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1. INTRODUCTION

If X is a Banach space, then the Mackey topology on the dual space X* 1s the topology
7(X*, X) of uniform convergence on weakly compact subsets of X. The classical Mackey-
Arens Theorem tells us that 7 is the finest locally convex topology on X * whose dual space
is X.

The topology 7 is finer than the weak* topology o(X*, X) and coarser than the norm
topology on X*, with equality holding only in special cases. The weak topology o( X *, X ™)
also lies between the weak™ and norm topologies; T and weak are usually not comparable, but
their compact sets often are, as shown by Grothendieck [11] in his study of the Dunford-Pettis
and reciprocal Dunford-Pettis properties.

In general, the Mackey topology on X* has received much less attention from functional
analysts and topologists than its more famous relatives: norm, weak, and weak*. Recently,
however, the authors have introduced and studied a new class of Banach spaces in which T
arises in a natural way [27]. A Banach space X is strongly WCG(SWCG) if and only 1f there
is a weakly compact subset K of X such that for every weakly compact subset L, of X and
e > 0, there is a positive integer n with L, C nK + e B(B = closed unitball of X). Thisisa
properly stronger notion than the familiar WCG property, since every SWCG space is weakly
sequentially complete.

The relevant fact is that X is SWCG if and only if ( B*, 7), the dual unit ball with the
relative Mackey topology, is (completely) metrizable [27, Th. 2.1]. Taking this as our starting
point, we pursue here the topological study of (X*, ) and ( B*, 7). Two topological prop-
erties emerge as central. One is Michael’s notion of an R,-space [18]: remarkably, if any of
(B, weak), (X, weak), (B*, 1), or (X*, 1) has the R,-property, then so do all the others.
This allows us to employ the powerful machinery of duality theory in a novel way. For ex-
ample, it becomes easy to show that if X is a separable SWCG space, then (X, weak) must
be an R, -space. The Banach space results in [18] can then be placed in a general context.

The other key topological notion is that of a k-space: a space in which the topology is
determined by the compact subsets [6]. It is folklore that ( B, weak) is a k-space iff X
contains no isomorphic copy of [,; we prove more than this (Theorem 5.1). If (B*,7) 1sa
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k-space, then X is weakly sequentially complete. If (X*, 7) is a k-space, then either X is
reflexive or X is hereditarily [, .

In general topology, the k-and R, -spaces are precisely the quotients of separable metric
spaces [18]. In the Banach space setting, more is true: ( B, weak) isa k-and R, -space iff it is
separably metrizable (iff X * is norm separable). Also, if X is isomorphic to its square, then
(B*, 1) is a k-and R,-space iff it is separably metrizable (iff X is separable and SWCG).
The point is that the k-and R, -properties are often a «factorization» of the separable metric
property in this context.

The Batt-Hiermeyer space [3; 27, 2.6] 1s a separable, weakly sequentially complete dual
space for which (B*, 7) is neither a k-space nor an R,-space. The space [, (l,) is a sepa-
rable, weakly sequentially complete dual space for which (B*,7) is an R,-spaces, but not
a k-space. The permanence properties of k-spaces and R,-spaces in this setting are also
studied.

2. SOME FACTS ABOUT X, 71

We use [5, 26, 32] as references for Banach spaces and locally convex spaces. Section 1 of
[27] presents some special results about ( X*, 7). This space is considered explicitly in [11,
13, 15, 16, 31].

The term «operator» means continuous linear operator from one Banach space into an-
other. Anoperator 7' : X — Y 1is said to be a Dunford-Pettis operator (or completely con-
tinuous) iff it maps weakly compact sets to norm compact sets. Then X is said to have the
Dunford-Pettis property (DP) iff every weakly compact operator T" : X — Y 1S a Dunford-
Pettis operator. Similarly, X is said to have the reciprocal Dunford-Pettis property (RDP) iff
every Dunford-Pettis operator T : X — Y 1s weakly compact. If K is a compact Hausdorff
space, then X = C( K) enjoys both DP and RDP. Basic references for this area are [4, 11].

Proposition 2.1. [11,p. 135, p. 152]. (a) X has DP iff every o( X*, X**) -compact subset
of X* is 7(X*, X)-compact,; (b) X has RDP iff every 7( X*, X)-compact subset of X* is
a(X* X*")-compact.

