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1 Introduction

Throughout the paper, we use the customary notation (a;¢q)p := 1,

n—1

(a; Q)n = H(l - aqk)7 n Z 17
k=0

(@; @)oo == lim (a;q)pn,  [q| <1.
n—oo

The well-known Rogers-Ramanujan functions [19, 20, 23], are defined, for
gl <1, by

o0 2
" 1

Glg) =Y = (1)

(@D (66%)o0(0*6°) 0

n=0
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and
n(n+1) 1

© (
H(q) :=Zq(q, - . (2)
n=0

i On (6%6°)00 (05 0%) 0

In his Lost Notebook [21], Ramanujan recorded forty beautiful modular
relations involving the Rogers-Ramanujan functions without proof. The forty
identities were first brought before the mathematical world by B. J. Birch [10].
Many of these identities have been established by L. J. Rogers [25], G. N. Wat-
son [29], D. Bressoud [12, 13], A. J. F. Biagioli [9]. Recently, B. C. Berndt et
al. [8] offered proofs of 35 of the 40 identities. Most likely these proofs might
have given by Ramanujan himself. A number of mathematicians tried to find
new identities for the Rogers-Ramanujan functions similar to those which have
been found by Ramanujan [21], including Berndt and H. Yesilyurt [7], Yesilyurt
[31], S. Robins [22] and C. Gugg [15].

In view of the Ramanujan’s forty identities, many of the Rogers-Ramanujan
type functions were studied by many mathematicians. For example, S.-S. Huang
[18] and S.-L. Chen and Huang [14] have derived a list of new modular relations
for the Gollnitz-Gordon functions, N. D. Baruah, J. Bora, and N. Saikia [5]
offered new proofs of many of these identities, and E. X. W. Xia and X. M.
Yao [30] offered new proofs of some modular relations established by Huang [18]
and Chen and Huang [14]. They also established some new relations which in-
volve only Gollnitz-Gordon functions. H. Hahn [16, 17] has established several
modular relations for the septic analogues of the Rogers-Ramanujan functions as
well as relations that are connected with the Rogers-Ramanujan and Gollnitz-
Gordon functions. Similarly Baruah and Bora [4] have obtained modular re-
lations for the nonic analogues of the Rogers-Ramanujan functions. C. Adiga,
K. R. Vasuki and N. Bhaskar [1] established several modular relations for the
cubic functions. Vasuki, G. Sharat and K. R. Rajanna [28] studied two dif-
ferent cubic functions. Baruah and Bora [3] considered two functions of order
twelve which are analogues of the Rogers-Ramanujan functions. Vasuki and P.
S. Guruprasad [27] considered the Rogers-Ramanujan type functions of order
twelve and established modular relations involving them. Adiga, Vasuki and B.
R. Srivatsa Kumar [2] established modular relations involving two functions of
Rogers-Ramanujan type. Almost all of these functions which have been studied
so far are due to Rogers [24] and L. J. Slater [26]. Motivated by these, in Section
3 of this paper, we establish certain modular relations for the functions defined
by

(@) nr1 (G )n (¢ @)oo

J(q) == i (_Q?q)nqn(n+1)/2 (—q; Q)w(qs?qlo)oo(q7;qlo)oo<q10§q10)oo (3)
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= (G a2 (—430)00(0:47°) 0 (0% 000 (015 010) o
K= 7; (@ ¢®)n+1(a5 Q) (@ @) @

I

which are analogous to the Rogers-Ramanujan functions. The identities (3) and
(4) are due to Rogers [24]. In Section 4, we give partition theoretic interpreta-
tions of some of our modular relations.

2 Some Preliminary Results

Ramanujan’s general theta function is defined by

fla,b) =Y a2y gh) < 1, (5)

n=—oo

The well-known Jacobi triple product identity [6, p. 35, Entry 19] in Ra-
manujan’s notation is

f(a,b) = (—a;ab)oo(—b; ab) oo (ab; ab) . (6)

The function f(a,b) satisfies the following basic properties [6]:

fla,b) = f(b,a), (7)
f(1,a) = 2f(a,a®), (8)
f(=1,a) =0, (9)
and, if n is an integer,
Fla,b) = @™ +D2p(=1/2 £ (g (ab)™ b(ab)™™). (10)

The three most interesting special cases of (5) are [6, p. 36, Entry 22]

o) =Fflaa)= Y. 0" = (0% 0% ). (11)
g By NS a2 _ (€0 )
¥(q) == f(g,4%) nzzoq T (12)
and -
f(=q) = f(=a,=¢>) = Y (=1)"¢"®" D% = (g;¢)o. (13)

n=—oo
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Also, after Ramanujan, define

X(@) = (-4 ¢*)oo-

For convenience, we define
fo = F(=4") = (¢";4") s,

for a positive integer n.

In order to prove our modular relations involving J(q) and K(q), we first
establish some lemmas.

Lemma 2.1. We have

fé) 2 3 2

= —— :—2 :72 :72
() = 27 o) =55 flo=55 xla) =25
St N A
o Q)—fQ, Y(—q) = B and  x( q)_f2,

This lemma is a consequence of (6) and Entry 24 of [6, p. 39]. We shall use
Lemma 2.1 many times in this paper.
It is easy to verify that

1 fi
(=& —q") f(=a,—4¢°)
5 ALl ~ fafi
G(q)H(q) = P d J(@K(q) = Tt (16)

Lemma 2.2. Let m = [s/(s —r)], l=m(s—r)—r, k=—m(s—7)+s and
h =mr —m(m—1)(s—r)/2, 0 <r < s. Here [z] denote the largest integer
less than or equal to z. Then,

(i) fla".¢") =qa"f(d,qd"),
(it) f(=q¢ " —¢*) = (=1)"q " f(=¢", —q").

Proof. Using (6), we have
F@0") == 0" oo(=0% " oo (@367 oo
~{ar e
(14 g DY (] g gy L }

X (7q5;q8—7")oo(q8—7";q8—7‘)oo‘
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Since m = [s/(s—r)|=1+[r/(s—7)] >7r/(s—r)and m —1 = [r/(s —71)] <
r/(s —r), we have —r +m(s —r) > 0 and —r + (m — 1)(s — r) < 0. It is also
clear that —r +i(s —r) <0, Vi=0,1,...,m — 1. Therefore, we can write

Flg,q°) =g~ T HEm) s sk (ne 1) (sr) p(gr=(m=1)(s=r) g=rm(s=r)
:q—(mr—%m(m—l)(s—r»f(qu(sfr)Jrs’ qm(sfr)fr)
=q " f(d',q").
This completes the proof of (i). The proof of (ii) follows similarly. QED

Lemma 2.3. We have

0(d"®) — o(d®) = 24" F(¢*,4") + 24" f(a. 4", (17)

32¢f°(¢% ¢")+32¢* f*(q.¢°) =

(SOQ(Q) _ ¢<q5)) {¢'(a) = 40° (@)% (@°) + 110" (@)}, (18)

©(q°)
fl=a,—a"f(=a*,—¢*) = f(—a) f(—°), (19)
Fa@. ) F(@.d") = x(@) f(=°) F(—¢*). (20)

For the proof of the Lemma 2.3 see [6, Entries 9(vii) and 10(ii, vii), Chapter
19).
Lemma 2.4. [6, Entry 25(i) and (ii), p. 40]. We have

0(q) +o(—q) = 20(q"), (21)
0(q) —p(—q) = 4qp(q?). (22)

The following identity follows immediately from (21) and (22).
o(q") + 2q1(¢%) = @(q). (23)

Also the following lemma is an easy consequence of (22).

