DEFORMATIONS OF ZERODIMENSIONAL INTERSECTION SCHEMES AND RESIDUES

ERNST KUNZ, ROLF WALDI

Dedicated to the memory of Professor Gottfried Köthe

1. INTRODUCTION

Let K be an algebraically closed field and $\mathbb{A}^n_K = \operatorname{Spec} K[X_1, \dots, X_n]$ the affine n-space over K(n > 0). For a closed point $P \in \mathbb{A}^n_K$ let

$$\mathcal{O}_P = K[X_1, \dots, X_n]_{\mathfrak{m}_P}$$

be the local ring of \mathbb{A}^n_K at P where \mathbb{M}_P is the maximal ideal of $K[X_1,\ldots,X_n]$ corresponding to P. If non-constant polynomials $f_1,\ldots,f_n\in K[X_1,\ldots,X_n]$ are given, we denote by $S:=f_1\cap\ldots\cap f_n$ the intersection scheme of the hypersurfaces $f_i=0$ $(i=1,\ldots,n)$. We assume that these hypersurfaces have no common points at infinity which is equivalent with the fact that their degree forms $Gf_i(i=1,\ldots,n)$ form a regular sequence of $K[X_1,\ldots,X_n]$. Moreover it follows then that S is zerodimensional. So S may be regarded as a finite set of closed points $P_j\in \mathbb{A}^n_K$ $(j=1,\ldots,h)$, namely the set of common zeros of the $f_i(i=1,\ldots,n)$, called the support of S, together with a local ring

$$\mathcal{O}_{S,P_j} := \mathcal{O}_{P_j} / (f_1,\ldots,f_n)$$

at each point $P_j \in \text{Supp } S$. The rings \mathcal{O}_{S,P_j} $(j=1,\ldots,h)$ are finite-dimensional K-algebras and

$$\mu_{P_i}\left(f_1,\ldots,f_n\right) := \dim_K \mathcal{O}_{S,P_i}$$

is the intersection multiplicity of the hypersurfaces $f_i = 0$ (i = 1, ..., n) at P_j . We set $\mu_P(f_1, ..., f_n) = 0$, if $P \notin \text{Supp } S$. We may also look at $f_1 \cap ... \cap f_n$ as being a zero-dimensional intersection of n projective hypersurfaces where the hyperplane at infinity is chosen to avoid all intersection points. The number $d := \prod_{i=1}^n \deg f_i$ is called the *degree* of $f_1 \cap ... \cap f_n$.

Definition 1.1. We say that $f_1 \cap ... \cap f_n$ is a transversal complete intersection at $P \in A_K^n$ (or that the hypersurfaces $f_i = 0$ (i = 1, ..., n) have a normal crossing at P) if

248 Ernst Kunz, Rolf Waldi

 $\mu_P(f_1,\ldots,f_n)=1$. We also say that $S=f_1\cap\ldots\cap f_n$ is a transversal complete intersection if it is so at each $P\in Supp\ S$.

It is known and easy to see that S is a transversal complete intersection at P if and only if one of the following conditions is satisfied:

- a) $\{f_1, \ldots, f_n\}$ is a regular system of parameters of \mathcal{O}_P .
- b) The Jacobian determinant

$$J := \frac{\partial (f_1, \dots, f_n)}{\partial (X_1, \dots, X_n)}$$

does not vanish at P.

Moreover by Bézout's theorem S is globally a transversal complete intersection if and only if Supp S consists of d distinct points. It is often advantageous to be in this situation. Therefore in algebraic geometry for $K=\mathbb{C}$ it is a standard method to change the coefficients of the polynomials f_i «a little» in order to pass from the general case to the case of a transversal complete intersection. Then continuity arguments may be applied to transfer result which are known in this situation to the general case.

For an arbitrary K this method is not directly applicable, however we will show in the present note how it can be modified to work for a general algebraically closed field K. As an illustration we then apply it to the theory of residues of differential n-forms on \mathbf{A}_K^n .

2. DEFORMATIONS

We write K[X] for $K[X_1, ..., X_n]$ in the sequel. Let $S = f_1 \cap ... \cap f_n$ be a zero-dimensional intersection scheme as in the introduction. In particular $\{Gf_1, ..., Gf_n\}$ is a regular sequence and $\{f_1, ..., f_n\}$ a quasiregular sequence of K[X] where the latter means that $\{f_1, ..., f_n\}$ is a regular sequence of \mathcal{O}_P for each $P \in \text{Supp } S$.