If (a) holds, then the weak and Mackey topologies agree on any weakly compact subset
of X*, since both topologies are compact and finer than the Hausdorff topology o( X*, X).
A similar result holds for 7-compact sets in (b).

Proposition 2.2. [11,p. 134, 15]. A subset H of X* isrelatively T-compact iff every weakly
convergent sequence in X converges uniformly on H.

A proof of the next result can be found in [8].

Proposition 2.3. The following conditions on X are equivalent: (a) every Dunford-Pettis
operator T : X — Y iscompact; (b) every 7( X*, X )-compact set is norm-compact; (c) X
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contains no isomorphic copy of 1, .
Corollary 2.4. X has the hereditary RDP iff X contains no isomorphic copy of l,.

Proposition 2.5. The following conditions on X are equivalent: (a) every weakly compact
operator T : X — Y is compact,; (b) every a(X*, X**)-compact set is norm-compact (i.e.,
X* is a Schur space), (c) X has DP, and X contains no isomorphic copy of l; .

Proof. The equivalence of (a) and (b) is left to the reader. For (b) <=> (c), see [23; 4, pp.
23-24]. N

The final result of this section should be compared with [5, p. 223, Ex. 2]. Let S(X™) be
the set of vectors in X* with norm 1.

Proposition 2.6. (a) If X is reflexive, then S(X*) is T-closed in X*, (b) if X is not re-
flexive, then S(X*) is T-dense in B(X"); (c)if X contains no isomorphic copy of 1, then
S(X™) is T-sequentially closed in X*.

Proof. (a) Since 7 is the norm topology. (b) Let z* € X*, ||z*]| < 1, and let K be a
weakly compact subset of X. For each € > 0, there 1s a member y* of S(X*) such that
sup {|y*(z)|: z € K} < ¢; otherwise, the closed absolutely convex hull of X would contain
¢ - B(X), and X would be reflexive. A simple argument shows that either ||z* + y*|| > 1
or ||z* — y*|| > 1. Hence there is a scalar ¢, |t| < 1, such that 2* = z* + ty* € S(X*), and
sup {|z*(z) — z*(z)|: =z € K} < €. (c) This follows from 2.3. o

3. COMPACTNESS, METRIZABILITY, AND SEPARABILITY

It is well-known that X with its weak topology is an angelic space [24], so that the vari-
ous notions of compactness coincide. This need not be true for (X*, 7). If H C X* 18
T-sequentially compact, then the T-closure of H is T-totally bounded and 7-complete [27,
1.1], hence 7-compact. If X = [,[0, 1], then /H = B* is T-compact, but not T-sequentially
compact [13]. If X is a WCG space, then ( B*, weak*) is an Eberlein compact [17, Th. 3.3].
Thus (X*, weak*) is an angelic space, and so1s (X*, 1) [24, 0.5].

Proposition 3.1. The following are equivalent: (a) ( B*, 1) iscompact, (b) (B*, 1) islocally
compact; (c) (B*, 1) is o-compact, (d) X is a Schur space.

Proof. (a) => (b) and (a) => ) are obvious.

(c) => (a): B* is a countable union of T-compact sets, which are norm-closed. Thus one
of these sets has a norm-interior point, and it follows by standard arguments that ( B*, 7) 18
compact.

(b) => (d): Choose a weakly compact absolutely convex subset K of X such that KN
N B* is T-compact. Let z, — 0 in (X, weak). Then z, — 0 uniformly on K° N B*, by
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2.2. Since (K°NB*)° = (KUB)®, forany e > 0 there is a positive integer n, such that
z, € (K UB)® forall n > n,. Since K C mB for some m > 1, we have z, € emB
for all n > m,. Thus ||z || — 0, and so X is a Schur space.

(d) => (a): the Mackey and weak* topologies coincide on B* [26, p. 85]. B

The space (X, weak) is metrizable iff X is finite-dimensional; the space (X*, 1) is
metrizable iff X is reflexive (so that 7 = norm topology on X*). It is well-known that ( B,
weak) 1s metrizable iff X * 1s norm separable. The question of complete metrizability of ( B,
weak) 1s investigated in [7]. The Banach spaces for which ( B*, 7) is (completely) metrizable
are precisely the strongly WCG space [27]. Examples include reflexive spaces, separable
Schur spaces, and spaces L,(u) for y4 a o-finite measure [27, 2.3].

