On left univocal factorizations of semigroups

Maria Maddalena Miccoli

Dipartimento di Matematica e Fisica "E. De Giorgi"
Università del Salento
73100 Lecce, Italy
maddalena.miccoli@unisalento.it

Received: 7.4.2014; accepted: 31.5.2014.

Abstract

We should like to construct all the semigroups that have a left univocal factorization with factors to pair (A, B) of prescribed semigroups such their intersection consists of only one element, that is right identity of A and left identity of B.

Keywords: Factorizable semigroup, Left univocal factorization.
MSC 2000 classification: 20 M 10

1 Introduction

Following Tolo [10], a semigroup S is said to be factorizable if it can be written as the set product $A B$ of proper subsemigroups A and B. In this case, we call the pair (A, B) a factorization of S, with factors A and B. As in Catino [1], a factorization (A, B) of a semigroup S is called left univocal if $a b=a^{\prime} b^{\prime}$ implies $a=a^{\prime}$, for all $a, a^{\prime} \in A$ and $b, b^{\prime} \in B$. There are several papers on this subject, for istance see $[1,2,4,5,6,7,8,9]$.

The main aim of the paper is to construct a semigroup S from a given semigroups A and B in such a way that (A, B) is a left univocal factorization of S where $A \cap B$ consists of only one element, that is right identity of A and left identity of B. The construction obtained generalizes those of Köhler [Theorem 2.1, [4]], of Krishnan [Theorem 3, [5]] on monoids and of Catino [Theorem 5, [1]] on univocal factorizations.

The notations and terminology of Howie [3] will be used, with a few minor exceptions.

2 Results and proofs

A well-known result about left univocal factorizations of semigroups is the following lemma (Lemma 1 of [1]).
http://siba-ese.unisalento.it/ © 2014 Università del Salento

Lemma 1. Let (A, B) a left univocal factorization of a semigroup S. Then $A \cap B$ is a left zero semigroup formed by right identities of A.

Then we can obtain an easy but useful result.
Proposition 1. Let (A, B) a left univocal factorization of a semigroup S. If E is a non-empty subset of $A \cap B$, then $\bar{B}:=E B$ is a subsemigroup of S and (A, \bar{B}) is a left univocal factorization of S with $A \cap \bar{B}=E$.

Proof. Let E be is a non-empty subset of $A \cap B$. Put $\bar{B}:=E B$, it easy to show that (A, \bar{B}) is a left univocal factorization of S and $E \subseteq A \cap \bar{B}$. Moreover, let z be an element of $A \cap \bar{B}$ and let $e \in A$ and $b \in B$ be such that $z=e b$. Then $z b=e b b$ and thus $z=e$, since (A, B) is a left univocal factorization of S. Therefore $A \cap \bar{B}=E$.

QED
Corollary 1. Let (A, B) a left univocal factorization of a semigroup S and e an element of $A \cap B$. Then $(A, e B)$ is a left univocal factorization of S and $A \cap e B=\{e\}$. In this case e is a right identity of A and a left identity of $e B$.
Note that we may consider left univocal factorizations (A, B) with $A \cap B=\{e\}$ and e non left identity of B (see [1], Example of p. 168). But, of course, also in this case we may consider a left univocal factorization (A, \bar{B}) in which the only element of the intersection of two factors is a left identity of \bar{B}.

We should now like to construct all semigroups that have a left univocal factorization with factors isomorphic to a pair (A, B) of prescribed semigroups where $A \cap B$ consists of only one element, that is a right identity of A and a left identity of B.

Let (A, B) a left univocal factorization of a semigroup S and let e be a right identity element of A and a left identity of B such that $A \cap B=\{e\}$.

Firstly, for each $a \in A$ define a relation θ_{a} on B by

$$
b \theta_{a} b^{\prime}: \Longleftrightarrow a b=a b^{\prime}
$$

for all elements b and b^{\prime} of B. Then θ_{a} is an equivalence relation on B, even a right congruence. Moreover, if $\left.\right|_{l}$ denotes left divisibility on A, i.e. $\left.a\right|_{l} a^{\prime}$ if there exists $c \in A$ such that $c a=a^{\prime}$, then we have

$$
\begin{gather*}
\forall a,\left.a^{\prime} \in A \quad a\right|_{l} a^{\prime} \Longrightarrow \theta_{a} \subseteq \theta_{a^{\prime}} \tag{1}\\
\theta_{e}=i d_{B} \tag{2}
\end{gather*}
$$