Lemma 2.5. We have

o(—q")p(") + o(a)e(—¢") =20(¢")e(q") = 8¢“ TP (® ) (¢®).  (24)

The function f(a,b) satisfies a beautiful addition formula, which we need in
proving some identities. For each positive integer k, let

U, 1= gF D) /2pk(k=1)/2 and V1= b=/ 2kt 1)/2,
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Then
k—1

Fah) = 1010 = 3 U
n=0

U, U,

For the proof of (25) see [6, p. 48, Entry 31]. The following two identities
follow from (25) by setting k = 2, a = ¢ and ¢® and b = ¢” and ¢7, respectively:

fla,d®) = f(@*d¢*®) +af(@® d*), (26)
f(@d") = £ )+ P ¢%). (27)

Lemma 2.6. [6, Entry 29, p. 45]. If ab = cd, then
f(aa b)f(C, d) + f(_av _b)f(_Q _d) = 2f(ac, bd)f((ld, bC), (28)

(Z, acd2) . (29)
8)

f
The following two identities follow immediately from (28) and (29), the first
one by adding (28) and (29), and the second by setting ¢ = —a and d = —b in
(28).

fla,b)f(e,d) — f(—a,=b)f(—c,—d) = 2af (i,ach)

f(a,b)f(c,d) = f(ac,bd) f(ad,bc) + af(b/c,ac’d) f(b/d, acd®), (30)
fla,b) f(=a,—=b) = f(—a®, —b*)p(—ab). (31)

By induction, one can easily obtain the following interesting identities.

Lemma 2.7. For any integers m > 1 and r > 1, we have

r—1 n
: =)
G(¢"™ ) = G(q) — T (32)
TEO It f(—wh g™, —wim T gtm™)
and .
. r— fm—l(_qu")
H(¢™ )= H(q) — I JZ TR (33)
};[o 1" f(—wh, g™, —wmg3m™)
where w,, = /™,

We use a theorem of R. Blecksmith, J. Brillhart, and I. Gerst [11], which
provides a representation for a product of two theta functions as a sum of m
products of pairs of theta functions, under certain conditions. This theorem
generalizes formulas of H. Schréter which can be found in [6].

Define, for € € {0,1} and |ab| < 1,

[e.9]

fe(a’ b) — Z (—1)5n(ab)”2/2(a/b)”/2.

n=—oo
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Theorem 2.8. (Blecksmith, Brillhart, and Gerst [11]). Let a,b,c, and d
denote positive numbers with |ab|, |cd| < 1. Suppose that there exist positive
integers «, 8, and m such that

(ab)? = (cd)(m—aB),
Let €1,€2 € {0,1}, and define d1, 02 € {0,1} by
01 =€ —aes (mod 2) and d9 = Peg + pes (mod 2),

respectively, where p = m —af3. Then, if R denotes any complete residue system
modulo m,

fer (a’ b)f€2 (C, d) _ Z(_1)e2rcr(r+1)/2dr(r—1)/2
reR

a(cd)a(a+172r)/2 b(cd)a(a+1+2r)/2
X fs

o ’ do

(b/a)B/Q(cd)p(mH*?T)/? (a/b)B/Q(Cd)p(m+l+2r)/2
X f52 > , o7 .

To prove some of our results we need the following Schréter’s formulas. We
assume that p and v are integers such that pu > v > 0.

Lemma 2.9. [6, p. 68, (36.3)]. We have

1

FP@)e(@" ™) + o(=¢")p(=d" )}

pn—1
2 2_2 —4m)(p?—v? vm —4dvm
- Zq2um f(q(2u+4m)(u ),q(2u 4m)(p ))f(q2u+4 L2y - (35)
m=0
Lemma 2.10. [6, p. 68, (36.6)]. We have

SAR@ o)+ o~ )p(— )} + 2P0 ()

pn—1
_ Z q2/,Lm2f(q(2,u+4m)(,u2—y2)’ q(2,u—4m)(,u2—u2))f(q21/m+,u/2’q—2l/m+,u/2)‘ (36)
m=0

Lemma 2.11. [6, p. 72, (36.14)]. Let 1 be an even positive integer, and
suppose that w is an odd positive integer such that (u,w) = 1, and 2 —w? > 0,
then

%{w(q%_wz)w(Q) +o(—? ) p(—q)} + 22 @D A (g2 (g2)

pn—1
_ Z q4m2f(q(2,u—w2)(2u+4m)’ q(2u—w2)(2u—4m))f(qp/Q—me, qu/2+2wm)' (37)
m=0
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Yesilyurt [31, Theorem 3.1] gave a generalization of Rogers’s identity, which
has been used to prove some of the Ramanujan’s forty identities for the Rogers-
Ramanujan functions, as well as new identities for Rogers-Ramanujan functions.
To prove some of our results, we use Corollary 3.2 found in [31].

Following Yesilyurt [31], we define

f(a,b) if k=0 (mod 2),

fr(a,b) = {f(_% —b) if k=1 (mod 2).

Let m be an integer and «, 5,p and A be positive integers such that
am? + B = pA.

Let § and e be integers. Further let [ and t be real and z and y be nonzero
complex numbers. Recall that the general theta functions f, fi are defined by
(5) and (38). With the parameters defined this way, we set

R(E;, 67l7t7 «, B,m’]% )‘7'T)y)

p—1
— Z (_1)Ekykq{)\n2+pal2+2omml}/4f(s (xq(1+l)pa+omm7 wflq(lfl)pafomm)

n:2:k0+t
X fepyma(@"yPgPl IR, gy PP, (39)
Lemma 2.12. [31, Corollary 3.2]. We have
R(&‘, 55 lv t) «, ﬁ7 m,p, )‘a x, 3/) = R(67 g, tv l? 17 OZ/B, anm, )‘apaa Y, 'T)
Lemma 2.13. If m = 5r £ 1, then
R(0,1,0,0,a, 8,m, 5, A, 1,1)
=o(=¢")p((—=1)"¢"%) + 2(=1)" ¢ B p(—g™)p((—1)™¢°)
% LT I(=1)"1%) + (—1)" DB K () K (-1)" )}, (40)
and if m = 5r £ 2, then
R(0,1,0,0,a, 8,m,5,\,1,1)
—o(=¢"*)p((—1)"¢"%) + 2(=1)" gD p(—¢*)p((—1)"¢")
x {K () T((=1)"g7) + (~1)" gt DB () K (1)) }
(41)
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Proof. Using (39), we have

R(0,1,0,0,a,8,m,5,\, 1,1) qu g, —ghememk)
x fm(qw“ﬁ’“, g7k, (42)

So+2ak(5rt1)

Now, assume that m = 5r & 1. Setting n = —rk, a = —q and

b= —g°>20kGrED in (10), we find that

_ 2(_
f(_q5a+2ak(5r:|:1) _q5a 2ak(5r:t1)) _ (_1)rkqark ( 57’:F2)f(_q5a:|:20¢k7 _q5a:F20¢k)'

i

Since f(a,b) is symmetric in a and b, we have

f(_ani2ak7 _q5a$2ak) _ f(_q5oz+2ak? _q5o¢72ak).

