A REMARK ON BASES IN QUOTIENTS OF ℓ_p WHEN 0 N.J. KALTON

Dedicated to the memory of Professor Gottfried Köthe

In [9] Stiles showed that if $0 , <math>\ell_p$ has an infinite-dimensional closed subspace which contains no complemented copy of ℓ_p ; this contrasts with the well-known result of Pelczynski [5] for $1 \le p < \infty$. The following curious theorem is the main result of this note:

Theorem 1. Let M be an infinite-dimensional closed subspace of ℓ_p where $0 . Suppose <math>\ell_p/M$ has a basis. Then M contains a subspace isomorphic to ℓ_p and complemented in ℓ_p .

Before proving the result we make some remarks. First note that every separable p-Banach space is a quotient of ℓ_p ([6], [8]). The condition that ℓ_p/M has a basis cannot be weakened substantially. Indeed, take any normalized block basic sequence (f_n) in ℓ_p so that $||f_n||_1 \rightarrow 0$; let $M = [f_n]$. Then ℓ_p/M is isomorphic to $\ell_p(Y_n)$ where each Y_n is the quotient of some ℓ_p^m by a subspace of dimension one. However M contains no complemented copy of ℓ_p (see [9]). Thus the space $\ell_p(Y_n)$, which has a finite-dimensional Schauder decomposition (see [1]), has no basis (cf. [10] for a counter-example in the much more difficult Banach space setting).

Proof of Theorem 1. We shall suppose that dim $M = \infty$, ℓ_p/M has a basis and that M contains no complemented copy of ℓ_p ; we then derive a contradiction. It will be convenient to regard ℓ_p as a subspace of its Banach envelope ℓ_1 . If T is a bounded linear operator on ℓ_1 , i.e. $T \in \mathcal{L}(\ell_1)$ then

$$||T||_1 = \sup_{\|x\|_1 \le 1} ||Tx||_1$$

and

$$||T||_p = \sup_{||x||_p \le 1} ||Tx||_p$$
.

Then $\mathcal{L}(\ell_p)$ can be identified as the subalgebra of $\mathcal{L}(\ell_1)$ of all T such that $||T||_p < \infty$. Note that $||T||_1 \le ||T||_p$ for all T. We also let $\mathcal{K}(\ell_1)$ be the subalgebra of compact operators on ℓ_1 and let $\mathcal{L}(\ell_p; M)$ be the subalgebra of $\mathcal{L}(\ell_p)$ of all T such that $T(\ell_p) \subset M$.

By a theorem of Stiles [9], the set $M \cap \{x : ||x||_p \le 1\}$ is relatively compact in ℓ_1 so that $\mathcal{L}(\ell_p; M) \subset \mathcal{K}(\ell_1)$. We further observe two properties of $\mathcal{L}(\ell_p; M)$:

(A1) Suppose (A_n) is a bounded sequence in $\mathcal{L}(\ell_p; M)$ with $||A_n x||_1 \to 0 \ \forall x \in \ell_1$. Then $\lim ||A_n^2||_1 = 0$.

(A2) For each $\varepsilon > 0$ there is a finite-dimensional subspace F_{ε} of M so that if $A \in \mathcal{L}(\ell_p; M)$

$$d_1\left(Ax, F_{\varepsilon}\right) = \inf_{f \in F_{\varepsilon}} ||x - f||_1 \le \varepsilon ||A||_p ||x||_1$$

for $x \in \ell_1$.

To prove (A1) simply note that the set $K = \{A_n x : || x ||_1 \le 1, n \in N\}$ is relatively compact in ℓ_1 and hence $||A_n x||_1 \to 0$ uniformly on K.

For (A2) pick F_{ε} so that if $x \in M$ then $d_1(x, F_{\varepsilon}) \leq \varepsilon ||x||_p$. If $A \in \mathcal{L}(\ell_p; M)$, we have $d_1(Ax, F_{\varepsilon}) \leq \varepsilon ||A||_p ||x||_p$ for $x \in \ell_p$. As $d_1(Ax, F_{\varepsilon})$ is a seminorm on ℓ_p we conclude that $d_1(Ax, F_{\varepsilon}) \leq \varepsilon ||A||_p ||x||_1$ for $x \in \ell_1$.

Since ℓ_p/M has a basis, M is weakly closed in ℓ_p . If M_1 is the closure of M in ℓ_1 then $M=M_1\cap\ell_p$. Let $\pi:\ell_1\to\ell_1/M_1$ be the quotient map. Then ℓ_1/M_1 can be identified with the Banach envelope of ℓ_p/M and then π/ℓ_p is the quotient map onto ℓ_p/M .

