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THE PARTIALLY ORDERED  SETS OF MEASURE THEORY
AND TUKEY’S ORDERING

D.H. FREMLIN

Dedicated  to the memory  of Professor Gottfried KlXhe

In [28], J.W. Tukey introduced  an ordering  on the class of directed sets, designed  to illuminate
the theory of Moore-Smith convergente.  1 show how variations of his idea can be used to give
information on a wide variety of partially ordered sets arising in measure theory.

INTRODUCTION

In [l], [22], [3]  and [9]  there is a series of results conceming the additivity and cofinality of
a-ideals of measure and category. It tums out that al1 the main ideas of the proofs can be
expressed in the following scheme: to show that add (s> 5 add (3 and cf (B < cf
(q , where Y and 9 are ideals of sets, first show that 9 2 Y in Tukey’s sense. (Far
definitions see lD, 11 below.) In the present paper 1 seek to develop this idea systematically
to cover both known results  and some interesting offshoots.

A variety of complications appear, SO it is perhaps worth while trying to outline the theory
presented below. Tukey defined a transitive, reflexive relation 5,  and the associated equiv-
alence relation -, on the class of directed sets; the definition can be usefully applied in the
class of al1 partially ordered sets. It is not quite  sufficient  for our needs and 1 describe  simi-
lar relations &, , -w< to cover transitions between directed and undirected sets and between
ideals and cr-ideals. In al1 cases the idea is that if P $ ,,) Q then P is in some way «simplen>
man Q . Al1 the relations are large ones and give a rather coarse classifiction of the partially
ordered sets discusse& but they nevertheless give some useful information, primarily about
additivity and cofinality, but also about such things as cellularity ( 1 J) .

In Q 2 1 deal with partially ordered sets derived from a measure space. Let (X, p) be
a Maharam homogeneous Radon probability space with Maharani type nr 2 w ; write fi
for its measure algebra, 3 - for 3 \ { l}, NP for its idea1 of negligible sets, and Ci for
{E:ECX,p(E) < l).Then

(2C, 2E, 2F, 21). Thus al1 these partially ordered sets are in some sense at the same leve1 of
complexity. Moreover, for many n (and in simple models of set theory, for al1 nr) we have

l’(6) -w  t’(N)  x [nl’”
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(U), SO that the complexity depends on IC in a manageable way.
The most important case is of course n = w,  X = [O , 11, and j~ = Lebesgue measure;

in this  case write K for Y%$ . It turns out tbat the partially ordered sets e’  (N ) , Jtr have
a special piace among the partially ordered sets arising in real analysis, even those in which
measure theory does not seem to be directly involved. Write Yfor the ideal of nowhere dense
subsets  of NN and -4 for the cr-idea1  of meagre sets. (Any non-empty Polish space without
isolated points could  take the piace of N N here.) Then

(3B),  SO that Lp, L#  define  a leve1  of complexity somewhere between NN and Jtr In 5 3 1
seek to locate in this pattem further ideals of interest; for instante,  the idea1 % of subsets  of
N with zero asymptotic density also falls somewhere between NN and .@ (N ) (3K), while
the ideal of subsets  of R with  strong  measure zero is dominated by a power of Jtr(31).

Note that nearly al1 mese results  are theorems of ZFC in a context in which ZFC leaves
a great deal of flexibility. In any particular  mode1 of set theory - under CH, for instante,  or
in random real models - the pattem may collapse dramatically, at least in those parts dealing
with a-ideals. 1 do not attempt to discuss such questions  here. Several relevant models  of set
themy are described in [20].

1 should like to thank J. Cich6n  and S. TodorEeviC for introducing me to [l] and [28],
respectively, and for helpful correspondence since.

1. TUKEY’S ORDERING  WITH VARIATIONS

1 give the definitions on which this paper is based (IA, lB,  ID, lF, 1I)  and a variety of ele-
mentary consequences, with a brief discussion of «bursting  numbers»  (IK-1M).

Defìnition 1A.  Let P be a parlially  ordered  set and A, B two subsets  of P. Say that B
dominates A iffor every CA  E A there is a b E B with a 2 b. Say that A is finitely/countably
dominated in P ifthere is afinitelcountable subset of P dominating A .

Definition 1B. Let P and Q be partially ordered  sets and f : P + Q a function.

(a) f is a Tukey function if {p : f(p) < q} is either empty or txxmded  above  in P for
ewyq  E Q.

(b)  f is  a < w-Tukey function if {p : f(p) 5 q} is finitey dominated in P for every

qEQ.
(c) f is  an w-Tukey function if {p : f(p) < q} is countably  dominated in P for evev

qEQ.
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fioposition 1C. (a) A Tukey function is -C w-Tukey ; a < w-Tukey function is w-Tukey .

(b) lTie composition of two Tkkey  f~ctions  is a i%key function;  the composition of two
< w -Tkkey  functions is a < w - L%key  function; the wmposition of two w -lkkey functions
is an w - TMey  function.

(c) If P is upwanis-directed  and f : P + Q is a < w -i%key  function, tben f is a
lkkey function. If non-empty wuntable subsets  of P are boundedabove in P, and f : P +
-+  Q is an w -i%key  function, tben f is a Tkkey  function.

Part of proof  Suppose, for instance, that f : P -t Q and g : Q + R are -C w-Tukey
functions. Let r E R. Then {q : g(q) < r} is dominated by some finite set B c Q . For
b E B, {p : f(p) < b} is dominated by some finite set A, g P. Now it is easy to check
tbat UbEBA, is a finite subset of P dominating {p : g( f (p)) 5 T-}. As r is arbitrary,  gf is
a < w-Tukey function.

Definition 1D.  Let P and Q bepartially ordered  sets.

(a) Write  P < Q if tbem is a TMey  function from P to Q .
(b) Wtite  P &, Q if tbere is a < w -7trkey  function from  P to Q .
(c) Wtite  P 2, Q if tbere is an w -lkkey function from  P to Q .

Proposition  1E. (a) If P 5 Q then P & Q ; if P <Cu Q then P 5, Q .

(b) <, <<,  and 2, are transitive andreflexive.
(c) ,?f P <, Q and P is upwarak-dimcted  tben P 5 Q ; if P 2, Q and nonempty

countable subsets  of P are boundedabove  in P, then P < Q .

(4 ‘f (Pi)iEr and (QJi,t  are families ofpartialy  ordered  sets and Pi < Qi for every

i E 1,  tkn  flic, Pi I nicl Qi  *
(e) Zf (Pi)iEI and (QJiEr are finite famiies ofpartially  ordemd  sets and Pi 5, Qc  far

every  i E 1,  th niG,  Pi <,,, nicI Qi.
(6  If lPi)iEI is a finite family  of par-baby  ordemd  sets and Q is upwards dkected  and

Pi 5  Qi foreach i E I, tben fl,t Pi 2 Q .

Detìnition 1F.  Let P and Q be partially ordered  sets.

(a) WtitePGQifP<QandQ<P.
(b) Wtite P E... Q if P &, Q and Q &, P.
(c) wtite PZ, QifP<,QandQ<,P.

Proposition 1G. (a) =,qw and -w  are equivalente  relations on the class of partially or-
&red sets.

(b) IfPrQ  thenP+,Q;ifP+,Q tbenPE,Q.
(c) If P is a partially  ordered  set and Q is a wfinal  subset  of P, then P E Q .
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Remark 1H. (a) The phrase «Tukey function»  comes from [l]; the concept  is due to [28].
The relations 5,  = (for directed sets) are studied at length in [28], [24], [13], [26].

(b)  If P and Q are upwards-directed sets then P - Q iff there is a partially ordered set
R with cofinal subsets  isomorphic to P and Q ([28],  chap. 11). This is false for undirected
partially ordered sets; for example, [w] ’ E [w]  * x w  (where [w] ’ is the set of singleton
subsets  of w  , ordere  by c );  but a partially ordered set in which a copy of [w]  ’ is cofinal
must have maximal elements, while a partially ordered set in which a copy of [w]’ x w is
cofinal cannot have maximal elements.