For all $a \in A$ and $b \in B$, let $b \triangleright a$ be the element of A such that $b a=(b \triangleright a) b^{\prime}$, for some $b^{\prime} \in B$. Then, by the Axiom of Choise, there exists a mapping \triangleleft : $A \times B \longrightarrow B$ such that $b a=(b \triangleright a)((a, b) \triangleleft)$. If we denote $(a, b) \triangleleft$ by $b \triangleleft a$, then

$$
b a=(b \triangleright a)(b \triangleleft a) .
$$

Without loss of generality we may assume that

$$
\begin{equation*}
e \triangleleft a=e \quad \text { and } \quad b \triangleleft e=b e \tag{3}
\end{equation*}
$$

for all $a \in A$ and $b \in B$. Moreover, we have

$$
\begin{equation*}
e \triangleright a=e a \quad \text { and } \quad b \triangleright e=e \tag{4}
\end{equation*}
$$

Now, let $a_{1}, a_{2} \in A$ and let $b_{1}, b_{2} \in B$. Then

$$
\begin{aligned}
\left(\left(b_{1} b_{2}\right) \triangleright a_{1}\right)\left(\left(b_{1} b_{2}\right) \triangleleft a_{1}\right) & =b_{1} b_{2} a_{1}=b_{1}\left(b_{2} \triangleright a_{1}\right)\left(b_{2} \triangleleft a_{1}\right) \\
& =\left(b_{1} \triangleright\left(b_{2} \triangleright a_{1}\right)\right)\left(b_{1} \triangleleft\left(b_{2} \triangleright a_{1}\right)\right)\left(b_{2} \triangleleft a_{1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(b_{1} \triangleright\left(a_{1} a_{2}\right)\right)\left(b_{1} \triangleleft\left(a_{1} a_{2}\right)\right) & =b_{1} a_{1} a_{2}=\left(b_{1} \triangleright a_{1}\right)\left(b_{1} \triangleleft a_{1}\right) a_{2} \\
& \left.=\left(b_{1} \triangleright a_{1}\right)\left(\left(b_{1} \triangleleft a_{1}\right) \triangleright a_{2}\right)\left(\left(b_{1} \triangleleft a_{1}\right) \triangleleft a_{2}\right)\right)
\end{aligned}
$$

It follows that

$$
\begin{gather*}
\left(b_{1} b_{2}\right) \triangleright a_{1}=b_{1} \triangleright\left(b_{2} \triangleright a_{1}\right) \tag{5}\\
b_{1} \triangleright\left(a_{1} a_{2}\right)=\left(b_{1} \triangleright a_{1}\right)\left(\left(b_{1} \triangleleft a_{1}\right) \triangleright a_{2}\right) \tag{6}\\
\left(b_{1} \triangleleft\left(a_{1} a_{2}\right)\right) \theta_{b_{1} \triangleright\left(a_{1} a_{2}\right)}\left(\left(b_{1} \triangleleft a_{1}\right) \triangleleft a_{2}\right) \tag{7}\\
\left(\left(b_{1} b_{2}\right) \triangleleft a_{1}\right) \theta_{\left(b_{1} b_{2}\right) \triangleright a_{1}}\left(\left(b_{1} \triangleleft\left(b_{2} \triangleright a_{1}\right)\right)\left(b_{2} \triangleleft a_{1}\right)\right. \tag{8}
\end{gather*}
$$

for all $a_{1}, a_{2} \in A$ and $b_{1}, b_{2} \in B$.
Finally, let $a_{1}, a_{2} \in A$ and $b_{1}, b_{1}^{\prime}, b_{2}, b_{2}^{\prime} \in B$ such that $a_{1} b_{1}=a_{1} b_{1}^{\prime}$ and $a_{2} b_{2}=$ $a_{2} b_{2}^{\prime}$. Then

$$
\begin{aligned}
a_{1}\left(b_{1} \triangleright a_{2}\right)\left(b_{1} \triangleleft a_{2}\right) b_{2} & =a_{1} b_{1} a_{2} b_{2}=a_{1} b_{1}^{\prime} a_{2} b_{2}^{\prime} \\
& =a_{1}\left(b_{1}^{\prime} \triangleright a_{2}\right)\left(b_{1}^{\prime} \triangleleft a_{2}\right) b_{2}^{\prime}
\end{aligned}
$$

Thus, we have that if $b_{1} \theta_{a_{1}} b_{1}^{\prime}$ and $b_{2} \theta_{a_{2}} b_{2}^{\prime}$, then

$$
\begin{gather*}
a_{1}\left(b_{1} \triangleright a_{2}\right)=a_{1}\left(b_{1}^{\prime} \triangleright a_{2}\right) \tag{9}\\
\left(\left(b_{1} \triangleleft a_{2}\right) b_{2}\right) \theta_{a_{1}\left(b_{1} \triangleright a_{2}\right)}\left(\left(b_{1}^{\prime} \triangleleft a_{2}\right) b_{2}^{\prime}\right) \tag{10}
\end{gather*}
$$

