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INTRODUCTION

A space of distributions E is local if, roughly, a distribution T" belongs to E whenever T
belongs to E in the neighborhood of every point. A space F, in whose definition growth
conditions enter, is not local but one can associate with E alocal space E,__ . This is classical
for the spaces LP [6], and was done for the Sobolev spaces #° by Laurent Schwartz in
his 1956 Bogota lectures [8], where he presented an expository account of B. Malgrange’s
doctoral dissertation. In the present paper I establish some simple properties of the space
E,,. attached to a space of distributions E.

To a distribution space E we can also attach the space E_ consisting of those elements
of F which have compact support. At the end of the paper I make some remarks conceming
the duality between local spaces and spaces of distributions with compact support.

1. LOCAL SPACES

Let Q be anopen subset of R™. Let us recall thata pair ( E, j) consisting of a locally convex
Hausdorff space E and a continuous injective linear map ; from E into the space 2 (Q2)
of Schwartz distributions on € is called an injective pair [5, Definition 4.2.2, p. 319]. The
image j( F) is said to be a space of distributions on € . In what follows we shall identify E
with j( E) but, of course, E keeps its own topology which is finer than the one induced by
D'(Q).

If E is a space of distributions on 2, we denote by E, . the vector space of all dis-

tributions 7" € &' (Q) such that, for all test functions ¢ belonging to the space Z(Q) of
infinitely differentiable functions with compact support, the distribution 7" belongs to E [4,
section 10.1, p. 13]. We equip E, . with the coarsest topology for which the maps T +— T
from E,  into E are continuous for all ¢ € (Q2).

If E coincides with E, . as a vector space, then E is said to be a local space. It fur-
thermore the topology of E is the same as that of E,__, then we say that F is fopologically
local.

We shall see below that for 0 S m < oo the space £™(Q) of the m times continuously
differentiable functions on Q, equipped with the topology of uniform convergence on each
compact subset of  of the functions and their derivatives, is topologically local.



216 John Horvith

Proposition 1. E __ is a space of distributions.

Proof. We have to prove that the canonical injection E, . — 2'(Q) is continuous. Let W be

a neighborhood of 0 in 27(2) . We may assume that W is the polar B° of a bounded subset
B of 92(Q) . There exists a compact subset K of  such that Supp ¢ C K forall ¢ € B.
Let ¥y € 2(Q) be such that ¢¥(z) = 1 in a neighborhood of K. Since E «— Z'(Q) is
continuous, there exists a neighborhood V of O in F such that 7" € V implies T € W . The
inverse image U of V' withrespecttothe map T +— ¢7" from E, . into E 1s a neighborhood
ofOin E, .. If T € U, then [{T,p)| = |(¥T,p)| <1 forall p € B,ie, Te€eB°=W. =

It can happen that E, . = {0}. This is the case for instance if = R and E consists
of restrictions to R of functions which are holomorphic in €. To obviate this possibility,
Hormander introduced the following definition [4, Definition 10.1.18, p. 13]: E is semi-local
if EC E,,1e.,if T € E and ¢ € D(Q) imply ¢T € E. Thus FE is local if and only if
it is semi-local and contains every distribution T" such that ¢T" € E for every ¢ € Z(2).

A semi-local distribution space will be said to be topologically semi-local if for each ¢ €
€ D(Q) themap T — T from E into E is continuous.

For each p € &(Q) themap T +— T is continuous from 2°(Q) into &'(Q) [5, p.
348], hence it is a fortiori continuous from E into 2°(Q). If E is semi-local, then it maps
E into E. Therefore, if the closed graph theorem holds for linear maps from E' into E (e.g.,
if E is a barrelled infra-Ptak space or an ultrabornological space with a web of type ¥), then
F is also topologically semi-local.

Proposition 2. If E is topologically semi-local, then the canonical injection E — E, . is
CONntinuous.