(c) As is already apparent from the example just given, and will become even clearer in 0
2 of this paper, the relations 2,  &, and 5, are large, and relate  some unexpected sets; this
is the whole point of their use here.

(d) Throughout this paper, partially ordered sets are considered to be attive  upwards; thus
a Tukey function is one  such that the inverse image of an upwards-bounded  set is empty or
upwards-bounded.  When we come to study Boolean algebras this will force us to work with
partially ordered sets 3 - (2Ad) rather than the more familiar sets p + of non-zero elements.
It seems easier to make a few such inversions than to devise a languagecapable of dealing with
cases in which one  partially ordered set is attive upwards and another is attive downwards.

(e) Evidently the role  of w in <,, =w can be played by other cardinals  (we shall want
regular cardinals  in piace of w in < . . , +, ).  1 have no applications for such a generalisation
SO 1 pass it by.

Cardinal functions 11.1 shall use the following definitions. Let P bea partially ordered sets.
(a) Write
add( P) = min {#( A) : 0 # A c P, A has no upper bound in P},
add,(  P) = min {#( A) : A c P,  A is not countably dominated in P},
cf( P) = min {#( B) : B is a cofinal subset of P},
c(P) = sup{#(A) : A 2 P is an up-antichain in P}.
(The formulae  for add( P) , add,(  P) may cali for an interpretation of «min 0 ». 1 shall

use « 00 » in such cases - e.g. add( P) = 00 if P is empty or has a greatest member - with the
convention that K < 00 for every cardinal n.  ) Note that if add( P) > w then add, ( P) =
= add(P)  .

(b)  Zf n, X and B are cardinafs, Zsay that (n, X,  < 6) is a triple precaliber upwards of P
if for every indexed t2miIy (p~)~,, in P fhere is an Z E [IC]’ such that  {p( : < E J} is

boundedabove in P forevery J E [ IlCe.

Theorem 1J. Let P and Q be partially ordered  sets.
(a) Zf P 5 Q thcn
add(Q) < add( P) ;
adcI,  I add,(P);
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cft PI I cf(Q) ;
if ( IC, X , < oc)) is  a tr@le preealiher  upwards of Q , it is a tn$le  preealikr  up wards of P ;

c(P) I c(Q).
(b) If P 5, Q then
ac%,tQ)  I add,tp);
Np) I m=(w,  cf(Q)).

ProoL  (a) IfP  = 0 theresultistrivial(add(P) = add,(P)  = 00, cf(P) = c(P) = 0,
and (n, X, < 00) is always a triple precaliber of P). SO let us suppose that P # 0 . Let
f : P + Q be a Tukey function.

(i) If add( P) < OO,  let A E [PladdCP) be a set with no upper bound in P; then f[Al
can have no upper bound in Q SO add ( Q) < #( f[ Al) 2 add( P) .

(ii) Similarly, add,(  Q) 5 add,(  P) because f[ A] cannot be countably dominated in
Q if A c P is not countably dominated in P.

(iii) Take C E [Q]“‘(o) which is cofinal with Q . For each c E C choose  an upper bound
a, of {p : f(p) 5 c} . Thcn A = {a, : c E C} is cofinal with P, SO cf( P) 5 #( A) <

5 WQ) .
w If (P&<& is a famili in P, there  is an 1 E [ n]’ such that {f( p()  : [ E J} is

bounded above  in Q for every J E [ 11  <e ; now {pc : [ E J} is bounded above  in P for

every J E [Ilce.
(v) c(P) 5 n iff (IC+,  2, < 3) is a triple precaliber upwards for p.
(b)  Similar to (ii), (iii) of(a).

Remark.  «Triple precalibers»  look unfriendly. 1 mention  them because they provide  argu-
ments to show that P & Q (see 2Ma,2Nb  below).

Bursting numbers 1K. (a) For an upwards-directed partially ordered set P, write

bu( P) = min { n : 3 cofinal C 2 P such that

#({c: cEC,c<  b}) < nVbEP},

the principal  bursting nwnberof P (see [ 131,s  4).
(b)  Observe that (for directed P)

bu(P) = min{n  : 3A E [PldCP’  such that

#({CI : a E A, a < b}) < nVb  E P}.

Theurem 1L. (a) bu( [ n] 2”)  5  w1 for every curdinal  n < w,  .
(b) bu([n]lw)  < w1 whenevercf([nr]5”) = n.
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(c) Suppose that 4 is  bue and cf( [n]  sw)  < IC+ whenever IC > cf( n) = w . 7hen
bu( [K] sw) < w1 fof every IC.

td)  Zf
(*) fof every f : [w,+~]<~ + [ ww]  su tiere is an  uncountable A c: w,,, such tbat

{f(l)  : 1 E  LP’} is countable,  then bu( [ ww]  SU)  >  w1  .

Pro& (a) (i) It wilI help to begin with the following fact: let D be the class of ordina&
A such that bu( [LI]‘“)  < w- *. Suppose that CU  is an ordina& that cf( (u) > w,  and that
Q! = sup(anD); then <y E D. Forwecanchoose,foreach  LJ E arnD, acofinalset
C,.,  c  [ LL] SU such that {c : c E C,, c c  a} is countable for each a E [n] &.  Next, for

a E [CU]@,  set r(a)  = min{LJ : LJ E cm D, a c  n}; r(a) is well-defined (not oo!)
becausecf(a)>#(a)  andcr=sup(a!nD).Notethat$a)<$b) ifaCb.Write

C = {a  : a  E  [alsw,  a E  C7caj}.

This C wimesses that bu( [ CU]““)  5  w1  . TO see that it is cofinal with [ cr]+,  take any
aE[cu]gw;thenaf[$a)]gWsothereisacEC,(,, suchthataCc;becauseaCcC

cr(a), r(c)  =7(a)  andcEC.Finally,givenbE[cul~W,

{c:c~C,  ccb}C  u {c:c~C,,  ccbnn}
AEE

where E = {7(a) :aCb}.Butifn,LJ’~Eandn<LJ’thenthereisanaCbsuch
that7(a)=n’,sothataCn’buta~n;inthiscaseb~n’\nf0.ItfollowsthatE
is countable. But also {c : c E CA, c C b n P,} must be countable for every n E E, SO

{c : c E C, c c  b} is countable, as required.
(ii) Since bu( [n]  @)  = 2 for n 5 w and bu(  [CV] 2”) = bu(  [ #( CY)]  5”) for every ordina1

CZ, we see at once that if there is any cardinal IC such that bu( [ n]  @)  >  w,  then the lest such
cardinal is uncountable and of countable cofinality. In particular,  it must be at least w, ; which
proves  (a).

(b)  Consider A = [n]  ’ C [ nr]  9 ; no uncountable subset of A can be bounded above  in
[n]sW;soif#(A)  = cf([n]g”‘),  bu([n]@)  <wl,  by1Kb.

(c) Now suppose that cf(n) = w < nr,  that bu(  [X1<“‘)  2  w,  for every X < n,  that CIÒ
is true and that cf( [ n] ‘“)  < n+ . By Theorem 8.7 of 1251 (see also [27], 2.8) there is a set
M c iN such that (i) #(i) = JC+ (ii) any subset of M of cardinal w1  is expressible as
UnEN  F,  where each F,,  is well-ordered for the lexicographic ordering  of .N . Consider

A = (RN1 : f E M} c [iz]‘“.
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If F 2 ICS  is uncountable and well-ordered for the lexicographic ordering  of ,N men
U{f[Nl  : f E F) is uncountable; it follows that if F 2 M is uncountable SO is U{ f[ N ] :
f E F} ; consquently  #t(A)  = #(  M)  = n+ and every uncountable subset of A is unbounded
abve  in [n]‘“.  By lKb, bu( [ ~1’“)  < W, .

