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Abstract. For a finite lattice L, we define and study the intersection graph of ideals, denoted
by G(L). We study the interplay of lattice-theoretic properties of L with graph-theoretic
properties of G(L).
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Introduction

1 Introduction

The investigation of graphs related to various algebraic structures is a very
large and growing area of research. Several classes of graphs associated with
algebraic structures have been actively investigated. For example, Cayley graphs
have been studied in [4], [14], [15], [16], [18], intersection graphs have been
investigated in [9], [10], [19], zero-divisor graphs have been studied in [5], [6],
[7], [11], [13] and cozero-divisor graphs have been investigated in [1], [2], [3].

In this paper, we define and study the intersection graph of ideals of a fi-
nite lattice. First we recall some definitions and notations on graphs. We use
the standard terminology of graphs contained in [8]. In a graph G, the dis-
tance between two distinct vertices a and b, denoted by d(a, b), is the length of
the shortest path connecting a and b, if such a path exists; otherwise, we set
d(a, b) := ∞. The diameter of a graph G is diam(G) = sup{d(a, b) : a and b are
distinct vertices of G}. The girth of G, denoted by g(G), is the length of the
shortest cycle in G, if G contains a cycle; otherwise, we set g(G) := ∞. Also,
for two distinct vertices a and b in G, the notation a − b means that a and b
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are adjacent. The set of vertices of G is denoted by V (G). A graph G is said
to be connected if there exists a path between any two distinct vertices, and
it is complete if it is connected with diameter one. We use Kn to denote the
complete graph with n vertices. Also, we say that G is totally disconnected if no
two vertices of G are adjacent. A clique of a graph is a complete subgraph of it
and the number of vertices in a largest clique of G is called the clique number of
G and is denoted by ω(G). An independent set of G is a subset of the vertices of
G such that no two vertices in the subset form an edge of G. The independence
number of G, denoted by α(G), is the cardinality of the largest independent
set. The degree of a vertex x, denoted by deg(x), is the number of the edges
in the graph incident with x. We denote the maximum degree of vertices in G
by ∆(G). A refinement of a graph H is a graph G such that the vertex-sets of
G and H are the same and every edge in H is an edge in G. Also a graph on
n vertices such that n− 1 of the vertices have degree one, and are all adjacent
only to the remaining vertex a, is called a star graph with center a. Let G1

and G2 be subgraphs of G. We say that G1 and G2 are disjoint if they have no
vertex and no edge in common. The union of two disjoint graphs G1 and G2,
which is denoted by G1 + G2, is a graph with V (G1 + G2) = V (G1) ∪ V (G2)
and E(G1 +G2) = E(G1) ∪ E(G2).

2 Intersection graph of a lattice

In this section, firstly we recall some definitions and notations on lattices.
Then we introduce the intersection graph of ideals of a lattice.

A lattice is a set L with two binary operations ∧ and ∨ on L satisfying the
following conditions: for all a, b, c ∈ L,

1. a ∧ a = a, a ∨ a = a,

2. a ∧ b = b ∧ a, a ∨ b = b ∨ a,

3. (a ∧ b) ∧ c = a ∧ (b ∧ c), a ∨ (b ∨ c) = (a ∨ b) ∨ c, and

4. a ∨ (a ∧ b) = a ∧ (a ∨ b) = a.

The operations ∧ and ∨ on L are called meet and joint, respectively.

In the next theorem, we recall an equivalent definition for a lattice with
respect to a partial order relation. This definition will be used in the sequel of
the paper.

Theorem 2.1. [17, Theorem 2.1] Let L be a lattice. One can define an order
6 on L as follows:
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For any a, b ∈ L, we set a 6 b if and only if a ∧ b = a. Then (L,6) is an
ordered set in which every pair of elements has a greatest lower bound (g.l.b.)
and a least upper bound (l.u.b.). Conversely, let P be an ordered set such that,
for every pair a, b ∈ P , g.l.b.(a, b), l.u.b.(a, b) ∈ P . For each a and b in P , we
define a ∧ b := g.l.b.(a, b) and a ∨ b := l.u.b.(a, b). Then (P,∧,∨) is a lattice.

