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Abstract. We consider (p, q)−periodic orbits of a dissipative spin-orbit model, i.e. during
q revolutions about the central planet the satellite does p rotations on its own spin-axis. L.
Biasco and L. Chierchia in [2] give a sufficient condition for the existence of such orbits for
q = 1, 2 and 4. Here we give explicit upper bounds on the eccentricity and, in the case q = 4,
also on the dissipation, such that this condition is satisfied.
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1 Introduction

The planar dissipative spin-orbit model considers the movements of an el-
lipsoidal satellite, orbiting about a central planet on a Keplerian elliptical tra-
jectory. Important assumptions1 are that the spin-axis of the satellite is perpen-
dicular to the orbital plane and that the formula for dissipation, caused by the
non-rigid structure of the satellite, is given by MacDonald’s torque [8].

The system has a (p, q)−resonance (or equivalently: the two bodies move
on a (p, q)−periodic orbit) if the satellite makes p rotations on itself exactly
when it completes q revolutions about the central planet. In [2] L. Biasco and
L. Chierchia study the special cases with q = 1, 2 and 4. In particular the
cases q = 1, 2 are the most interesting cases in Celestial Mechanics since all the
satellites of the solar system, observed in a spin-orbit resonance, are actually
in a (1,1) resonance (including the Earth-Moon system) with the remarkable
exception of Mercury, which is trapped in a (3,2) resonance with the Sun.

In [2] L. Biasco and L. Chierchia give a sufficient condition (see (7)) for the
existence of such (p, q)− periodic orbits in the cases q = 1, 2 and 4. However,
they do not investigate the hypotheses under which such a condition holds.

iAcknowledgments. I gratefully thank Prof. L. Biasco and Prof. L. Chierchia (Università
“Roma Tre”) for many helpful comments and discussions.

http://siba-ese.unisalento.it/ c© 2014 Università del Salento
1The detailed model will be introduced in Subsection 1.1.
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By an asymptotic analysis we find upper bounds of the eccentricity and, for
the case q = 4, of the dissipation, such that the condition (7) is satisfied.

1.1 The planar dissipative spin-orbit model2

Consider a triaxial ellipsoidal satellite S moving on a Keplerian elliptic orbit
with eccentricity e ∈ [0, 1) under the gravitational influence of a central body
P, (see Figure 1). We assume that the spin-axis of the satellite coincides with
its shortest physical axis and that it is perpendicular to the orbit plane. The
equation of motion is then given by

ẍ+ η(ẋ− ν) + εfx(x, t; e) = 0, (1)

P

S

fex

1

Figure 1. The planar spin-orbit model.

where

• x represents the angle (see Figure 1) formed by the direction of the major
physical axis of the satellite with the major axis of the orbit plane;

• the parameters η = η(e) and ν = ν(e) > 1 are real-analytic functions of
the eccentricity;

2According to [6], [7], [11], [12], [4], [3] and most recently to [5].
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• the equatorial ellipticity ε measures the oblateness of the satellite;

• the Newtonian potential f is given by

f(x, t; e) := − 1

2ρe(t)3
cos(2x− 2fe(t)). (2)

t is the mean anomaly, ρe(t) is the (normalized) orbital radius and fe(t)
is the true anomaly. These are related by the equations

ρe(t) := 1− e cos(ue(t)), (3)

fe(t) := 2 arctan

(√
1 + e

1− e
tan

(
ue(t)

2

))
, (4)

where the eccentric anomaly u = ue(t) is given by the Kepler equation

t = u− e sin(u). (5)

Remark 1. By [10] we know that for e ∈ C and t ∈ R the function ue(t) is
real-analytic for |e| < r⋆, where

r⋆ := max
y∈R

y

cosh(y)
=

y⋆
cosh(y⋆)

= 0.6627434 . . . and y⋆ = 1.1996786 . . . .

