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ON SOME CLASS OF EQUATIONS WITH POTENTIAL OPERATORS
ALEXANDER M. KRASNOSEL’'SKII, MARK. A. KRASNOSEL’SKII

Dedicated to the memory of Professor Gottfried Kothe

New conditions of solvability of quasi-linear integral Hammerstein type equations with sym-
metrical kernels are suggested. The conditions were obtained with the help of special integral-
functional inequalities (see [1]). They make possible to enforce practically all the known be-
fore theorems on Hammerstein type equations which were obtained with variational methods.

1. NOTATIONS
In the main part of the paper the scale of spaces L, = L (Q,R") (1 < p < oo) is used

where w is a closed bounded domain in R" .
Let G(t,s) : Q x Q — R' denote a positive semidefinite symmetrical kernel which
determines the linear integral operator

(1) Az(t) = f G(t,s)z(t)d u(s).
(1

Suppose the operator A is completely continuous in the space L, (with a standard scalar
product [-,-] and norm || - ||). In this case the eigenspace E, C L, which coincides with
eigenvalue z =|| A ||, _,; is finite-dimensional. The distribution functions

(2) x(6;e) = mes{t;t € Q, |le(t)]| < &}

of elements e(t) € E, are used. The positive semidefinite selfadjoint in L, square root of
the operator A 1s denoted by K .

Let f(t,z) : Q x R! — R! denote a function measurable in ¢ and continuous in .
Let f(i,x) satisfy the double-side estimate

(3) If(t, )| <clz]*+b  (teQ, zeR')

where a > 1, b,c > 0 and the one-side estimate

(4) fzf(t,u)du§%k$2—¢(t,|m|) (teQ, zeR)
0



238 Alexander M. Krasnosel’skii, Mark A. Krassnosel’skii

where ®(t,u) (L € £2,u > 0) is some scalar function belonging to a class 98 (u,) . Class
J% (uy) consists of bounded superpositionally measurable (see [2]) functions ® (t, u), which
for u > u, satisfy the following conditions: ¢ (%,u) do not increase in u; P (t,u) are
nonnegative; @ (t,u) are continuous in u; for each function ®(t,u) € F (u,) a subset
Q, C Q(mes Q, > 0) exists such that ®(t,u) >0 fort € Q,, u > u,.

If the condition (3) holds then the superposition operator

(3) Jz = flt,z(1)]

acts from each space L,(p > a) ospace L, (a is the number from (3)). In particular the

operator (J5) acts from space L, tospace (L, )" = Ly, 1 -

The estimate (3) and the operator (1) are called connected if the operator A acts from
(Li,o)" 0 Ly, , being completely continuous. In this case the operator K acts from L, In
L., being completely continuous. Adjoint to the operator X : L, — L, the operator K*

acts from (L,,,)" to L, being completely continuous also.

2. MAIN RESULTS
Consider the integral equation

(6) 2(t) = fﬂ G(t,5) fls, 2(s)1d u(s).

If the estimate (3) holds and the linear operator (1) is connected with 1t then the estimate
(4) with k£ < z and —®P (£, u) = const > 0 implies the existence of at least one solution of
(6). This well-known result can be proved with the help of rather simple constructions. The
ideas of these constructions belong to Hammerstein and Golomb ([3], [4]). The ideas are also
used in this paper being supplemented with the use of a priori estimates of norms of solutions
of new type inequalities.

Theorem 1. Let the estimate (3) hold and the linear operator (1) be connected with this
estimate. Let D (t,u) € I (uy) forall R > 0 and u, > uy satisfy the equality

_ x(8; e)
(7) 1im sup = ()
80 e(neByiflellt Jo @ [t u, + RS e(D)|] dp

Then a number € > 0 exists such that the condition (4), where the coefficient k satisfies the
inequality

(8) kx <1+ ¢,
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implies the existence of at least one solution x(t) € L, of (6).

The condition (7) seems cumbrous on the face of it. But in real situations it becomes
simpler. Let us give an example for a function @ (t,u) = ®P(u) (v > uy) and a one-
dimensional subspace E, . In this case the condition (7) can be rewritten as

x(0;e)

> 70 (oo + RO ax(E)

If x(6;e) satisfies the estimates

c, 87 < x(6;€e) < ¢y é” (1:»0;0565:_6{,),

then (9) 1s equivalent to the equality
f W' d(u)du=0.
Ug

If x(8,;e) = 0 forsome §, > O then (7) holds for any function ® (¢, u) € F2 (u,) .

