LOCAL SPACES OF DISTRIBUTIONS

JOHN HORVÁTH

Dedicated to the memory of Professor Gottfried Köthe

INTRODUCTION

A space of distributions E is local if, roughly, a distribution T belongs to E whenever T belongs to E in the neighborhood of every point. A space E, in whose definition growth conditions enter, is not local but one can associate with E a local space E_{loc} . This is classical for the spaces L^p [6], and was done for the Sobolev spaces \mathscr{H}^s by Laurent Schwartz in his 1956 Bogotà lectures [8], where he presented an expository account of B. Malgrange's doctoral dissertation. In the present paper I establish some simple properties of the space E_{loc} attached to a space of distributions E.

To a distribution space E we can also attach the space E_c consisting of those elements of E which have compact support. At the end of the paper I make some remarks concerning the duality between local spaces and spaces of distributions with compact support.

1. LOCAL SPACES

Let Ω be an open subset of \mathbb{R}^n . Let us recall that a pair (E, j) consisting of a locally convex Hausdorff space E and a continuous injective linear map j from E into the space $\mathscr{D}'(\Omega)$ of Schwartz distributions on Ω is called an *injective pair* [5, Definition 4.2.2, p. 319]. The image j(E) is said to be a *space of distributions* on Ω . In what follows we shall identify E with j(E) but, of course, E keeps its own topology which is finer than the one induced by $\mathscr{D}'(\Omega)$.

If E is a space of distributions on Ω , we denote by E_{loc} the vector space of all distributions $T \in \mathscr{D}'(\Omega)$ such that, for all test functions φ belonging to the space $\mathscr{D}(\Omega)$ of infinitely differentiable functions with compact support, the distribution φT belongs to E [4, section 10.1, p. 13]. We equip E_{loc} with the coarsest topology for which the maps $T \mapsto \varphi T$ from E_{loc} into E are continuous for all $\varphi \in \mathscr{D}(\Omega)$.

If E coincides with E_{loc} as a vector space, then E is said to be a *local space*. If furthermore the topology of E is the same as that of E_{loc} , then we say that E is topologically local.

We shall see below that for $0 \le m \le \infty$ the space $\mathscr{E}^m(\Omega)$ of the m times continuously differentiable functions on Ω , equipped with the topology of uniform convergence on each compact subset of Ω of the functions and their derivatives, is topologically local.

Proposition 1. E_{loc} is a space of distributions.

Proof. We have to prove that the canonical injection $E_{\mathrm{loc}} \hookrightarrow \mathscr{D}'(\Omega)$ is continuous. Let W be a neighborhood of 0 in $\mathscr{D}'(\Omega)$. We may assume that W is the polar B^o of a bounded subset B of $\mathscr{D}(\Omega)$. There exists a compact subset K of Ω such that $\mathrm{Supp}\ \varphi \subset K$ for all $\varphi \in B$. Let $\psi \in \mathscr{D}(\Omega)$ be such that $\psi(x) = 1$ in a neighborhood of K. Since $E \hookrightarrow \mathscr{D}'(\Omega)$ is continuous, there exists a neighborhood V of 0 in E such that $T \in V$ implies $T \in W$. The inverse image U of V with respect to the map $T \mapsto \psi T$ from E_{loc} into E is a neighborhood of 0 in E_{loc} . If $T \in U$, then $|\langle T, \varphi \rangle| = |\langle \psi T, \varphi \rangle| \leq 1$ for all $\varphi \in B$, i.e., $T \in B^o = W$.