1.2 Results

We define αj = αj(e) to be the Fourier coefficients of the Newtonian poten-
tial f given in equation (2), i.e.

f(x, t; e) =
∑

j 6=0,j∈Z
αj(e) cos(2x− jt). (6)

From Theorem 1.2 and Proposition 2.10 of [2] L. Biasco and L. Chierchia we
can formulate the following theorem:

Theorem 1. Let p and q be positive coprime integers3, with q = 1, 2 or 4
and fix 0 < κ < 1. Then, there exists ε0 > 0 and η0 > 0 such that for any
0 < ε ≤ ε0 and 0 < η ≤ η0 the spin-orbit problem modelled by equations (1)-(6)
has periodic solutions xpq of type4 (p, q), provided

∣∣∣∣ν −
p

q

∣∣∣∣ <





2κ ε
η |α2p|, if q = 1,

2κ ε
η |αp|, if q = 2,

64κ ε2

η |
∑

j∈Z,j 6=0,p
αp−jαj

4(p−2j)2+η̂2
|, if q = 4,

3Equivalently (p, q) = 1.
4Let p, q ∈ Z. (p, q)-periodic orbits are solutions xpq(t) of (1), which satisfy the condition

xpq(t + 2πq) = xpq(t) + 2πp, i.e. q revolutions of the satellite about P take the same time as
p revolutions on his own axis.
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where η̂ := qη.

Remark 2. Theorem 1 makes sense if we can prove that the following
condition holds:

0 6=





α2p, for q = 1,
αp, for q = 2,∑

j∈Z,j 6=0,p
αp−jαj

4(p−2j)2+η̂2
, for q = 4.

(7)

For 0 < b < 1 let

r(b) :=
b

cosh b
and M(b) :=

2

(1− b)5

(
(1 + r(b))(1 + cosh b) + 1− b

)2
. (8)

Moreover define

cp,1 :=
|2p||2p−2|

2|2p−1|+1|2p− 2|! , (9)

cp,2 :=
|p||p−2|

2|p−1|+1|p− 2|! , (10)

cp,4 :=





(2−p)4−p

211−p(4−p)2(4−p)!
, for p ≤ 1,

− 1
16 , for p = 3,

(p−2)p−2

2p−2(p−4)2(p−2)!
, for p ≥ 5.

(11)

Note that

cp,1 ≈
(
e
2

)|2p|
√
p

→ ∞, cp,2 ≈
(
e
2

)|p|
√
p

→ ∞ and cp,4 ≈
(
e
2

)|p|

p2
√
p
→ ∞ (12)

as p→ ±∞.

The main result of this paper is stated in the following theorem.

Theorem 2. Besides the assumptions of Theorem 1 on p, q, ε, η, for 0 <
b < 1 let r(b), M(b), cp,q be as in equations (8) - (11).

- If q = 1, 2, assume

0 < e ≤ cp,q
1

M(b)

(
r(b)

2

)| 2p
q
−2|+1

. (13)
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- If q = 4, assume

0 < e ≤ r(b)
π2M2(b)

6|cp,q |r(b)|p−4| + |p− 4|
, (14)

η̂ <
6
√
5|cp,q|

πM(b)
|e||p−4|/2 . (15)

Then there exists a (p, q)−periodic orbit of the spin-orbit problem modelled by
equations (1)-(6).

Remark 3. (i) Condition (7) depends only on e when q = 1, 2 while it
depends also on η̂ when q = 4. This is why, for q = 4, we have to assume also
the condition (15).

(ii) Conditions on the existence of (p, q)−periodic orbits are obtained com-
bining Theorem 1 and Theorem 2. For the case p/q = 1/1 equation (13) is
equivalent to 0 < e ≤ 0.000412055, choosing b = 0.148642. This condition
on the eccentricity is satisfied by Tethys (a satellite of Saturn), which has an
eccentricity approximately equal to 0.0001 and is known (from astronomical
observation) to be locked in a (1, 1)−periodic spin-orbit.

For the case p/q = 3/2 equation (13) is equivalent to 0 < e ≤ 0.0000609886,
choosing b = 0.253122. Mercury (seen as satellite of the Sun), which represents
the only observed example of the (3, 2)-periodic spin-orbit in our Solar sys-
tem, doesn’t fulfil this condition, since its eccentricity is approximately equal to
0.2056.

In [1] we focus on the cases p/q = 1/1, 3/2 improving the estimate for the
existence of (p, q)−periodic orbits in order to cover the values of the eccentricity
of all satellites in our Solar system, which are observed to be in a (1, 1)− or a
(3, 2)−periodic orbit.

(iii) We also note that the proof of the theorem above is quite simple in
the cases q = 1, 2: one has to prove that some single analytic function of e
(namely α2p and αp, respectively) is not identically zero. Since the behavior of
such functions is well known (see Lemma 6), this goal is easily obtained. On the
other hand the case q = 4 is more difficult (already in the case η̂ = 0), since
one has to prove that a series of functions with changing signs is not identically
zero and compensations could occur.