Note that (7) implies the equalities mes {t : e(t) =0} =0 for e(t) € Ey, || e ]| #0.

The restrictions of Theorem 1 do not guarantee a priori estimate of norms of solutions of
(1).

Theorem 1 1s proved in the next section.

Analogous to the proof of Theorem 1 constructions can be used for proving different sim-
ilar to Theorem 1 statements. For example some finite number of negative eigenvalues of the
operator A is possible (see [5], [6]); systems of nonlinear integral equations can be consid-
ered; the restrictions of Theorem 1 can be weakened by attracting of other topologies (using
Schifer’s ideas [7], developed by Petry, Zabreiko and other authors) and functional spaces
different from LP (see for example [2]).

Let us give one of the possible modifications of Theorem 1 in the complete form.

Theorem 2. Let the kernel G(t,s) and the function f(t,x) be continuous with respect to
the set of variables. Let ®(t,u) € I8 (uy) forall R > 0 and u, > uy satisfy the equality
(7). Then a € > 0 exists such that the condition (4), where the coefficient k satisfies the
inequality (4), implies the existence of at least one continuous solution z(t) of (0).

The estimate (3) is not used in Theorem 2.
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3. PROOF OF THEOREM 1

The important role in the proof 1s played by a special statement on a priori estimates of norms
of solutions of the integral-functional inequalities.

Consider a compact set 9 C L, of functions e(t) : Q — R™. With each function
e(t) C 7 its distribution function (2) is considered.

Let us call the set % and the function @ (¢, u) corresponding to each other if for any
B > 0 such a positive decreasing function a(u) (u > 0) and such a number c= c¢(8) > 0
exist that the inequality

(10) || ht) |P< _,sL O(t,|€e(t) + h(D)[1d g+ B - al]| £e(t) + h(2) ||)

has not solutions h(t) € L, for e(t) €  and |{]| > c.
In other words the set % corresponds to function © (¢, u) if a positive decreasing function
o u) exists such that a priori estimate |£| < ¢ of the first component of all the solutions

{&,h(t)} of (10) for e(t) € & is fulfilled.

Lemma 1. [1]. Let ®(t,u) € 5 (uy) (ug > 0) andforany R > 0

(11) lim sup X(‘S;E)l =0
60 e(tje.?fn o [t= o + 16~ ]e(u)l] du

Then the set & corresponds to the function @ (t,u).

Let us pass now to the direct proof of Theorem 1. Consider in L, the operator equation
(12) r=K'fKz.

Each solution z(t) of (12) determines the solution y(t) = Kz(t) € L, , of (6). There-
fore to prove Theorem 1 it is sufficient to establish the existence of at least one solution of

(12).
Consider the nonlinear functional (Golomb’s functional)

r[n:(m=f Flt,, Kz(t))dp
Q)

where

F(t,1) = fI f(t,2)dz.
0
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This functional is defined and weakly continuous in L, . Consider the functional

o 1
V[m(i)]d=f§—[m,m] —Tlz(t)],

it is lower semicontinuous. If the functional V[z(t)] is positive on some sphere {|| z ||, =

= const} then (as V[0] = 0) some point z, € L, is a point of its local minimum. In the
point z_ the gradient
grad V[iz(t)]=xz— K'f Kx

of the functional V[ z(t)] is equal to O i.e. the point z_ is a solution of the equation (12).
Such a scheme of the type (12) equations analysis was used in several works.
In the proof the projectors P and @ are used accordingly to the subspace E, and to the

orthogonal addition E, (E, @ E; = L,).Let g € [0,1) beavalue —= || K || _p, - The

following relations are evident:

(13) | KPz|= vz || Pz], ||KQz|<qvz|lQz| (z€Ly).
Below we consider the set
(14) F=A{e(t) : e(t) € Ey, |lell=1}.