Proof. For each p € 2(£2) the map T + T from F into E is continuous, hence by the
universal property of the initial topology [1, chap. I, § 2, n. 3, Proposition4] themap T +— T
from K mto F,_ . 1s continuous (see diagram). =
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Let us recall that a triple (1, E, ) consisting of a locally convex Hausdorff space FE, a
continuous injective linear map ¢ : £(2) — E, and a continuous injective linear map
j i E — 2'(Q) is called a normal triple if i( 2 (Q2)) isdensein E, and joi: Z(Q) —
— Z'(Q) is the map which associates with each p € @(Q) the distribution T, : ¥ +—
— [o p(z)¥(z)dz [5, Definition 4.2.3, p. 319]. The image j( E) is said to be a normal
space of distributions. In this situation ( E’, *1) is an injective pair if we equip E’ with the
strong topology B(E', E), hence *i( E') is a space of distributions on Q . We shall always
identify 2(2) with 1(2(Q)) and E with j(E).

Proposition 3. Let E be a normal, topologically semi-local space of distributions. Then
E, . is a normal space of distributions.

Proof. Since £ () C E and &(Q) — FE is continuous, it follows that Z(Q) C E,__,
and by Proposition 2 the map £ (£2) — E,__ is continuous.
Since P(L2) is dense in E, it is sufficient to prove that E is dense in E__. Let W

be a neighborhood of 0 in F, .. We may assume that W = ﬂLl f;l(lf}), where V; is a
neighborhood of 0 in E, f, isthe map T +— o, T from E, into E and p; € D(Q),
1 <j<k.Letyp € () besuch that (x) = 1 for all z belonging to the compact set
U;-:l Supp p,;. It T € Ey, then YT € E and e AT —YT) = p;T—p;YT = ;T —p;T =
=0 eV, forl <7<k, hence T —¢T € W. Thus E is indeed dense in E. . S

Proposition 4. For any space of distributions E on Q the space E, . istopologically local.

Proof. First I prove that T' € &'/ Q) belongs to E, _ if and only if ¢T" € E, . for every
w € D(2), i.e. that E_ is a local space. If T € E, . and p, ¢ are arbitrary elements
of &(L2), then Y(pT) = (Yvp)T € E, hence T € FE, .. Conversely, suppose that
oT € E, forevery ¢ € (Q). Givenany ¢ € Z(2), choose ¥y € Y(£2) so that
Y(x) = 1 for x € Supp ¢. Since pT' € E, ., we have Y(pT) € E. But Yp = p, S0
T € E, and therefore T belongs to E, .

It remains to prove that the two initial topologies on the vector space (Ej e = Floc
coincide. The composition of the maps T' — T from (E, ) INto £, . and T
— YT from E, . into F is the map T — 9T from (E, ), into E. Conversely, ev-
erymap T" + T from (E, ). Into E is of this form with ¢¥(z) = 1 for z € Supp
¢ . Therefore the topology on ( E, ). 18 the initial topology for the maps 7' + T from
(E ) Into E by the transitivity of the initial topology [1, chap. I, § 2, n. 3, Proposition
5]. o

Example 1. 2(£2) is a normal space of distributions, and it is topologically semi-local {7,
chap. V, § 2, Théoreme III, p. 119; 5, Proposition 4.6.1, p. 348]. I want to show that
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D(Q),. = &(Q).Clearlyif f € &(Q) and p € P (Q), then pf € L(2). Conversely,
if 7€ 2'(Q) is such that T € Z(Q) forevery p € P(Q), then choosing ¢(z) = 1
for x near an arbitrary pointof Q we see that T = f € &(Q2). Thus &(Q) and (Q),
coincide as vector spaces.

The canonical bijection £(Q) — Z(Q),,. is continuous, since for each p € F(Q)
the map f — pf from £(Q) into () is continuous [5, Proposition 4.7.4, p. 360].