To prove Theorem (2) we have to find a lower bound for the absolute value
of the right hand side of (7). Since this quantity is a function e, we evaluate the
leading term of the e expansion and we prove that, if e satisfies the conditions
(13)-(15), the difference between the leading term and the rest doesn’t change
sign.
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2 Proof of Theorem 2

In order to prepare and to understand the proof of Theorem 2 we need some
intermediate results.
Lemma 1, 2 and 3 are well known results (see, for example, Appendix A of [2]
and Appendix B in [1]).

Lemma 1. α0 = α0(e) = 0 for e ∈ [0, 1).

Lemma 2. Let G(t) = Ge(t) := − e2ife(t)

2ρe(t)3
. Then we have

G(t) =
∑

j 6=0

αj(e)e
ijt,

where αj(e) are defined in (6).

Lemma 3. The coefficients αj = αj(e) defined in (6) satisfy

αj = − 1

4π

∫ 2π

0

1

(1− e cosu)2(w2 + 1)2

[
(w4−6w2+1)cj(u)−4w(w2−1)sj(u)

]
du

(16)

for all j ∈ Z, where w := w(u; e) :=
√

1+e

1−e
tan

(
u
2

)
and

cj(u) := cos(ju− je sinu) , sj(u) := sin(ju− je sinu) .

The formula (16) will be suitable for further estimations. The following lemma
gives an upper bound for the Fourier coefficients αj . For the proof we refer to
[1] (see Lemma 2).

Lemma 4. Let 0 < b < 1, r(b) and M(b) as in Theorem 2. The solution
ue(t) of the Kepler equation (5) is a holomorphic function in the ball

|e| < r(b) =
b

cosh b

satisfying
sup
t∈R

|ue(t)− t| ≤ b .

The functions ρe(t) in (3) and Ge(t) in Lemma 3 satisfy

|ρe(t)| ≥ 1− b , ∀ t ∈ R , |e| < r(b),

and

|Ge(t)| ≤
2

(1− b)5

(
|1− e|(1 + cosh b) + 1− b

)2
, ∀ t ∈ R , |e| < r(b) ,

respectively.
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Remark 4. From Lemma 2 we know that αj = 1
2π

∫ 2π
0 G(t)e−ijtdt holds.

Using Lemma 4 for 0 < b < 1 it follows

|αj(e)| ≤
2

(1− b)5

(
|1− e|(1+ cosh b)+ 1− b

)2
≤M(b) , ∀j ∈ Z ∀ |e| < r(b),

(17)
where r(b) and M(b) are defined in (8).

We premise the following result due to Hansen (see Chapter XV of [9]), which
will be used to prove Lemma 6 below.

Lemma 5 (Hansen’s lemma). Let u, t, fe(t) and ρe(t) be as in the Section
1.1, m ∈ N, n ∈ Z and

β :=
e

1 +
√
1− e2

=
1−

√
1− e2

e
. (18)

Furthermore define Pn,m
0 = Qn,m

0 := 1 and for k ≥ 1 define

Pn,m
k (ν) :=

νk

k!
+

k−1∑

l=0

νl

l!

ñ(ñ− 1) . . . (ñ− (k − l) + 1)

(k − l)!
, (19)

Qn,m
k (ν) := (−1)k

νk

k!
+

k−1∑

l=0

νl

l!
(−1)l

n̂(n̂− 1) . . . (n̂− (k − l) + 1)

(k − l)!
, (20)

where

ν :=
je

2β
, ñ = n+m+ 1 and n̂ = n−m+ 1. (21)

Then the coefficients Xn,m
l in the expansion

(ρe(t))
neimfe(t) =:

∑

j∈Z
Xn,m

j eijt, (22)

are given, for j 6= 0, by the following formula:

Xn,m
j =





(1 + β2)−n−1(−β)j−m
∑∞

k=0Q
n,m
j−m+k(ν)P

n,m
k (ν)β2k, if j > m,

(1 + β2)−n−1(−β)m−j
∑∞

k=0 P
n,m
m−j+k(ν)Q

n,m
k (ν)β2k, if j ≤ m.