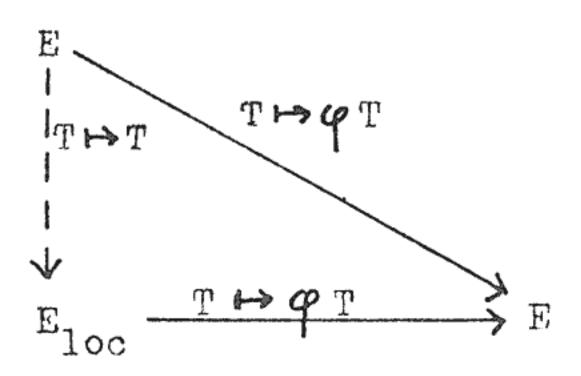
It can happen that $E_{\mathrm{loc}} = \{0\}$. This is the case for instance if $\Omega = \mathbb{R}$ and E consists of restrictions to \mathbb{R} of functions which are holomorphic in \mathbb{C} . To obviate this possibility, Hörmander introduced the following definition [4, Definition 10.1.18, p. 13]: E is semi-local if $E \subset E_{\mathrm{loc}}$, i.e., if $T \in E$ and $\varphi \in \mathscr{D}(\Omega)$ imply $\varphi T \in E$. Thus E is local if and only if it is semi-local and contains every distribution T such that $\varphi T \in E$ for every $\varphi \in \mathscr{D}(\Omega)$.

A semi-local distribution space will be said to be *topologically semi-local* if for each $\varphi \in \mathscr{D}(\Omega)$ the map $T \mapsto \varphi T$ from E into E is continuous.

For each $\varphi \in \mathscr{D}(\Omega)$ the map $T \mapsto \varphi T$ is continuous from $\mathscr{D}'(\Omega)$ into $\mathscr{D}'(\Omega)$ [5, p. 348], hence it is a fortiori continuous from E into $\mathscr{D}'(\Omega)$. If E is semi-local, then it maps E into E. Therefore, if the closed graph theorem holds for linear maps from E into E (e.g., if E is a barrelled infra-Ptàk space or an ultrabornological space with a web of type \mathscr{E}), then E is also topologically semi-local.

Proposition 2. If E is topologically semi-local, then the canonical injection $E \hookrightarrow E_{loc}$ is continuous.

Proof. For each $\varphi \in \mathscr{D}(\Omega)$ the map $T \mapsto \varphi T$ from E into E is continuous, hence by the universal property of the initial topology [1, chap. I, § 2, n. 3, Proposition 4] the map $T \mapsto T$ from E into E_{loc} is continuous (see diagram).



Let us recall that a triple (i, E, j) consisting of a locally convex Hausdorff space E, a continuous injective linear map $i: \mathscr{D}(\Omega) \to E$, and a continuous injective linear map $j: E \to \mathscr{D}'(\Omega)$ is called a normal triple if $i(\mathscr{D}(\Omega))$ is dense in E, and $j \circ i: \mathscr{D}(\Omega) \to \mathscr{D}'(\Omega)$ is the map which associates with each $\varphi \in \mathscr{D}(\Omega)$ the distribution $T_{\varphi}: \psi \mapsto \int_{\Omega} \varphi(x)\psi(x) \, dx$ [5, Definition 4.2.3, p. 319]. The image j(E) is said to be a normal space of distributions. In this situation (E', t_i) is an injective pair if we equip E' with the strong topology $\beta(E', E)$, hence f(E') is a space of distributions on Ω . We shall always identify $\mathscr{D}(\Omega)$ with f(E) and f(E) with f(E).

Proposition 3. Let E be a normal, topologically semi-local space of distributions. Then E_{loc} is a normal space of distributions.

Proof. Since $\mathscr{D}(\Omega) \subset E$ and $\mathscr{D}(\Omega) \hookrightarrow E$ is continuous, it follows that $\mathscr{D}(\Omega) \subset E_{loc}$, and by Proposition 2 the map $\mathscr{D}(\Omega) \hookrightarrow E_{loc}$ is continuous.

Since $\mathscr{D}(\Omega)$ is dense in E, it is sufficient to prove that E is dense in E_{loc} . Let W be a neighborhood of 0 in E_{loc} . We may assume that $W = \bigcap_{j=1}^k f_j^{-1}(V_j)$, where V_j is a neighborhood of 0 in E, f_j is the map $T \mapsto \varphi_j T$ from E_{loc} into E and $\varphi_j \in \mathscr{D}(\Omega)$, $1 \le j \le k$. Let $\psi \in \mathscr{D}(\Omega)$ be such that $\psi(x) = 1$ for all x belonging to the compact set $\bigcup_{j=1}^k \operatorname{Supp} \varphi_j$. It $T \in E_{loc}$, then $\psi T \in E$ and $\varphi_j (T - \psi T) = \varphi_j T - \varphi_j \psi T = \varphi_j T - \varphi_j T = 0 \in V_j$ for $1 \le j \le k$, hence $T - \psi T \in W$. Thus E is indeed dense in E_{loc} .