Since A = (25ar? 4 10ar + a + 3) /5, we can write (42) in the form

4

R(O 1,0,0, B,m 5, )\,171 :Z Tk kQ (a+p) /5f( 5a+2ak7_q5a72ak)
k=0
% f ( 5,3+2ﬁk BB—QBk)' (43)

On employing Lemma 2.2 in (43) and after some simplifications, we obtain (40).
The identity (41) can be proved in a similar way with
m = 5r + 2. QED

3 Main Results

In this section, we present some of modular relations involving J(q) and
K (q). In most of these identities the functions J(¢q) and K(q) occur in combi-
nations

J(q")J(q%) + qg(HS)/BK(qT)K(qS), where r + s = 0(mod 5), (44)

J(q")K(q®) — qg(T_s)/5K(qT)J(qs), where r — s = 0(mod 5), (45)
or when one or both of ¢" and ¢° are replaced by —¢" and —¢*, respectively in
either (44) or (45).

Theorem 3.1. We have f I
. 20
(i) K(@)J(=q) + K(—=q)J(q) = 4f :
2
f4f20
f2 fl()
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Proof. To prove (i), we set a = —¢q, b= —¢°, ¢ =¢> and d = ¢ in (28), to get
=0, =) (% a") + (e, F(=*,—4") = 2f (=", —¢") F(—*, —¢").

Now, dividing the above identity by ¢(—q)¢(q), and employing (15) and (19)
and then using Lemma 2.1, we obtain (i).
Setting a = —q, b= —¢°, ¢ =¢> and d = ¢” in (2.25), we get

f=a. -V (. d") — fla. ) F(—a*, —d") = —2qf (=%, —¢"*) f(—*. —¢").

Dividing the above identity by ¢(—q)¢(q) and employing (15), (16) and Lemma
2.1, we get (ii). This completes the proof of the theorem. QED

Theorem 3.2. We have

1 = 23 fis f20

21
Proof. Recall the following identity which is due to Ramanujan and proved by
Rogers [25] and Berndt et al. [8, Entry 3.5, p.8]:

J(@)J(—q") + K (q) K (—q (46)

G(q")H(q) — ¢°G(q)H(¢"°) = x(¢*). (47)
Identity (47) can be written in the form
G(¢")H(g)  x(¢*) L P (48)

G(9)H(¢'%)  G(q)H(¢'°)

Putting r = 4 and m = 2 in (32) and (33), and then multiplying the resulting
identities by H(q) and G(q), respectively, we get

52")

G(¢")H(q) = Hf 7o (49)
52"
G(g)H(g'®) = H [ 7 3;). (50)

Dividing (49) by (50), we find

G(@')H(q) _ f(a®.¢*)f(a".a°)f(a*.a"*) f(a"®, ¢*")
G(@H(¢)  fla.q*)f(a* ¢ f(q*,a"0) f(d® a3

Now, we show that

f@a®)f(a*d%) _ I(=q)
fl@.a)f(@%¢®)  K(—q)
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By (6), we have

f(d®¢*)f(q*, %
f(g:a") (% ¢®)
(=0 6°) oo (=% 4°) 0 (4%; 4°) oo (4" ') o0 (= 4% 4"*) 0 (¢"%5 4" ) 0
(=45 @)oo (=% @°) 00 (€% 4°) 00 (=% 419) 00 (—6%; 1) 00 (0105 ¢19) o
(40" (—0% ") oo (=% 1) 0o (0% 0" o (—¢°; ')

)oo (=% 019) 00 (=% ¢1%) 0 (=% ¢1%) o0 (=05 ¢10) o

8, %' 50 (—4'% ¢')

4" )oo
9 10) o (—q1%; ¢19) o

") o0 (=% ¢) oo

7% ¢"%) o0 (—q 10)
455 0'9) o0 (=075 419) 00 (—¢%; ¢19) oo (
7 )oo(—q

—-q
—-q

Using (52), we can write (51) in the form

G(¢")H(g)  J(—9)J(—q")

C@H (™)~ K(-a)K (") 9)
From (48) and (53), we see that
2 _ 4
HeI (=) ~ K ok (-t = MRy
We show that ,
THEED 8 gm) (55)
Using (2), (15), (6) and Lemma 2.1, we see that
X*(9)H(q)K (—q)
H(q")
~ fio (0% 4*) 00 (0" )00 (=05 07*) 00 (0”5 ) o

T o (60900 (=45 09)00 (6725 629) 00 (075 019) 0 (035 419) 00 (635 42°) 00 (0% 410) 00 (—¢%; ¢10) oo

~ fiox(=¢") _f5s _
- fox(=q) A Gl Q).

Applying (55) and (16) in (54) and then using Lemma 2.1, we obtain (46).
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Theorem 3.3. We have

2 r4 5 £2 r£5
T (-4 + PR (-0 K(~¢") = 5 {1 - JM} . (56)

f22f32f82f122{ e ffo } (57)
201208 \SEfiff  Fofisfilé )’

K(-q)J(—¢°%) + I (—) K (—¢°) =
J2fi 813 { 8 fof& } (58)
2021510 \f3fifaft,  f2fanfaftn )

Proof. By using (15) and Lemma 2.1, we see that (56) is equivalent to

L (el@)pla) - ola®)e(a™) . (59)

(@ d) (@2 a®)+d fa,d") f(d*, ¢*°) = %

Setting ey = e =0, a=b=¢q, c=d=4¢* a=1, B=4and m =5in
Theorem 2.8 and using Lemma 2.2, we obtain

e(q)e(q") =e(q )@(q2°)+q4f( 3)f(q12,q28)
+q" (a7, M) F g, q36)+q36f( ) gt g™
+ ' F N a2, 6%)

=0(q°)p(q”°) +2qf(q a)f(a"%a®) +2¢" f(q,4°) f(d*, ¢*°),

which is same as (59). This completes the proof of (56). Proofs of (57) and (58)
are similar to that of (56). QED

Theorem 3.4. We have

K@) + K = 0[BT g
2qf5f% f3 fi00 \ fRf212, ’
J(®)J(—¢°) — *K(¢°) K (—¢°)
_ B3 <fzf§5 _1) <1_ fff§f§o> o8 F201 100 61
“12275 \ 72 Fs0 2 2) T Bk (61)

K%(q)J°(q®) + ¢* () K°(¢%)

S22 118130 {f%“féféo_l} {1_ 4f1f4 10 Hffff %8} 6
T 32 BT\ i opirs RS ) ©2)
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Proof. We proceed to prove (60). We apply (17) with replacing ¢ by ¢°, we

obtain
25)

p(q) — o(g
£@,¢®) + @ f(¢°,q*) = (2q
Now, setting a = ¢° and ¢*® and b = ¢* and ¢, respectively, in (31) and
substituting the resulting identities in the above equation, we deduce

F(=", =) F (=, ")+ F(—q"®, —¢®) (=", —¢™°)

5 _ 45 15 35, %(0) — ¢(¢*)
= f(=¢°, =g F(=4", =) - (63
I ) P (@)
Change ¢ to —¢® in (20), employ it in (63) and then use (15) and Lemma 2.1

to get (60).
Use (17) twice with replacing q by ¢° and —¢°, and then multiplying the resulting
equations, we obtain

