™ with I = L(m), 1<j<r.Let E={l;,...,L}, and observe
z( F)| < 1Q.zl(E) < |EI*|ll=lll; = r(F)|ll=]ll,,

Therefore, |||z||], < |||z]||,. To prove the left-hand inequality let € NN and F € F,,
and select E C F such that (Q,z);, j € E, has constant sign and

1

In general, r( E) < |E|, but we may alter = without changing |Q_z|(F) or Q,z( E)
so that »( E) = |E|; simply collapse maximal segments of F to points using a «coarser» .
This alteration decreases |F'|. We now have

Q. zI(F) Q,2(E)| _ , |1Q,z(E)]
14 <: 2 L3 — 2 n
\Fl* = |E® r(E)®

< 2|ll=lll-

Now sup over F' € F,, . The proposition is proved.
We conclude this section with a remark. Let 0 < o < 1, and define A(a) C m(a) by

(3.16) A(a)={m5m[Q,zezﬁ—n, all WENN}.

It is easy to see directly that each £ € A(«) 1S a convergent series, and this plus a sliding
hump argument implies || z ||,y < 00, = € X(a), where

(3.17) 12 e SUP 1| Qe |l, (F,: 1 )

(On the right side of (3.17) the || - ||, -norm is the traditional /P-norm.) Holder’s inequality

implies ||| - |||, is dominated by || - ||,4y, but the two are not equivalent. Also, the sliding
hump argument yields

lim supﬁEI (Qsz),P=0  (z€Xa)).

The reader can check that this implies A(a) C c(a) . The results of this section, including
Propositions 3.4 and 3.8, imply

(3.18) Ma) Cc(a) Cm(a) C (] MB).
B>a
All inclusions are strict. For example, z ~ 32, (—1)/j*7", a < 1, belongs to c(a)

but not to AM(«@). And z ~ zil(—l)f(log)j“*l, a < 1, belongs to A(B), B > «, but
not to m( ) .
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4. DUALITY

The objects || - ||2, Z(«) and R have been defined in (1.9)-(1.11). The formal adjoint of R
is

(4.1) (R'z) (F) =) xp(j)z; = 2(F).

j=1

The natural domain of R* is ¢(1) = c¢. In this section we shall establish the expected

relation
(4.2) (z,Rz) = [R'z,2] (z€m(a),z€ Z(a),a<1
where

o0

(mly) = E‘ijj

(4.3) 7=t

[w, 2] = Zw(F)z(F).

FeF

Whena =1, @4.2)istruefor z € ¢(1) =cand z € Z(1).

Let N > 1, and define F, = {F € FIFN{[1,N1#90}. Fy / F - {9} and
FS N\ {D} as N — oo. Recalling that (@) = 0= 2(@), we shall ignore @ .

If Fe Fydefine A, = FN[1,N] and Bp = FN[N + 1,00). It z € m(a) (c(1)
when o= 1)and 2 € Z(a), [ R*z, 2] exists as an absolutely convergent sum. Moreover,
because z( F) = z(Agp) + z(Bg) with r(Ap), r(Bg) < r(F), we can write

N w(F)z(F)= Y z(Ap)2(F)+ Y z(Bg)2(F) =

= Y Y w(A)a(F)bpy + ) z(Bp)2(F) =

(4.4) ACIT,N] FEFy FEFy

N
= E m}-(Rz)j - E T (BF) z( F).
J=1

FEFy

Let € > 0 and r < oo be fixed. Since xz above is a convergent series, N can be chosen
sO that

(4.5) |lz(B)| < € (BEF,T(B);(_T).
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We divide the sum on the right in (4.4) according to »(Bg) < r and r(Bg) > r. The
contribution from the first grouping is dominated by € || z ||% . As for the second grouping

(4.6) Y 2 (Be) B < lalll, Y l2(F)|r(F)°
FeFy FeFy
v(Bgp)>r r(F)>r

which tends to zero as r — oo. Finally, [ R*z, z] differs from the left side of (4.4) by a sum
over Fy:

1Y 2(B)2(P)| < llzllly Y [2(F)|r(F)® = o(1)

FET, FEFY

where o(1) is as N — oo. Collecting results, we have proved

Proposition 4.7. If 0 < a< land z € m(a), 2z € Z(a),orifa=1 and z € c(1),
z€ Z(1), then

(4.8) (z,Rz) = [R*I,z]
where (-,-) and [ -, -] are defined by (4.3).