Proposition 4. For any space of distributions E on Ω the space E_{loc} is topologically local.

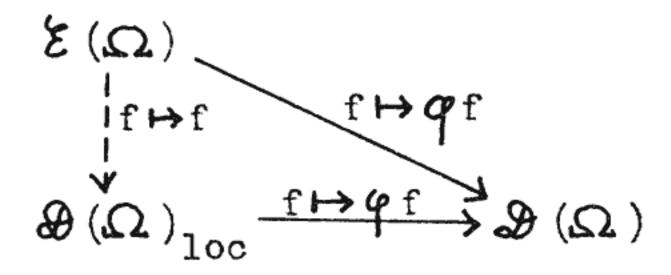
Proof. First I prove that $T \in \mathscr{D}'(\Omega)$ belongs to E_{loc} if and only if $\varphi T \in E_{\mathrm{loc}}$ for every $\varphi \in \mathscr{D}(\Omega)$, i.e. that E_{loc} is a local space. If $T \in E_{\mathrm{loc}}$ and φ, ψ are arbitrary elements of $\mathscr{D}(\Omega)$, then $\psi(\varphi T) = (\psi \varphi)T \in E$, hence $\varphi T \in E_{\mathrm{loc}}$. Conversely, suppose that $\varphi T \in E_{\mathrm{loc}}$ for every $\varphi \in \mathscr{D}(\Omega)$. Given any $\varphi \in \mathscr{D}(\Omega)$, choose $\psi \in \mathscr{D}(\Omega)$ so that $\psi(x) = 1$ for $x \in \mathrm{Supp} \ \varphi$. Since $\varphi T \in E_{\mathrm{loc}}$, we have $\psi(\varphi T) \in E$. But $\psi \varphi = \varphi$, so $\varphi T \in E$, and therefore T belongs to E_{loc} .

It remains to prove that the two initial topologies on the vector space $(E_{loc})_{loc} = E_{loc}$ coincide. The composition of the maps $T \mapsto \varphi T$ from $(E_{loc})_{loc}$ into E_{loc} and $T \mapsto \psi T$ from E_{loc} into E is the map $T \mapsto \psi \varphi T$ from $(E_{loc})_{loc}$ into E. Conversely, every map $T \mapsto \varphi T$ from $(E_{loc})_{loc}$ into E is of this form with $\psi(x) = 1$ for $x \in Supp \varphi$. Therefore the topology on $(E_{loc})_{loc}$ is the initial topology for the maps $T \mapsto \varphi T$ from $(E_{loc})_{loc}$ into E by the transitivity of the initial topology [1, chap. I, § 2, n. 3, Proposition 5].

Example 1. $\mathcal{D}(\Omega)$ is a normal space of distributions, and it is topologically semi-local [7, chap. V, § 2, Théorème III, p. 119; 5, Proposition 4.6.1, p. 348]. I want to show that

 $\mathscr{D}(\Omega)_{\mathrm{loc}} = \mathscr{E}(\Omega)$. Clearly if $f \in \mathscr{E}(\Omega)$ and $\varphi \in \mathscr{D}(\Omega)$, then $\varphi f \in \mathscr{D}(\Omega)$. Conversely, if $T \in \mathscr{D}'(\Omega)$ is such that $\varphi T \in \mathscr{D}(\Omega)$ for every $\varphi \in \mathscr{D}(\Omega)$, then choosing $\varphi(x) = 1$ for x near an arbitrary point of Ω we see that $T = f \in \mathscr{E}(\Omega)$. Thus $\mathscr{E}(\Omega)$ and $\mathscr{D}(\Omega)_{\mathrm{loc}}$ coincide as vector spaces.