F(=d", =) (0, ¢*) = (=, —d*) F(@®, ¢*)
+ ¢ {f (¢, —¢®) f (¢, q45) — £(@®,¢®) f(=", —¢")}
== 207 (60) = £(™) (9(=0) = (=) . (64)

Divide both sides of (64) by ©(—q°)p(q”), then employ Theorem 3.1(ii) in the
resulting equation, and then use Lemma 2.1, to obtain (61).
Employing (31) in (18), we obtain

PPl=a,-) P (=® ="+ @ (>, —a") P (—a* —¢"®)
=) P (= -4 (Pl s
B 32qp°(—q10) <<p(q5) ela ))
{* (@) — 40> (@) (¢°) + 119" (¢°) } . (65)

Now, employ (15) and (20) in (65), and use Lemma 2.1, to get (62). This com-
pletes the proof of the theorem. QED

We prove the following two theorems using ideas similar to those of Watson
[29]. In all proofs, one expresses the left sides of the identities in terms of theta
functions by using (15). After clearing fractions, we see that the right side can
be expressed as a product of two theta functions, say with summations indices
m and n. One then tries to find a change of indices of the form

am+6n=5M+a and ~ym-+dn=>5N +b,

or
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am+ fn=10M +a and ~ym+ dn = 10N + b,

so that the product on the right side decomposes into the requisite sum of two
products of theta functions on the left side.

Theorem 3.5. We have

K¢ + I @K () — 22 {fgff’?0 il b o)

221212  fiofoo  faf2f%
fafs { f2 135 }

2022 \F2fs  frofu )’ (67)
fofa { 313 f120f125} (68)
291213 \f3f2fi2 feofso )

Proof. Using (15) and Lemma 2.1, we can write (66) in the form
F(=¢,=a") F(=4"%, —4"*)+¢* F(=¢*, —a") F(=d°, —¢*")
1
= 52 1P — o (=)@} (69)

J(@)J(¢") + *K(q)K(q") =

J(@*)J (@) + K (¢*)K(¢*)

Now, we shall start with the product ¢(q®)p(—¢?), which can be written as

[e.o]

(@ )p(—a*) = (" ) (= =g = D] (~1)g

m,n=—00
In this representation, we make the change of indices by setting
3Im—2n=5M+4+a and m+n=5N+b,
where a and b have values selected from the set {0, £1,42}. Then
m=M+2N+(a+2b)/5 and n=-M+3N+(3b—a)/5.
It follows that values of a and b are associated as in the following table:

a 0 +1 +2
b 0 +2 71

When a assumes the values —2, —1, 0, 1, 2 in succession, it is easy to see that
the corresponding values of 3m? 4 2n? are, respectively,

5M? — 4M + 30N? + 12N + 2,

5M? —2M + 30N? — 24N + 5,
5M? 4+ 30N?,
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5M? 4+ 2M + 30N? + 24N +5,
5M? 4+ 4M + 30N? — 12N + 2.

It is evident, from the equations connecting m and n with M and N that, there
is a one-one correspondence between all pairs of integers (m,n) and all sets of
integers (M, N, a). From this correspondence, we deduce that

o()p(—®) =F(* . ) F(—a*. —)) = Y (1)

o

_ 2 M+N _5M2—4M~+30N2+12N
=—q¢ ) ()M
M,N=—0c0
oo
5 M+N _5M?—2M+30N?—24N
¢ Y ()M
M,N=—0oc0

[e.e]

2 2

I Z (—1)M+N 5M?+30N
M,N=—

o0

5 Z (_1)M+N 5M24+2M+30N2+24N

—4q q

M,N=—0oc0
00

2 Z (_1)M+N 5M2+4M+30N2—12N

—4q q

M,N=—c0
=— ¢’ f(—4,—¢") f(=a"*, —=¢"*) = @ f(=’, =" ) f(=4®, =™
+f(=¢", ) f(=¢*, —*) = F(=¢*, ~a") f(=®, ™)
—¢*f(~a4,=¢") f(=a'®, —¢™).
After some simplifications, we arrive at (69). This completes the proof of (66).
Using (15) and Lemma 2.1, we see that (67) is equivalent to

F(=a*, =) f(—=a% =)+ f(—¢, =) f(—=¢*, —¢*%)
= 5o {e@p(=a) ~ =)o)} . (10

We have

o0

p(@)o(—q") = fla. ) f(~d', —a) = Y (=g, (71)

m,n=—00

In this representation, we make the change of indices by setting
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m+n=5M-+a and m —4n =5N +b,
where a and b have values selected from the set {0, £1, £2}. Then
m=4M + N + (4a+b)/5 and n=M— N+ (a—10b)/5.

It follows easily that a = b, and so m =4M + N +a and n = M — N, where
—2 < a < 2. Thus, there is one-to-one correspondence between the set of all
pairs of integers (m,n), —oo < m,n < oo, and triples of integers (M, N,a),
—00 < M,N <00, —2<a<2. From (71), we find that

oo
2 2
p@p(—¢") = > (=1)rgm
m,n=—00
2 0o

2 2
_ Z qa Z (_1)Mq20M +8aM
a=—2 M=—0c0
o9

2
% Z (_1)Nq5N +2aN
N=—o0
2

2 _ _
_ Z qa f(_q20+8a,_q20 8a)f(_q5+2a,_q5 2a)

=o(—a")p(—q*) + 24 f(—¢*, —q") f(—q"*, —¢*®)
+2¢" f(—q,—¢") f(—=¢*, —¢%),

which is same as (70).
Using (15) and Lemma 2.1, we may write (68) in the form

f(=, =" f(=, - )+ f(—d* —4 )f( 7, ")
= 52 (=)0 — p(=a)ol=a") . (72
We have -
Po(-O)plg) = Y (~1)mgtmnt,

In this representation, we make the change of indices by setting
2m+n=5M +a and —3m+n=5N+b,
where a and b will have values from the set {0, 41, £2}. Then

m=M-—N+(a—0b)/5 and n=3M + 2N + (3a + 2b)/5.
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It follows easily that a = b, and so m = M — N and n = 3M + 2N + a,
where —2 < a < 2. Thus, there is a one-one correspondence between all pairs
of integers (m,n) and all sets of integers (M, N, a) as given above. Thus

o

2,2
p(=")plg) = D (1)t
m,n=—00
2
2 _ —
— Z qa f(_q15+6(z’_q15 6a)f(_q10+4a,_q10 4a)
a=—2

=o(—=¢")p(—=¢"") + 2qf (—¢°, —¢*") F (=4, —¢"*)
+2¢" f(=¢*, ") f (=% —4"®),
which is nothing but (72). This completes the proof of the theorem. QED
Theorem 3.6. We have
J(0)J (") + K (9)K(¢°) =

Jaf18 T2 156 4 s[8f3 31 } 73
2q2f12f92{ -

21205 Bt fofeo

K(9)J(a®") + ¢ T (K (¢*) =

f2f42 f52f1205 4 5f224f526 o f152f§)8 } 74
2q5f12f221{f10f210+ qf12f28 JefiIarzs ]’ (74)

J(@*) (@) + *K(¢*)K(¢") =
fo.f14 { fff§’4 _4q11f82f1268 _ f125f??5}' (75)
221312 \ f3 12 2o fiss fafsa  f3ofro

Proof. Using (15) and Lemma 2.1, we find that (73) is equivalent to
F(=¢*,=a") f(=a*", =4®) + & F (=4, ") f(=¢", —¢*")

— 5 PP )ela™) ~ 4600 — (=)o)} (T0)

Changing ¢ to ¢% in (76) and then using (24) with @ = 1 and b = 9, we obtain
F(=% =" F(=¢", =¢"") + ¢ F (=, —"*) F (=", —¢'*)

:424 {e(@e(—a") + e(—)e(a®) — 20(—q"")p(—¢)} . (77)
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Thus, it suffices to establish (77).
We have

oo

p(@)e(—") = Y (~1rgm ot

m,n=—00

In this representation, we make the change of indices by setting
m+n=10M +a and —9m +n=10N + b,
where a and b will have values from the set {0,+1, £2,4+3, +4,5}. Then
m=M — N + (a—b)/10 and n=9M + N + (9a + 1) /10.