Now, let A be a semigroup with right identity e_{1} and let B be a semigroup with left identity e_{2} such that $A \cap B=\{e\}$, and $e:=e_{1}=e_{2}$. Denote by $\mathcal{E}(B)$ the lattice of equivalence relation on B, let $\theta: A \longrightarrow \mathcal{E}(B), \triangleright: A \times B \longrightarrow B$ and $\triangleleft: B \times A \longrightarrow B$. If $a \in A$ and $b \in B$, then denote $(a, b) \triangleright$ by $a \triangleright b,(b, a) \triangleleft$ by $b \triangleleft a$ and $a \theta$ by θ_{a}. The quintet $(A, B, \theta, \triangleright, \triangleleft)$ is called admissible if conditions (1)-(10) hold.

So far we have seen that any left univocal fattorization (A, B) of a semigroup S as above gives an admissible quintet. In the following we will show that these data suffice to reconstruct S from A and B.

Theorem 1. Given a admissible quintet $(A, B, \theta, \triangleright, \triangleleft)$ there is a semigroup S with a left univocal factorization (\bar{A}, \bar{B}) such that \bar{A} and \bar{B} are isomorphic to A and B, respectively. Moreover, $\bar{A} \cap \bar{B}$ has only element \bar{e} that is a right identity of \bar{A} and a left identity of \bar{B}.

Proof. Define on $A \times B$ the following equivalence relation

$$
\left(a_{1}, b_{1}\right) \sim\left(a_{2}, b_{2}\right): \Longleftrightarrow a_{1}=a_{2} \quad \text { and } \quad b_{1} \theta_{a_{1}} b_{2}
$$

for all $a_{1}, a_{2} \in A, b_{1}, b_{2} \in B$ and denote by $\langle a, b\rangle$ the equivalence class of (a, b), for all $a \in A$ and $b \in B$.
We define on $S:=(A \times B) / \sim$ the following multiplication

$$
\left\langle a_{1}, b_{1}\right\rangle\left\langle a_{2}, b_{2}\right\rangle:=\left\langle a_{1}\left(b_{1} \triangleright a_{2}\right),\left(b_{1} \triangleleft a_{2}\right) b_{2}\right\rangle
$$

for all $a_{1}, a_{2} \in A, b_{1}, b_{2} \in B$. By conditions (9) and (10) this in fact is welldefined.

To prove associativity, let $a, a_{1}, a_{2} \in A, b, b_{1}, b_{2} \in B$. Then

$$
\begin{aligned}
\left(\langle a, b\rangle\left\langle a_{1}, b_{1}\right\rangle\right)\left\langle a_{2}, b_{2}\right\rangle & =\left\langle a\left(b \triangleright a_{1}\right)(b \triangleleft a 1) b_{1}\left\langle a_{2}, b_{2}\right\rangle\right. \\
& =\left\langle a\left(b \triangleright a_{1}\right)\left(\left(\left(b \triangleleft a_{1}\right) b_{1}\right) \triangleright a_{2}\right),\left(\left(\left(b \triangleleft a_{1}\right) b_{1}\right) \triangleright a_{2}\right) b_{2}\right\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
\langle a, b\rangle\left(\left\langle a_{1}, b_{1}\right\rangle\left\langle a_{2}, b_{2}\right\rangle\right) & =\left\langle a_{2}, b_{2}\right\rangle\left\langle a\left(b_{1} \triangleright a_{2}\right)\left(b_{1} \triangleleft a_{2}\right) b_{2}\right. \\
& =\left\langle a\left(b \triangleright\left(a_{1}\left(b_{1} \triangleright a_{2}\right)\right)\right),\left(b \triangleleft\left(a_{1}\left(b_{1} \triangleright a_{2}\right)\right)\right)\left(b_{1} \triangleleft a_{2}\right) b_{2}\right\rangle
\end{aligned}
$$

By (5) and (6) we have

$$
a\left(b \triangleright a_{1}\right)\left(\left(\left(b \triangleleft a_{1}\right) b_{1}\right) \triangleright a_{2}\right)=a\left(b \triangleright\left(a_{1}\left(b_{1} \triangleright a_{2}\right)\right)\right) .
$$