The canonical bijection $\mathscr{E}(\Omega) \hookrightarrow \mathscr{D}(\Omega)_{loc}$ is continuous, since for each $\varphi \in \mathscr{D}(\Omega)$ the map $f \mapsto \varphi f$ from $\mathscr{E}(\Omega)$ into $\mathscr{D}(\Omega)$ is continuous [5, Proposition 4.7.4, p. 360].



Finally, I show that the map $\mathscr{E}(\Omega) \hookrightarrow \mathscr{D}(\Omega)_{loc}$ is open. Let U be a neighborhood of 0 in $\mathscr{E}(\Omega)$. We may assume that

$$U = \{ f \in \mathcal{E}(\Omega); |\partial^{\alpha} f(x)| \le \varepsilon, |\alpha| \le m, x \in K \},$$

where $\varepsilon>0$, $m\in\mathbb{N}$, and K is a compact subset of Ω . Let L be a compact neighborhood of K contained in Ω , and W_o the neighborhood of 0 in $\mathscr{D}(L)$ given by $W_o=\{\varphi\in\mathscr{D}(L); |\partial^\alpha\varphi(x)|\leq \varepsilon, |\alpha|\leq m\}$. Since $\mathscr{D}(L)$ is a subspace of $\mathscr{D}(\Omega)$ [2, chap. II, § 4, n. 6, Proposition 9], by the Lemme 2 of loc. cit. there exists a neighborhood W of 0 in $\mathscr{D}(\Omega)$ such that $W\cap\mathscr{D}(L)=W_o$. Let $\psi\in\mathscr{D}(L)$ be such that $\psi(x)=1$ for x in neighborhood of K, and denote by V the inverse image of W with respect to the map $f\mapsto\psi f$ from $\mathscr{D}(\Omega)_{\mathrm{loc}}$ into $\mathscr{D}(\Omega)$. If $f\in V$, then $\psi f\in W$ and in particular $|\partial^\alpha f(x)|=|\partial^\alpha(\psi f)(x)|\leq \varepsilon$ for $x\in K$ and $|\alpha|\leq m$, i.e., $f\in U$. Thus $U\supset V$, and the map is indeed open.

Taking into account Proposition 4, we proved

Proposition 5. $\mathscr{E}(\Omega)$ is a topologically local space of distributions. Its usual topology of uniform convergence on compact subsets of Ω of $f \in \mathscr{E}(\Omega)$ and all its derivatives is the coarsest topology for which the maps $f \mapsto \varphi f$ from $\mathscr{E}(\Omega)$ into $\mathscr{D}(\Omega)$ are continuous for all $\varphi \in \mathscr{D}(\Omega)$.

Example 2. The space $\mathcal{K}(\Omega)$ of continuous functions with compact support, equipped with the finest locally convex topology for which the canonical injections $\mathcal{K}(K) \hookrightarrow \mathcal{K}(\Omega)$ are continuous, is a normal space of distributions [5, Proposition 4.4.1, p. 338] and it is topologically semi-local [5, Proposition 4.6.1, p. 348]. Here $\mathcal{K}(K)$ denotes the space of

continuous functions with support in the compact subset K of Ω , equipped with the topology of uniform convergence.

The space $\mathscr{K}(\Omega)_{\mathrm{loc}}$ is topologically isomorphic to the space $\mathscr{E}(\Omega)$ of continuous functions on Ω equipped with the topology of uniform convergence on compact subsets of Ω . The proof runs along the same lines as in Example 1, and it is even simpler since m is equal to zero.

Let X be a locally compact topological space. Similarly as in Example 2, one introduces for every compact set K in X space $\mathcal{K}(K)$ of continuous functions on X, having support in K, equipped with the topology of uniform convergence. The space $\mathcal{K}(X) = \cup \mathcal{K}(K)$ consists of all continuous functions with compact support, and is equipped with the finest locally convex topology for which the canonical injections $\mathcal{K}(K) \hookrightarrow \mathcal{K}(X)$ are continuous [3, chap. III, § 1, n. 1].