It follows easily that a = b, and so m = M — N and n = 9M + N + a, where
—4 < a < 5. Thus, there is a one-one correspondence between all pairs of

integers (m,n) and all sets of integers (M, N,a) as given above. We therefore
deduce from (11),

n m2 TL2
e@e(=¢") = > (=1)"g™
5 ) %) ) [e%) )
_ Z qa Z (—I)ngoM +18aM Z (_1)Nq10N +2aN
a=—4 M=—o00 N=—00
=0(—¢")o(—¢") + 24 (—q"%, =" ") f(—¢*, —¢"?)
+2¢* f(—¢"*%, - f(—¢°, —¢"*)
+2¢° f(—=¢*%, —¢**) f(—q*, —¢*%)
+2¢" f(—=¢"%, = ") f(—¢*, —¢'®). (78)

Changing ¢ to —q in (78) and then adding the resulting identity with (78), we
obtain (77). This completes the proof of (73).
Using (15) and Lemma 2.1, identity (74) can be written as

F=a, =) (=%, ") + ¢ F(—=¢*, ") F(—=¢**, —¢'¥)
e (P a)P(=0") 407 0(a (™) — o ela' ). (19
Changing ¢ to ¢? in (76) and then using (24) with @ = 3 and b = 7, we obtain
F=a =) (=4, =) + @ f(=¢°, —¢") f (=4, ")

:4;10 {20(=¢")e(=4"") = 2(’)p(=d") — (=a})e(d")} . (80)
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Thus, it suffices to establish (80).

We have
() o(—d") = [ ) f(~d", —d) = > (~1)rmitT

In this representation, we make the change of indices by setting
3m+T"™m=10M+a and —m+n=10N +0b,
where a and b have values selected from the set {0,+1,4+2,+3, +4,5}. Then
m=M—TN+ (a—7b)/10 and n =M +3N + (3b+a)/10.
It follows that values of a and b are associated as in the following table:

a 0 +1 +2 +3 +4 )
b 0 +3 F4 F1 +2 )

When a assumes the values 0,+1,+2, +3, 44,5 in succession, it is easy to see
that the corresponding values of 3m? + 7n? are, respectively,

10M? + 210N?

10M? + 2M + 210N2 + 126N + 19,
10M? + 4M + 210N? F 168N + 34,
10M? + 6M + 210N? F 42N + 3,
10M? + 8M + 210N? + 84N + 10,
10M? 4+ 10M + 210N? 4 210N + 55.

As before, it is evident from the equations connecting m and n with M and N
that there is a one-one correspondence between all pairs of integers (m,n) and
all sets of integers (M, N, a). From this correspondence, we deduce that

0(@®)p(—a") =p(=a")p(=¢*") = 24" f(=¢°, —¢"*) f (=™, —=¢**°)
=24 f(=¢° —4'") f(—4"*, —¢’")
+2¢° f(=q", —¢'°) f (=¢'®, —¢*?)
— 20" F(— P — ) f(— "%, — Y, (81)
Changing ¢ to —q in (81) and then adding the resulting identity with (81), we
obtain (80). This completes the proof of (74).

The proof of (75) follows similarly, where we start with the product ¢(q)p(—¢
and we make the change of indices by setting

21)

)
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m-+Tm=10M +a and -—-m-+3n=10N +b.

This completes the proof of the theorem. QED
Theorem 3.7. We have

T@) (=) = " K() K(=¢*)
_ a3 f5 {2 13 f310 VY] }, (82)

AP f1of120f4so Cf2fefE FRhfh
K(q)J(—¢"%) — ¢°J(9) K (—¢'°)

:f2f16f64{ BB }

1205 \ 2 T R Rl (83)

Proof. Setting =5 and v =1 in (35), we find that

S 10()ea) + o(~a)p(~a") = F@, ) 1(a, ")

+ " F(@*, "N F (", d%) + ¢ F (@™ ") F (P ¢'®)
+qf( B, ) F(a2, ) + " f (a7, ) F(a7 % %), (84)

Using Lemma 2.2 in (84), and then changing ¢? by —¢, we obtain
f(=*,=a") f(a? d"®) = a"° (=0, =) F (¢, ¢*'°)
1
=1 {20(=")p (@) = o(=a*)o(@®) = p(a)p(=a")} . (85)
Now, dividing (85) throughout by ¢(—q)¢(¢**), and employing (15), and using

Lemma 2.1, we obtain (82). Similarly, we obtain (83) by setting y =5 and v =3
n (35). This completes the proof of the theorem. QED

Theorem 3.8. We have

J(@)J(¢”) + ¢* K (9)K (¢*)

_fafies {fg2f121Jr fis f3s _4q5f§6ff4 f5f495} (86)
4¢20 1213 | fisfae  ffA 5T figfoz  fiofe90

K(q)J(—=¢") — 4" J(q) K (—¢")
— f2f926f3284 { fir)ﬁfﬁr’zx
44%0 f7 fioo

f82f122 _4 5f32f48 —9 f52f§560 } 87
fg2f122f3?2f428 * f16f24 f16f24 f10f280f12920 ’ ( )



Modular Relations for the Functions of Order Ten and Applications ... 61

K(q)J(¢") + ¢* T () K (")

_ hfiss [ fifi fafse s fRfH f52f4255}
B 4q19f12f§1{f14f26+f72f123f228f§2 4 f14f26 2]”10]""910 - (88)

J(@)J(—¢*") — "' K () K (—¢*")

_ SRS { o f3s n fe i _4q5f224f§6 _ 9 2 foao } (89)
40" [ fios \SGSES3.0%  fiafas fizfos " frofofise )
J(@)J(—¢™) = ¥ K (q) K (—¢™)
_ fafdi S5 { 18 f3 fills slieles o f2 T }
o 4B s LSS 624Jr f3.f32 44 fsf32 2f10f3220f12280 » 59)
K(9)J (") + T () K (¢°")
_ _hhe [ fofa  sfhafés f52f§55}
B 4q11f12f§1{f6f34+f§f122f127f(?8 4 f6f34 2f10f51o - O
K(q)J(—¢*) — ¢** J(q) K (—¢*)
_ f2f§6f1244{ 3 F36 Bl sl o f2f3eo0 }
Tl \BRR L hife hof )
J(@)J (") + ¢ K () K (¢")
 ffs [ fifE f5fs  sfife fszfgs}
- AgrfE {f2f38 * TR 13 1% 44 faf38 2f10f190 : (93)

K(q)J(q"") + ¢"J(q) K (¢"")
_ ffa [ B sfifi f52f5?5}
= 1P {fzfzz Teenm M i Chefn ) Y