Finally, I show that the map & (£2) «— 2(Q),,. is open. Let U be a neighborhood of 0
in &(£2). We may assume that

U={f€e&(Q); |0°f(2)| <L, |o]<m, z € K},

where € > 0, m € IN, and K is a compact subset of €2 . Let I, be a compact neighborhood
of K contained in Q, and W, the neighborhood of 0 in Z(L) givenby W, = {p €
€ D(L);|10%(z)| < &, |al] < m}. Since Z(L) is asubspace of Z(Q) (2, chap. II, § 4,
n. 6, Proposition 9], by the Lemme 2 of loc. cit. there exists a neighborhood W of Oin 2(Q)
suchthat WNY(L) = W,. Let ¢ € Z(L) besuchthat ¥(z) = 1 for z inneighborhood of
K, and denote by V' the inverse image of W with respectto the map f +— ¢ f from Z(Q),.
into Z(Q). If f € V, then ¢ f € W and in particular |0*f(z)| = |0%(¢f)(z)]| < € for
z € K and |a| < m, i.e.,, f € U. Thus U D V, and the map is indeed open.
Taking into account Proposition 4, we proved

Proposition 5. £ () is a topologically local space of distributions. Its usual topology of
uniform convergence on compact subsets of Q2 of f € &(K) and all its derivatives is the
coarsest topology for which the maps f — o f from &(Q) into () are continuous for
all p € D(Q).

Example 2. The space % (£2) of continuous functions with compact support, equipped with
the finest locally convex topology for which the canonical injections Z(K) «— #(Q)
are continuous, 1S a normal space of distributions [5, Proposition 4.4.1, p. 338] and it is
topologically semi-local [5, Proposition 4.6.1, p. 348]. Here % ( K) denotes the space of
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continuous functions with support in the compact subset K of €2, equipped with the topology
of uniform convergence.

The space 7 (L2),,. is topologically isomorphic to the space (£2) of continuous func-
tions on 2 equipped with the topology of uniform convergence on compact subsets of Q .
The proof runs along the same lines as in Example 1, and it is even simpler since m is equal
to zero.

Let X be alocally compact topological space. Similarly as in Example 2, one introduces
for every compact set K in X space % ( K') of continuous functions on X, having support
in K, equipped with the topology of uniform convergence. The space % (X) = U%Z (K)
consists of all continuous funcuons with compact support, and i1s equipped with the finest lo-
cally convex topology for which the canonical injections % ( K) — % ( X) are continuous
[3, chap. III, § 1, n. 1].

Let &(X) be the vector space of all continuous functions on X equipped with the topol-
ogy of uniform convergence on compact subsets of X . For every ¢ € % (X) the lin-
ear map f — f from Z(X) into & (X) is contunuous. Indeed, if K = Supp ¢ and
I ¢ llw= max |(2)], then |f(2)] < &/ || @ ||, for = € K implies |p(z) f(2)] < €.
The topology of &( X ) is furthermore the coarsest for which the maps f — ¢ f arc contin-
uous; this can be seen exactly as in the simplification alluded to in Example 2 of the proof in
Example 1.

Returning to the case of an open subset Q of R™, a distribution T € 2'(Q2) belongs
obviously to &(€Q) if and only if T € FH(Q) forevery ¢ € F(£2). Combining with
Example 2, we have therefore:

Theorem 1. #(Q) is the space of all distributions T € Z'(2) such that oT € F ()
for all p € () orforall p € F(Q). The topology on (L) of uniform convergence
on compact subsets of 2 coincides with the coarsest topology for which the maps f +— ©f
from &(Q) into F(K2) are continuous for all ¢ € Z(Q) or forall p € F5(L2).

Statements analogous to Examples 1 and 2 can be made for 1 < m < oo. In particular
@—m(n)}m - g’“‘(n) .

Example 3. Let Z,(2) be the space of all bounded continuous functions on £2, equipped
with the topology of uniform convergence on £ defined by thenorm || f || = sup, .o [f(z)].
Denote by & (£2) the subspace consisting of the functions «tending to zero at infinity» (1.e.,
such that given ¢ > 0 there exists a compact subset K of Q such that [f(z)| < ¢ for
z ¢ K). Then &,(Q),,. = & ()., = (). The proof is again similar to the argument
in Example 1, this time, however, not only can one take m = 0 but also the topology of
£,(Q) and & _(€2) is simpler. Just as in the case of Z(L2), we could also consider the
maps f — pf for p in B (Q).
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Example 4. Let F(Q) be the space of all bounded continuous functions on £ which
have bounded continuous derivatives of all orders. One equips .&(£2) with the topology
of uniform convergence on Q of f € #H(£2) and all its derivatives, defined by the fam-
illy of semi-norms f —|| 0°f ||, @« € N". We denote by . _(£2) the subspace of
() consisting of those functions which tend to 0 at infinity, together with all their deriva-
tives [7, chap. VI, § 8, p. 199; 5, Examples 2.4.17 and 2.4.19, pp. 91-92]. One has
B(Q. =F (2),.=E(Q).