5. CHARACTERIZATION OF (@)

Recall that I(«) is defined to be the B-dual of c(a). If ¢ € ()™, define y, = p(e;),
e; ~ »_ &;;.Since z =) 7, x,e,, the series converging in the ¢(«) norm, we have

o0
(5.1) p(z) =Y zy,=(z,9) (z€@).
i=1
Conversely, every y € [(«) defines ¢ € c(a)* by the uniform boundedness principle.

In what follows we shall characterize (o) as RZ(w) .

Lemma 5.2. If z € m(«), then x € c(a) if, and only if,

(P
-3 (P oo ()

Proof. If F' = U;:=1 I;, = r(F), isaunionof maximal segments, then z( F) = (T, z)[ 1, n]

for an appropriate nand o € ) ( o~!'[1,n] = F). As we have seen before || o || and r( F)
are comparable, and therefore (5.3) is true if z € c(«a) . Conversely, if z satishes (5.3), and

if 0 € ¥ issuth that || T,z [|>|| ||, select n such that || T,z ||= |z(c~'[1,n])|. Then

ITa]

|| o || dominates r(o~'[1,n]), and therefore (5.3) implies Lim .\ =@ = 0. Thelemma

is proved.
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Set up the space F x N, and embed F — {@ } in the product as the graph of r(-) . Define
X to be the closure of this graph when F is endowed with the product topology as a subset
of {0,1}N. X is precisely the set

(5.4) X={(Fr)eFxN|F=@ and r>1 or F#0 and r > r(F)}

X 18 a countable, locally compact metric space.
Each z € m(«), a < 1, determines a function f_ on F x IN, where

(5.5) f(Fr) =z(F).

Lemma 5.6. The map x — f_|y sends m(a), o < 1, to a subspace of C(X).

Proof. 1t 18 sufficient to prove that if im  ( F,,rv(F,)) = (F,r), then hm  z(F,) = z( F).
Clearly, r(F,) = r, large k, and r( F') < r. This means one or more segments of F, may
«slide» to oco. Since x is a convergent series and r( F.) is bounded, z( F,) — z(F) (=01if
F = @). The lemma is proved.

Define B_(X) to be the set of continuous functions f on X such that f(@,r) = 0 and

(F,7)
(5.7) 1= sup LEDI
(Fr)eX T
PO

Define C_(X) to be the closed supspace of B_(X) consisting of f such that

(5.8) im 158 _

(F,8)—o00 s

0.

The map f — iﬁ——ﬂl sends C_(X) isometrically onto a subspace of the continuous
functions vanishing at oo on X . It follows readily that C_(.X)* is identified with the space
of functions w on X such that

(5.9) lw|= sup |w(F,m)|r*< oo
(Fr)eX
P/

(and w(B,r) =0, r > 1).

It is clear that if o < 1, the map z — f_ is an isometry between (m(«a), ||| - |||,) and
a subspace of ( B (X),|| ) which sends c(«a) to a closed subspace of C_(X) (even
when aa = 1).

) ”c-a,n



310 William A. Veech

Theorem 5.10. Let 0 < a < 1, and let Z(«a) be as in section 1. Then
(5.11) RZ(a) = (o)

where l(«) is the B-dual of c(a) .

Proof. Proposition 4.7 implies RZ(a) C l(«). For the reverse inclusion let y € l(a)
determine ¢ € c(a)*. Regard c(«) as a closed subspace of C_(X), and make a Hahn-
Banach extension @ of ¢. @ is represented by w with || w ||E< oo ((5.9)). We have
setting 2(F) = 3 poex w(F,s) (asumover s > r(F) if F# @)

(z,9) =p(z) =@ (f,) = ) =(F)w(F,r)=) z(F)z(F).

(FryeX FeF

Now |2( F)|r(F)* = |ZE:_,,.(F) w( F, s)r( F)?|, and therefore || z ||X<|| w ||=]] @ ||.

(]| z ||z, refers to the norm on Z(«).) It follows y = Rz, z € Z(«), and the theorem is
proved.

We remark that because || z ||> >|| ¢ ||=]| ® ||=|| w ||}, above, it must be that w( F,s) =
=0, s > r(F). Also, we have proved that ||| - |||, and ||| - |||% ((1.10)) are dual norms.