Let (R, \mathfrak{m}) be a complete noetherian local K-algebra with residue field K, for example a power series algebra over K. Assume R is a domain and let L be the algebraic closure of the quotient field Q(R) of R. The canonical epimorphism $R \to K$ modulo \mathfrak{m} induces an epimorphism

$$\varphi: R\left[X_1, \ldots, X_n\right] \to K\left[X_1, \ldots, X_n\right] \qquad \left(\varphi\left(X_i\right) = X_i \quad (i = 1, \ldots, n)\right).$$

Choose $f_1^*, \ldots, f_n^* \in R[X]$ such that

$$\deg f_i^* = \deg f_i$$
 and $\varphi(f_i^*) = f_i$ $(i = 1, ..., n)$.

Then it is clear that $\varphi(Gf_i^*) = Gf_i$ (i = 1, ..., n). Since $\{Gf_1, Gf_n\}$ was a regular sequence in K[X], the same holds for $\{Gf_1^*, ..., Gf_n^*\}$ in R[X] by the local flatness criterion ([M], Thm. 22.5 Cor.). Then $\{Gf_1^*, ..., Gf_N^*\}$ is likewise a regular sequence in L[X]. In particular the intersection scheme $S^* := f_1^* \cap ... \cap f_n^*$ in A_L^n is zerodimensional.

Definition 2.1. The scheme S^* is called a deformation of S with base ring R.

Contrary to what was said above about $K = \mathbb{C}$ the deformation S^* «lives» in general in an affine space different from A_K^n . However S and S^* are closely connected as we are going to show now.

Let

$$A := K[X]/(f_1, \ldots, f_n)$$
 and $A^* := L[X]/(f_1^*, \ldots, f_n^*)$

be the affine coordinate algebras of S resp. S^* and let

$$B := R[X]/(f_1^*, \dots, f_n^*).$$

By the Chinese remainder theorem

(1)
$$A = \prod_{P \in \text{Supp } S} \mathcal{O}_{S,P}, \ A^* = \prod_{Q \in \text{Supp } S^*} \mathcal{O}_{S^*,Q}.$$

Further A = B/m B and $A^* = L \otimes_R B$.

Proposition 2.2. A* is an L-algebra of dimension d and B is a free R-module of rank d.

Proof. Since the hyperplanes $f_i^* = 0$ (i = 1, ..., n) have no common points at infinity the first assertion in connection with (1) is Bézout's theorem. In order to prove the second it suffices to show that B is generated as an R-module by d elements. Let grB be the graded ring with respect to the degree filtration on R[X]. By [KK], 1.11 it is enough to prove that $grB = R[X]/(Gf_1^*, ..., Gf_n^*)$ is generated as an R-module by d elements.

But $\operatorname{gr} B/\mathfrak{m}$ $\operatorname{gr} B=K[X]/(Gf_1,\ldots,Gf_n)=\operatorname{gr} A$ is a K-algebra of dimension d, the Gf_i forming a regular sequence of K[X]. By Nakayama it suffices to show that $\operatorname{gr} B$ is a finitely generated R-module.

This is certainly true for its homogeneous components $\operatorname{gr}^i B(i \in \mathbb{N})$. But $\operatorname{gr}^i B/\mathfrak{m}$ $\operatorname{gr}^i B$ vanishes for large i being the homogeneous component of degree i of the finite-dimensional K-algebra $\operatorname{gr} B/\mathfrak{m}$ $\operatorname{gr} B$. Again by Nakayama $\operatorname{gr}^i B$ vanishes for large i and $\operatorname{gr} B$ is finitely generated over R.

Q.E.D.

Proposition 2.3. Under the assumptions of 2.2 we have

a) For
$$P = (a_1, \ldots, a_n) \in Supp S$$

$$\mathfrak{AH}_{P} := (\mathfrak{m}, X_{1} - a_{1}, \dots, X_{n} - a_{n})$$

is a maximal ideal of R[X] with $f_i^* \in \mathcal{M}_P$ (i = 1, ..., n) and the map

Supp
$$S \to \operatorname{Max} B \quad (P \mapsto \operatorname{All}_P / (f_1^*, \dots, f_n^*))$$

250 Ernst Kunz, Rolf Waldi

is a bijection.

b) There is a canonical decomposition

$$B = \prod_{P \in \text{Supp } S} B_P$$

with $B_P := R[X]_{\mathcal{A}_P}/(f_1^*, \dots, f_n^*)$, and B_P is a free R-module of rank $\mu_P(f_1, \dots, f_n)$.

Proof. a) Since B is finite over R by 2.2 the maximal ideals of B lie over m, hence MaxB and Max A are in one-to-one correspondence. Further Max A and Supp S are in natural one-to-one correspondence, hence a) follows.

b) Since B is finite over a complete local ring we have by the Chinese remainder theorem

$$B = B_1 \times ... \times B_h$$

where the B_j are the localizations of B at its maximal ideals. If the maximal ideal is $\Re P_i/(f_1^*,\ldots,f_n^*)$ for $P_j\in \operatorname{Supp} S$, then $B_j=B_{P_i}$.