Putting this  together  with par-t  (i) of the proof of (a) above, we have a proof of (c).
(d) Now suppose that (*) is true, and that C is cotinal with [ ww] &.  In this case #(C) >

’ ww  * La k~)~<w,+, be a family of distinct elements of C and set

for I E 1 w,+r 1’“.  By (*) there is an uncountable A c w,, 1 such that a = U{f(  1) : 1 E
E [Al<“} is countable. Now {c : c E C, c c  u} > {Ci : [ E A} is uncountable. As C is

arbitrary > bu( [w w ] 2”) > w 1 *

Remarks  1M. (a) lL(a-b)  come from [13].  lL(c-d)  are due to S. TodorEeviC.
(b)  The condition of 1Lb is satislied by cardinals K of the form 2’)  where X 2 w, and

by strong  limit cardinals of uncountable cotinality.
(c) The conditions of 1Lc  are satisfied e.g. whenever Jensen’s Covering  Lemma is true

ts= 151, § V.5).
(d) If it is relatively consistent with ZFC to suppose that there  is a 2-huge cardi&,  then

it is relatively consistent with ZFC to assume (*) of 1Ld; see [18].

2. THE PARTIALLY ORDERED  SETS OF MEASURE THEORY

1 apply the ideas of 0 1 to function spaces (specitìcally  L’ , Lo and 4?’  ),  measure algebras,
and ideals of negligible sets.

ZA.  Notation.  It may be helpful to declare the following, which is supposed to be nearly
standard.

(a) If I is any set, then !‘( 1) is the Banach lattice {z : z E RI,  11  3; II= CicI  1x(i)  1 <

< oe}, ordered by saying that IC 5 y iff x(i)  5 y(i) for every i E 1. If 5 E C’ ( 1) then
z+  E 1’ ( 1) is defined by writing x+(i) = max ( z( i) , 0) for every i E 1.

(b)  If (X,p)  is a measure space, write MP for the a-ideal of negligible subsets  of X

viz. {E : 3F  > E such that p( F) = 0 } . Write Lo(p) for the Dedekind u-complete Riesz
space of equivalente classes of p-measurable  real-valued  functions on X, and L’ (p) for
the Banach lattice of equivalente classes of p-integra&?  real-valued  functions on X .

(c)  Following [7]  and [8],  1 take  a Radon measure space to be a quadruple (X, Qi , C , p)
where (X, C , p) is a complete locally determined (or «saturated»)  measure space, ‘7fl is a
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Hausdorff topology on X, Ta 2 C , and p is locally finite and inner regular for the compact
sets. Most of the time we shall be dealing with probability spaces; in this  case NP = Jly
where u is the restriction of p to the algebra of Bore1 subsets  of X .

(d) If p\ is a Boolean algebra, write 3 - for the partially ordered set 3 \ { 1) .
(e) Forcardinals n 2 W,  talcefi& tobethemeasurealgebraof [O,llK when [O,llK

is given its usual measure (the Radon product  measure when each copy of [ 0, l] is given
Lebesgue measure; see [8],  A7E).

(0 Recall that the Mahamm type of a u-finite measure space (X, p) is the least cardi-
nal 7(,j4 ) of any subset of the measure algebra ,J! of (X, p) which completely generates
3 (see 1111).  A e-finite measure space (X,p)  is Maharam homogeneous if al1 its non-
negligible measurable subspaces have the same Maharam type, that is, if its measure algebra
is a homogeneous Boolean algebra.

(’ Finally, 1 write JY’for  the ideal of Lebesgue negligible subsets  of [ 0 , 11; note that
( [ 0, l] ,Jy)  is isomorphic to (X,-4$)  whenever X is a separable metric space and p is an
atomless, nonzero  Radon measure on X .

ZB.  The first theorem  of this section is rather abstract, but its generality enables us to dea1
sirnultaneously with partially ordered sets like Lo, L’ and 8 -.

Theorem. Let P be a partially ordered  set such that x V y = sup{ x, y} is dejìned  for al1
x, y E P. Suppose that there  is a metric p on P for which P is complete and A : P x P --+  P
is uniformly continuous. Let Q c P be a p-open set, given the induced  ordering.  Then
Q <CU  1’  (IC) for any IC  2  d(Q) , where d(Q) is the topologica1 density of Q .

Pro& (a) If Q is finite this is elementary, as Q <Cu R for any non-empty partially ordered
set R. SO let us suppose that Q and n are infinite. Fix on a family (gE)t..n  in Q such that

{gt : ( < n} is dense in Q . For each g E Q let m(g) E N be such that

{P  : P E P,  P(P,  d  I 2 -m(q)}  C Q.

ForeachnEN,letA,>O  besuchthat

p(supI,supJ)  < 2~” whenever 0,#1 C J c P, #(J) < 2”,

such a A, exists because (pJiCk  H supiCk pi : Pk + P is uniformly continuous for every

k,  and in particular  for k = 2 n ; we may suppose also that A,, 5 A, 5 2-’ for every 7~.
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(b)  Define f : Q -t e’(n) as  follows. Given p E Q, choose ([(p, n)),, E ,N such

*at  P(P, Q((p,r$)  1 5 &+, for every n E N . Take f(p) E e1 (n) such that

f(~>(m(~)) 2 1, f(p)(E(~,n)l  2 2-“V  E N

(regarding  m(p) E N as  a member of n).
(c) 1 now have to show that f is < w-Tukey . Fix .z E k?’  ( n) , and consider A = {p : p E

E Q,ft~)  < z).  Set

Ki = (q< : ~ < n, z(~)  2 2-‘}

for i E N . Then there is a k E N such that z(i) < 1 for i E N , i 2 k,  and also
#( Ki) 5 2-’  for every i > k (for 11  .z 112 xiEN 2-‘-‘#(  Ki)). For each r E K, detìne
(I( r,  i))i,k  by writing-

Itr,i+  1) = {q: q E K,+l, 3q’E Itr,i),ptq,q’)  5 24+,).

Set pri = sup I( r, i) E P for i 2 k; then (pri)i)k  is an increasing sequence in P.
Moreover, if i 2 k,

P (Pr,,+1  IP,,) = p(sup I(r,i+ l),sup  I(r,i)) 5 2-‘-l

because#(I(r,i+l))  <#Ki+,  <2’+’ and every member of I( r,  i+ 1) is within  a distante
24+r of some member of I( r, i) . SO (pri)i>k is a Cauchy sequence in P and has a limit-
P,EP.

Set B = {p,  : 7 E Kk} n Q E [Ql <w. 1 claim that B dominates A. For suppose that
pEA.Then

2-k 5 ftP)(ttP,k)) I Z(C(P,k)),

SO r = &+) E Kk . Next,  Q~(,i)  E I(r, i) for every i > k,  because qtc,,i+  il E Ki+ i and-

P(Q[(p,i+l)l  Q(p,i)) 5 4+2 + L&+ i 5 2 LLi+l for every i 2 k. Finally,

1 I f(P>(dP)) 5 dm(P)>,

so m(p) < k . It follows that

p A p, = !ic qfc,,,)  A p, = lim lim qt+m j+= t(Pvl) ’ prl  =

= lim lim p = p,,
‘-03)-+00  ‘1



186 D.H. Fremlin

sothatp<p,;andalsothat

P(PrtP)  I d7,P) + CP (Pr,i+I,Pri)  I
i=k

2 2-k+  CZ-i-1  = z-k+1  I 2-m(~),

i -k

sothatp,EQandp,EB.
This shows that B dominates A and tbat A is finitely dominated in Q . As z is arbitrary,

f is < w-Tukey.

Theorem 2C. L.et (X, p) be an atomlessprobabiliiy  space of Maharam type IC  2  w . Then

Roof  (a) (i) Choose f : [IC]‘”  -+ .!‘(K)  such that f(a)(f) > 0 whenever f E a E
E [n]‘“.  Then f isaTukey  function so [IC]‘”  < k!‘(n).  (ii) Define g : J?‘(N) + e’(n)
by setting g( IC) (n) = z(n) for n E N , g(z)  (0 = 0 for f E n \ N (identifying the set N
of natural numbers  with the set w of finite ordinals). Then g is a Tukey function SO 1’ (N ) 5
5 -!’  (IC) . (iii) Because .@ ( n) is upwards-directed,  it follows that [n] sw  x 4’ (N ) 2 e’(n)  .