Note that in every lattice a ∧ b = a implies that a ∨ b = b.
The concept of intersection graph of a lattice was first introduced by Zelinka

[19]. In his work, all proper sublattices of a lattice L are the vertices of this graph
and two distinct vertices are adjacent whenever they have non-empty intersec-
tion. He defined three interesting types of intersection graph of a lattice, which
he called algebraic intersection graph, set-theoretical intersection graph and in-
terval intersection graph. To this end, he considered three types of sublattices
of L as follows. An algebraic sublattice of a lattice L is a non-empty subset of
L which is closed with respect to the operations of join and meet.

A set-theoretical sublattice of L is a non-empty subset of L which is a lattice
with respect to the ordering induced by the ordering of L. It can be easily seen
that every algebraic sublattice of a lattice L is a set-theoretical sublattice, too.
The converse is not true (cf. [19, Figure 1]). The third type of sublattices are
the intervals < a, b >= {x ∈ L | a 6 x 6 b}, where a, b ∈ L with a 6 b. The
interval < a, b > is evidently an algebraic sublattice of L.

Here we define the fourth type of intersection graph of a lattice, namely the
intersection graph of ideals of a lattice. Let 0 denote an element of L such that
0 ∧ a = 0, for all a ∈ L. The intersection graph of ideals of a lattice L with
0, denoted by G(L), is a graph with all non-trivial ideals of L as the vertices,
where two distinct vertices I and J are adjacent if and only if I ∩ J 6= {0}.
Clearly G(L) is an induced subgraph of the algebraic intersection graph.

The lattice L is said to be bounded if there are elements 0 and 1 in L such that

0 ∧ a = 0 and a ∨ 1 = 1

for all a ∈ L. Clearly every finite lattice is bounded. In the rest of the paper,
we assume that L = (L,∧,∨) is a finite lattice.

Definition 2.2. [12, Definition 39] A non-empty subset I of a lattice L is
called an ideal of L if and only if the following conditions are satisfied:

(i) For a, b ∈ I, a ∨ b ∈ I.

(ii) For a ∈ I and c ∈ L, a ∧ c ∈ I.

An ideal I of L is proper if I 6= L.

Theorem 2.3. [12, Theorem 59] In an ideal I of L, the following conditions
are satisfied:
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(i) If a ∈ I and b 6 a, then b ∈ I.

(ii) If a ∨ b ∈ I, then a, b ∈ I.

An ideal of L which consists of all x 6 a, for some a ∈ L, is called a principal
ideal generated by a and it is denoted by [a]ℓ (see [12, Definition 41]).

Also, for a ∈ L, we denote the set {x ∈ L | a 6 x} by [a]u.

Theorem 2.4. [12, Theorem 68] In a finite lattice every ideal is principal.

Lemma 2.5. Suppose that a, b ∈ L. Then we have [a]ℓ ∩ [b]ℓ = [a ∧ b]ℓ.

Proof. Clearly x ∈ [a]ℓ ∩ [b]ℓ if and only if x 6 a and x 6 b. This is equivalent
to saying that x 6 a ∧ b, and this means that x ∈ [a ∧ b]ℓ. QED

Note that in a lattice L, the union of two ideals is not an ideal in general.
For example consider two elements a, b ∈ L such that a /∈ [b]ℓ and b /∈ [a]ℓ. Now,
we have a, b ∈ [a]ℓ ∪ [b]ℓ, but a ∨ b /∈ [a]ℓ ∪ [b]ℓ. Thus [a]ℓ ∪ [b]ℓ is not an ideal of
L.