As a homomorphic image of B each B_P ($P \in \text{Supp }(S)$) is finite over R. Let \mathfrak{m}_P be the maximal ideal of P in A. Since $B_P/\mathfrak{m}_P = A_{\mathfrak{m}_P} = \mathcal{O}_{S,P}$ we obtain by Nakayama that B_P is generated by $\mu_P(f_1,\ldots,f_n)$ elements. But $B = \prod_{P \in \text{Supp } S} B_P$ is free of rank $d = \sum_{P \in \text{Supp } S} \mu_P(f_1,\ldots,f_n)$. Hence each factor B_P must be free of rank $\mu_P(f_1,\ldots,f_n)$. For the next proposition we need a lemma

Lemma 2.4. The integral closure \overline{R} of R in L is a local ring with residue field K.

Proof. Write $\overline{R} = \cup S$ where S runs over all rings with $R \subset S \subset \overline{R}$ such that S is finite over R. By the Chinese remainder theorem each such S is a direct product of its localizations at the maximal ideals. Being a domain S can therefore have only one maximal ideal, call it \mathfrak{m}_S .

Each $AR \in Max \overline{R}$ lies over a maximal ideal of S, hence $AR \cap S = \mathfrak{m}_S$ and $AR = \cup \mathfrak{m}_S$. Therefore \overline{R} has only one maximal ideal. Its residue field is an algebraic extension of K. Since K is algebraically closed it must be K.

Proposition 2.5. Under the assumptions of 2.2 let $Q = (\alpha_1, ..., \alpha_n) \in Supp S^*$. Then a) $\alpha_1, ..., \alpha_n \in \overline{R}$.

b) If a_i denotes the residue class of α_i in K(i = 1, ..., n) then $P := (a_1, ..., a_n) \in Supp S$, hence there is a natural map

$$\eta: \text{Supp } S^* \to \text{Supp } S \qquad ((\alpha_1, \ldots, \alpha_n) \mapsto (a_1, \ldots, a_n))$$

c) η is surjective and for each $P \in Supp\ S$ there is a canonical isomorphism of L-algebras

$$L \otimes_R B_P \cong \prod_{Q \in \eta^{-1}(P)} A_Q^*$$

where $A_Q^* = \mathcal{O}_{S^*,Q}$ is the localization of A^* at the maximal ideal corresponding to Q.

Proof. a) Let $\Re_Q \in \operatorname{Max} A^*$ be the maximal ideal which corresponds to Q and let $\varepsilon_Q : A^* \to A^*/\Re_Q \in \operatorname{Max} A^*$ be the canonical epimorphism. Clearly $A^*/\Re_Q = L$. Let x_i^* denote the residue class of X_i in A^* . Then $\varepsilon_Q(x_i^*) = \alpha_i$ $(i = 1, \ldots, n)$. Since x_i^* is integral over R by 2.2 its image $\alpha_i \in L$ must be integral over R, too, hence $\alpha_i \in \overline{R}$ $(i = 1, \ldots, n)$. b) Consider the commutative diagram

$$R[X] \xrightarrow{\operatorname{mod}(f_1, \dots, f_n)} B \xrightarrow{\varepsilon_Q} R[\alpha_1, \dots, \alpha_n] \subset \overline{R}$$

$$\varphi \downarrow \qquad \qquad \overline{\varphi} \downarrow \qquad \qquad \varepsilon \downarrow$$

$$K[X] \xrightarrow{\operatorname{mod}(f_1, \dots, f_n)} A \xrightarrow{\overline{\varepsilon}_Q} K$$

where ε is the canonical epimorphism onto the residue field, $\overline{\varphi}$ is induced by φ and $\overline{\varepsilon}_Q$ is induced by ε_Q . Let x_i denote the image of X_i in A. Then $\overline{\varepsilon}_Q(x_i) = a_i$ (i = 1, ..., n).

c) By 2.3c) we have

$$A^* = L \otimes_R B = \prod_{P \in \text{Supp } S} L \otimes_R B_P.$$

Here $L \otimes_R B_P$ is an L-algebra of dimension $\mu_P(f_1, \ldots, f_n) \neq 0$, hence it has at least one maximal ideal. Let $\mathcal{M}_Q \in \text{Max } A^*$ be the corresponding maximal ideal of A^* .

If $Q=(\alpha_1,\ldots,\alpha_n)$ and $P=(a_1,\ldots,a_n)$, then ε_Q induces an R-epimorphism $B_P\to R[\alpha_1,\ldots,\alpha_n]$, since all factors of A^* different from $L\otimes_R B_P$ are mapped to 0 by ε_Q . Then $\overline{\varepsilon}_Q$ induces a K-epimorphism $\mathcal{O}_{S,P}=B_P/\mathfrak{m}\,B_P\to K$. But there is only one such epimorphism, the canonical epimorphism onto the residue field. It maps x_i to a_i ($i=1,\ldots,n$), hence $\eta(Q)=P$ and η is surjective.