By Lemma 1 the set (14) corresponds to the function & (¢, u) . Therefore for any g > 0
such a positive decreasing function a(u) (u > 0) and such a number ¢ = ¢(f8) > 0 exist
that for all solutions y(t) = £e(t) + h(t) (e(t) € F) of the inequality

(15) | h(D) [P< —B fﬂ Ot ly(D)1dp + 8- (] v(1) |

the following estimate holds:

(16) Il y(2) [|< e(B).

Below the number
(17) B, = ze7’
is used where ¢, = 5(1 — ¢?), let ¢; = c¢(f,) . Suppose

2
M= —uQ - sup |P(t,u)l,

€ teQ ,u>0

p = -\/2:::%+Mm+ 1.
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Lemma 2. Let the coefficient k in (4) satisfy (8) where

(18) E=min{&:1,21‘-$}.

Then for all x(t) € L, satisfying

(19) p—1<Vz|z|l<p

the functional V[ x(t)) is positive.

The statement of Theorem 1 follows from Lemma 2: in the point z(¢) = 0 the functional
V[z(t)] is equal to O, in the spherical layer (19) it is positive, hence in the ball {\/z || z ||<
< p — 1} it takes its least value at a point z, € L, which is a solution of (12). We are to
prove Lemma 2 for to complete the proof of Theorem 1.

Proof of Lemma 2. The chain of relations

Viz(t)] > % Iz _f {%k]ﬁz(m? _ tIi[t,IK:r(t)H}dp >

€2
25 llz|" —zkl| Kz ||”+ [ @[t [Kz@)|ldp > 5 || Qz |7 +
2 2 Q 2

1 /1

1 2 _L(L, € 2
+ 5 IPelt =5 (34 2) I Kal? + [ @tnlKahan>

1 2 1 » 1 » 19 2
2> 1Qzll"+5 | Pzl =5 || Pz || —5¢" || Q= |

_1e 2 1oa_n2 2 _
Sl Kz P+ [ @t IKa(vldu > 5 (1-¢) [ Qz |
1
5ol Kz|P+ [ @l |Kaldu > e || Qa P -
Z Q
| )
~ 5ol Ks P + [ @l ket
£
implies the inequality
1
(20) Vizh] 2 & || Qz|P —5= || Kz | +./;1‘13[t,|f‘(m(t)|]dg.

In this relations we used the determinations of &€ and g,, the inequality k < ! (14 ¢)
for k and the estimates (13).
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Let VIz(t)] < 0. Then (20) implies the inequality

1 ¢
e || Qz |’ 5= || Kz || +pQ sup |®(t,u)l

A teQ) u>0
therefore
1 1
2 2
e || Qz || EEE”I” +§“*‘31M
and
, 1 y 1
g | Qz |I°< =& || z || +551M-
Thus

2| Qz |P<ll = | +M

i.e. all z(t) for which V[z(?)] < 0 satisfy the estimate
(21) 1 Qz |*<|| Pz ||* +M.

Let V[z($)] <0 and || z ||< ;1,;;_}. Then by (20) the inequality

1 €
e 11Qz IP< 35 1l Ka | = [ @1t lKa(vidy

holds which implies the relation

(22 I KQz P< 3 211Kz = [ @1t Koy

where f is the number (17). But for || z ||< -‘—;-;p the estimate || Kz ||< p holds therefore
(22), by (18), implies

B || KQz |P< a(p) —/ (t,|Kz(t)|1dp

(@)

and

(23) | KQz |P< —ﬁL‘b[t,IKm(t)lldwﬁﬂf(ll Kz ).
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Let us use the denominations: y(t) = Kz(t), e(t) = = - ﬂ%'ﬁ for || Px || #0,
e(t) is an arbitrary element from F for || Pz ||= 0, h(?) = KQu(t), £ =|| Pz ||.
With this denominations the inequalities (10) and (23) are equivalent 1.¢. for all z satisfying

Viz(t)] < 0 and || z ||< 71;;: the estimate || y(t) ||< ¢; (]| Kz ||[< ¢;) holds. But if
| Kz ||< ¢, then || Pz ||>< 0%7'; and (by (20)) || z ||*’< 2c§71; + M. The last relation

means that \/z || z ||< p— 1. So the inequalities V[z(t)] < 0 and || z ||< 71;;;- imply the

estimate || z ||< 71;,0—“ 1.
Both Lemma 2 and Theorem 1 are proved.
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