REMARKS ON COMPACTNESS OF OPERATORS DEFINED ON L_p HANS JARCHOW (*)

Dedicated to the memory of Professor Gottfried Köthe

This note presents several observations on Banach spaces X such that, for fixed $1 \le p \le \infty$, every operator from an L_p -space into X which is weakly compact is already compact. The interest in such objects is due to the fact that a Banach space X has the above property for $2 \le p < \infty$ if and only if, for some and then all $2 \le q < \infty$, every strictly q-integral operator with values in X is already q-integral. Recall that a Banach space X has the Radon-Nikodym property iff every strictly 1-integral X-valued operator is nuclear. We shall, however, not discuss any Radon-Nikodym aspects here; these can be found in C. Cardassi's thesis [3].

We shall use standard terminology and notation from Banach space theory. Given $1 \le p \le \infty$, let us denote by

 \mathcal{K}_{p}

the class of all Banach spaces X such that for every $L_p(\mu)$ -space Y every weakly compact operator from Y into X is compact. We shall use \mathscr{W} and \mathscr{K} to denote the ideals of all weakly compact operators, resp. compact operators between Banach spaces.

The use of \mathscr{W} in our context is of course only of significance when p=1 or $p=\infty$. In the latter case, we could work with C(K)-spaces rather than with $L_{\infty}(\mu)$ -spaces. Also, rather than to work with arbitrary $L_p(\mu)$ -spaces, it suffices to test our condition with operators defined on $L_p[0,1]$ (Lebesgue measure): consideration of sequences is all what is involved and this brings us down to separable subspaces anyway. Let us agree to write

 L_{p}

instead of $L_p[0,1]$.

It is easy to verify that a Banach space X belongs to \mathcal{K}_p if and only if every (separable) subspace of X belongs to \mathcal{K}_p . Simple examples show, however, that the property $*X \in \mathcal{K}_p$ is, in general, not preserved under the formation of quotients.

Our goal is to investigate relations between the classes K_p for various values of p. Our main result can be represented by a diagram.

If
$$1 < r < p < 2 < q < \infty$$
, then

^(*) Supported by the Swiss National Science Foundation

$$\mathcal{K}_{r} \neq \mathcal{K}_{p}$$

$$\downarrow^{\zeta} \qquad \qquad \downarrow^{\zeta} \qquad \qquad \downarrow$$

It remains open if $\mathcal{K}_{\infty} \subset \mathcal{K}_2$ is a proper inclusion.

We are going to discuss the various inclusions in the sequel. But first of all let us show that at least the class K_1 is well-understood. In fact, we have:

(1). A Banach space X belongs to K_1 if and only if it has the Schur property.

Proof. Clearly, if X has the Schur property, then $X \in \mathcal{K}_1$. Suppose conversely that X belongs to \mathcal{K}_1 . To say that X has the Schur property is equivalent to saying that $\mathscr{W}(Y,X) = \mathscr{K}(Y,X)$ holds for every separable Banach space Y. It suffices to take $Y = \ell_1$, and this is taken care of by the hypothesis.

We start by investigating the interval [1, 2]:

(2). If $1 \le r , then <math>K_r \subset K_p$, and this is a proper inclusion.

Proof. It follows from (1) that K_1 is contained in all K_p . Let us show that K_r is contained in K_p whenever $1 < r < p \le 2$.

We argue contrapositively and suppose that some $X \in \mathcal{K}_r$ does not belong to \mathcal{K}_p . Accordingly, there exists a non-compact operator $u:L_p \to X$, and so some normalized weak null sequence (f_n) in L_p must satisfy $||uf_n|| > \varepsilon$ for all integers n and some $\varepsilon > 0$. A well known result of C. Bessaga and A. Pełczyński [1] asserts that (f_n) admits a subsequence which is equivalent to a block basis sequence of the Haar system. So we may assume from the beginning that (f_n) itself is an unconditional basic sequence.

But now $e_n \mapsto f_n$ defines a bounded linear operator $v: \ell_p \to L_p$, where (e_n) denotes the standard basis of ℓ_p ; compare e.g. with H.P. Rosenthal [9]. If $i: \ell_r \to \ell_p$ is the formal identity, then $uvi: \ell_r \to X$ fails to be compact: contradiction.

It remains to show that $\mathcal{K}_p \setminus \mathcal{K}_r$ is non-empty when $1 \leq r . By H.P. Rosenthal's generalization of Pitti's Theorem (cf. [9]), we have <math>\ell_s \in \mathcal{K}_p$ whenever r < s < p: but $\ell_s \notin \mathcal{K}_r$ since, for example, the formal identity $\ell_r \to \ell_s$ fails to be compact.

The interval $[2, \infty[$ is settled by similar methods:

(3). If
$$2 < q < \infty$$
, then $K_q = K_2$.

Proof. That K_q is contained in K_2 is an easy consequence of the well known fact that ℓ_2 is isomorphic to a complemented subspace of L_q .

As for the converse, suppose again that there exists a Banach space X which belongs to \mathcal{K}_2 but which does not belong to \mathcal{K}_q . Let again $u:L_q\to X$ be a non-compact operator, and let (f_n) be a normalized weak null sequence in L_q such that $||uf_n||>\varepsilon$ for all $n\in\mathbb{N}$ and some $\varepsilon>0$. A theorem of M.I. Kadec and A. Pełczyński [7] tells us that (f_n) admits of a subsequence which is equivalent to the standard basis of ℓ_s , where s=q or s=2. Let $v:\ell_s\to L_q$ be the corresponding isomorphic embedding. By construction, uv cannot be compact, and so our assumption $X\in\mathcal{K}_2$ rules out the case s=2. But s=q is impossible as well, for otherwise we would run into an analogous situation by composing uv with the formal identity $\ell_2\to\ell_q$.