Example 5. For 1 < p < oo the space L! (£2) can be defined as the space of (equivalence
classes of) Lebesgue-measurable functions f such that for every compact subset K of
the function x , f belongs to LP(£2), equipped with the topology defined by the semi-norms
f =l xx f |, [6]. Here x g is the characteristic function of K,

1/p
| f = ('/; lf(z)l”dm) for 1< p< oo,

and || f ]|, is the essential maximum of |f].

Let us prove that f € LY _(Q) if and only if of € LP(Q) forevery ¢ € D(Q).
Assumethat f € L} (). Then ¢ f is measurable. Setting K = Supp ¢ we have |p(z)| <

<l @ |l xx(z), hence [ |pf|P < oo, ie., pf € LP(2). Conversely, assume that o f €
€ LP(Q) forall p € ZY(Q). Given any compact set K C €2, there exists a positive
function € Z(2) such that p(z) = 1 for x € K [5, Proposition 2.12.5, p. 169]. Then

Xx(z) < o(z) and x 9 = xg, hence xx f = xx@f is measurable and [ x ,|f|P < oo,
ie., f€ L (Q).

The same reasoning shows also that LY () is equipped with the coarsest topology for
which the maps f — of from L] () into LP(£2) are continuous for all ¢ € Z(Q2).

Example 6. The Sobolev space #° is defined as the space of those tempered distributions

T € %' on R® whose Fourier transform T satisfies (1 + |¢[2)*2T(¢) € L*(R™). Itis
equipped with the norm

. 1/2
17 1= [ 0+ ) o Pac)

[8, p. 4]. Laurent Schwartz introduced the corresponding space #, . and denoted it £° [8,
p. 16].
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2. DISTRIBUTIONS WITH COMPACT SUPPORT AND DUALITY

If E is a space of distributions on the open subset 2 of R™, denote by E. the subspace of
E consisting of those T' € E whose support is compact. For any compact subset K of 2
we denote by E( K') the space of those T € E whose supportisin K ;then E, = UE(K).
Equip each E( K') with the topology induced by F, and E_ with the finest locally convex
topology for which the canonical injections E( K) — E_ are continuous. The canonical
injection E, — E 1s continuous and therefore E_ is a space of distributions.

Let (K ) beasequence of compact subsets of €2 such that K; C K vand U, K; = Q.

Then the topology of E_ is also the locally convex inductive limit of the sequence ( E( K J-) ) ;-

If the compact set K C €2 1s contained in the compact set L C €2, then E( K) 1s closed in
E(L). Indeed, if T, € E(L) is adherent to E( K) tor the topology induced by E, then it

is a fortiori adherent to E( K) for the weak topology o(Z'(Q), Z(Q)). Let p € Z(Q)
ne such that Supp p N K = @ . Forany € > 0 there exists a 77 € E(K) such that
(T —T,,0)l = T,p) —(T,, )| <e.But (T,p) =0,s0 (T,,p)=0,1e,T € E(K).
It follows [2, chap. II, § 4, n. 6, Proposition 9, p. I1.35] that E_ induces on each E( K) the
same topology as F, and each F( K) isclosed in E_.

If £ 1s a normal space of distributions, then 1n all examples so 1s £ but this does not
seem to be true in general.