Let $\mathscr{C}(X)$ be the vector space of all continuous functions on X equipped with the topology of uniform convergence on compact subsets of X. For every $\varphi \in \mathscr{K}(X)$ the linear map $f \mapsto \varphi f$ from $\mathscr{C}(X)$ into $\mathscr{K}(X)$ is continuous. Indeed, if $K = \operatorname{Supp} \varphi$ and $\|\varphi\|_{\infty} = \max |\varphi(x)|$, then $|f(x)| \leq \varepsilon / \|\varphi\|_{\infty}$ for $x \in K$ implies $|\varphi(x)f(x)| \leq \varepsilon$. The topology of $\mathscr{C}(X)$ is furthermore the coarsest for which the maps $f \mapsto \varphi f$ are continuous; this can be seen exactly as in the simplification alluded to in Example 2 of the proof in Example 1.

Returning to the case of an open subset Ω of \mathbb{R}^n , a distribution $T \in \mathcal{D}'(\Omega)$ belongs obviously to $\mathscr{C}(\Omega)$ if and only if $\varphi T \in \mathscr{K}(\Omega)$ for every $\varphi \in \mathscr{K}(\Omega)$. Combining with Example 2, we have therefore:

Theorem 1. $\mathscr{C}(\Omega)$ is the space of all distributions $T \in \mathscr{D}'(\Omega)$ such that $\varphi T \in \mathscr{K}(\Omega)$ for all $\varphi \in \mathscr{D}(\Omega)$ or for all $\varphi \in \mathscr{K}(\Omega)$. The topology on $\mathscr{C}(\Omega)$ of uniform convergence on compact subsets of Ω coincides with the coarsest topology for which the maps $f \mapsto \varphi f$ from $\mathscr{C}(\Omega)$ into $\mathscr{K}(\Omega)$ are continuous for all $\varphi \in \mathscr{D}(\Omega)$ or for all $\varphi \in \mathscr{K}(\Omega)$.

Statements analogous to Examples 1 and 2 can be made for $1 \le m < \infty$. In particular $\mathscr{D}^m(\Omega)_{loc} = \mathscr{E}^m(\Omega)$.

Example 3. Let $\mathscr{C}_b(\Omega)$ be the space of all bounded continuous functions on Ω , equipped with the topology of uniform convergence on Ω defined by the norm $||f||_{\infty} = \sup_{x \in \Omega} |f(x)|$. Denote by $\mathscr{C}_o(\Omega)$ the subspace consisting of the functions «tending to zero at infinity» (i.e., such that given $\varepsilon > 0$ there exists a compact subset K of Ω such that $|f(x)| \leq \varepsilon$ for $x \notin K$). Then $\mathscr{C}_b(\Omega)_{\mathrm{loc}} = \mathscr{C}_o(\Omega)_{\mathrm{loc}} = \mathscr{C}(\Omega)$. The proof is again similar to the argument in Example 1, this time, however, not only can one take m = 0 but also the topology of $\mathscr{C}_b(\Omega)$ and $\mathscr{C}_o(\Omega)$ is simpler. Just as in the case of $\mathscr{K}(\Omega)$, we could also consider the maps $f \mapsto \varphi f$ for φ in $\mathscr{K}(\Omega)$.

Example 4. Let $\mathscr{B}(\Omega)$ be the space of all bounded continuous functions on Ω which have bounded continuous derivatives of all orders. One equips $\mathscr{B}(\Omega)$ with the topology of uniform convergence on Ω of $f \in \mathscr{B}(\Omega)$ and all its derivatives, defined by the family of semi-norms $f \mapsto || \partial^{\alpha} f ||_{\infty}$, $\alpha \in \mathbb{N}^n$. We denote by $\mathscr{B}_o(\Omega)$ the subspace of $\mathscr{B}(\Omega)$ consisting of those functions which tend to 0 at infinity, together with all their derivatives [7, chap. VI, § 8, p. 199; 5, Examples 2.4.17 and 2.4.19, pp. 91-92]. One has $\mathscr{B}(\Omega)_{\mathrm{loc}} = \mathscr{B}_o(\Omega)_{\mathrm{loc}} = \mathscr{E}(\Omega)$.