It is now clear that the maximal ideals of $L \otimes_R B_P$ are of the form \mathcal{M}_Q for $Q \in \eta^{-1}(P)$. Therefore the product decomposition of c) follows again from the Chinese remainder theorem.

Corollary 2.6. For each $P \in Supp S$

$$\mu_P(f_1,\ldots,f_n) = \sum_{Q \in \eta^{-1}(P)} \mu_Q(f_1^*,\ldots,f_n^*).$$

3. SMOOTHING INTERSECTION SCHEMES

We shall show now that $S = f_1 \cap ... \cap f_n$ can be «smoothed» in the following sense:

Theorem 3.1. For $S = f_1 \cap ... \cap f_n$ as in the introduction there exists a deformation $S^* = f_1^* \cap ... \cap f_n^*$ of S such that

- a) S* is a transversal complete intersection.
- b) $Gf_i^* = Gf_i (i = 1, ..., n)$.

Proof. We may assume without loss of generality that deg $f_i > 1$ for i = 1, ..., m, deg $f_i = 1$ for i = m + 1, ..., n. Necessarily $\{f_{m+1}, ..., f_n\}$ are linearly independent over K, so we may also assume that $f_i = X_i$ for i = m + 1, ..., n. In case m = 0 the proof is trivial with $f_i^* = f_i = X_i$ (i = 1, ..., n). So let m > 0.

Choose an indeterminates u, u_1, \ldots, u_m , let $R = K[[u, u_1, \ldots, u_m]]$ be the power series algebra over K in these indeterminates, w its maximal ideal and L the algebraic closure of Q(R). Set

$$f_i^* = f_i + uX_i + u_i f_i^* = f_i + uX_i + u_i \quad (i = 1, ..., m)$$

 $f_i^* = f_i = X_i \quad (i = m + 1, ..., n)$

Then $Gf_i^* = Gf_i$ for $i = 1, \ldots, n$, as $\deg f_i > 1$ for $i = 1, \ldots, m$. Since $\{Gf_1, \ldots, Gf_n^*\}$ was a regular sequence in K[X] it is clear that $\{Gf_1^*, \ldots, Gf_n^*\}$ is a regular sequence in L[X] and $S^* := f_i^* \cap \ldots \cap f_n^*$ is a deformation which already satisfies 3.1 b). In order to prove a) we wish to show that the Jacobian determinant $J^* := \frac{\partial (f_1^*, \ldots, f_n^*)}{\partial (X_1^*, \ldots, X_n^*)} = \frac{\partial (f_1^*, \ldots, f_n^*)}{\partial (X_1^*, \ldots, X_n^*)}$ does not vanish at any $Q \in \operatorname{Supp} S^*$.

For $P=(a_1,\ldots,a_n)\in \operatorname{Supp} S$ let $\operatorname{All}_P:=(\operatorname{m},X_1-a_1,\ldots,X_n-a_n)\subset R[X]$ and let $B_P=R[X]_{\operatorname{All}_P}/(f_1^*,\ldots,f_n^*)$. Remember that by 2.3 b) the ring B_P is finite over R, hence B_P is a complete local ring. After a translation we may assume that $a_1=\ldots=a_n=0$. Then

$$B_P = \widehat{B_P} = R[[X_1, \dots, X_n]] / (f_1^*, \dots, f_n^*).$$

But $f_i^* = u_i + \varphi_i^*$ with $\varphi_i^* \in K[[u, X_1, ..., X_n]]$ for i = 1, ..., m and $f_i^* = X_i$ for i = m+1, ..., n. It follows that the canonical homomorphism

$$K[[u, X_1, \ldots, X_m]] \rightarrow B_P$$

is an isomorphism. In particular B_P is a domain. By 2.3 c) we know that B is the direct product of the B_P for $P \in \text{Supp } S$.

In the Jacobian determinant J^* the indeterminates u_i $(i=1,\ldots,m)$ do not occur and as a function of the u_i $(i=1,\ldots,m)$ it is a polynomial in $K[X_1,\ldots,X_n][u]$ whose degree form with respect to u is u^m . Hence the image of J^* in B_P does not vanish for any $P \in \text{Supp } S$ and the image of J^* in B is not a zerodivisor. Then also its image in

$$A^* := L[X]/\left(f_1^*, \dots, f_n^*\right) = L \otimes_R B$$

is not a zerodivisor, L/R being a flat extension. Call this image j^* .