(23)

The next lemma gives a result for the asymptotic behaviour of αj(e). Its proof
follows by a straightforward algebraic computation from Lemma 5.
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Lemma 6. Let αj(e) be as in (16). Then for all 0 6= j ∈ Z we have

αj(e) = ᾱje
|j−2| +O(e|j−2|+1), (24)

where

ᾱj =

{
P2−j(j), for j ≤ 2,
Qj−2(j), for j > 2.

(25)

(Pk)k≥0 and (Qk)k≥0 are two families of polynomial functions given by the re-
lations

Pk(x) :=

(−1

2

)k+1 xk

k!
, (26)

Qk(x) := − 1

2k+1

k∑

l=0

1

l!

(
k − l + 3

3

)
xl. (27)

In the following lemma we determine the sign of the leading term in the e
expansion of αj(e).

Lemma 7. ᾱj < 0 for all j ∈ Z \ {0, 1}, ᾱ0 = 0 and ᾱ1 =
1
4 > 0.

Proof. ᾱ1 = 1
4 > 0 and ᾱ0 = 0 follow directly from (26). If j ≥ 2 we see from

(27) that all coefficients (qi)0≤i≤k of Qk(x) = q0 + q1x + . . .+ qkx
k are strictly

negative for every k ≥ 0. By (25) we have ᾱj = Qj−2(j) < 0. Otherwise if
j ≤ −1 we have from (25), (26) that

ᾱj =

(−1

2

)3−j j2−j

(2− j)!
=

(−1)3−j(−1)2−j

23−j

|j|2−j

(2− j)!
=

−1

23−j

|j|2−j

(2− j)!
< 0.

QED

In the next lemma we estimate the absolute value of the difference between
αj(e) and its leading term in the e expansion.

Lemma 8. Let r(b),M(b) and αj(e) be defined as in (8) and (16). Moreover
let

r̄j(b) :=
|j||j−2|

2|j−1|+1|j − 2|!
1

M(b)

(
r(b)

2

)|j−2|+1

. (28)

Then

|αj(e)− ᾱje
|j−2|| ≤ 1

2
|ᾱj ||e||j−2| (29)

holds for all |e| ≤ r̄j(b). Moreover it follows

sgn(αj(e)) = sgn(ᾱj)

for 0 ≤ e ≤ r̄j(b).
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Remark 5. Note that r̄j(b) ≈
(
er(b)
4

)j
→ 0 as j → ∞.

Proof. For j = 0 this lemma is trivial, since by Lemma 1 and equation (25)
we know that α0(e) = ᾱ0 = 0 holds. Fix b and r(b) as in Lemma 4 and set
ρj(b) := r(b)− r̄j(b). Then by the Cauchy estimates and (17) we obtain

∣∣∣∣
dn

den
αj(e)

∣∣∣∣ ≤ n!M(b)

ρj(b)n
, ∀ |e| ≤ r̄j(b), j ∈ Z, n ∈ N . (30)

By (24) and the integral form for the remainder in the Taylor series we have

αj(e) = ᾱje
|j−2| +R|j−2|(e), (31)

R|j−2|(e) :=
e|j−2|+1

|j − 2|!

∫ 1

0

d|j−2|+1αj(es)

de|j−2|+1
(1− s)|j−2| ds. (32)

Using (30) and (32) with n = |j − 2|+ 1 we have

|R|j−2|(e)| ≤
|e||j−2|+1

|j − 2|!
M(b)(|j − 2|+ 1)!

ρj(b)|j−2|+1

∫ 1

0
(1− s)|j−2| ds =

M(b)|e||j−2|+1

ρj(b)|j−2|+1

(33)
for all j ∈ Z and |e| ≤ r̄j(b). Notice that by (26) and (27) we have

|Qj−2(j)| ≥
|j||j−2|

2|j−1||j − 2|! = |P2−j(j)|.

By the last inequality, (25) and (26) we have

|ᾱj | ≥ min (|P2−j(j)|, |Qj−2(j)|) =
|j||j−2|

2|j−1||j − 2|! . (34)

By (31), (33) and (34) we have that (29) follows if we prove that

M(b)r̄j(b)

ρj(b)|j−2|+1
≤ |j||j−2|

2|j−1|+1|j − 2|! . (35)

Since ρj(b) ≥ r(b)/2 (with r(b) defined in (8)), (35) follows by the definition of
r̄j(b) in (28). QED

Remark 6. The estimate found in (29) is not optimal5 for r̄j(b).

The following lemma determines the order of the leading term of the product
αj(e)αp−j(e).