By Theorem 2.4, there is a one-to-one correspondence between the set of all
non-trivial ideals of L and the elements in L\{0, 1}. Now let I and J be distinct
non-trivial ideals of L. By Theorem 2.4, there exist elements a and b in L such
that I = [a]ℓ and J = [b]ℓ. Also, by Lemma 2.5, we have I ∩ J 6= {0} if and
only if a ∧ b 6= 0. Therefore the intersection graph of ideals of the lattice L is
isomorphic to the graph with vertex-set L \ {0, 1} in which two distinct vertices
a and b are adjacent if and only if a ∧ b 6= 0, and in the sequel of this note, we
deal with this graph as the intersection graph of the lattice L.

Definition 2.6. 1. In a poset (P,6), we say that a covers b or b is cov-
ered by a, in notation b ≺ a, if and only if b < a and there is no element
p in P such that b < p < a.

2. An element a in L is called an atom if 0 ≺ a. Similarly, a is called a co-
atom if a ≺ 1. We denote the set of all atoms in a lattice L by A(L), and
co-atoms by C(L).

3 Basic properties of G(L)

We begin this section with the following lemma which is needed in the rest
of the paper.

Lemma 3.1. The vertices x and y are adjacent in G(L) if and only if there
exists an atom a ∈ A(L) such that x, y ∈ [a]u.
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Proof. First suppose that x is adjacent to y. So x ∧ y 6= 0. Hence there exists
an atom a ∈ A(L) such that a 6 x ∧ y. Thus x, y ∈ [a]u.

The converse statement is clear. QED

The following proposition follows from Lemma 3.1.

Proposition 3.2. Let A(L) = {a1, . . . , ak} and L be a lattice which is the
union of the sets [a1]

u, . . . , [ak]
u such that [ai]

u ∩ [aj ]
u = {1}, for i 6= j. Then

G(L) = Kn1 + · · ·+Knk
,

where ni = |[ai]u| − 1.

Corollary 3.3. The intersection graph G(L) is complete if and only if
|A(L)| = 1.

In the next lemma, we describe the neighborhood of a vertex x in G(L).
Recall that, for a vertex x, the neighborhood of x, denoted by N(x), is the set
of vertices adjacent to x.

Lemma 3.4. Let x be a vertex in G(L). Then we have that

N(x) =
⋃

a∈A(L),a6x

[a]u \ {x, 1}.

In particular, if b is an atom of L, then we have that N(b) = [b]u \ {b, 1}.

Proof. Suppose that y ∈ N(x). By Lemma 3.1, x, y ∈ [a]u, for some a ∈ A(L).
Thus we have that

N(x) ⊆
⋃

a∈A(L),a6x

[a]u \ {x, 1}.

Also one can easily check that the converse inclusion holds, too. QED

In the following theorem, we study the increasing property of the degrees of
vertices in G(L).

Theorem 3.5. Let x and y be vertices in G(L). If x 6 y, then deg(x) 6

deg(y).

Proof. By Lemma 3.4, we have that

N(x) =
⋃

a∈A(L),a6x

[a]u \ {x, 1}

and
N(y) =

⋃

a∈A(L),a6y

[a]u \ {y, 1}.

Since x 6 y, a 6 x implies that a 6 y, for all a ∈ A(L). So N(x) ⊆ N(y), and
hence deg(x) 6 deg(y). QED
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The following corollary is an immediate consequence of Theorem 3.5.

Corollary 3.6. In the intersection graph G(L) we have the following equal-
ity:

∆(G(L)) = max{deg(m) | m ∈ C(L)}.
Proposition 3.7. Assume that |C(L)| = 1. Then G(L) is a refinement of a

star graph.

Proof. Let C(L) = {m}. Clearly, for all atoms a in L, we have that a 6 m. Now
the result follows by Lemma 3.4. QED

Proposition 3.8. The intersection graph G(L) is totally disconnected if
and only if L = A(L) ∪ {0, 1}. Moreover, the vertex x is an isolated vertex in
G(L) if and only if x is an atom with |[x]u| = 2.