We can write $A^* = \prod_{Q \in \text{Supp } S^*} A_Q^*$ with $A_Q^* = \mathcal{O}_{S^*,Q}$. The A_Q^* are artinian local rings. Since j^* is not a zerodivisor in A^* it follows that the image of j^* in A_Q^* is a unit for any $Q \in \text{Supp } S^*$, hence the image of j^* in the residue field of A_Q^* does not vanish. But this image is just $J^*(Q)$.

Corollary 3.2. (*Dynamical description» of the intersection multiplicity). Let S^* be as in the theorem and let η : Supp $S^* \to \text{Supp } S$ be the map described in 2.5. Then $\eta^{-1}(P)$ consists for each $P \in \text{Supp } S$ of exactly $\mu_P(f_1, \ldots, f_n)$ distinct points.

4. RESIDUES

For $S = f_1 \cap ... \cap f_n$ as in the introduction, a differential form $\omega = g dX_1 ... dX_n \in \Omega^n_{K[X]/K}$ $(g \in K[X])$, and a closed point $P \in A^n_K$ we consider now the residue

$$\operatorname{Res}_{P}\left[\begin{array}{c} \omega \\ f_{1}, \ldots, f_{n} \end{array}\right].$$

We may regard these residues as generalizations of the intersection multiplicity $\mu_P(f_1, \ldots, f_n)$. At least in characteristic 0 the intersection multiplicity is the residue for $\omega = df_1 \ldots df_n$ (see (9) below). As ω varies the residues describe the behavior of the intersection S at P more closely then the intersection multiplicity does alone.

We write $f = \{f_1, \ldots, f_n\}$ in the sequel. Let us recall the construction of the residue (due to [SS1], [SS2]) and its principal properties. The «canonical module» $\omega_{A/K} := \operatorname{Hom}_K(A, K)$ of A/K is a free A-module of rank 1. A basis element $\sigma: A \to K$ of $\omega_{A/K}$ is called a «trace» of A/K. To the presentation A = K[X]/(f) there is always associated a trace which is obtained as follows ([SS1],§ 4; see also [K], app. F). Let x_i be the image of X_i in $A(i=1,\ldots,n)$, set $A^e:=A\otimes_K A$, and let I be the kernel of $A^e\to A$ ($a\otimes b\mapsto ab$). Then $Ann_{A^e}I$ is in a natural manner an A-module and there exists a canonical isomorphism of A-modules

$$\phi: \operatorname{Ann}_{A^{\epsilon}} I \xrightarrow{\sim} \operatorname{Hom}_{A} \left(\omega_{A/K}, A\right)$$

with $\phi(\sum a_i \otimes b_i)(\ell) = \sum \ell(a_i)b_i$ for all $\sum a_i \otimes b_i \in \operatorname{Ann}_{A^e}I$ and all $\ell \in \omega_{A/K}$. In $A[X] := A[X_1, \dots, X_n]$ there are equations

(2)
$$f_i = \sum_{j=1}^n a_{ij} \left(X_j - x_j \right) \qquad (i = 1, ..., n; a_{ij} \in A[X]).$$

Let Δ_x^f denote the image of $\det(a_{ij})$ in $A^e = A[X]/(f)A[X]$. Then $\operatorname{Ann}_{A^e}I = A \cdot \Delta_x^f$. The (unique) element $\tau_f^x \in \omega_{A/K}$ with $\phi(\Delta_x^f)(\tau_f^x) = 1$ is then a trace of A/K.

Its relation to the standard trace $\sigma_{A/K}$ of the algebra A/K (which in general is not a «trace» in our present sense) is as follows: let $\frac{\partial f}{\partial x}$ denote the image of the Jacobian determinant J in A. Then in $\omega_{A/K}$

(3)
$$\sigma_{A/K} = \frac{\partial f}{\partial x} \cdot \tau_f^x$$

(see [SS1], 4.2 or [K], F. 23).

Consider now the decomposition $A = \prod_{P \in \text{Supp } S} A_P$ and read (2) as equations in $A_P[X]$. Then in the same way as $\tau_f^x : A \to K$ a trace $(\tau_f^x)_P : A_P \to K$ can be constructed. It is easily seen that $(\tau_f^x)_P$ is the restriction of τ_f^x to the direct factor A_P . Hence for $a = (\{a_P\}_{P \in \text{Supp } S}), \ a_P \in A_P$ we have

(4)
$$\tau_f^x(a) = \sum_{P \in \text{Supp } S} \left(\tau_f^x\right)_P \left(a_P\right).$$

Moreover for the standard trace $\sigma_{A_P/K}$

(5)
$$\sigma_{A_P/K} = \left(\frac{\partial f}{\partial x}\right)_P \cdot \left(\tau_f^x\right)_P$$

where $(\frac{\partial f}{\partial x})_P$ is the image of J in A_P . We mention that for these statements K need not be a field but can be an arbitrary commutative ring. However it is necessary that f is a quasi-regular sequence in K[X] and A is at least a finitely generated projective K-module (see [SS1] and [K], app. F).