Let E be a normal, topologically semi-local space of distributions on 2, and E' its dual
equipped with S(E', E). Given T € (E')_, let ¥ € £(£2) be such that ¢(z) = 1 ina
neighborhood of Supp 7'. For every S € E, . the expression (T',¢S) is well defined and
independent of the particular choice of . The lincar form L, : S +— (T,¢¥S) on E,
is continuous, since the map § — ¢S from E, . into E is continuous by definition, and
T € (E"), C E'. Inall known examples the linear map T +— L, from ( E')_ into ( B, )’ is
a topological isomorphism. In the general case I was only able to establish

Theorem 2. Let E be a normal, topologically semi-local space of distributions. The map
which associates with T' € (E'), the linear form

Ly S (T, 9S)

on E, . is a continuous bijection from (E')_ onto (E\ )" equipped with the strong topology
B((E\)", Eie) -

Proof. 1) First] prove that the map 7' +— L, is injective. Assume that L, = 0. Let z € £2
and K be acompact neighborhood of . Choose ¢ € 2(£2) sothat y(z) =1 for z € KU
U Supp T'. Thenforall p € Z(K) wehave (T, p) = (T ,yp) = Lp(p) =0. Thus T =0
in the neighborhood of any point of €, hence by the localization principle [7, chap. 1, § 3,
Théoreme IV, p. 27; 5, Proposition4.2.1, p. 318] T'= 0.
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2) Next, I want to prove that the map T' — L. is continuous. Let W be a strong neigh-
borhood of 0 in (E, )’. There exists a bounded subset B of E, . whose polar B? is con-
tained in W. Let (K;) be a sequence of compact subsets of €2 such that K; C K;,, and

UKj = . Let (¢,) bea sequence of functions in Y (£2) such that 1,{:)-(:) =1forz € K,
and ¢;(z) = 0 outside K,,,. Since the maps S +— .5 from E, into E are contin-
uous, for each ; the set ¢;B is bounded in E. If (¢;B)° denotes the polar in E’ then
V, = E’(K}-) N (¢;B)° is a neighborhood of 0 for the topology induced by S(E’, E) on
E'(K ;) . The balanced, convex hull V' of LJ V; is a neighborhood of 0 in (E)..

LetT" € V. Thereexistdistributions 7; € V; andscalars ; with ) J|A ;| < T and ), =0
except for indices j belonging to a finite set J such that 7= )" )\ ;T;. Choose ¢ € Z(Q2)
such that ¢(z) = 1 in a neighborhood of Supp T U J;.; K, . Then ¢y, = ¢, for j € J.
If S belongs to B, then

L(8S) = (T, $8) = Y (\T;,%,S)

J€J

and so

LS <Y INIKT; 9,81 < Y Il < 1,

ie. Lpre B°CW.

3) Finally I show thatthe map T +— L., is surjective. First I prove that given L € (E, )’
there exists a compact subset K of 2 such that L(S) = 0 forall § € E,, with Supp
SN K = @. There exists a neighborhood U of 0 in E,__. such that |L(S)| < 1 for all

S € U. We may assume that U = ﬂLl f}.‘I (U;), where U, is a neighborhood of 0 in E

and f‘f P Bpe — Eisthemap § — ¢, S for some p; € Q). Let K = U;‘:l Supp
p; and assume that Supp SN K = . Then forany m € N and 1 < j < k we have

p; -mS = 0 € U, and therefore mS € U. Consequently |L(S)| < - forall m > 0 and
so L(S)=0.

By Proposition 2 the canonical injection F «— FE,__ 18 continuous, hence the restriction of
L to E isacontinuous linear form on E' and there exists 7 € E’ suchthat L(S) = (T, S) for
all S € E. Choosing ¢ € (Q) C E with Supp pN K = @ wehave (T, p) = L(yp) =0,
hence Supp 7' C K and in particular T € (E').. Let ¢y € () beequal to 1 in a
neighborhood of Supp T'. If S € E, _, then (1 —¢)S € E,_ and Supp (1 —¢)SNK =@,
hence

L(S) = L($S) + L((1 —¢)S) =(T,¥S),

i.ei, L - LT. a
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Let now T be an element of (E'), .. Forany S € E_let ¢y € Z() be such that
¥(z) = 1 for z inaneighborhood of Supp S. Then (T, S) is well defined and independent
of the choice of 4. The linear form L, : § — (YT, S) is continuous on F_, and it is easy
to prove that the linear map T + L, from ( E'), . into ( E.)’ is injective and continuous. It
might be of some interest to know whether it is surjective and open.
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