Let (b_n) be a normalized basis for ℓ_p/M with biorthogonal functionals (b_n^*) . Let S_n be the partial sum operators i.e. $S_0=0$ and

$$S_n x = \sum_{k=1}^n b_k^*(x) b_k.$$

Let C be a constant such that $C > 2^{1/p}$ and $||S_m - S_n|| \le C$ for all m > n. Then fix $\varepsilon = \frac{1}{48}C^{-4}$ and choose $F = F_{\varepsilon}$ as in (A2).

We now lift S_n to ℓ_p . Pick $a_k \in \ell_p$ so that $||a_k|| < 2$ and $\pi a_k = b_k$. Define $D_n \in \mathcal{L}(\ell_p)$ by $D_n(x) = b_n^*(\pi x) a_n$. Then $||D_n||_p \le 2 ||b_n^*|| \le 2C \ \forall n$.

Now $\pi(D_1 + \ldots + D_n) = S_n \pi$ but the sequence $D_1 + \ldots + D_n$ need not be bounded.

Next we obtain another lifting of S_n . Let e_n be the standard basis of ℓ_p . For each n, k select $u_{n,k} \in \ell_p$ so that $\pi u_{n,k} = \pi e_k - S_n \pi e_k$ and $||u_{n,k}||_p \le 2 ||\pi e_k - S_n \pi e_k||$. Then set

$$R_n x = \sum_{k=1}^{\infty} x_k u_{n,k}.$$

We have

$$||R_n||_p \le \sup_k ||u_{n,k}||_p \le 2C.$$

We also have that $||R_n x||_p \to 0$ for $x \in \ell_p$.

Let Q be any projection onto the finite-dimensional space F with $||Q||_p < \infty$; such a projection exists since ℓ_p has a separating dual. Then $||R_nQ||_p \to 0$ and so there exists N_1 so that if $n \ge N_1$, $||r_n - R_nQ||_p \le 4C$. Set $T_n = I - R_n + R_nQ$. Then:

(T1)
$$||T_n||_p \le 4C^2 \qquad n \ge N_1$$

(T2)
$$\lim_{n\to\infty} ||T_n x - x||_p = 0 \qquad x \in \ell_p$$

$$(T3) T_n x = x x \in F$$

$$\pi T_n = S_n \pi \qquad n \in \mathbb{N} .$$

Note that $T_n - (D_1 + \ldots + D_n) \in \mathcal{L}(\ell_p, M) \subset \mathcal{K}(\ell_1)$ so that $T_n \in \mathcal{K}(\ell_1)$ for each $n \in N$. Unfortunately, the operators T_n are not projections in general. However $T_n - T_n^2 \in \mathcal{L}(\ell_p, M)$ for $n \in N$ and so by (A1) we obtain:

(T5)
$$\lim_{n\to\infty} \| (T_n - T_n^2)^2 \|_1 = 0.$$

Now let $V_n = 3T_n^2 - 2T_n^3$. It is easy to verify:

$$||V_n||_p \le 12C^3 \qquad n \ge N_1$$

$$\lim_{n \to \infty} ||V_n x - x||_p = 0 \qquad x \in \ell_p$$

$$(V3) V_n x = x x \in F$$

$$\pi V_n = S_n \pi \qquad n \in \mathbb{N} .$$

Fix $N_2 \ge N_1$ so that for $n \ge N_2$,

$$||(T_n - T_n^2)^2||_1 < \frac{1}{16}$$

N.J. Kalton

using (T5). For $n \geq N_2$ we can define $P_n \in \mathcal{L}(\ell_1)$ by

$$P_{n} = \frac{1}{2} \left(I - \left(I - 2T_{n} \right) \sum_{m=0}^{\infty} {2m \choose m} \left(T_{n} - T_{n}^{2} \right)^{m} \right)$$

where $\binom{0}{0} = 1$. We do not claim $P_n \in \mathcal{L}(\ell_p)$. However we shall prove:

(P1)
$$\lim_{n \to \infty} || P_n - V_n ||_1 = 0$$

(P2)
$$\lim_{n \to \infty} ||P_n x - x||_1 = 0 \qquad x \in \ell_p$$

$$(P3) P_n^2 = P_n n \ge N_2$$

$$(P4) P_n x = x n \ge N_2, x \in F$$

$$(P5) \dim P_n(\ell_1) < \infty n \ge N_2$$

$$\pi P_n = S_n \pi \qquad n \ge N_2.$$

In (P6) S_n denotes the natural extension of S_n to the Banach envelope ℓ_1/M_1 of ℓ_p/M . To prove (P1) simply note that

$$P_n - V_n = \frac{1}{2} (2T_n - I) \sum_{m=2}^{\infty} (T_n - T_n^2)^m$$

and use (T5). Then (P2) follows from (P1) and (V2).