6. l(a)* =l (a)*®RYy; = m(a) ®RY,.
We begin with the observation that the Banach dual to (Z(«), || - [|%) can be identified with
the set W(«) of functions w(-) on F such that w(¢) =0 and || w ||*< co where

. o ()]
(61 hwlla” 2y
3

Remark 6.2. f a<landz € m(a),orif =1 and z € ¢(1), then

(6.3) | Bz [[5"= lll=]lla-

It 1s only necessary to observe that R*z 1s defined on F, U F5 = F and the definition
(3.13) is unchanged when F, is replaced by F.

Lemma 6.4. Let 2(-) be summable on F, and assume Rz = 0. Then

(6.5) Y 2(F)=0.

FeF;
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Proof. Define (Ry2); = EFE_FE 2e(7)z(F). Clearly, lim;_,_(Ryz); = 0. Foreach N we
have

0= (Rz)y = (Ro2)y + Y Xp(N)2(F) =0o(1) + Y xp(N)2z(F).

FeF: FeF;

Aslim, _, _xp(N) =1, F € Fj§, (6.5) follows from the bounded convergence theorem.

Now we shall analyze I(«)*, assuming o < 1. To this end fix ¢ € I(«)*, and define
Y =¢YoR € Z(a)*. As noted in connection with (6.1), ¥ is represented by an element
w(-) € W(a), and w satisfies

(6.6) [w,2]=0  (z€ Z(a)N ker R).

To exploit (6.6) let F|, F, € F, and construct a test element z € ker R, supported on
the four points F,,F,,F, UF, and F; N F,, by

| F=FUF,,FNF,
Z(F) = —1 F=F1,F2

0 otherwise

Since Rz = 0, (6.6) implies
(6.7) w(FUR)=w(FR)+w(h)-w(FNE).

Since w(¢) = 0, w(-) is additive on the ring F;, . Define z; = w( {7/}, and observe
that by definition (3.13)

(6.8) llzllle <[l w lIZ=Il ¥ lI=] ¥ ] -

It follows that z € m(a), and since by assumption o < 1, R*z € W(a). Let wy =
= w — R*z. By construction, w, 1s supported on Fj. If F' € F5, then F° € F,, and (6.7)
implies

(6.9) wo(IN) = wy(F) + wy (F°) = wy( F).

That is, w, 1s constant on F§, and we have for y = Rz

(6.10) ¥(y) = ¥(2) = [w, 2] = [R'z, 2] +wo(N) ) 2(F) = (z,9)+wo(N) ¢ (v)

FeF;
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where

(6.11) Yo(v) = Y z(F)  (y=Ra2).

FEF:

Lemma 6.4 implies (6.11) is well-defined on [( ) and therefore I(a)* = m(a) ® R as
exhibited in (6.10)-(6.11). We define

(6.12) lo(a) ={y € Ua)|$o(y) =0}.

Theorem 6.13. Let 0 < ¢ < 1. The f-dual of (a) is m(a). m(a) is the Banach dual
of ly(a) while m(«a) @ Ry, is the Banach dual of l(«) .

Proof. We already know from Proposition 4.7 that m(a) C f-dual l(a), @ < 1. Con-
versely, suppose (T, y) exists for all y € I(«) . The uniform boundedness principle and the
preceding discussion imply there exist x € m(a) and t € R such that

(6.14) (Z,9) = (z,9) +tYo(y)  (y € a)).

We must show that t = 0 and T = z. The proof of Lemma 6.4 shows that
lim y, = %(y)  (y=Rz € Ya))

and therefore if we replace T by z — z and reletter, the question reduces to the nature of a
sequence T such that

(Z,y) = t'}E{_L Uy (y € l(a)).

Considering y = e, ~ Y 6., we find T = 0, and therefore ¢t = 0. It follows m(«) is

7
indeed the B-dual of I[(«) . The relation (6.10) identifies m(a) with [,(a)* and m(a) &

R, with [(a)™. The theorem is proved.

Remark. If a =1, I(1) is identified with ¢(1)* by Abel’s formula as in the first paragraph
of section 1. [(1) is the image of I! @R under the map (u,t) — Y,V = t+E}";k uj. Given

P € l(1)*, associate to ¢ and ¥ = ¢ o R an element w € W (1), and use w to determine
an element x € m( 1) just as in the proof of Theorem 6.13. However, R*z does not exist
naturally as a function on F unless =z € ¢(1) . In fact, £ belongs to the #-dual of I(1) only
if z € ¢(1) . Itremains the case that the -dual of [, (1) ¥ {(u,t)|t =0} is m(1) (Remark
1.16), and the dual of I(1) is isomorphic to m(1) @ Ry, T [,(1)* & Ry, .
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