Now for $\omega = gdX$ as above let γ (resp. γ_P) be the image of g in A (in A_P). Then

$$\int \left[\begin{smallmatrix} \omega \\ f \end{smallmatrix}\right] := \tau_f^x(\gamma)$$

is called the *integral* of ω with respect to (the «integration path») f and for $P \in \text{Supp } S$

$$\operatorname{Res}_{P} \begin{bmatrix} \omega \\ f \end{bmatrix} := (\tau_{f}^{x})_{P} (\gamma_{P})$$

is called the *residue* of ω at P with respect to f. We set $\operatorname{Res}_{P} \left[\begin{smallmatrix} \omega \\ f \end{smallmatrix} \right] = 0$ if $P \notin \operatorname{Supp} S$.

It can be shown that integral and residue do not depend on the coordinates X_1, \ldots, X_n used in their construction. They are K-linear in ω and there is a «transformation formula» ([SS2], 1.1) or [K], F. 26) which describes how they depend on f. Clearly by (4)

(6)
$$\int \begin{bmatrix} \omega \\ f \end{bmatrix} = \sum_{P} \operatorname{Res}_{P} \begin{bmatrix} \omega \\ f \end{bmatrix}$$

and by construction for $\omega = g dx$

(7)
$$\int \begin{bmatrix} \omega \\ f \end{bmatrix} = 0 \text{ for } g \in (f)$$

(8)
$$\operatorname{Res}_{P} \begin{bmatrix} \omega \\ f \end{bmatrix} = 0 \text{ for } g \in (f)A_{P}.$$

Moreover by (5)

$$\operatorname{Res}_{P} \begin{bmatrix} df_{1} \dots df_{n} \\ f \end{bmatrix} = \left(\tau_{f}^{x} \right)_{P} \left(\left(\frac{\partial f}{\partial x} \right)_{P} \right) = \sigma_{A_{P}/K}(1) = \dim_{K} A_{P} \cdot 1_{K}$$

hence

(9)
$$\operatorname{Res}_{P} \begin{bmatrix} df \\ f \end{bmatrix} = \mu_{P}(f) \cdot 1_{K}.$$

For transversal complete intersections there is a simple formula for the residue.

Proposition 4.1. Let S be a transversal complete intersection at P. Then

$$\operatorname{Res}_{P} \begin{bmatrix} \omega \\ f \end{bmatrix} = \frac{g(P)}{J(P)}.$$

Proof. The assumption implies that $A_P = K$, $\sigma_{A_P/K} = \mathrm{id}_K$, and that $J(P) \neq 0$. Hence the definition of the residue in connection with (5) shows that

$$\operatorname{Res}_{P} \begin{bmatrix} g dX \\ f \end{bmatrix} = \frac{1}{J(P)} \sigma_{A_{P}/K}(g(P)) = \frac{g(P)}{J(P)}.$$

By smoothing $f_1 \cap \ldots \cap f_n$ we shall deduce a similar formula for the residue in the general case. Let $S^* = f_1^* \cap \ldots \cap f_n^*$ be a deformation of S as in section 2. We keep the

256 Ernst Kunz, Rolf Waldi

notations introduced there. The previous constructions can be applied to $B = R[X]/(f^*) = \prod_{P \in \text{Supp } S} B_P$, hence there are traces

$$\tau_{f^*}^x: B \to R, \left(\tau_{f^*}^x\right)_P: B_P \to R.$$

For $\beta \in B(\beta \in B_P)$ let $\beta^{\sim} \in A(\beta^{\sim} \in A_P)$ denote the image by the reduction modulo m B. In particular $\beta^{\sim} \in K$ for $\beta \in R$. It is known that the above traces are compatible with base change ([K], F. 27) which implies in our present situation the following formulas:

(10)
$$\tau_f^x(\beta^{\sim}) = \left(\tau_{f^*}^x\right)(\beta)^{\sim} \text{ for } \beta \in B$$

$$\left(\tau_f^x\right)_P(\beta^{\sim}) = \left(\tau_{f^*}^x\right)_P(\beta)^{\sim} \text{ for } \beta \in B_P.$$