Example 5. For $1 \le p \le \infty$ the space $L^p_{loc}(\Omega)$ can be defined as the space of (equivalence classes of) Lebesgue-measurable functions f such that for every compact subset K of Ω the function $\chi_K f$ belongs to $L^p(\Omega)$, equipped with the topology defined by the semi-norms $f \mapsto ||\chi_K f||_p$ [6]. Here χ_K is the characteristic function of K,

$$||f||_p = \left(\int_{\Omega} |f(x)|^p dx\right)^{1/p}$$
 for $1 \le p \le \infty$,

and $|| f ||_{\infty}$ is the essential maximum of |f|.

Let us prove that $f \in L^p_{\mathrm{loc}}(\Omega)$ if and only if $\varphi f \in L^p(\Omega)$ for every $\varphi \in \mathscr{D}(\Omega)$. Assume that $f \in L^p_{\mathrm{loc}}(\Omega)$. Then φf is measurable. Setting $K = \mathrm{Supp}\,\varphi$ we have $|\varphi(x)| \leq \|\varphi\|_{\infty} \chi_K(x)$, hence $\int |\varphi f|^p < \infty$, i.e., $\varphi f \in L^p(\Omega)$. Conversely, assume that $\varphi f \in L^p(\Omega)$ for all $\varphi \in \mathscr{D}(\Omega)$. Given any compact set $K \subset \Omega$, there exists a positive function $\varphi \in \mathscr{D}(\Omega)$ such that $\varphi(x) = 1$ for $x \in K$ [5, Proposition 2.12.5, p. 169]. Then $\chi_K(x) \leq \varphi(x)$ and $\chi_K \varphi = \chi_K$, hence $\chi_K f = \chi_K \varphi f$ is measurable and $\int \chi_K |f|^p < \infty$, i.e., $f \in L^p_{\mathrm{loc}}(\Omega)$.

The same reasoning shows also that $L^p_{loc}(\Omega)$ is equipped with the coarsest topology for which the maps $f \mapsto \varphi f$ from $L^p_{loc}(\Omega)$ into $L^p(\Omega)$ are continuous for all $\varphi \in \mathscr{D}(\Omega)$.

Example 6. The Sobolev space \mathscr{H}^s is defined as the space of those tempered distributions $T \in \mathscr{S}'$ on \mathbb{R}^n whose Fourier transform \widehat{T} satisfies $(1 + |\xi|^2)^{s/2} \widehat{T}(\xi) \in L^2(\mathbb{R}^n)$. It is equipped with the norm

$$||T||_{s} = \left(\int_{\mathbb{R}^{n}} (1+|\xi|^{2})^{s} |\widehat{T}(\xi)|^{2} d\xi\right)^{1/2}$$

[8, p. 4]. Laurent Schwartz introduced the corresponding space \mathcal{H}_{loc}^{s} and denoted it \mathcal{L}^{s} [8, p. 16].

2. DISTRIBUTIONS WITH COMPACT SUPPORT AND DUALITY

If E is a space of distributions on the open subset Ω of \mathbb{R}^n , denote by E_c the subspace of E consisting of those $T \in E$ whose support is compact. For any compact subset E of E we denote by E(E) the space of those E whose support is in E; then E is a space of those E whose support is in E; then E is continuous and therefore E is a space of distributions.

Let (K_j) be a sequence of compact subsets of Ω such that $K_j \subset \check{K}_{j+1}$ and $\bigcup_j K_j = \Omega$. Then the topology of E_c is also the locally convex inductive limit of the sequence $(E(K_j))_j$. If the compact set $K \subset \Omega$ is contained in the compact set $L \subset \Omega$, then E(K) is closed in E(L). Indeed, if $T_o \in E(L)$ is adherent to E(K) for the topology induced by E, then it is a fortiori adherent to E(K) for the weak topology $\sigma(\mathscr{D}'(\Omega), \mathscr{D}(\Omega))$. Let $\varphi \in \mathscr{D}(\Omega)$ be such that Supp $\varphi \cap K = \emptyset$. For any $\varepsilon > 0$ there exists a $T \in E(K)$ such that $|\langle T - T_o, \varphi \rangle| = |\langle T, \varphi \rangle - \langle T_o, \varphi \rangle| \le \varepsilon$. But $\langle T, \varphi \rangle = 0$, so $\langle T_o, \varphi \rangle = 0$, i.e., $T \in E(K)$. It follows [2, chap. II, § 4, n. 6, Proposition 9, p. II.35] that E_c induces on each E(K) the same topology as E, and each E(K) is closed in E_c .