(b)  Let p\ be the measure algebra of (X, p) . then there is a disjoint sequence (aJnEN
in Jl \ (0) such that supsN a,  = 1 in JA and each relative algebra $I Q,  is Maharam
homogeneous ([ll],  5 3). Set n,  = ~(3  a,) for each n; then sup,,  K, = K (it may be
that some or al1 of the n,  are equal to n). Let (X,),, be a disjoint sequence of measurable
subsets  of X such that the equivalente class X; of X,  in $4 is a,, for each n E N . Define
measures pn on X,  by setting

for each p-measurable  set E c X,  . Then L’ (p) is isomorphic to the k?’ -dircct sum

For each n E N , L1 (p,)  is isomorphic (as Banach lattice) to ~5’ ( UJ , where U, is the

usualmeasureon [O,l]“m.  Let P betheP-direct  sumof (L1(v,))nEN,  sothat P g L’(p).
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For each c < IE  take m( <) E N such that [ < IC,,,(~),  and define  uc E P by writing

187

y(i) = 0 if i E N \{m(<)},

u&dE>>  = zo;,

the equivalente class in L’  ( vmcCj)  of u+, where w( : [ 0, l]%b  + R is given by the
formula

w&t) = & if t(c) > 0, 0 otherwise

Observe that 11  uc  II= p wCdL/,,,CCj = 2 for every [ < n. Observe also that if I is a
non-empty finite subset of n and m(f) = k for every f E 1, men

Il y”u(  Il> 2-“#(1)‘/2

for every T-A  E N . For II supcEI 2-“u,  II= J wd uk,  where

w(t) = 2-“yt(F))-1’2

if t E [O,l]“k and min fEI t(t) > 0, w(t) = 0 if min CEI  t( [) = 0 . But for each rea1
cK>o,

Yk{t : w(t) < a} = &k {t : t(f)  2
EEI

= (1  -4-~~-2)~(‘) 5 1 -  +pa--2

where p = 2 -V( I) II2  . SO

uk{t : w(t) 2 (Y} 2 2p a’ 2 -2 if

4-“(u-2)  =

i f  a>P,

and

as  required.

NOW  let b&<e t-un over a norm-dense subset of I?’  ( IC) . For LE E e’(n)  choose induc-
tively a sequence ({( CC,  n))tiEN  in n such that

II z+  - c Y((,,,) Ili 8-” V 71  E N.
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Let f:.@(n)  +  P besuchthat

f(x)  2 c 2-3(z,n) 1 Il f(x)  11211 X Il v x E ~‘(4.
%N

TO see that f is a Tukey function, fix u E P, and set A = {x : f(x) 5 u} . Set

K,,  = [ : m(c) = k, 2-“ut  < v
>

for k, n E N . Then, by the calculations  in the last paragraph,

IIu(k) 11>2-“Vk,ncN.