Moreover $L \otimes_R \tau_f^x$, is the trace of A^*/L associated to the presentation $A^* = L[X]/(f^*)$. We denote this trace again by τ_f^x , and write $(\tau_{f^*}^x)_P$ for $L \otimes (\tau_{f^*}^x)_P$. Then $(\tau_{f^*}^x)_P$ is the restriction of τ_f^x , to the direct factor $L \otimes_R B_P$ of A^* . Since

$$L \otimes_R B_P = \prod_{Q \in \eta^{-1}(P)} A_Q^*$$

we have for $\{\alpha_Q\} \in \prod A_Q^* (\alpha_Q \in A_Q^*)$

(11)
$$\left(\tau_{f^*}^x\right)_P\left(\left\{\alpha_Q\right\}\right) = \sum_{Q \in \eta^{-1}(P)} \left(\tau_{f^*}^x\right)_Q\left(\alpha_Q\right).$$

Now combining (10) and (11) with the definition of residues we obtain

Theorem 4.2. Let $S^* = f_1^* \cap ... \cap f_n^*$ be a deformation of S. For $\omega = gdX_1 ... dX_n$ let $g^* \in R[X]$ be a preimage of g and let $\omega^* := g^*dX_1 ... dX_n \in \Omega^n_{L[X]/L}$. Then

$$\int \begin{bmatrix} \omega^* \\ f^* \end{bmatrix} \in R, \sum_{Q \in \eta^{-1}(P)} \operatorname{Res}_{Q} \begin{bmatrix} \omega^* \\ f^* \end{bmatrix} \in R$$

and

$$\int \begin{bmatrix} \omega \\ f \end{bmatrix} = \int \begin{bmatrix} \omega^* \\ f^* \end{bmatrix}^{\sim}, \operatorname{Res}_{P} \begin{bmatrix} \omega \\ f \end{bmatrix} = \left(\sum_{Q \in \eta^{-1}(P)} \operatorname{Res}_{Q} \begin{bmatrix} \omega^* \\ f^* \end{bmatrix} \right)^{\sim}.$$

Proof. Let γ_P^* (resp. γ_Q^*) be the image of g^* in B_P (in A_Q^*). Then $(\gamma_P^*)^\sim$ is the image of g in A_P and by (10) and (11)

$$\operatorname{Res}_{P} \begin{bmatrix} \omega \\ f \end{bmatrix} = \left(\tau_{f}^{x} \right)_{P} \left(\left(\gamma_{P}^{*} \right)^{\sim} \right) = \left(\left(\tau_{f^{*}}^{x} \right)_{P} \left(\gamma_{P}^{*} \right) \right)^{\sim} = \left(\sum_{Q \in \eta^{-1}(P)} \left(\tau_{f^{*}}^{x} \right)_{Q} \left(\gamma_{Q}^{*} \right) \right)^{\sim} = \left(\sum_{Q \in \eta^{-1}(P)} \operatorname{Res}_{Q} \begin{bmatrix} \omega^{*} \\ f^{*} \end{bmatrix} \right)^{\sim}.$$

The statement about the integral follows now from (6).

Corollary 4.3. If S^* is a transversal complete intersection and $J^* := \frac{\partial (f_1^*, \dots, f_n^*)}{\partial (X_1, \dots, X_n)}$, then

$$\operatorname{Res}_{P} \left[\begin{smallmatrix} \omega \\ f \end{smallmatrix} \right] = \left(\sum_{Q \in \eta^{-1}(P)} \frac{g^{*}(Q)}{J^{*}(Q)} \right)^{\sim} \ and \ \int \left[\begin{smallmatrix} \omega \\ f \end{smallmatrix} \right] = \left(\sum_{Q \in \operatorname{Supp} \ S^{*}} \frac{g^{*}(Q)}{J^{*}(Q)} \right)^{\sim}.$$

For $f_1 \cap \ldots \cap f_n$ as at the beginning write $Gf_i = \sum_{j=1}^n d_{ij} X_j$ ($i = 1, \ldots, n; d_{ij} \in K[X]$ homogeneous of degree deg $f_i - 1$) and let d_X^{Gf} denote the image of det (d_{ij}) in gr A. It is known ([KK], 2.8) that this image generates $\operatorname{gr}^\rho A$ where $\rho := \sum \operatorname{deg} f_i - n$, and that $\operatorname{gr}^\rho A$ is the socle of gr A and a one-dimensional vector space over K. Therefore for each $h \in K[X]$ with $\operatorname{deg} h = \rho$ there is a unique $\kappa \in K$ such that

(12)
$$Gh \equiv \kappa \cdot \det \left(d_{ij}\right) \mod \left(Gf_1, \dots, Gf_n\right).$$

We set $\kappa = 0$ if deg $h < \rho$. Moreover, since $\operatorname{gr}^{\rho}A$ is the homogeneous component of highest degree of $\operatorname{gr} A$, it follows from [KK], 1.11a) that for each $g \in K[X]$ there is an $h \in K[X]$ with