If X is separable, then ( X*, weak*) is a countable union of compact metric spaces, hence
hereditarily separable. In this case, it follows from the Hahn-Banach Theorem that any abso-
lutely convex subset of X* is separable for the Mackey topology. However, ( B*, 7) need not
be hereditarily separable. Kirk [16] studied (X ™, 7) for X = C( K ), K acompact Hausdorff
space, and showed that when K 1s first countable the natural image of K in B* 15 7-closed
and discrete. Thus X = C[0, 1] is a separable space for which ( B*, 7) 1s not hereditarily
separable, and not Lindeldf. Indeed, since ( B*, 7) is separable with an uncountable closed
discrete subset, it is not even normal.

If X =1_, then (X*, weak*) contains {; as a dense subspace, and so (X, 7) 1s sepa-
rable, although X 1s not separable.

Topologists have studied a number of properties which fall under the heading of «generalized
metric spaces» [12]. Among the most interesting of these is the notion of an N, -space in-
troduced by Michael [18]. A collection &2 of (not necessarily open) subsets of a topological
space T is called a pseudobase for 7' if, whenever C C U with C compact and U open,
then C C P C U forsome P € 9°. An R,-space is then a regular space with a countable
pseudobase. A collection &2 of subsets of T is called a k-network for T if, whenever C C U
with C compactand U open, then C C P, U...U P, C U for some finite collection {P,}
of members of &°. Clearly T is an R,-space if and only if it is regular and has a countable
k-network.
For the convenience of the reader, we summarize key results from [18].

Theorem 4.1 (Michael). (a) All separable metric spaces and their regular quotient spaces
are N, -spaces; (b) first countable or locally compact R -spaces are separably metrizable, (c)
every R,-space is separable, has the Lindeldf property, and every closed subset is a G set,
(d) the class of R, -spaces is preserved by all subsets and by countable products; (e) if (T, 1)
is an R,-space, and t' is a regular topology on T having the same compact sets as t, then
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(T',t") is an Ry-space; (f) if S and T are R,-spaces, so is the continuous function space
C(S,T) with the compact-open topology, (g) to show that T is an R,-space, it suffices
(in the definition of pseudobase) to consider open sets U selected from a sub-base for the
topology; (h) if a regular space T is covered by closed R, -subspaces (A, )N, and if each
compact subset of T' is contained in some A, , then T is an R-space; (i) a regular space is
both an R, -space and a k-space if and only if it is a quotient of a separable metric space.

Our goal here is to incorporate these results into a Banach space setting. Already in [18]
it was shown that

1) if X 1s a Banach space with separable dual, or if X = [,, then (X, weak) 1s an
R, -space;
and

2) if X = C(K), K acompact Hausdorff space, then (X, weak) is an R,-space if and
only if K 1s countable.

According to 4.1 (¢), we need only consider separable Banach spaces.

Theorem 4.2. If any of the spaces (X, weak), (B, weak), (X*,7) and (B*,T) has the
R, -property, so do all the others.

Proof. Theresults 4.1 (d) and (h) show that X and B satisfy or fail the R,-condition together,
with a similar outcome for X* and B*. If § = (X, weak) is an R,-space and T = R, then
(X*, 1) isasubspace of C(S,T), endowed with the compact-open topology. Hence ( X*, 1)
1S an N, -space, by 4.1 (d) and (f).

Finally, if S = (X*,7) is an R,-space,and T = R, let 4 denote the topology on X of
uniform convergence on compact subsets of S. Then (X, «4) is a subspace of C(S,T) with
the compact-open topology and thus an R,-space. The topologies v and o( X, X*) have
exactly the same compact sets. This follows from a standard result in duality theory [26, p.
851, with E the complete locally convex space (X*,7), FF = R, and H a weakly compact
subset of L(E, F) = X. Now 4.1 (e) shows that (X, weak) is an R,-space. i

This remarkable duality has no analogue for the property of metrizability. If X = ¢, , then
(B, weak) is metrizable, since X has separable dual; but (B*, 7) is not metrizable, since ¢,
isnot SWCG. If X = [, then (B*, 7) is metrizable, since X is SWCG, but (B, weak)
1S not, since X * is not separable. We will also see later (5.2) that there is no analogue for the
property of being a k-space.