We remark that by (10), applied to $a_{2}:=e$, and by (3),(4) we have that $\theta_{a_{1}}$ is a right congruence, for all $a_{1} \in A$.
By this and by (8),(1) we have

$$
\left(\left(\left(b \triangleleft a_{1}\right) b_{1}\right) \triangleright a_{2}\right) b_{2} \quad \theta_{a\left(b \triangleright a_{1}\right)\left(\left(\left(b \triangleleft a_{1}\right) b_{1}\right) \triangleright a_{2}\right)}\left(\left(\left(b \triangleleft a_{1}\right) \triangleleft\left(b_{1} \triangleright a_{2}\right)\right)\left(b_{1} \triangleleft a_{2}\right)\right) b_{2}
$$

Similary, by (7) and (1) we have

$$
\left(b \triangleleft\left(a_{1}\left(b_{1} \triangleright a_{2}\right)\right)\right)\left(b_{1} \triangleleft a_{2}\right) b_{2} \quad \theta_{a\left(b \triangleright\left(a_{1}\left(b_{1} \triangleright a_{2}\right)\right)\right)}\left(\left(\left(b \triangleleft a_{1}\right) \triangleleft\left(b_{1} \triangleright a_{2}\right)\right)\left(b_{1} \triangleleft a_{2}\right)\right) b_{2} .
$$

This finally shows

$$
\left(b \triangleleft\left(a_{1}\left(b_{1} \triangleright a_{2}\right)\right)\right)\left(b_{1} \triangleleft a_{2}\right) b_{2} \quad \theta_{a\left(b \triangleright\left(a_{1}\left(b_{1} \triangleright a_{2}\right)\right)\right)}\left(b \triangleleft\left(a_{1}\left(b_{1} \triangleright a_{2}\right)\right)\right)\left(b_{1} \triangleleft a_{2}\right) b_{2} .
$$

Thus the above multiplication is associative.
It is easily seen by $(2),(3)$ and (4) that the mappings

$$
\alpha: A \longrightarrow S, a \longmapsto\langle a, e\rangle \quad \text { and } \quad \beta: B \longrightarrow S, b \longmapsto\langle e, b\rangle
$$

are monomorphisms. Put $\bar{A}=A \alpha, \bar{B}=B \beta$ and $\bar{e}=\langle e, e\rangle$, using (3) and (4) it easy to shows that (\bar{A}, \bar{B}) is a left univocal factorization of S such that \bar{A} and \bar{B} are isomorphic to A and B, respectively, $\bar{A} \cap \bar{B}=\{\bar{e}\}$ and \bar{e} is a right identity of \bar{A} and a left identity of \bar{B}.

Finally, following Köhler [4], a left univocal factorization (A, B) of a semigroup S is a quasi-decomposition of S if $B a \subseteq a B$, for all $a \in A$. If $A \cap B=\{e\}$ with e be a right identity element of A and a left identity of B such that $A \cap B=\{e\}$, then e is an identity of A. We note the e is not necessarily an identity of B. In this regard, consider $S:=\{a, b, c, d, e\}$ with the following Cayley moltiplication table

	a	b	c	d	e
a	b	b	a	a	a
b	b	b	b	b	b
c	a	b	c	d	e
d	a	b	c	d	e
e	a	b	e	e	e

Then S is a semigroup that admits the left univocal factorization (A, B) with $A:=\{a, b, c\}$ and $B:=\{c, d, e\}$ in which c is a left identity of B but not a right identity.

References

[1] F. Catino: Factorizable semigroups, Semigroup Forum 36 (1987), no. 2, 167-174.
[2] S.Y. Chen, S.C. Hsieh: Factorizable inverse semigroups, Semigroup Forum 8 (1974), 283-297.
[3] J.M. Howie: An Introduction to Semigroup Theory, Academic Press, London, 1976.
[4] P. Köhler: Quasi-decompositions of semigroups, Houston J. Math., 5 (1979), no. 4, 525 - 542.
[5] V.S. Krishnan: Quasi resolved semigroups and quintets, Semigroup Forum 17 (1979), no. 3, 267-277.
[6] T.T. Peng, X.J. Guo, K.P. Shum: Factorizable rpp monoids, International Mathematical Forum 2 (2007), 143-153.
[7] T.T. Peng, X.J. Guo: Factorizable quasi-adequate semigroups, Chin. Quart. J. of Math. 26(1) (2011), 93-94.
[8] S. Qui, M. Hartman, X.J. Guo, K.P. Shum: Almost factorizable IC quasi-adequat semigroups, Comm. Algebra 39 (2011), no.5, 1796-1808.
[9] J. SCHMIDT: Quasi-decompositions, exact sequences and triple sums of semigroups, I. General theory, II Applications, Colloquia Math. Soc. János Bolyai, Contributions to Universal Algebra, Szeged, 17 (1975), 365-397 (I), 399-428 (II).
[10] K. Tolo: Factorizable semigroups, Pacific J. Math. 31 (1969), 523-535.