5Optimal estimates in the cases of astronomical interest, as for example Earth-Moon or
Mercury-Sun system, can be found in [1].
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Lemma 9. Let p ∈ Z. It follows

|p− 4| ≤ |p− j − 2|+ |j − 2|, ∀j ∈ Z

and equality holds if one of the following two cases occurs:

• Case 1: p ≥ 4 and 2 ≤ j ≤ p− 2;

• Case 2: p ≤ 4 and p− 2 ≤ j ≤ 2.

Proof. Let us define

v(p, j) := |p− j − 2|+ |j − 2| = |j − (p− 2)|+ |j − 2|.

j

y = |j − (p− 2)|y = |j − 2|

2 p− 2

1

Figure 2. Sketch of the function v(p, j) in the case p ≥ 4 (the case p ≤ 4 is
analogous).

In the first case, when p ≥ 4, the function v(p, j) takes its minimum for 2 ≤ j ≤
p−2 and for these values of j we have |p−4| = |j− (p−2)|+ |j−2| (see Figure
2).
Analogously, when p ≤ 4, the function v(p, j) takes its minimum for p−2 ≤ j ≤ 2
and, as in the first case, for these values of j we have |p − 4| = |j − (p − 2)| +
|j − 2|. QED

Lemma 10. Let p ∈ Z be odd. Then we have




∑2
j=p−2

ᾱp−j ᾱj

4(p−2j)2
> (2−p)4−p

211−p(4−p)2(4−p)!
> 0, for p ≤ 1,

∑2
j=p−2

ᾱp−j ᾱj

4(p−2j)2
= −1

16 < 0, for p = 3,

∑p−2
j=2

ᾱp−j ᾱj

4(p−2j)2
> (p−2)p−2

2p−2(p−4)2(p−2)!
> 0, for p ≥ 5.

(36)
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Proof. If p ≤ 1 using Lemma 7 we have

2∑

j=p−2

ᾱp−jᾱj

4(p− 2j)2
= 2

2∑

j= p+1
2

ᾱp−jᾱj

4(p− 2j)2
>

1

2

(
ᾱp−1ᾱ1

(p− 2)2
+
ᾱp−2ᾱ2

(p− 4)2

)

>
1

32

ᾱp−2ᾱ2

(p− 4)2
.

The last estimate is obtained as follows. Since ᾱ2 = −1
2 , ᾱ1 =

1
4 it is equivalent

to

15 ᾱp−2(2− p)2 < 8 ᾱp−1(4− p)2. (37)

Using (25) and (26) we know that

ᾱp =

(−1

2

)3−p p2−p

(2− p)!
, for p ≤ 1 (38)

holds. Since p ≤ 1 and p is odd from (37) and (38) we get

15(p− 2)4−p

25−p(4− p)!
(2− p)2 < − 8(p− 1)3−p

24−p(3− p)!
(4− p)2.

This is true for all p ≤ 1 , p odd. So we proved that

2∑

j=p−2

ᾱp−jᾱj

4(p− 2j)2
>

1

32

ᾱp−2ᾱ2

(p− 4)2
(38)
=

(2− p)4−p

211−p(4− p)2(4− p)!
, for p ≤ 1, p odd.

By Lemma 6 we have ᾱ2 = −1
2 and ᾱ1 = 1

4 . Therefore the case p = 3 reduces
to a direct computation, i.e.

2∑

j=p−2

ᾱp−jᾱj

4(p− 2j)2
=
ᾱ1ᾱ2

2
=

−1

16
.

By (25) and (27) we know that

ᾱp =
−1

2p−1

p∑

l=0

1

l!

(
p− l + 1

3

)
pl, for p ≥ 3. (39)

Furthermore ᾱ2 = −1
2 holds. So in case p ≥ 5 and p odd, by (39) we get

p−2∑

j=2

ᾱp−jᾱj

4(p− 2j)2
≥ ᾱp−2ᾱ2

2(p− 4)2
>

(p− 2)p−2

2p−2(p− 4)2(p− 2)!
.

This ends the proof of Lemma 10. QED
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At this point the proof of Theorem 2 will be given.