Theorem 4.3. If X is separable and SWCG, then (X , weak) is an R, -space.

Dual Proof. (B*,7) is separable and metrizable, hence an R, -space, by 4.1(a). The result
follows from 4.2.



278 Georg Schliichtermann, Robert F. Wheeler

Dual Proof. (We include this to show how a pseudobase can be constructed explicitly). Let
(K,) be astrongly generating sequence of weakly compact subsets of X , and let (f, ) be
a countable dense subset of ( B*, 7). Consider the sub-base for the weak topology on X
consisting of all sets f~'(—o0,q), where f € X*, || f ||= 1, and ¢ is rational. With a
view to applying 4.1(g), let L be a weakly compact subset of such a half-space f~!(—o0,q).
Choose a rational € such that max f(L) < ¢ — €,choose nsuchthat L C K+ (¢/4)B,
and choose m such that max {|f(¢) — f,,(¢)|:t€ LUK } < £.

We claim that L C (f-'(—00,q — €¢/2) N K_) + (¢/4)B C f~'(—00,q). For the
first inclusion, let z € L, and choose y € K,, z € B with z = y + (¢/4)2. Then
fm(y) < g—¢/2; forifnot, then f(y) > f,.(y) —€/4 > qg—3¢/4,s0that f(zx) = f(y)+
+(€e/4) f(2) > f(y) —€/4 > g — €, a contradiction. A short calculation now verifies the
second inclusion. According to [18, p. 986], the family of all finite unions of finite intersec-
tions of sets (f-!(—o0,q;) NK,) + g, B, for ¢, and ¢, rational, is a countable pseudobase
for (X , weak). o

The next result unifies (and goes a bit further than) the Banach space results in [18].

Proposition 4.4. The class of Banach space X such that (X , weak) is an R, -space includes
all spaces with separable dual, separable Schur spaces, and separable L,(u) spaces. It is
preserved by closed subspaces, but not by quotients.

Proof. It X has separable dual, then (B, weak) 1s separably metrizable, so 4.1(a) applies.
The result for separable Schur spaces and separable L, (u) spaces follows from 4.3 and [27,
2.3].

The property passes to any subset, by 4.1(d). The space [, belongs to this class, but its
quotient space C[0, 1] does not: ( B*, 7) is not Lindelof, as noted in Section 3, so it cannot
be an R,-space, by 4.1(c). The quotient map is also a quotient map for the weak topologies
on [, and C[0, 1] [26, p. 135]. Now a quotient space of a quotient space 1S a quotient space
(direct verification), yet this example does not violate 4.1(a). The reason (which will follow
from 4.1(1) and 5.4) 1s that ([, , weak) cannot be a quotient of a separable metric space. o

We remark that (**) can be easily established with the techniques used here. Let X =
= C(K). If(X, weak) i1s an R, -space, thensois (X*, 7),and sois (X*, weak), using 2.1
and 4.1(e). Thus X* 1s weakly (hence norm) separable, by 4.1(c). Since the point masses at
points of K have distance 2 apart in X*, this forces K to be countable. Conversely, if K i1s
countable, then X* = [, ( K) is separable, and so (X , weak) is an R,-space, by 4.4.

Proposition 4.5. The class of Banach spaces X such that (X , weak) (or (X*, 1)) is an
R, -Space is preserved by countable [P-sums, 1 < p < oo, and by countable cy-sums.
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Proof. Let {X_}S2, be Banach spaces such that (X_, weak) is an R, -space for all n, and let
X=1L(X)={(=z,) 3, € X;, ) 21 |l z, |P<o0}. For p=1, (B(X*), 7(X*, X))
is the topological product of the R,-space (B(X?), (X}, X,)) [27,1.2],s04.1(d) can be
applied.

Nowlet 1 < p < co. Foreach n,let &2 be a countable pseudobase for ( B(X_ ), weak).
Let &2 be the (countable) collection of all sets (P, + P, + ...+ P_+ Z_) N B(X), where
Pe#,1<i<m,and Z_={ze€eX:z2,=0,1 <1< m}.

We apply 4.1(g): let K be weakly compactin B{ X),and consider z* € X*and o € R
suchthat K C U = {z € B(X) : z*(z) < a}, a subbasic open set for the weak topology.
Now X* = [ (X;), where p and ¢ are conjugate exponents. Hence there exist m and a

rational number S such that if y* = (z},23,...,7,,,0,0...) is the mth truncate of z*,
then K CV={ze B(X):y(z) < B} CU.