SO

~~~K~~~~~~~llVoII?(~“(~ll~~~~ll)2=

= 4” Il v 112,

for every n E N . Consequently

#({((x,n)  : x E A}) I 4” Il u Il2 Vnc  Nj

and

c c {Il YC(z,n)  Il:
nEN

111 v Il2 ( l+suuIIxII +I/vl12~4’(8-~+’
>

+S-‘7  <oo
Fl

(as II x Il</] u II for every x E A). But this means that

Y = c c {&n)  : x E A}nEN
is detined in el(~)  , and is an upper bound for A in C’  (n) .

As u is arbitrary, f is a Tukey function, and 1’ (n) 5 P Z L’  (p)  .
(c) By2B,withP=Q=L’(~),p(u,u)=~~u-~~~,wehaveL’(~)~<~~~(n).But

as L’ (p) is upwards-directed, it follows that L’ (ti) < L’(n)  , SO that ~5’ (p) z !’ (K) .
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(d)  Tb  sw that 1’ ( E) < 3 ; , we can use a simpler version  of the argument in (b).  Define

f:e*(n)jp.bywntingo,={~:z(tt)>O},

f(x) = {t : t E io, llK, 3t E a*,  t(t) (1+  ~‘W)  < ~+w}‘*

ii(f(x)) = 1 -j-J  (1 - l;+$yf)) < 1,
m

where ii is the measure of 3 ~, because &,fi m <II z II<  oo. It follows directly that

f is a Tukey function. For suppose that a E 3 - and that A = {z  : f(z) 5 u} . Then
A contains 0 and is upwards-directed. Set y(t)  = supzEA z( <) for each < E 1 (allowing,
notionally, y(c)  = 00). Then

y(f) x+(f)-
l+ Y(f) 3 1+  x+(f)

for every f < n

ttaking  00/( 1+ 00) as l), SO

this shows both that y(f) < 00 for every f and that CcCK e < 00 SO that y E 1’ (n) .

Accordingly y is an upper bound for A in .@(K) . As a is arbitrary, f is a Tukey function
and@(n)  SP,.

te> Findly,  P; Icw k?‘(n), by 2B, using P = $,  and Q = $;,  with p(a,b)  =

= L(aAb).  SoP(n) E<up;.

Theorem 2D. Let (X, p) be un atomless  Radon probability  space of Maharam type n 2  w .
Then

R%& (a) (i) By [9],  Lemma 14 (repeated in [Il], 6.10) there is a family (EoC,,  in /y;

such that {f : EC  C E} is countable for every E E -4$.  Now a H UCE0  EC  : [K] sw + J”;

is a Tukey function, SO [K] sw  5 -/y;  . (ii) There is an inverse-measure-preserving function
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h : X -P [O, 11 ([81,  A61); now E H h-‘[ El : K -f -/y; is a Tukey function, by the
argument of [9],  Q§ 7-8, or [Il], 6.12. Thus M’I Mfi. (i) Because NP is upwards-directed,

it follows that [n]  sw x Jtr < M- 1’
(b)  Let F\ be the measure algebra of (X, p) , and p the measure of 3 . Set

P = {P:PE3”J&pP(n)) =o}.

For p, q E P set

Then P satisfies the conditions of 2B, and its topological  density is max (w  , r( JI )) = n ;
SO P <<,  .@ (IC) ; because P is upwards-directed, P 5 l’  (IC)..

Now detine  f : -/y;  + P by writing f(E) = (Gb,JnEN , where for E E Np,  n E N ,

G,,  is an open set of measure < 2-” including E. 1 claim U-rat  f is a Tukey function. For
take p E P. Foreach né N set

%,={H:HCX  isopen, H’Cp(n) in E},

H,  = u..%n.

Then p( H,) = sup{p(  H) : H E L3Yn} (becauseeverycompact subset of H,  is included
in some member of %,),  SO Ht; = sup{H’  : H E %,}  c p(n). Set F = n& H,; then
F E MP because inf nEN  c( p( n))  = 0 . But if E E NP and f(E) 2 p, then G,,  c H,,

foreverynEN,soECF.Thus{E:f(E)  jp}isboundedabovein-4$,andfisa
Tukey function.

Accordingly Jyi < P and J$ 2 1’ (K) .

Remark.  The argument of [Il], 6.5, can also be used to show that under the conditions of
this theorem, Hfi 5 $ ; .

Theorem 2E. Let (X, p) be a Maharam homogeneous  probability space of Maharam type
n>w.ThenL’(pj  d(n).

I?-oof  (a) As in 2C, we have L”( cl) 5 1’ (n) , because Lo(p) carries a complete metric

p for which its density is n and A is uniformly continuous (set p( u,  u) = / a ).

(b)  TO check that @ (IC) 5 Lo (cl),  it is enough to consider  the case in which X = [ 0 , l]&
with its usual measure, since the Riesz space Lo (j~)  depends only on the measure algebra
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of X ([73,62L).  In this case, for c < n, t E [O,l]&,  t E [O,ll” set u+(t)  = t(()-‘/’ if

t( () > 0, 0 otberwise;  set uc = wi E L’(p).  For z E @(K)  observethat

as  Q!  -) 00.  Consequently

and f(z) = Suez >o mut is defincd in Lo(p) .

TO see that f : .@ ( IC) -P Lo(p) is a Tukey function, take u E L’(p)’  . Write A =
{z : f(s) 5 u} and set y(C) = supzEA z( () for [ < K ; because dmuc < u for every

z E A, y(t)  is finite. Take CY > 0 such that p( {t  : w(t)  5 u})  = @ > 0, where w is a
measurable function with w’ = u . Then the calculation just above  shows that

for every 3: E A ; as A is upwards-directed, it follows that

sothatCC,~Cy-2y(~)<00andyEe’(n).ThusyisanupperboundforAine1(n).As

u is arbitrary,  f is a Tukey function, and f? (n) 5 Lo (cr)  .

Theorem 2F. L.et (X, p) be a Maharam homogeneous Radon probabiliry  space of Maharam
lype n 2 w. Then/YU  zw @(IC).

ProoE  (a) We know already from 2D that Jy; 1.1’  (n) .

09 (0 Ia (Ht)C<6 be a family in Mti such that {c  : Ht c E} is countable for every

E E NP (see (a) (i) of the proof of 2D). Let (G&C<.,nEN be a stochastically independent
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family of measurable sets in X such that p(G(,) = 2-” forall < < nr,n E N; sucha
family exists because the measure algebra of X is isomorphic, as measure algebra, to that of
[O,lIKXN. For z E f?(n)  set J(s,m)  = {f : 2-“‘+’  > z(f)  2 2-m},

Because {f : z( f>  > 0 } is countable, f(z) is a measurable set; because

(ii) Let E E J9i and let A = {rc : f(s)  g E}. Note that 1 = {f : Hc c E} is

countable, and that z(f)  5 0 whenever z E A and f E K \ 1.  Because 1 is countable,
there  is a compact set Fo C X \ E such that p(F,)  > 0 and Fo fl GE,,,  Fo  \ G(,,  are
compact for al1 < E 1, n E N ; now there is a compact set F c  Fo  such that p(F)  = p( Fo)
and p( F n G) > 0 whenever G is an open set meeting F ([8], A7Bg).  Define K : F -+
--+  IO,11 IxN by saying that n(t)(f,  n) = 1 if t E G,,, 0 otherwise; then 7~  is continuous.

Write ‘$34  for the family of open-and-closed subsets  of (0 , 1 }IxN  meeting 7~[ F] ; then %4
is countable. If U E %, men 7r-l [VI is a non-empty relatively open subset of F, SO

p(7r-Wl) > 0.
ForUE%, YEN  set

Then

0 <P(R-‘Wl) Ip f-l u X\G,, =
ncN (M(Ll,n)

SO CnEN  2-“#( K(  u,  n)) < 00. Take .zu E e’(n)’  suchthat zu(f)  2 2~” if né N
and f E K(U,n),  and z”(f)  > 0 forevery f E 1.  Set

B = {k+ :k~N,UE%fji
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then B is a countable subset of .@ (n) .
(iii) 1 claim that B dominates A. For suppose that z E A. Then f(z) 2 E SO Fn

nf( z) = 0 . But

=?r - 1 i 1f-N wnl  ,
neN  m>n

where
w, = {t : t E (0, l}lXN, 3( E J(z,m)  such that t{([,m)  = 1)

is an open set in (0,  1) IxN for each m E N . Now x[ FI is a compact non-empty set not
meeting the G, set ntiN Um,*W,,,.  SothereareannE N andaU E CZ4 suchthat-
dF1 nunu,,, W, = 0 . In this case, 7r-l [VI fl Um,n 71-l  [ W,] = 0 i.e.- -

n-‘[Vln  u u Gc,=O,
en (EJ(z,m)

and J( ZC,  m) 2 K( U, m) for every m 2 7~.  But this means that z(f)  5 2.+(f)  whenever
z(f) < 2-“+’  . SO {f : z(f)  > 2q,(  P,)}  is finite. Also Z,(f) > 0 whenever z(f)  > 0,
because such f belong to 1.  SO mere is an k E N such that z < kzu E B . As z is arbitrai-y,
B dominates A.

(iv) As E is arbitrary, f is w-Tukey and e’(n)  =w  ND.

Remark.  Versions of this argument may be found in [
here is based on that of [22].

Corollary 2G. M sw 1’ (N ) .

Remark.  Theorem 5 of 111  States,  in effect, that add(

11,  Wl,  r

/y)=QI

101, [9]  and [ll].  The form