Proof. We proceed to prove (86). Setting p = 10 and » = 1 in (36), and em-
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ploying Lemma 2.2 several times, we find that

SHR(@)eld”) + (g p(—a")} + 2470 e™)
—f(q1980 q1980) ( 5)+q20f( 2376 q1584)f(q q3)

+ ¢ f(¢°™, qllSS)f(q Lq) + @ f (1%, ¢ f(¢M a7

+ q320f( 35647q396) (q13 )+ q500f(q3960, 1)f(q15;q_5)

+ q720f( 4356,(] 396)f(q17 7) + q980f( 47527q7792)f<q19’q79)

+ q1280f( 5148 —1188 )f( 217q—11) + q1620f( 5544)q_1584)f(q23)q_13)
=0(¢" ") (¢ )+2q O£ (@, ™) f(¢*, ¢")
+ 2q80f( 1188,q2772)f(q ) + 2q179f( 792,q3168)f(q, q9)
+2¢17£(*°, ) £ (. 47) + 2% (6% 7)o (). (95)

We can write (95) in the form

% {e(@)e(@®) + ¢ (—a"Me(=a")} +2¢°¥(d*)v(a"®) — 26" (¢*°)p(q°)

_(‘0<q1980)¢(q5) :q20f<q7’ q3) {f(q1584’ q2376) 4 q297f(q3967 q3564)}
+2¢% f(q,¢°) { F(a"", ) + ¢ £ (™2, 6*%®)} . (96)

Using (26) and (27) with replacing ¢ by ¢”?, and then using (23) with replacing
q by ¢*?, we deduce that

(@, a) (@, d) + ¢ f(a,4°) (¢”, 4*)

1
=1 {e(@™Me(@®) + o(—a")e(=a°) + 4°P(*) (") — 20(a°)e(q* )} -
(97)
Replacing ¢ by —¢ in (97), then dividing the resulting identity throughout
by ©(—q)¢(—q”), employing (15), and using Lemma 2.1, we obtain (86). The
proofs of (87)-(93) follow similarly, by setting p = 10 and v = 2,3,4,6,7,8,9

n (36), respectively. The proof of (94) follows similarly, by setting x = 10 and
w =3 in (37). This completes the proof of the theorem. QED

Theorem 3.9. We have

J(@*)J(q"7) + ¢ K (¢*)K (¢"")

_ f6f34 fngOS o f125f825 -9 13f4%f2204 4 52f126f5316} 98
T2 ST {ffffﬁf§04f§16 Fofin 20 fafe M s 0 O
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J(q")JI(¢"%) + ¢ K(q") K (q")
__Juafas { 18 Fas 135 165 i 23 f1 364
2q4f72f123

f2 f2 }
_ 49271671456
f3 flsf3oaftise  frofiso o fise Taa fafrs )’
(99)
J(@”)J(d") + ¢ K (¢°)K(q")
— f1sfo2 { f85f7592 _ f425f525 _9 25fff3296 +4 100f126f12584}
2q4f92f121 7

[ifE f206fssa foof110 1 fof1o8 1 J8fr92
(100)

J(@*) (") + K (¢*) K (¢"?)
faf fof2 [ f3 f3 f3.f12f26 [
:2q34f222;123{ ofts  Jiofes o 0f3fsh12f2 156}’ (101)

35 56 f20/130 1 Jifafefs2f8

K(q)J(—¢*%) = ¢"° J(q) K (—¢*)
:f2f2262ffg4{ ffls  fif30 _ 9 5f42f6f13f24f728}, (102)
2q6f1f52

q
2, fis froftsef0 fafsf12f26 f39
Proof. From Lemma 2.12, we find that
R(0,1,0,1,3,17,1,5,4,¢7%,¢"*) = R(1,0,1,0,1,51,3,4,15,¢~*,¢ ).
By (39) and Lemma 2.2, we have
R(Ov 130a 1a 35 177 17 57 4> q—S’ q_4) = Qf(_q15a _q15)f(_q857 _q85)
+ q5f(—q21, _qg)f(_qllg’ _q51) + q17f(—q27, —q3)f(—q153, _q17)
+ (=, =) (=", =)+ P F (=, ) f (= =)
=q0(—4")o(—=¢%) + 2¢° f(—¢°, —*") f (—=¢**, —¢'"?)
+2¢" 7 f(—¢*, =) f(—q"", —¢'). (103)
Similarly, we have
R(1,0,1,0,1,51,3,4,15,7%,¢7%)
=qf(q*, q") F(@**, ¢*) — ¢'°f(¢"°,a72) F (¢, ¢'P)
+¢% ("%, a7 F(@*%%,1) — " f(¢*, ) f(¢°'0, ¢ 10%)
=q2(q")p(@™) — 20 (@*) (') + 47 ()p(¢™®). (104
Combining (103) with (104), we obtain
F(=a", =N (="', =" + ¢ f(—*, =" F(—4'T, ")
1
:274{90((14)90@204) — o(—=¢")e(—¢*) — 2¢"*%(¢*)¥(¢'*?) + 4¢°*Y (¢®) v (¢"™)}.
(105)
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Dividing (105) throughout by ¢(—¢)p(—¢'"), employing (15), and using Lemma
2.1, we obtain (98). The proofs of (99)-(102) follow similarly. QED

Theorem 3.10. We have

K(q)J(¢°°)+¢*" T (q) K (¢°%)
_ fafr s [l 5f4f16f36f144}
248 f2 13, {f10f360 f16.f144 2 fsfm2 - (106)
K(¢*)J(*®)+4" T (¢*) K (¢*°)
_ fefss [ fhftn  fftes 11f4f16f84f336}
24812 3 {f30f280 f16f336 2 fsfies » (107)
K(q")J(q"*)+¢*T(¢") K (¢"?)

f1afaa { [0 f3fks 11 Jaf16f34 336

- 2¢8 f2 1% | frof120  fi6f336 +2 fsfie8 } (108)

Proof. Using (15) and Lemma 2.1, we can write (106) in the following form:

F(=a¢. =) F (=", —®*) + ' F(—¢*, —d") (=4, —¢**Y)
:;qg {o(=")p(=0'™) — p(—a*)p(—q™) + 26*%(—g i (—g*) }
(109)

Setting k = 2, a = —¢3% and b = —¢'®® in (25), changing ¢ to —¢"? in (23) and
then using the resulting identities in (109), we obtain

o(—")o(—a") = 2¢° f(—q. — ) (=", —¢**?)
—2¢*f(—=¢*, —a") f(—¢*°, —¢**")
= o(=*{e(d®®) — 2¢"(¢°™)}
o 2q5w(_q4){f(q216’ q360) . 2q36f(q72, q504)}. (110)

Thus (106) is equivalent to (110). But identity (110) can be verified easily using
(39), Lemma 2.12 and Lemma 2.2, with the following sets of choice of param-
eters: e =0=a=x=y=1,1=t=0,=36,m=2,p=>5 and A = 8.
This completes the proof of (106). The proofs of (107) and (108) follow simi-
larly. QED
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Theorem 3.11. Define