If E is a normal space of distributions, then in all examples so is E_c but this does not seem to be true in general.

Let E be a normal, topologically semi-local space of distributions on Ω , and E' its dual equipped with $\beta(E',E)$. Given $T\in (E')_c$, let $\psi\in \mathscr{D}(\Omega)$ be such that $\psi(x)=1$ in a neighborhood of Supp T. For every $S\in E_{\mathrm{loc}}$ the expression $\langle T,\psi S\rangle$ is well defined and independent of the particular choice of ψ . The linear form $L_T:S\mapsto \langle T,\psi S\rangle$ on E_{loc} is continuous, since the map $S\mapsto \psi S$ from E_{loc} into E is continuous by definition, and $T\in (E')_c\subset E'$. In all known examples the linear map $T\mapsto L_T$ from $(E')_c$ into $(E_{\mathrm{loc}})'$ is a topological isomorphism. In the general case I was only able to establish

Theorem 2. Let E be a normal, topologically semi-local space of distributions. The map which associates with $T \in (E')_c$ the linear form

$$L_T: S \mapsto \langle T, \psi S \rangle$$

on $E_{\rm loc}$ is a continuous bijection from $(E')_c$ onto $(E_{\rm loc})'$ equipped with the strong topology $\beta((E_{\rm loc})', E_{\rm loc})$.

Proof. 1) First I prove that the map $T\mapsto L_T$ is injective. Assume that $L_T=0$. Let $x\in\Omega$ and K be a compact neighborhood of x. Choose $\psi\in\mathscr{D}(\Omega)$ so that $\psi(x)=1$ for $x\in K\cup\cup Supp\ T$. Then for all $\varphi\in\mathscr{D}(K)$ we have $\langle T,\varphi\rangle=\langle T,\psi\varphi\rangle=L_T(\varphi)=0$. Thus T=0 in the neighborhood of any point of Ω , hence by the localization principle [7, chap. I, § 3, Théorème IV, p. 27; 5, Proposition 4.2.1, p. 318] T=0.

2) Next, I want to prove that the map $T\mapsto L_T$ is continuous. Let W be a strong neighborhood of 0 in $(E_{\mathrm{loc}})'$. There exists a bounded subset B of E_{loc} whose polar B^o is contained in W. Let (K_j) be a sequence of compact subsets of Ω such that $K_j\subset K_{j+1}$ and $\bigcup K_j=\Omega$. Let (ψ_j) be a sequence of functions in $\mathscr{D}(\Omega)$ such that $\psi_j(x)=1$ for $x\in K_j$ and $\psi_j(x)=0$ outside K_{j+1} . Since the maps $S\mapsto \psi_j S$ from E_{loc} into E are continuous, for each j the set $\psi_j B$ is bounded in E. If $(\psi_j B)^o$ denotes the polar in E', then $V_j=E'(K_j)\cap (\psi_j B)^o$ is a neighborhood of 0 for the topology induced by $\beta(E',E)$ on $E'(K_j)$. The balanced, convex hull V of $\bigcup V_j$ is a neighborhood of 0 in $(E')_c$.

Let $T \in V$. There exist distributions $T_j \in V_j$ and scalars λ_j with $\sum |\lambda_j| \le 1$ and $\lambda_j = 0$ except for indices j belonging to a finite set J such that $T = \sum \lambda_j T_j$. Choose $\psi \in \mathscr{D}(\Omega)$ such that $\psi(x) = 1$ in a neighborhood of Supp $T \cup \bigcup_{j \in J} K_{j+1}$. Then $\psi \psi_j = \psi_j$ for $j \in J$. If S belongs to B, then

$$L_T(S) = \langle T, \psi S \rangle = \sum_{j \in J} \langle \lambda_j T_j, \psi_j S \rangle$$

and so

$$|L_T(S)| \leq \sum |\lambda_j| |\langle T_j, \psi_j S \rangle| \leq \sum |\lambda_j| \leq 1,$$

i.e. $L_T \in B^o \subset W$.