For (P3) we need only show that

$$(I-2T_n)\left(\sum_{m=0}^{\infty} {2m \choose m} (T_n-T_n^2)^m\right)^2=I.$$

But this follows from the formal manipulation of power series since

$$(1-4z)^{1/2} = \sum_{m=0}^{\infty} {2m \choose m} z^m$$

for $|z| < \frac{1}{4}$.

(P4) is trivial from (T3). Since T_n and V_n are compact on ℓ_1 , so is P_n and hence by (P3) it is finite-rank. Thus (P5) is proven. Finally, for (P6) note that $\pi(T_n - T_n^2) = 0$.

From (P2) we deduce that $\lim_{n\to\infty} ||P_n x - x||_1 = 0$ for every $x \in \ell_1$. Also from (P6) M_1 is invariant for each P_n . Thus if $G_n = P_n(M_1)$ then dim $G_n \to \infty$. We derive our contradiction by showing, on the contrary, that the sequence dim G_n is bounded.

Pick $N_3 \ge N_2$ so that if $n \ge N_3$, we have $||P_n - V_n|| \le \frac{1}{4}$. For $n \ge N_3$ we have $V_n - V_{n-1} - D_n \in \mathcal{L}(\ell_p, M)$ and

$$||V_n - V_{n-1} - D_n||_p \le 12C^4$$
.

Thus, for $x \in \ell_1$,

$$d_1 (V_n x - V_{n-1} x - D_n x, F) \le 12 C^4 \varepsilon ||x||_1 = \frac{1}{4} ||x||_1.$$

If $x \in M_1$ then $D_n x = 0$ and so

$$d_1(P_n x - P_{n-1} x, F) \le \frac{3}{4} ||x||_1.$$

Now (P4) implies $F \subset G_{n-1}$ and so

$$d_1(P_n x, G_{n-1}) \le \frac{3}{4} ||x||_1$$

for all $x \in M_1$. In particular if $x \in G_n$ and $||x||_1 = 1$ then $d_1(x, G_{n-1}) \le \frac{3}{4}$. This implies by a classical result of [3] (see [7], p. 269) that dim $G_n \le \dim G_{n-1}$ (for $n \ge N_3$). This gives us the desired contradiction.

We now give a simple application. Lindenstrauss and Rosenthal [4] showed that if M_1 and M_2 are two infinite-dimensional closed subspaces of ℓ_1 such that the quotients ℓ_1/M_1 and ℓ_1/M_2 are isomorphic then there is an automorphism $\tau:\ell_1\to\ell_1$ so that $\tau(M_1)=M_2$. The corresponding result for p<1 is false, but is true under the additional hypotheses that M_1 and M_2 contain copies of ℓ_p complemented in the whole space (see [2]). Thus we have:

Theorem 2. Let M_1 and M_2 be two closed subspaces of ℓ_p , where $0 . Suppose the quotients <math>\ell_p/M_1$ and ℓ_p/M_2 are isomorphic and have a basis. Then there is an automorphism τ of ℓ_p with $\tau(M_1) = M_2$.

N.J. Kalton

REFERENCES

 P.G. CASAZZA, Finite-dimensional decompositions in Banach spaces, Contemporary Math., 52 (1986), pp. 1-32.

- [2] N.J. Kalton, Locally complemented subspaces and L_p-spaces for 0
- [3] M.G. Krein, M.A. Krasnoselskii, D.P. Milman, On defect numbers of linear operators in a Banach space and on some geometric problems, Sbornik, Trud. Inst. Matem. Akad. Nauk. Ukr. SSr, II (1948), pp. 97-112.
- [4] J. LINDENSTRAUSS, H.P. ROSENTHAL, Automorphisms in c_0 , ℓ_1 , and m, Israel J. Math., 7 (1969), pp. 227-239.
- [5] A. PELCZYNSKI, Projections in certain Banach spaces, Studia Math., 19 (1960), pp. 209-228.
- [6] J.H. Shapiro, Examples of proper closed weakly dense subspaces in some F-spaces of analytic functions, Israel J. Math., 7 (1969), pp. 369-380.
- [7] I. SINGER, Best approximation in normed linear spaces by elements of linear subspaces, Springer-Verlag, Berlin-Heidelberg-New York, 1970.
- [8] W.J. STILES, On properties of subspaces of ℓ_p , 0 , Trans. Amer. Math. Soc., 149 (1970), pp. 405-415.
- [9] W.J. STILES, Some properties of ℓ_p , 0 , Studia Math., 42 (1972), pp. 109-119.
- [10] S.J. SZAREK, A Banach space without a basis which has the bounded approximation property, Acta Math., 159 (1987), pp. 81-99.