iff add,(e*(N))  = QI ; the
arguments there  include everything necessary to prove that /tr -w  4?’ (N ) .

Corollary 2H. If (X, p) and (Y, Y) are Radon measure spaces  with Boolean isomorphic
measure algebras then NP  - /y;,

proof:  (a) Suppose first that the measure algebras are homogeneous (as Boolean algebras).
(i) Ifbothare{0}then~X=~Y=O,MP=~XandJy-,=LW,andJtr,~{0}~

rJlyY.(ii) Ifbothare{O,l}thentherearetEX, UEY suchthatJY,=P(X\{t)),

Jy,  = P( Y \ {u})  so again /y; E NP.  g If both are atomless, not (0 }, then both must be

ecc  SO there  are probability measures u’,  p’ on X, Y respectively with the same measurable
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sets and the same negligible sets as  ~1, v . Now the measure algebras of (X, p’) and (Y, Y’)
are still Boolean isomorphic; suppose that their Maharam type is n; then

because ~1’ and u’ are stili Radon measures, SO MP -w  M” and @ecause both  are cr-ide&)
/y; 3.q

(b)  In general, the measure algebras 3 , p of (X, /AL), (Y, Y) are semi-finite, so there
is a partition (aoc<, of 1 in fi such that 8 10~  is homogeneous for each < < IC.  Because

(X,p)  is decomposable ([7], 72B, or [ll],  l.lO), there  is a partition (X~)~,,  of X into

measurable sets such that X1  = a( for every [ < IC and NP = {E : E c X, E nX, E

E ,Y;V<  < K} . Let p( be the restriction of p to subsets of X( for each [ < K ; then ““; g

‘S  n,,,  NP,  . If we repeat the argument in Y with the family (& Q~))~<~,  where 4 : $ -P

+ p is an Boolean isomorphism, we obtain a partition  (Yoc<&  of Y with a corresponding
family (~~)c,,  of measures. By (a) above, Jy;( G xPc  for every t < K; consequently

Jy;  E NU, by 1E d.

Proposition 21. Let (X, p) be a measure space with  measure algebra 3 , Write C,’  for

{ E :  EE dam(p),  X \ E  $!Ml}.Then

(a) E-Sc;;

(b) if (X, p) is a Radon measure space, $ - z C,’  .

Pro& (a) Choose any function f : $ - + Ci such that a = f(a)’ forevery a E $-.

Then f is a Tukey function, SO ,jA - 2 Cl.

(c) For E E C,’ choose an open set G, > E such that G, E Ci. Write f(E) = GE E

E 8 -. If f(E) c a E 3 - then E c H, = U{H : H c X is open, H’ c a}. But
H; c a SO H, E x,*.  Thus f is a Tukey function and C,’ 5 p -.

Theorem 25. Suppose that n 2 w and that bu( [ ~1’“)  2 add (/t3 (see IK-IM). Then
(a) aI(ic)  -w  [n]‘”  x e’(N);
(b) foranyatomlessspace(X,~)  OfMahararntypen,  L’(p) ~,l’(n);
(c) for any atomkss  Radon probability space ( X , p) of Maharam type n , ““; = [ n] sw  x

“f-K

h-c& (a) We know already that [n] +J  x e1 (N) 2 .@  (n) (2C) and that 1’ (N) E, /lr(2G)

sothatadd,(e’(N))  = add,(fl = add(Jlr)  (1Jb).
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If a C n and u E .@ (a) , write  u* for the member of f?’  (n) defined by setting u*( <) =
=u(<)  for~Ea,OforCE~\u.NowletC~[n]lwbeacofinalsetsuchthat#((c:cE
E C,c C a}) < add(J’)  forevery a E [RI’“; of course we may suppose that every
member of C is infinite. For c E C let TT, : N + c be a bijection.  For z E .k? (K) choose
c(z) E C suchthat {< : z(t)#O} c C(Z).  Define f : e’(n)  -+ [nl- x.@(N) bywriting

Iclaimthat f isanw-Tukey function. Forlet (a,z)  E 1~15” x.@(N) andset A = {cc  :
f(s)  I(a,z)}.SetD={d:dEC,dCa}andfordEDsetAd={s:sEA,c(s)=
=d},sothat#(D)<add(~andA=UdEDAd.IfdE~a”d5EA,,thens.~d~zso

i-‘< y,=  (%‘rd  < % SO  5 < yd= (E’Ti’)*. Now consider B = {ydla : d E D}  C_ C’(a)  .

As #t(B) < #(D) < add,(@(N)),  B is countably dominated in /Z’(a);  let B, bea

countable subset of C1 ( a) dominating B ; then {u*  : u E B, } is a countable subset of
J?’ (K) dominating A . As (a, z) is arbitrary,  f is an w-Tukey function.

Accordingly e’(n) 2, 1~1’”  x e’(N)  and f?(6) -W [KCI~~ x e’(N).
(b)  As in the proof of 2Cb, we can tind a sequence ((X,,  &)nEN of Maharam homoge-

neous probability spaces such that Co(p) 2 ngEN Lo (p,)  - nGN L1 ( n,) (by 2E), where

n,  is the Maharani type  Of (X,,  p,)  , SO that nr  = sup,&,  f$. Now [ K,J 9 < 1’ (n,)  fOr

eachnEN, so

[n]‘”  = n [nn]CU < j--J e’ (n,) E LO(p);
CN 6N

also l’(N) 5 @(no)  E L”(po)  < L’(p).  SO [IC]@  x t’(N)  5 L’(p). By (a), it
follows  that e’(n)  5, L’(p). Butalso Lo(p) & .k?‘(nr),  by 2B. SO Lo(p) G” k?(n).

(c) Putting 2D and (a) above  together,  we have

in]‘”  x-‘f’-<Jy-  <t’(n)  q, [n]‘” x@(N)  q [n]‘”  xJtr

SO [n]‘”  X/trfdvP’

Additivity and cofinality 2K. The original impetus for this work was an investigation of the
additivity and cofinality of the partially ordered sets involved. 1 list some consequences of
the results  above  in this  direction.

(a) If IE  2 w is a cardinal,  then

add,@;)= add,(@(K))=wi  if n>w,

= add (Jy)  if IC=W,

cf (@(/c))  = cf (p ;) = max (cf(JY),  cf ([nl+))  .
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For 2C tells  us that

dd, (3;) = dd, (h>) 5 min (add ([K]<“‘),  add, (@(Jy,))  ,

cf (@(K))  = cf (el(~))  2 max (cf ([K]‘“),  cf (e’(J))),

and 2G that
add, (f?(N)) = add(J23,  cf (e’(N))  = cf(-/y).

Ofcourseadd([~]~“‘)  =wl ifn>w,ifn= w  . The only point remaining is to  check that
cf(.@( n)) < max( cf(fl,  cf( [ ~1s”‘)).  But this is straightforward, because if Q c  [n]‘”
and C c e’  (N ) are cofinal, men {zqz : q E Q, z E C} is cofinal with L’ ( K) , where for
each q E Q we chcose an injection 7~~  : q --+  N and set zqr([) = z(x,(~))  if t E q, 0 if

(~n\q;sothatcf(-t’(n)) Imax(#(Q>,#(C>>.
(b)  If (X,  cl)  is a probability space of Maharam type K 2 w , then

add, (L’(p))  = add, (L’(p))  = w1  if n > w,

= add(Jt3  if n= w,

cf (L’(p))  = cf (LO(p)) = max (cf(Jlr),  cf ([K]‘“)),

For2Ctellsusthatadd,(L’(~))  = add,(e’(n))  andthatcf(L’(p))  = cf(@(n)).  As
for Lo, we saw in part (b) of the proof of 21 that Lo(p) - ntiN e’  ( KJ  for some sequence

(%)&N of infinite cardinals  with supremum n .  SO

w,  < add, (L’(p))  2 rn$ add, (1’  (n,)) = w,

if n > w; whileif n = w thenadd,(L’(p))  = add,(e’(n))  by2E.FinaIly,cf(L”(~))  2
5 cf(e’( n)) by 2B, while also

cfC-4 i cf (el (YJ)  I cf (Lo(P)) 3

[n]‘” E n [n,y 5 ne* (6,) E LO(p)
nEN tiN

SO cf( [ n] 5”) < cf( Lo (p) ) . Putting these facts  together with those of (a), we have Iixed
add,(L”b>) ~dcfU”(d).

(c) If (X, p) is an atomless Radon probability space of Maharam tupe n,  then

add Np = w1  if IC > w,
( >

=  add(4’)  i f  IC=W,

= max (cf ([r;]+)  , cf (4) ;

this  is immediate from 2D and (a) above  (this is the main result of [9]).
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The Tukey classification of Jy; [ n ] sw  2L. In the work above  1 have attempted to describe
various  partially ordered sets in terms of the basic sets [ n] sw  ,Jy: Neither of these is quite
straightforward.  For instante,  when is [ s]sw E [X] sw  ? For w1  < n 5 w,,  we have
cf( In]‘“)  = n, SO al1 the [ ~~1~~  are distinct (see [13], 4.5). But if, for instante,  bu
([w,]‘“)  =w, (seelLc),then  [ti]‘”  = [w,]‘” wheneverw, 5 n < cf([w,]‘“),  while
cf([w,l+J)  > w,  (far if (c~)~<, is a family in [w,,]  SU  such that no uncoumable  subfamily

is bounded  above  in [w,]~~,  then a I--P  QEa c( : [n] GJ + [ ww] Q is a Tukey function.
See [133,4.9;  also [26], pp. 713-4).

As for JyI  we see that if add(m = cf(Jlr) = n (e.g. because add (Jy)  = QI , as under
Martin’s axiom, or cf(/lr)  = w,),  then Jtr~ n. On the other hand, in a random-real  mode1