Let & be the (countable) collection of all m-tuples of rational numbers whose sum is
B. For each i,1 < 1 < m, and rational ¢, let S(4,q,) = {z; € B(X,) : zI(z;) < ¢;}
and T'(4,q,) = {z € B(X) : z](z) < g¢;}. Thus if =, is the natural projection of B(X)
onto B(X,), T(i,q;) = m; ' (S(i,q,)). Foreach C = (¢¥,¢5,...,¢%) € &, let W, =
= N2, T(4,¢°) C B(X). Then K C U{W, : C € &} = V,s0 3Cy,...,C, € & with
K C Ufﬂwq, C V C U. Itis astandard result that there exist weakly compact sets K ;
with US| K, = K and K; C W, forall .

Foreach j, 1 < j < k,and 1,1 < ¢ < m,choose P;; € 9 with m(K;) C

i

CF;C S(i,qf"'). Then K; C(P;+ P j+...+ P, ;+Z,) N B(X) C WCJ,aﬂdso
KCUl (P ;+P;+...+ P+ Z_)NB(X) CV CU. The result follows. o

The same argument works for countable ¢, -sums, but not for countable [_-sums, since
the truncates of z* do not coverge to z* in norm. Note that ({__ , weak) is not an R,-space,
since 1t 1s not separable.

The Batt-Hiermeyer space 4.6. Let X = BH be the separable, weakly sequentially com-
plete dual space introduced in [3]. The space BH is a tree space which behaves like 1, on
totally ordered subsets of the binary tree, but like 1, on subsets of the binary tree whose mem-
bers are pairwise incomparable. In [27, 2.6] it is shown that X is not an SWCG space.
Here we present the deeper result that (X , weak) (equivalently, ( B*, T) ) is not an R, -space

(cf. 4.3).

It suffices to find uncountable collections ( K 4) 4cr and (Uy) o Of compact and open
subsets of (X , weak) such that K, C U, forall A,but K, ¢ U, for A # D. For then if
(P,) were a countable pseudobase for (X , weak), we would have K, C Py 4 C Uy, S0
that there would be a sequence (U, ) with each K , contained in some U, , a contradiction.
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Following the notation of [27, 2.6], let I" be the set of all infinite, convex, totally ordered
subsets A of C, the binary tree, which begin at (0) . Fix suchan A = {¢_},andlet z_( A) =
= (1/2n)e, + e ;y, where 1, = 0 or 1is chosen so that (t,,1,) # ... Let K, =

= {z,(A)}U{0},andlet U, = {z € X : Im such that |[{z,(A4) — z,1%)| < 7}. We
show that = (A) — 0 weakly. It will follow that K , is weakly compact, U, is weakly
open,and K, C U,.

Let P, denote the natural projection z — z|A on BH. Then the sequenec (P,(z,(A)))
converges to 0 in norm, so it suffices to show that (z,(A) — P,(z,(A))) isequivalent to the
unit vector basis of [, . This is an easy consequence of the fact that the (¢_,1 ) are pairwise
incomparable: 1f (c;) 1s a sequence of scalars, then

1/2

m

1) ci(z,(A) — Py(z;(AN) [l = | ) le;(z;(A) = Py(z,(A)(2;,3;)
j=1

j=1
1/2

m
2
= El‘%l

=1

Fix AADeT ,A# D,andlets=min{t € C:t € A,t ¢ D}. Let s, be the immediate
predecessor of s, and suppose s, is the nth member of A (and D). Then (z%,z_(D)) =
= 1/2+1,while (z%,z_(A)) < 1/2 forall m. Thus K ¢ U, , to complete the argument.

5. k-SPACES AND TOPOLOGICAL FACTORIZATIONS

A Hausdorff space T is a k-space iff a subset which intersects each compact set in a closed set
must be closed. Equivalently, the topology on T 1s the finest yielding the same collection of
compact sets as itself. The class of k-spaces 1s extensive — it includes both locally compact and
first countable spaces [6]. Its major defect 1s 1ts failure to be preserved under finite products;
this plays a role in 5.7.