Proof. (Theorem 2) The cases q = 1 and q = 2 of the equation (13) follows
from Lemma 7 and 8 taking

|e| ≤ r̄2p = cp,1
1

M(b)

(
r(b)

2

)|2p−2|+1

, for q = 1,

|e| ≤ r̄p = cp,2
1

M(b)

(
r(b)

2

)|p−2|+1

, for q = 2,

where cp,1, cp,2 and r̄j are defined in (9), (10) and (28), respectively.
The case q = 4 remains to be proved. Since (p, q) = 1 it follows that p is odd,
therefore also p− 2 is odd. Let us define

s(e, ζ) :=
∑

j∈Z,j 6=0,p

αp−j(e)αj(e)

4(p− 2j)2 + ζ
. (40)

Recalling condition (7), we have to prove that s(e, η̂2) 6= 0 for e and η̂ satisfying
(14) and (15), respectively.
Let us start with the case η̂ = 0. For 0 < b < 1 and |e| < r(b) = b/ cosh b by
(17) we get

|s(e, 0)| =

∣∣∣∣∣∣

∑

j∈Z,j 6=0,p

αp−j(e)αj(e)

4(p− 2j)2

∣∣∣∣∣∣
≤ M2(b)

4

∑

k 6=0,k∈Z

1

k2
=
M2(b)π2

12
. (41)

Furthermore by (24)

αp−j(e)αj(e) =
[
ᾱp−je

|p−j−2| +O(e|p−j−2|+1)
] [
ᾱje

|j−2| +O(e|j−2|+1)
]

= ᾱp−jᾱje
|p−j−2|+|j−2| +O(e|p−j−2|+|j−2|+1). (42)

Using Lemma 9 and (42) we have

s(e, 0) =





∑2
j=p−2

ᾱp−j ᾱj

4(p−2j)2
e|p−4| +Rp(e), for p ≤ 3,

∑p−2
j=2

ᾱp−j ᾱj

4(p−2j)2
e|p−4| +Rp(e), for p > 4 ,

(43)
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where Rp(e) = O(e|p−4|+1) is the Taylor remainder. Take

0 < r′ < r(b) .

By the Cauchy estimates and (41) we get

|Rp(e)| ≤
π2M2(b)

12(r − r′)|p−4|+1
|e||p−4|+1, ∀ |e| ≤ r′(b) . (44)

Let cp,4 be as in (11). Choosing r′ = r′p(b) as the unique solution of

r̃ =
6|cp,4|
π2M2(b)

(r(b)− r̃)|p−4|+1 =: h(r̃) , (45)

by (44) we get

|Rp(e)| ≤
|cp,4|
2

|e||p−4| ∀ |e| ≤ r′p(b) . (46)

Then by (36), (43) and (46) we have

|s(e, 0)| ≥ |cp,4|
2

|e||p−4| ∀ |e| ≤ r′p(b) . (47)

Let us now consider the case η̂ > 0. For |e| < r(b) and ζ > 0 we have by (17)
and (40)

|∂ζs(e, ζ)| ≤
∑

j∈Z,j 6=0,p

|αp−j(e)αj(e)|
(4(p− 2j)2 + ζ)2

≤ M2(b)

16

∑

06=k∈Z

1

k4
≤ π2M2(b)

720
. (48)

Then by (47) and (48), for 0 < |e| ≤ r′p(b), we obtain

|s(e, η̂2)| ≥ |s(e, 0)| − π2M2(b)

720
η̂2 ≥ |cp,4|

2
|e||p−4| − π2M2(b)

720
η̂2

≥ |cp,4|
4

|e||p−4| > 0

if we assume that

η̂ ≤ 6
√

5|cp,4|
πM(b)

|e||p−4|/2 .

Equation (14) follows if we prove that

r′′ :=
r(b)

π2M2(b)

6|cp,4|r(b)|p−4| + |p− 4|
≤ r′p(b). (49)
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From (45)

h(r̃) ≥ h(0) + h′(0)r̃

=
6|cp,4|
π2M2(b)

(r(b))|p−4|+1 − 6|p− 4||cp,4|
π2M2(b)

(r(b))|p−4|r̃ =: g(r̃)

holds for 0 ≤ r̃ ≤ r(b). Since r′′ (defined in the left hand side of (49)) is the
unique solution of the equation r̃ = g(r̃) and r′ is the unique solution of the
equation r̃ = h(r̃), the inequality (49) is true (see Figure 3). This completes the
proof of Theorem 2.

r̃

y

1

y = r̃

y = g(r̃)

y = h(r̃)

r(b)r′r′′

Figure 3. Geometric explanation of equation (49).

QED
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