of set theory, we can expect a family (t()(<~ in [ 0, l] such that no negligible set contains

more than countably many tt ([13], 3.18),  while M can be large. In this case, NE [ QI 1’”  .

On the strutture of el(n),Jr;,L1(p),Lo(p) 2M. (a) From 2C we see that if K 2 w
mere is an upwards-directed partially ordered set (viz. f? (PG)  ) such that p ; -<w  @ (n) ;

which implies, for instante,  that ( p ;)2  -Cu $ ; . As it happens, it is easy to show that
(3 ;) n E 3 ; for every n 2 1 . This is not to be taken for granted. Suppose, for instante,
that T is a Souslin tree. Then (w, , w , < wr ) is a triple precaliber upwards for T (the point
is that any uncountable subset of T, with its induced ordering, is again a Souslin tree, SO has
elements of infinite rank). Consequently, any partially ordered set P such that P <CU  T

must be upwards-ccc (for if A C P is an up-antichain, no infinite subset of A can be  fmitely
dominated in P, and the image of A under a < w-Tukey function must be countable). In
particular,  T2  $<w T, and there is no upwards-directed P such that T s<,  P.

(b)  Similarly, from 2F we see that for every n 2 w mere is a ~1  such that e’ (n) ??w NP.

Here it is easy to see that e’ (n) -w .!?’  for some cr-ideal of sets 9. For try g the idea1

of countably-dominated subsets of J? (K) . If (z,Jtih’ is any sequence in 4?’  (n) , mere is a

sequence (c,JGN  of strictly positive real numbers such that CtiN  E,Z~ is dclined in C’ (n) .
It follows that if A E Y then thcre is a zA E e’(n)+ such that A is dominated by {kz,  :

k E N}. Now x H {x} : C’(K) + 9and A t-i zA : 9 --+  @ ( K) are w -Tukey functions,

sothat9~,~‘(n).Ifb~([~]~~) <add(J’), thenSr[n]~“xJlr

(c) In the case of e’ (N) therc is another relatively familiar space involved.  Write s. =
= 1X :xER~, {i:x(i)#O}.  f1s mite } . Then it is easy to sec that the Riesz space quotient
e’(N)  /s.  E Y, the idcal of countably-dominated subsets  of C’ (N) , SO that e’ (N) /s.  G
E/y:

(d) Similar arguments  apply to L’ and 1, ‘, because both have the property that a counta-
bly-dominatcd set is dominatcd by the set of multiples  of a fixed element. For atomless prob-
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abihty  spaces (X, p) we find that

if u is a Mabaram homogeneous Radon probability measure with the same Maharani type as
p, whileforany measurespace (X,p)  wehave Lo(p) E,,,  L’(p)/L”(p).

Further remarks  2N. (a) The outstanding problem left open above  is: is it consistent  to
suppose that for some n 2 w and for some Radon probability space (X, p) of Maharam
type IC, Jy;  f [n]  <w  x J%‘? The first case left open by 27 is nr = w,, and the arguments
there  make it clear tbat it is enough to consider  X = [ 0 , 11” . It seems that we can have
bu( [n]‘“)  > w,  in a context which allows w,  = QI = add(&‘J  (1Ld); but it is not clear
what happens to C’  (n) and MP under these circumstances. Note that their additivities and
cofinalities are what they ought to be (2K).

(b)  Some subsidiary questions present themselves. In 2Ib, can the result be sharpened
to Lo(p) E f?’  ( K) ? This is a problem only when cf( n) = w and (X, cl)  has no Maharam
homogeneous subspace of Maharam type n (a similar question  arises in 2Ja; but here it is quite
easytoshowthatL’(w,)  $ [wt]gw  x.@(N), because (wt,w,< wi)  isatripleprecaliber

upwardsforw,  x.@(N) butnotfor1’(w,)).
(c) S. Todorcevic  (private communication, December 1989) has given an example in ZFC

of a partially ordered set P such that P2 $, P .

3. FURTHER RESULTS

1 show that a wide variety of partially ordered sets arising in analysis are amenable to the
methods of this  paper.

3A. Notation.  Apart from f?(N)  and Jy; which dominated Q 2,1 shall be referring often
to the ideal Yof nowhere dense subsets  of NN and the ideal a-idea1 J% of meagre subsets
ofNN.

Theorem 3B. (a) Cp= YN.
(3)  .Fr,&
(c) FI t’(N).
(d) & < /lr
(e) NN 2 F.

Roof: Throughout this proof and the next, write Seq = UnEN  N”, taking each member of
N as the set of its predecessors,  SO that dom( cr) = n if cr E N n.  For u E Seq write
4~)  = Cit dan(o)Cu + 1) ad Jm = {cz:(~C<~~N~}.Forcr~kq,a!~N~  write

g,,(a)  = cr%  (sothat g,(o)(i) = o(i) ifi < dom (cr), c~(i- dam(a))  if i 2 dam(a)).
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(4 ‘me map F t--t (9;; [ FI )iEN (where (i) E N t is the one-tenn  sequence with value

i) is an isomorphism from .Yto .!PN  .
(b)  (i) For each M E AY choose a sequence (FMi)iEN  in Fcovering  M. Then M H

H (FMJiEN : A5 + /TN  is a Tukey function, SO A@ 5 fl and A < 9z; by (a).
(ii) Enumerate Seq as (on),& . For F E F choose inductively ( T( F,  n)  )%N  ,

(4 FI  ~)GN in Seq as follows. The induttive hypothesis is that

I“(Fj) n (FUg<,ij[Fl > = 0 V i,i < 7~.

Supposing that this  is satisfied at leve1  n, set

E= &n FUUgti,,[Fl .
i<n

If E = 0 set u(F,n)  = CT,,, 7(F,n)  = 0 (sothat gdF,ru[Fl = F). If Ef0 tben

E is stili nowhere dense, SO there  is an Y( F,  n)  > cr,  such that E rl Ivcp,nj = 0 . Next,

Ujl,, IVtFjj  is a closed set not including 1,,.  , SO there  is a T( F, n)  2 on  such that Ircp,nj  O

n Uil, ItiFjj  = 0 . EvidentIy  this construction  of V( F,  n) , T( F, n) will satisfy the induc-
tive  hypothesis at the next level.

On completing  the induction, set

f(F) = FU IJ g<F,ij[Fl*
iEN

Tkn f(F)  n Iyc F,nj =0 foreveryn~N,sof(F)~~~~.Also,ifuESeqis

suchthatf(F)OI,#0,thenthereisa~>osuchthatg,[F]  cf(F);fortakenEN
suchthata=u,;thenv(F,n) cannotbeu,,s07(F,~)>uandg~~,~[FlCf(F).

This defines f : LT +A?.NowtakeMEA4 andset

uJ={F:F~gif(F)Chf},

~5’  = {g,1 [Ek]  : T E Seq, IC E  N} E [fl+’

where (E,),,,  is a sequence of closed nowhere dense sets covering  M . 1 claim that 25’
dominates &3 . For if F E A \ (0 } then by Baire’s theorem there are u E Seq, k E N
suchthat0#f(F)nI,CE,,andnowthereisa7~usuchthatg,.[FlCf(F)and

F C gf’[Ekl  E9.



200 D.H. Fremlin

SO f is an w-Tukey function, and .Plw ~46  and FE, ~8.
(c) (i) Note lirst that if X is any non-empty second-countable topological  space, then for

each n E N there  is a countable family 3ìYn  of open subsets  of X such that
(a) M# 0 whenever 3%’ c  L%‘.,  #( 33’) < n,
(/3) if F c X is nowhere dense then there  is an H E 5%‘,,  such that F fl H = 0 .
TO see this, induce on n. For n = 0 take 9Yo = { 0). For the induttive step, let ( Hi)iEN

be a sequence running over %,,  and let 9%  be a countable base for the topology of X which
is closed under finite unions. Set

-%b+l  = UuHi:i~N,U~%,Un(-jHl#O
jEI

whenever Ic{O,...,i}and  nHj#0
jCI

Then %,, is a countable family of open sets satisfying (,f3)  . If 53%  c %n+l and
0 < #( %f)  < n + 1, express 3%”  ai {Uj U Hicj>  : J’ 5 n}  where each Uj U Hic])  is as
described in the formula for 5%‘,1  . Suppose these are arranged SO that i(j) 5 i(n) for
every j 5 n. By the induttive hypothesis, H = n,,,  H,CjJ  # 0 ; now Un fé H # 0, SO

(-).%'>UnnH#O.
(ii) Nowlet (Un),, enumerate a countable base for the topology of N N consisting of

non-empty sets, and for each n E N choose a countable family LWn  of open subsests of Un
such that

(CU)  n%#0 whenever 3%’ c  L%‘n, #(%‘)  5 2”,

(/3) if F c NN is nowhere dense then there  is an H E .%fn  such that F n H = 0 .
write K = UnEN {n} x SY, and choose any function f : F  + l’(K)  such that for