(13)
$$\deg h \le \rho \text{ and } g \equiv h \mod (f_1, \dots, f_n).$$

A classical theorem of Jacobi states

Theorem 4.4. If $f_1 \cap ... \cap f_n$ is a transversal complete intersection and $h \in K[X]$ a polynomial with deg $h \leq \rho$, then

$$\sum_{P \in \text{Supp } S} \frac{h(P)}{J(P)} = \kappa.$$

The terms on the left hand side of this formula are residues by 4.1. The same is true for κ as well:

Proposition 4.5. Let O denote the origin of \mathbb{A}^n_K . Then

$$\kappa = \operatorname{Res}_{O} \begin{bmatrix} GhdX_{1}...dX_{n} \\ Gf_{1},...,Gf_{n} \end{bmatrix}.$$

Proof. It is known that $\tau_{Gf}^x(d_X^{Gf}) = 1$ and τ_{Gf}^x is homogeneous of degree $-\rho$ ([KK], 2.8). Hence by (12) and the definition of the residue

$$\operatorname{Res}_{O}\begin{bmatrix}GhdX\\Gf\end{bmatrix} = \tau_{Gf}^{x}\left(\kappa \cdot d_{X}^{Gf}\right) = \kappa$$

in case deg $h = \rho$, and the residue vanishes if deg $h < \rho$.

Now we have shown that the Jacobian formula is a special case of

Residue Theorem 4.6. For $\omega = gdX$ choose $h \in K[X]$ with deg $h \leq \rho$ and $g \equiv h \mod (f)$. Then

(14)
$$\int \begin{bmatrix} \omega \\ f \end{bmatrix} = \int \begin{bmatrix} hdX \\ f \end{bmatrix} = \sum_{P} \operatorname{Res}_{P} \begin{bmatrix} hdX \\ f \end{bmatrix} = \operatorname{Res}_{O} \begin{bmatrix} GhdX \\ Gf \end{bmatrix}.$$

Conversely let $S^* := f_1^* \cap \ldots \cap f_n^*$ be a deformation of $f_1 \cap \ldots \cap f_n$ as in 3.1, in particular a transversal complete intersection. For h as in 4.6 choose h^* in 4.3 to be h. Then by 4.3 the Jacobian forumula for $f_1^* \cap \ldots \cap f_n^*$ implies the residue theorem 4.6: the first equality in (14) follows from (7). Further

(15)
$$\int \begin{bmatrix} hdX \\ f \end{bmatrix} = \left(\sum_{Q} \frac{h(Q)}{J^*(G)} \right)^{\sim} = \left(\operatorname{Res}_{O} \begin{bmatrix} GhdX \\ Gf \end{bmatrix} \right)^{\sim} = \operatorname{Res}_{O} \begin{bmatrix} GhdX \\ Gf \end{bmatrix}$$

where we have used that $Gf^* = Gf$ and that $\operatorname{Res}_O[{GhdX \atop Gf}]$ considered as a residue in A_L^n is the same as the residue in A_K^n (base change). Thus the proof of the residue theorem can be reduced to that of the Jacobian formula by smoothing $f_1 \cap \ldots \cap f_n$. However the proof of the residue theorem given in [KK], 4.8 by deforming S to $\operatorname{Spec}(\operatorname{gr} A)$ does not require to show that Jacobian formula in advance. The present residue theorem is also a very special case of a general residue theorem in Grothendieck duality theory ([HK]).

In (15) we have used the Jacobian formula for S^* . It has turned out that $\sum_{Q} \frac{h(Q)}{J^*(G)}$ is already an element of K. Thus we obtain the following formula for the computation of the integral.

Proposition 4.7. For ω and h as in 4.6, and S^* as above

$$\int \begin{bmatrix} \omega \\ f \end{bmatrix} = \sum_{Q \in \text{Supp } S^*} \frac{h(Q)}{J^*(G)}.$$

REFERENCES

- [HK] R. HÜBL, E. KUNZ, Regular differential forms and duality for projective morphisms, J. reine ang. Math., 410 (1990), pp. 84-108.
 - [K] E. Kunz, Kähler Differentials, Vieweg. Braunschweig-Wiesbaden, 1986.
- [KK] M. KREUZER, E. KUNZ, Traces in strict Frobenius algebra and strict complete intersections, J. reine ang. Math., 381 (1987), pp. 181-204.
- [M] H. MATSUMURA, Commutative ring theory, Cambridge, 1986.
- [SS1] G. Scheja, U. Storch, Über Spurfunktionen bei vollständigen Durchschnitten, J. reine ang. Math., 278/279 (1975), pp. 174-190.
- [SS2] G. Scheja, U. Storch, Residuen bei vollständigen Durchschnitten, Math. Nachr., 91 (1979), pp. 157-170.

Received October 31, 1990 E. Kunz, R. Waldi Universität Regensburg Fakultät für Mathematik Universitätsstrasse 31 D - 8400 Regensburg Germany