Ula, ) == p(=a")p(=a") { 1(¢") T (@") + PP K () K (") }

U* (0, 8) = p(a)p(—a") { J(=a*)(a") — "D PK(—4) K (") }

Via, B) = p(—a")p(—a") { K(a") (") + 7~ 0(¢") K (6"},

V(e 8) = p(a™)e(—a") { K(=4")J(a") = =0 (—4) K (") }
Then

U(4,21) + 420" (1,80) = 5 (0(@p(-0) - o(-)p(= ")}, (11)
U(3,22) + 'V (1,66) = s (ela)e(—0%) — w0 "ol -¢")}. (112
U(2,23) + 4V (1,46) = 5 (@) o(—a) = e(=a ol ="} (113)

U(T,18) + ¢V (1,120) = o ola’)o(=a™) = o =g~} (114)
UM(1,14) = V(2 T) = 5o {ela)e(-a) = o-a")e(-a®), (119
VT) + U (1,34) = 50 )o( =) - e(—a" o= ™)}, (116)
UE.17) + ¢V (1,136) = o ola’)o(—a™) — o(-ap(—¢), (117)
U(6,19) + 0" (1, 114) = 5 {ola)e(—0™) = o(-)el ™). (19
V(4,9) = V(1,36) = s {ol=a)p(—0") = (= hp(=a")}, (119)
U(©,16) + U (1,144) = 5 {ol@)e(—0™) — o(-d")el-¢). (120
U(LL 1) + 0 (1,150) = 5o (0(a)p(-a7™) — o(-a)p(-)}.  (121)
U(12,13) + ¢V (1,156) = 5ol )ol—a™) = o= ol =), (122)

V(3,13) + ¢*U(1,39) = 225{¢<—q15>so<—q65> o )e(—d'™)). (123)

Proof. The proof of the theorem follows form Lemma 2.13 and Lemma 2.12.
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4 Applications to the theory of partitions

Some of our modular relations yield theorems in the theory of partitions.
In this section, we present partition interpretations of Theorem 3.1 and the
identities (46) and (67).

Definition 4.1. A positive integer n has k colors if there are k copies of n
available and all of them are viewed as distinct objects. Partitions of positive
integers into parts with colors are called “colored partitions”.

It is easy to see that
1

k
(4% ¢")m

is the generating function for the number of partitions of n where all the parts
are congruent to v (mod v) and have k colors. For simplicity, we use the notation

n

(a1, a2, -, an; Qoo = | [(ai; @)oo-

=1

Also, we define

r+ roSs—r

(@"530%)o0 = (0", 0" 4%) 0

where r and s are positive integers with r < s.

Theorem 4.2. Let p;(n) denote the number of partitions of n into parts
congruent to +2, +3, +4, £7, 8 (mod 20) with £3, £7 (mod 20) having two
colors. Let pa(n) denote the number of partitions of n into parts congruent to
+1, +4, +6, +8, £9 (mod 20) with +1, +9 (mod 20) having two colors. Let
p3(n) denote the number of partitions of n into parts congruent to £1, +2, +3,
+6, +£7, £9, 10 (mod 20) with 10 (mod 20) having two colors. Then, for any
positive integer n > 1,

p1(n) + pa(n) = 2p3(n).

Proof. Using (15) and (31) in Theorem 3.1(i), we find that

2=, - f(=¢°, ="+ 2 (=*, —a") f(—a*, —¢"®)
_ o fif20 (=4, =¢") [ (=¢*, =a")¢*(=¢*)
13 o(—q'9) '

(124)



Modular Relations for the Functions of Order Ten and Applications ... 67

Identity (124) is equivalent to

1
(@3,47,4'% ¢'9)2 (4%, ¢'8,¢%°: ¢*0) o
N 1
(4,4°, ¢ ¢*9)2 (45, ¢4, ¢*°; ¢*°) o
(0% ¢*) o0 (¢*%; ¢*0)2
’ 19 Joo . (125)
(9% ¢'92 (0,3, 47, 4%, "0, 405 ¢10) o (4%, 45, ¢, 418, 429, 4205 ¢%0)

=2

Now, rewrite all the products on both sides of (125) subject to the common
base ¢*° to obtain

1
(®*, F, ¢, ¢, ™, ¢, 3% %)
. 1
("%, ¢'F, ¢*F, ¢F, ¢BF, ¢9F, ¢7F; ¢20)
2
(g, 2, 3 g5 TE 9 ¢10,¢10;¢20)

(126)

The three quotients of (126) represent the generating functions for pi(n), pa(n),
and ps(n), respectively. Hence, (126) is equivalent to

oo o oo
> pin)g" + > pa(n)q" =2 ps(n)q",
n=0 n=0 n=0

where we set p1(0) = p2(0) = p3(0) = 1. Equating coefficients of ¢" (n > 1) on
both sides yields the desired result.

Example 4.3. The following table illustrates the case n = 5 in Theorem
4.2:

pi1(5) =2 p2(5) =8 p3(5) =5
3, +2 441, 3+2

3y +2 441, 34141

L+1L+1,+1,+1, 2+2+1

L+1 +1 +1,+1, | 2+1+1+1
L+ L+ L, 41,41, [I+1+1+1+1
L+1,+1,+1,+1,
L+ 1+ 1, +1,+1,
T+l + 1+ 1,41,
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Theorem 4.4. Let p;(n) denote the number of partitions of n into parts
congruent to +2, +3, £7 (mod 20) with £3, +7 (mod 20) having two colors.
Let p2(n) denote the number of partitions of n into parts congruent to +1, +6,
49 (mod 20) with £1, £9 (mod 20) having two colors. Let p3(n) denote the
number of partitions of n into parts congruent to +1, £3, £7, +9, 10 (mod 20)
with 10 (mod 20) having two colors. Then, for any positive integer n > 1,

p1(n) + 2p3(n — 1) = pa(n).
Proof. Using (15) and (31) in Theorem 3.1(ii), we find that

1 1
(2, 3%, B3 7, 7 ) (¢1F, ¢, ¢5F, ¢9F, ¢9F; ¢20)

—2¢
— . 127)
(", 3F, q™, ¢°F, ¢10, ¢10; ¢?0) (

The three quotients of (127) represent the generating functions for p1(n), pa(n),
and ps(n), respectively. Hence, (127) is equivalent to

oo oo oo
> pi(n)g" = pa(n)q" = =2 ps(n)q",

where we set p1(0) = p2(0) = p3(0) = 1. Equating coefficients of ¢" (n > 1) on

both sides yields the desired result.
Example 4.5. The following table illustrates the case n = 6 in Theorem
4.4:
p1(6) =4 p2(6) =8 p3(5) =2
3r+ 3, 6 3+1+1

33+3; | L+L+1L,+1L+1L+1, [1+14+14+1+1
3,43, | L+ 1L +1,+1,+1,+1,
242421, + 1L + 1L +1,+1,+1,
L+1,+ 1L+ 1,4+ 1+ 1,
L+1,+1+1,+1,+1,
L +1g+1g+1,+1,+1,
T+ 14+ 1415+ 14+ 1,

Theorem 4.6. Let pi(n) denote the number of partitions of n into parts
congruent to +1, £4, +8, £9, +11, 412, £16, +19, 420, £21, +28, +29, £31,
+32, £36, £39 (mod 80) with £12, £28 (mod 80) having two colors. Let pa(n)
denote the number of partitions of n into parts congruent to +3, +4, +7, £12,
+13, +£16, £17, £20, +23 +24, +27, 428, £32, £33, +36, £37 (mod 80) with
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+4, +£36 (mod 80) having two colors. Let p3(n) denote the number of partitions
of n into odd parts not congruent to +5, +£15, £25, +35 (mod 80) and parts
congruent to £10, 30 (mod 80). Then, for any positive integer n > 3, we have

p1(n) 4+ pa(n — 3) = ps(n).