Proof. First suppose that G(L) is totally disconnected. If there exists a vertex
x of G(L) that is not an atom and such that, for some atom a, x ∈ [a]u \ {1},
then the vertices a and x are adjacent, which is impossible. So we have L =
A(L) ∪ {0, 1}. The converse statement is clear.

The second statement follows from Lemma 3.4. QED

In the next proposition, we determine the girth of the intersection graph
G(L).

Proposition 3.9. If there exists an atom a in L such that |[a]u| > 4, then
g(G(L)) = 3. Otherwise, g(G(L)) = ∞.

Proof. Suppose that there exists a ∈ L with |[a]u| > 4. Then we have the
cycle a− x− y − a, where x and y are distinct elements in [a]u \ {a, 1}. Hence
g(G(L)) = 3.

Now assume that |[b]u| 6 3, for all atoms b in L. Suppose for a contradiction
that there exists a cycle x1 − x2 − · · · − xn − x1 in G(L), where n ≥ 3. If
x1, x2 /∈ A(L), then there exists an atom a ∈ A(L) such that {x1, x2, a, 1} ⊆ [a]u,
which is impossible. Hence we have x1 ∈ A(L) or x2 ∈ A(L). Without loss of
generality, we may assume that x1 ∈ A(L). Since x2, xn ∈ N(x1), we have
x2, xn ∈ [x1]

u. Therefore |[x1]u| ≥ 4, which is a contradiction. Thus in this
situation G(L) doesn’t contain any cycle, and so g(G(L)) = ∞. QED

In the following theorem, we study the clique number of the intersection
graph of a lattice L.

Theorem 3.10. In the intersection graph G(L), we have the following in-
equality:

ω(G(L)) > max{|[a]u| − 1 | a ∈ A(L)}.
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Proof. In view of Lemma 3.4, we have N(a) = [a]u \ {1, a}. Also, by Lemma
3.1, the induced subgraph on the vertex-set [a]u \ {1} is complete. So the result
holds. QED

In the next result, we determine the independence number of G(L).

Theorem 3.11. In the intersection graph G(L), we have that α(G(L)) =
|A(L)|.

Proof. Clearly an induced subgraph of G(L) with vertex-set A(L) is totally dis-
connected, and so A(L) is an independent set in G(L). Hence α(G(L)) > |A(L)|.
Now, if there exists an independent set S with more than |A(L)| elements, then
there are elements x, y ∈ S such that x, y ∈ [a]u, for some atom a in L. In
view of Lemma 3.1, x is adjacent to y, which is impossible. Therefore we have
α(G(L)) = |A(L)|. QED

In the following proposition, we show that the intersection graph of a lattice
is well-behaved under a lattice isomorphism. We recall that for two lattices L
and S, the one-to-one correspondence f : L −→ S is a lattice isomorphism if,
for any a, b ∈ L, f(a ∨ b) = f(a) ∨ f(b) and f(a ∧ b) = f(a) ∧ f(b).

Proposition 3.12. Assume that f : L −→ S is a lattice isomorphism.
Then there exists a graph isomorphism between the intersection graphs G(L)
and G(S).

Proof. Define the map f : V (G(L)) −→ V (G(S)) such that f(x) = f(x), for
each x ∈ V (G(L)). Suppose that the vertices x and y are adjacent in G(L). So
x ∧ y 6= 0. By the lattice isomorphism definition, we have that x ∧ y 6= 0 if and
only if f(x)∧ f(y) 6= 0. Hence f(x) is adjacent to f(y) in G(S). Thus the result
holds. QED

In the following example, we state that the converse of Proposition 3.12 is
not true, in general. However, by Theorem 3.11, if the intersection graphs of the
lattices L and S are isomorphic, then |A(L)| = |A(S)|.

Example 3.13. Suppose that S and L are the lattices given in Figure 1.

Then, it is easy to see that G(L) and G(S) are isomorphic to K3, but the
lattices L and S are not isomorphic.
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