Note the following immediate consequence of (3):

- (4). No Banach space in K_2 can contain a copy of c_0 , or of any ℓ_q , for $2 \le q < \infty$.
 - We complete our program by showing:
- (5). K_1 is properly contained in K_{∞} , and K_{∞} is contained in K_2 .

Proof. $\mathcal{K}_1 \subset \mathcal{K}_{\infty}$ follows easily from (1), and $\mathcal{K}_{\infty} \subset \mathcal{K}_2$ follows immediately from the fact that ℓ_2 is isomorphic to a quotient of L_{∞} . Simple examples of Banach spaces in $\mathcal{K}_{\infty} \setminus \mathcal{K}_1$ are given by the sequence spaces ℓ_p , $1 \le p < 2$; for further examples see (7) below.

We do not have, however, a complete answer to the following question:

Problem 1. Does there exist a Banach space belonging to \mathcal{K}_2 but not to \mathcal{K}_{∞} ?

Another problem concerns the relations between classes \mathcal{K}_{∞} and \mathcal{K}_p for $1 . It is clear that <math>\mathcal{K}_{\infty}$ cannot be contained in any of the classes \mathcal{K}_p , $1 : just consider once more the sequence spaces <math>\ell_p$. On the other hand, the following is open:

Problem 2. Is K_p contained in K_{∞} when 1 ?

Because of the following observation, counter examples to both problems can only exist among Banach spaces having «worst possible cotype» (see G. Pisier [8] for this notion).

(6). Suppose that X does not contain the ℓ_{∞}^n 's uniformly. If X belongs to K_p for some $p \leq 2$, then it belongs to K_{∞} .

Proof. Our hypothesis means that X has finite cotype, hence every operator $u:L_\infty\to X$ factors through $L_q(\mu)$ for some (probability) measure μ and some $2\leq q<\infty$ which depends only on X. Because of $\mathcal{K}_p\subseteq\mathcal{K}_q$, u must be compact.

228 Hans Jarchow

As we have already seen there is, for each $1 , a Banach space in <math>\mathcal{K}_p$ which does not belong to \mathcal{K}_1 . Our next result improves this observation:

(7). There are reflexive as well as non-reflexive Banach spaces in $\bigcap_{1 which do not belong to <math>\mathcal{K}_1$.

Proof. Let T be the (dual of) Tsirelson's space; we refer to P.G. Casazza and T.J. Shura [4] for the construction and an in-depth analysis of this space and its relatives. It was shown by E.W. Straeuli [10] that every Banach-Saks operator with range T is compact; see J. Diestel and C.J. Seifert [5] for details on Banach-Saks operators. In particular, if $1 , then every operator from <math>L_p$ into T is compact, i.e. $T \in \mathcal{K}_p$. But every weakly compact operator from L_∞ into T is also Banach-Saks (cf. [5]), so that $T \in \mathcal{K}_\infty$, too. Reflexivity prevents T from being a member of \mathcal{K}_1 .

As was shown by J. Bourgain and G. Pisier [2], we may consider T as a subspace of a separable \mathscr{L}_{∞} -space, say T_{∞} , such that T_{∞}/T has the Schur property (the Radon-Nikodym property is available as well). By a straightforward three space argument we find that T_{∞} -valued Banach-Saks operators are again compact. Reasoning as before, we see that T_{∞} belongs to all classes \mathcal{K}_p , $1 , whereas <math>T_{\infty} \notin \mathcal{K}_1$ follows from $T \subset T_{\infty}$.

Weakly compact operators on L_{∞} -spaces can even be approximated uniformly by L_2 -factorable operators, provided one is willing to accept an appropriate enlargement of the given operator's range space; this implies of course that these operators in Banach-Saks, by the results proved in [5]. The above result remains true if the L_{∞} -spaces are replaced by C^* -algebras, cf. [6]. Thus T and T_{∞} actually have the property that all (weakly compact) operators defined on a C^* -algebra and taking values in either of these spaces, must be compact.

We conclude by posing a related question:

Problem 2. Does there exist a Banach space having the Banach-Saks property which belongs to all K_p , for 1 ?

REFERENCES

- C. Bessaga, A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math., 17 (1958), pp. 151-164.
- [3] C.S. CARDASSI, Strictly p-integral and p-nuclear operators, Universidade de São Paulo, 1986.
- [4] P.G. CASAZZA, T.J. SHURA, Tsirelson's space, Lecture Notes in Mathematics, 1363 (1989).
- [5] J. Diestel, C.J. Seifert, The Banach-Saks ideal I. Operators acting on $C(\Omega)$, Commentat. Math., tom. spec. hon. L. Orlicz (1979), pp. 109-118, pp. 343-344.
- [6] H. JARCHOW, On weakly compact operators on C*-algebras, Math. Ann., 273 (1986), pp. 341-343.
- [7] M.I. KADEC, A. PEŁCZYŃSKI, Bases, lacunary sequences and complemented subspaces in L_p, Studia Math., 21 (1962), pp. 161-176.
- [8] G. PISIER, Factorization of linear operators and geometry of Banach spaces, Amer. Math. Soc., CBMS Regional. Conf. Series in Math., 60 (1986).
- [9] H.P. ROSENTHAL, On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from L^p(μ) to L^r(ν), Journ. Funct. Anal., 4 (1969), pp. 176-214.
- [10] E.W. STRAEULI, On extension and lifting of operators, an approach within the theory of operator ideals, University of Zürich, 1985; see also Archiv der Math., 41 (1986), pp. 49-54.

Received October 16, 1990
Hans Jarchow
Mathematisches Institut
Universität Zürich
Rämistrasse 74
CH - 8001 Zürich
Switzerland