The space (X , weak) cannot be a k-space unless X 1is finite-dimensional. Indeed if the
k-space property holds, then the topology ~ denied in the proof of 4.2 coincides with the
weak topology. Thus every norm-convergent sequence in X *, being r-compact, must have
finite-dimensional linear span. Hence X* and X are finite-dimensional.

The situation for ( B, weak) is far more interesting. A Hausdorff space T’ is said to be a
Fréchet-Urysohn space iff whenever p € A C T, then some sequence in A converges (o p.
A space is Fréchet-Urysohn iff every subset is a k-space in the relative topology [2]. Also,
T 1is said to be a sequential space iff every sequentially closed subset is closed.

The following result seems to be well-known, but we have not found it recorded 1n this
form. An early version appears in [9].
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Theorem 5.1. The following conditions on a Banach space X are equivalent: (a) (B, weak)
is a Fréchet-Urysohn space; (b) ( B, weak) is a sequential space; (c) ( B, weak) is a k-space;
(d) X contains no isomorphic copy of L, .

Proof. (a) => (b) => (¢) is easily seen to hold for any Hausdorff topological space.

(¢) => (d): Suppose !, is isomorphic to a subspace of X . Then (B(l,), weak) is home-
omorphic to a closed subset of (nB(X) , weak) for some n, hence is a k-space. But this is
clearly not true, since the weak and norm topologies on B({;) have the same compact sets.

(d) => (a): Let p belongs to the weak closure of A in B(X) . Every Banach space in
its weak topology has the property of countable tightness: there is a countable subset C of A
whose weak closure contains p [32, p. 229]. Then Y, the closed linear span of {p}UC in X,
is a separable space containing no isomorphic copy of [, . By the Odell-Rosenthal Theorem
[22], (B(Y**),w*) is a pointwise compact set of Baire-1 functions on the compact metric
space (B(Y*),w*). Thus (B(Y**),w") is a Rosenthal compact in the sense of Godefroy
[10], so it is a compact angelic space, and therefore has the Fréchet-Urysohn property. Since

(B(Y), weak) is a subspace of ( B(Y**), w*), some sequence in C must converge weakly
o p. £

In contrast to 4.2, the property of being a k-space is very far from being a «dual property».

Corollary 5.2. (B, weak)is a k-space if and only if every T-compact subset of X* is norm-
compact. Thus (B, weak) and ( B*, 1) are both k-spaces if and only if X is reflexive.

Proof The first assertion is an immediate consequence of 2.3 and 5.1. The condition «ev-
ery 7-compact set is norm-compact» says that the k-space associated with (B*, 7) is (B*,
norm). The second assertion now follows. )

Corollary 5.3. The class of Banach spaces such that ( B, weak) is a k-space is preserved by
closed subspaces, quotients, and finite products.

ProofThis is immediate from 5.1 and the fact [4, p. 42] that the property « X contains no
isomorphic copy of £, » is a three-space property. The families of k-spaces and Fréchet-
Urysohn spaces are not preserved by two-fold products in general topology. o

Factorization theorem for ( B, weak). The following are equivalent: (a) ( B, weak) is (sep-
arably) metrizable; (b) ( B, weak) is a k-and-R,-space; (c) X* is separable.

Proof.The equivalence of (c) with either version of (a) is well-known, and the separable ver-
sion of (a) clearly implies (b).

(b) => (c¢): By 5.2, the Mackey and norm topologies on X* admit the same compact sets.
By 4.1(e) and (4.2), (X*, norm) is an R,-space, so 1t 1S separable. &
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This is much stronger than the best available result in general topology (4.1(1)).

Example 5.5. Let X be the James tree space [14], a separable Banach space which contains
no isomorphic copy of L, , yet has non-separable dual. Then since X isitself adual space, (B,
weak) is a k-space, and admits a coarser compact metric topology, but is not an R, -space.

We turn now to the k-space question for (X*,7) and (B*, 7).
Theorem 5.6. If X is either reflexive or a Schur space, then (X*, 1) is a k-space.