3) Finally I show that the map $T\mapsto L_T$ is surjective. First I prove that given $L\in (E_{\mathrm{loc}})'$ there exists a compact subset K of Ω such that L(S)=0 for all $S\in E_{\mathrm{loc}}$ with Supp $S\cap K=\emptyset$. There exists a neighborhood U of 0 in E_{loc} such that $|L(S)|\leq 1$ for all $S\in U$. We may assume that $U=\bigcap_{j=1}^k f_j^{-1}(U_j)$, where U_j is a neighborhood of 0 in E and $f_j:E_{\mathrm{loc}}\to E$ is the map $S\mapsto \varphi_jS$ for some $\varphi_j\in \mathscr{D}(\Omega)$. Let $K=\bigcup_{j=1}^k \mathrm{Supp} \varphi_j$ and assume that $\mathrm{Supp}\ S\cap K=\emptyset$. Then for any $m\in\mathbb{N}$ and $1\leq j\leq k$ we have $\varphi_j\cdot mS=0\in U_j$ and therefore $mS\in U$. Consequently $|L(S)|\leq \frac{1}{m}$ for all m>0 and so L(S)=0.

By Proposition 2 the canonical injection $E \hookrightarrow E_{\mathrm{loc}}$ is continuous, hence the restriction of L to E is a continuous linear form on E and there exists $T \in E'$ such that $L(S) = \langle T, S \rangle$ for all $S \in E$. Choosing $\varphi \in \mathscr{D}(\Omega) \subset E$ with $\mathrm{Supp} \ \varphi \cap K = \emptyset$ we have $\langle T, \varphi \rangle = L(\varphi) = 0$, hence $\mathrm{Supp} \ T \subset K$ and in particular $T \in (E')_c$. Let $\psi \in \mathscr{D}(\Omega)$ be equal to 1 in a neighborhood of $\mathrm{Supp} \ T$. If $S \in E_{\mathrm{loc}}$, then $(1 - \psi)S \in E_{\mathrm{loc}}$ and $\mathrm{Supp} \ (1 - \psi)S \cap K = \emptyset$, hence

$$L(S) = L(\psi S) + L((1 - \psi)S) = \langle T, \psi S \rangle,$$

i.e., $L = L_T$.

Let now T be an element of $(E')_{loc}$. For any $S \in E_c$ let $\psi \in \mathscr{D}(\Omega)$ be such that $\psi(x) = 1$ for x in a neighborhood of Supp S. Then $\langle \psi T, S \rangle$ is well defined and independent of the choice of ψ . The linear form $L_T: S \mapsto \langle \psi T, S \rangle$ is continuous on E_c , and it is easy to prove that the linear map $T \mapsto L_T$ from $(E')_{loc}$ into $(E_c)'$ is injective and continuous. It might be of some interest to know whether it is surjective and open.

REFERENCES

- [1] N. BOURBAKI, Topologie générale, Chapitres I-II, Troisième édition; Hermann, Paris, 1961.
- [2] N. BOURBAKI, Espaces vectoriels topologiques, Nouvelle édition; Masson, Paris, 1981.
- [3] N. BOURBAKI, Intégration, Chapitres I-IV, Deuxième édition; Hermann, Paris, 1965.
- [4] L. HÖRMANDER, The analysis of linear partial differential operators II, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983.
- [5] J. HORVATH, Topological vector spaces I, Addison-Wesley, Reading, Mass., 1966.
- [6] J. HORVATH, Espaces de fonctions localement intégrables et de fonctions intégrables à support compact, Rev. Colombiana Mat., 21 (1987), pp. 167-186.
- [7] L. Schwartz, Théorie des distributions, Nouvelle édition; Hermann, Paris, 1966.
- [8] L. Schwartz, Ecuaciones diferenciales parciales elípticas, Rev. Colombiana Mat., Monografias matemàticas, 13 (1973), Bogotà.

Received January 22, 1991
J. Horváth
Department of Mathematics
University of Maryland
College Park, MD 20742
U.S.A.