Proof. Using (15), (33) and Lemma 2.1, identity (46) can be written as

1
fafafoo (=) f(—=a,—a°) f(—a® —q™) f(—q'%, —¢?8)
q3
* fafafoo o(=a) f(—=a, —47) f(—¢**, —¢°%) f(—q*, —¢39)

1
2 o(=a") f(—q, =) f (=3, —4") f(—¢®, —q"2) f (—¢?*, —¢F)

Using (6), (11) and (13) in (128) and rewriting all the products subject to the
common base ¢®°, we deduce

(128)

1
(qli7 q4i’ q8i’ qu’ qlli’ ql2i7 ql2i7 qlﬁi’ q19i’ q20i’ q21i; q80)oo
1
((]28:t, (]28:t, q29:l:’ q31:l:’ q32:l:, q36:t’ q39:t; qBO)OO
q3
+ (q3i’ q4i’ q4i7 q7i’ q12i’ q13i’ q16i7 ql7i7 q20i7 q23i’ q24i; qSO)OO
1
((]27i, q28i’ q32i’ q33i’ q36i, q36i’ q37i; qSO)OO
1
(ql:l:, q3:|:’ q7:i:’ q9:i:7 ql(]:i:7 qllﬂ:, q13:i:, q17:i:’ q19:|:’ q21:|:’ q23:|:; q80)oo
1
x . (129
(q27:|:7 q29:l:7 q30:|:7 q31:|:7 q33:|:7 q37:i:7 q39:i:; q80)oo )

X

X

The three quotients of (129) represent the generating functions for pi(n), pa(n),
and ps(n), respectively. Hence, (129) is equivalent to

o0 oo o

D pin)g" + ¢ pa(n)g” =Y ps(n)q",

n=0 n=0 n=0
where we set p1(0) = p2(0) = p3(0) = 1. Equating coefficients of ¢" (n > 3) on
both sides yields the desired result.

Example 4.7. The following table illustrates the case n = 9 in Theorem
4.6:
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p1(9) =5 p2(6) =1 p3(9) =6
9 3+3 9
8+1 T+1+1
4+4+1 3+3+3
A+141+1+1+1 3+43+1+1+1
T+14+1+14+1+1+14+1+1 341 +14+1+1+1+1
1+1+1+1if+1+1+1

Theorem 4.8. Let pi(n) denote the number of partitions of n into parts
not congruent to +3, £7, £13, £17, 40 (mod 40), parts congruent to +5, +8,
+10, 12, £15, +16, 20 (mod 40) with two colors, and parts congruent to +2,
+4, £6, £14, £18 (mod 40) with three colors. Let pa(n) denote the number
of partitions of n into parts not congruent to +1, +9, +11, £19, 40 (mod 40),
parts congruent to +4, £5, +8, £10, £15, £16, 20 (mod 40) with two colors,
and parts congruent to £2, £6, £12, +14, £18 (mod 40) with three colors. Let
p3(n) denote the number of partitions of n into parts congruent to +1, +3, +7,
+9, +11, £13, £17, £19 (mod 40) having three colors and parts congruent to
+5, +£15 (mod 40) having four colors. Let ps(n) denote the number of partitions
of n into parts not congruent to £5, +15, 20, 40 (mod 40), parts congruent
to +8, +£10, 16 (mod 40) having two colors and parts congruent to +2, +4,
+6, £12, £14, £18 (mod 40) having three colors. Then, for any positive integer
n > 4, we have

2p1(n — 1) + 2p2(n — 4) = p3(n) — pa(n).

Proof. Using (15) and Lemma 2.1, identity (67) can be written as

2q
13 (=g (=) p(—a®) f(—=q, —¢°) f (—q*, —¢3F)
2¢*
T oo ) o~ f(— —a) F (a7, —¢%)
1
TR o(—P)e(—*0) f(—q, —a°) f (=, —q7) F(—q*, —¢%0) f(—q'2, —¢2®)

1
oY f(—q,—°) F(—a3, —q7) f(—q*, —¢36) f (—q'2, —¢)

Using (6), (11) and (13) in (130) and rewriting all the products subject to the
common base ¢*°, we deduce

(130)

2q
<q1:|:7 q9:i:, qllﬂ:’ q19:|:; q40)oo(q5:i:7 q8:|:7 q10:|:7 q12:|:’ q15:i:’ q16:i:, q20; q40)

2
o0
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1
X
(qQ:I:’ q4:t, q6:|:’ q14:t’ qISﬂ:; q40)go
+ 24
(q3:|:’ q7:t7 q13:t’ q17:|:; q40)oo(q4:t7 q5:|:’ q8:|:’ q10:|:’ q15:|:’ q16:|:’ q20; q40)c2>o
1
X
(q2:|:’ qﬁﬂ:, q12ﬂ:’ q14:|:’ q18:|:; q40)go
1
- (qlﬂ:7 q3:|:’ q7:|:’ qgﬂ:, qllﬂ:’ q13:|:’ q17:|:’ q19:|:; q40)§>o(q5:t7 q15:t; q40)go
1
(ql:l:’ q3:i:7 q7:|:7 qg:l:7 qll:l:7 q13:|:7 q17:|:7 q19:|:; q40)oo(q8:t7 q10i7 q16:|:; q40)go
1
x . (131)

(q2i’ q4i7 q6i7 q12i’ q14i’ q18i; q40)§o

The four quotients of (131) represent the generating functions for pi(n), pa(n),
p3(n), and psa(n), respectively. Hence, (131) is equivalent to

o0 o o oo
20> pi(n)g” +2¢* Y pa(n)q" =D ps(n)g" = > pa(n)q”,
n=0 n=0 n=0

n=0
where we set p1(0) = p2(0) = p3(0) = pa(0) = 1. Equating coefficients of ¢"
(n > 4) on both sides yields the desired result. QED

Example 4.9. Figure 1 illustrates the case n = 4 in Theorem 4.8.

Similarly, one can also establish partition theoretic interpretation of some of
others modular relations proved in Section 3.

Acknowledgements. The authors thank the referee for several helpful
comments and suggestions.
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pi(3) =4 ps(0)=1 p3(4) =24 pa(4) =14
2, +1 1, +1.+1,+1, 4,
2,+1 L +1,+1,+1 4,
2, + 1 L1, +1,+1, 4,
1+1+1 1, +1,+15+ 1, 3+1
T+ 1,41+ 1, 2 + 2,
g+ 1y + 1y + 1y 2, + 24
1o+ 15+ 1y + 1y 24+ 24
lg+1,+ 15+ 1y 25+ 24
1y + 1w + 1 + 1y 20 4 2y
1y, + 1y + 1 + 1, 20 + 24
1y + 1y + 1,4+ 1, 2, +1+1
Ty +1,+1,+1, 2, +1+1
I+ 1, + 15+ 1y 20 +14+1
1y +1,+ 1, + 1, 1+1+1+4+1
Ty + 1y + 1.+ 14
3, + 1,3, + 14,34 + 1,
3 + Lg)3g + Lun 3w + 1
3w + Lus 3r + LunBu + 1
Figure 1.
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