Proof. If X is a Schur space, then 7 is the topology of uniform convergence on norm-compact
subsets of X . By the Banach-Dieudonné Theorem [26, p. 151], 7 is the finest topology
(locally convex or not) which agrees with the weak* topology on weak™* -compact sets. Thus
(X7*, 1) 15 a k-space. g

Towards a partial converse of this result, let A, be a space homeomorphic to {i—}‘;lu
U {0}, for each positive integer n, such that A, N A, = {0} for n # p. The hedgehog
space H is the quotient space of U, A obtained by identifying all the O points in the A4, .
The space H is a k-space, but is not first countable at 0. A result of Michael [19] shows, in
particular, that for a metrizable space T, T x H 1s a k-space iff T' is locally compact. Hence
if 7" is a non-locally compact metric space, and Y is a space containing a closed copy of H ,
then 7" x Y is not a k-space.

Now observe that for X = [,, (X*,7) contains a closed copy of A . Indeed let S =
= {ne,, }i° .. U{0} C I, where e denotes the mth unit vector. For fixed =, the sequence

{ne_1}%_; is T-convergent to 0; hence there is a natural 1-1 correspondence between S and
H . Moreover, the correspondence preserves compact sets (in both directions). Now H 1s a
k-space, and so is S (it is a closed subset of (I, 7), whichis a k-space by 5.6). Hence the

correspondence 1s a homeomorphism.

Theorem 5.7. If (X*,7) is a k-space, then either X is reflexive or X is hereditarily
(i.e., every infinite-dimensional closed subspace contains an isomorphic copy of 1, ).

Proof. First we show that if Z is an infinite-dimensional closed subspace of X , then either (a)
Z is reflexive or (b) Z contains an isomorphic copy of , . Now (Z*, T) is a quotient space
of (X* 1) [26, p. 135]. Since k-spaces are exactly the quotients of locally compact spaces
[6, p. 248], and a quotient of a quotient is a quotient, we have that (Z*, ) is a k-space. If
Z contains no isomorphic copy of [, , then every 7-compact set in Z* is norm-compact, by
2.3. Hence 7 and norm must coincide on Z*, so Z 1s reflexive.

Now suppose that both alternatives (a) and (b) occur. Thus X contains infinite-dimen-
sional subspaces Z, and Z, which are reflexive and isomorphic to {, , respectively. Then Z,
and Z, are totally incomparable Banach spaces, so by [25, Th. 1], Z, + Z, is closed in X
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and isomorphic 10 Z, x Z, . Now T' = (Z7], norm) is a non-locally compact metric space,
and Y = (Z43,7) = (l_, ) contains a closed copyof H.Hence T' XY = ((Z4, x Z,)*,7)

1s not a k-space. This space is a quotient of ( X*, 7) , so that space is not a k-space either, a
contradiction. This completes the proof. i

Theorem 5.8. If (B*, 1) is a k-space, then X is weakly sequentially complete.

Proof. Let ~ again denote the topology on X of uniform convergence on 7-compact subsets
of X*. We show that (X, ~y) is a complete locally convex space. Applying Grothendieck’s
Completeness Theorem, let f be a linear functional on the topological dual space (X, )’ =
= X* suchthat f|H is weak*-continuous for each r-compact H C X*. Then f 1s T-conti-
nuous on each compact subset of the k-space (B*,7) and so f|B* is T-continuous. Then
f~1(0) N B* is 7-closed and convex, hence weak *-closed, and so f € X [26, p. 149].
Now [31, 1.3, 1.4] shows that ~ is the finest locally convex topology on X which has
the same convergent (or Cauchy) sequences as the weak topology. The weak sequential com-
pleteness of X follows immediately. B

Since a metric space is a k-space, this is a stronger result than the fact that an SWCG
space is weakly sequentially complete [27, 2.5]. Note that for X = L,{0,1], (B*,7) is a
k-space, but (X*, 7) is not ([27, 2.3] and 5.7). Also it can be shown that the Banach space
X, constructed in [1], a separable, hereditarily [, SWCG space, fails to have (Xg,7) a
k-space. Thus the converse to 5.7 is false. We do not know if the converse to 5.6 is true.

If X is infinite-dimensional and enjoys both the Dunford-Pettis and reciprocal Dunford-
Pettis properties, then (B*, 7) cannot be a k-space. Indeed the topologies 7(X*, X)) and
o( X*, X**) have the same compact sets, by 2.1. Thus o(X™*, X**) would be coarser than
{X*, X) on B*,s0o X would be reflexive. A reflexive space with D P is finite dimensional.

Example 5.9. A weakly sequentially complete space X such that (B*,T) is not a k-space.
Let X = C[0,11*, the space of bounded regular Borel measures on [0,1]. Then X can be
expressed as an uncountable 1, -sum of separable L,(u) spaces. By [27,1.2,2.3], (B*,T)
is homeomorphic to an uncountable product of complete separable metric spaces. Such a
product is never a k-space unless all but countably many of the factors are compact [21],
which is not the case here.

The examples 1, (1,) and BH (4.5 and 4.6) are separable, weakly sequentially complete
dual spaces for which ( B*,7) 1snota k-space (it is an R, -space for the first of these, but not
the second). For I, (l,) this will follow from the results presented below (5.10, 5.11). The
rather lengthy proof for B H is omitted.

Theorem 5.10. Let {X_}>, be SWCG Banach spaces, and let 1 < p < oco. Then if
X =1(X,), X is SWCG iff all but finitely many of the X are reflexive.
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Proof. The sufficiency is straightforward. For the necessity, we may suppose that X_ is non-
reflexive for all n. Let K, be a strongly generating, weakly compact subset of X , and let
K, =mn(K,) foreach n. Clearly K_ is strongly generating for X _ .

For each n, we can choose z, € B(X,) suchthat z, & nK, + 5 B(X,) . Otherwise,
we would have B(X,) C nK, + 5B(X,),s0o $B(X,) C 2K, + +B(X,), and thus
B(X,) C (n+ %2)K, + +B(X,), etc. An application of Grothendieck’s Criterion [5, p.
227] shows that B(X_) is weakly compact, so X is reflexive, a contradiction.

Now let L = {(0,0,...,z_,0,...)}%, U {0}, a weakly convergent sequence in X .
Since K 1s strongly generating, there is a positive integer m with L C mK, + —%B(X ).
Butthen z, € mK_+ %B( X,) for all n, a contradiction. &

This should be compared with [27, 2.9].

It is natural to inquire if an analogue of 5.4 holds for ( B*, 7) . In other words, if ( B*, 1)
is a k-and- R, -space, must it be metrizable, so that X is SWCG? Since (X , weak) will also
be an R, -space under these conditions, the problem is restricted to separable X .

Although we have not solved this question completely, we are able to present some partial
results, based on the penetrating topological work of Tanaka [28, 29, 30].

Theorem 5.11. Let X be a separable Banach space such that X is isomorphic to X x X.
Then X is SWCG if and only if ( B*,T) is a k-and-R,-space.

Proof. The necessity is clear, since (B*, 1) 18 a separable metric space. If D = (B*, 1)
is a k-and-R,-space, and 7' : X — X &, X is a linear homeomorphism, then 7™ is a
homeomorphism of D x [ onto a closed subset of a suitable muluple of D,s0o D x D 1s
a k-and-R,-space. According to [29, Th. 1.1], either D is a separable metric space or D is
og-compact. In the latter case, X is a separbale Schur space, by 3.1, so D 1is still metrizable s

Since X = [,(l;) is isomorphic to its square, it follows from 4.5, 5.10, and 5.11 that
(B*, 7) is nota k-space in this instance.

Theorem S5.12. Let X be a separable Banach space, and let Y = [, (X), the [, -sum of
countably many copies of X . Then X is SWCGQG ifandonlyif (B(Y*),7) isa k-and-R,—
space.

Proof, The necessity follows from [27, 2.9]. Conversely, ( B(Y*), ) 1s homeomorphic to
a countable product of copies of (B(Y*),7), by [27, 1.2]. A k-and-R,-space 1S a sequen-
tial space {20, Th. 7.3]. A direct application of [28, Th. 1.3(i)] shows that (B(Y ™), 7) 18
metrizable, so X is SWCG. &

The remarkable result [30, Th. 4.4] reveals exactly how a k-and- R, -space (B*, 7) could .
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fail to be metrizable, if indeed this can occur at all. Let H again denote the hedgehog space.
Let S, = (N xN)YU(N x{0})uU{(0,0)}, where each point of N x N is isolated; a base
of neighbourhoods of (n,0) consists of sets of the form {(n,0)} U {(n,m) : m > my};

and U 1s a neighbourhood of (0,0) if (0,0) € U, and U is a neighbourhood of all but
finitcly many (#,0). Then (B*, 7) is metrizable if and only if it contains no (closed) copy
of H or §,.
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