everyFE9i;nNNereisanHE~nsuchthatFnH=0andf(F)(n,H)22-“.

1 claim that f is a Tukey function. For take any z E C’(K)  . Let m E N such that

Then%‘k={H: HES%',,z(n,H)  ~2-“)hascardinaIatmost2”andG,=~33’~
is a non-empty open subset of U,,  for each n 2 m, SO that G = Utim  G, is a dense open

subset of NN . If F E .Yand  f(F) < zc, thenforevery n> m wehavean H E S',,
suchthatf(F)(n,H) >2-“andFnH=0;inthiscase,HE5W~soGnC Hand
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FtlG,=0;asnisarbitrary,FnG=0.ThusNN\Gisanupperboundin~for
{F : f(F) 2 z} . As z is arbitrai-y, f is a Tukey function.

(iii) Accordingly F< e’  ( K) 5 .@  (N ) .
(d)Now.& E,~<@(N)  ~,Mso& <,Mand(because& isaa-ideaI)

A <“LT
(e) N 5 pbecause  add(m = w (if (Q,)~~ enumerates any dense subset  of NN ,

then n H {cyi : i 2 n} is a Tukey function from N to 9’).  SO NN 5 9-N % 3?

Remarks.  The main result of [l] is that add(/lr)  5 add(&) . [22]  shows in addition  that
cf( M) 1< cf(M)  . The result that &8 5 His explicit in [IO]; it depended on an idea of J.
Pawlikowski. [20] showed that add,(  N “) > add( &%)  ; the result that cf( N N, 5 cf( &)

seems to be folklore (1 leamt it from J. Cichon).  Note that add, (N N ) and cf ( N N ) are called

b and b in [lo]  and [6].  An w-Tukey function from NN to & is constructed  in [lo]; see
also [2],  2.2. The fact that FE SN is mentioned in [14].  The argument in part (c) of the
proof above  is taken from [aa], 1.2.34.

Proposition 3C. Let X be a set and Fa counrable family of subsets  of X . Write

@={D:DCX,VVE%WEYsuchthat WCV\D}.

Proof (Far notation  see the proof of 3B). If Y= 0 then 59 = SZ’X and the result is trivial.
SO suppose that Y# 0 . Construct a function h : Seq -+ 9’U {X} such that h( 0) = X and

{h(T) : cr c TE N”’ } = {V : h(u) 1 VE Fj

whenever né N, cr EN”.
For D E 59 choose a family (r( D, cr)),, sq inseqsuchthat  T(D,o)  > cr, dom(r(D,

cr))  2 d(a) and D n h( r-( D, (T))  = 0 for every 0 E Seq; this is possible because

(h(7) : oc TEN~} = {V: V E a; V E h(T)}

whenever o E Seq and k > dom (a) . Set

f(D)  = NN \ u Id,,,,);
oE seq

then f(D) E Qr because r( D, a) > o for every (T  E Seq.
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If FEFset
DO = U{ o:D~g,f(D)cF}.

IfV~~takea~N1suchthath(a)=V.Takeu>asuchthatIUnF=0.If
DE@adf(D) CF~en&CIJ,,~IdD,Tj ; it follows that there  is a o E Seq such that

r( D, a) C u. (Consider any a! E 1” such that (u(i)  # T( D, a)(i) whenever i 2 dom( u)
and o E Seq and dom(r(D,o))  = i + 1; such exists becausedom(r(D,c))  2 d(a)
for every cr  E Seq. Now if P E Itin,o, this implies tbatdom(r(D,o))  < dam(u)  and
~(0, a) c u.) Inthiscase h(u) c h(r(  D, a)) c X\D. As D isarbitrary, h( u)nD, = 0
andh(u)  CV\D,.AsVisarbitrary,D, ~~.AsFisarbitrary,f:~+(5risaTukey
function and @ 2 K as required.

CoroUary  3D. LA X be a topologica1 space with a countable n-base. Write Yx for the
idea1 of nowhere dense subsets  of X and JiCx for the u-idea1  of meagre  subsets  of X . Then

00 -“x 5 -E
(b) -+ IA;
W =&(.Q 2 addb@).

&?of  (a) Let a”be a countable n-base for the topology of X . Then Yx is precisely

(F:F~X,VVE~/~WE~ suchthat WcV\F}.

SO 9r, < Fby 3C.

(b)  New-4,  <9--N (asinpart(b-i)oftheproofof3B)so&,  <PN rF,U&
andJ#&<.K

(c) Because 373, AY we have

add, (9Tx) 2 add,(m  = add,(A)  = add(4.

Remark.  In the language of [8],  .%-x has the c<( < add (4)) w)  -covering property».  Thus
Theorem 22B of [8]  can be deduced in ZFC from the tbeorem of [19] that add(&) 2 p .

Corollary  3E. L.et  X be a second-countable topologica1 space and p a a-finite Bore1 mea-
sureonX.Let~,,betheideal{E:E~X,~(~)=0}.Then8,~37

J?Iw~:  (a) If p( X) = 0 this is trivial.  Otherwise (because ~1  is o-finite) there  is a probability
measure v with  the same measumble  sets and the same null sets as p, SO that I, = gP.  Let

%4  be a countable base for the topology of X, containing X and 0, and closed under finite
unions. For k E N , let vk be the countable set

{v:vEq4v) > 1-2-k},
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and write

-@,={D:DCX,VVE~~WE~  suchthat WcV\D},

(b)  The point of this is that Zy = nkEN .cZ~~.  TO see this, argue as  follows. (i) If E E 8,,
k E N and V E ak then

Y(V \E) = v(V) > 1 - 2-k.

Because 9%’ is a base for the topology of X and is closed under finite unions, there  is an
increasing quence (Vi) iEN in 9%  with union V \ E. Now there is an i E N such that

u(Ui) > 1 - 2-k,  in whichcase Ui E 9$ and Ui C: V \ E. As V is arbitrai-y, E E Sk;
as k and E are arbitrary,  ,Z, C_ nkEN JSk.  (ii) If E E nkEN gk, take any k E N . Then
X E Fk and E E Sk, SO lhere is a W E q such that W c X \ E. As W is open,

WIIE=~ andv(~)~v(X\W)~2-k.Askisarbitrary,v(~)=0  andEEZ,.
(c) Consequently the map E H (E)kEN is a Tukey function from g, to nkcN  gk and

Remark.  Compare [8],  22G, where it is shown that add,(  ,Y’,,)  2 p ; also Theorem 2.1 of
[20],  and 3K below.

3F. 1 now give three results on «cross-ideaIs»,  mixing measure and category, in [ 0, 11’  .

Theorem. Let 9 be the idea1 of subsets  of [ 0 , 11 2 generated by the Bore1 sets E C [ 0, 112
such that

{t  : t E [O,ll,  EL(t)1  4 -+}  E-K

Where AI iS  the idea1 of meagre subsets  of [ 0, l] and E[ {t}] = {U : (t, U) E E} . Then
9rK

fio&(a) ThemapHt+Hx[O,l]:/lr-+~isaTukeyfunction,soJtr~.5’.
(b) For the reverse inequality, we need to know some facts about the strutture  of Y which

may be of independent interest. Let 5% be the idcal of subsets  D of 10, 112 such that D has
nowhere dense vertical sections, Y0 the a-idea1 of subsets  of [ 0, 112 generated by ~9, and
S,  theidealofsubsetsof [0,112  generatedbySO u{H x [O,l]  : H ~Jtr). Let 1 be

the family of those sets E C [ 0, l] 2 for which there  is some Bore1 set G c  [ 0 , 11 2 with
open vertical sections such that GAE  E S, .
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(c) Let F be a Bore1 subset of [ 0, 112 with closed vertical sections. Then F E c. TO

see this, let (U,),, enumerate a base for the topology of [ 0 , 11.  For each n E N , set

B,={t:t~[O,1l,U,flF[{t}l=0),

C,,  = {t : t f EO, ll,U,,  c:  FI(t)]}.

Then B,  and C, are coanalytic, therefore Lebesgue measurable  ([  15L2.9.2).  For each
k E N , there  is a closed set H,  c [ 0 , 11 such that H,  \ B,, W, \ C, are closed for every
né N andthemeasureof H, isatleast 1 -2-k. Set

SO that G is a Bore1 set with open vertical scctions and G 5 F. 1 wish to show that F \ G E
E 57, . For k E N set

Fk= (H,x[O,ll)nF\G.

@hm  F \ G c (ff X [o, 11)  u Uk,@ Fk, where  I-p = [Os11 \ Uk,gN ff, E -‘?
SO it will be enough if 1 can prove that every Fk  E  2%.  First note that Fk  c F. For if

(t,u)  ~[O,l]~\Fthereisanm~N suchthatuEU,andU,nF[{t}l =0 i.e.
tE B,;now

(lo,  11 \ (Hk \ Rn))  X u,n

isaneighbourhoodof(t,u)  notmeeting(Hkx[0,1])t3F,so(t,u) $ F,.Nowexamine
Fk  [ {u}] for v E [ 0 , l] . 1 need to show that this is nowhere dense. If it were not, there  would
beann~N suchtbatO#U,~Fk[{u}].InthiscaseU,~F[{u}l sou~C,,.Butnow

(Lo,  l] \ (H, \cn>>  X u,
isanopensetnotmeeting(Hk~[O,1l)\G,socannotmeetFk,and({U}XU,)~Fk=0,
which is impossible.

Thus every Fk  belongs to %r  and FAG  = F \ G E S,  and F E c, as rcquired.

(d) It follows  al once @cause S,  is an ideal) that the complement  in [ 0, 112 of any
member of 1 belong to C ; because Y1 is a cr-ideal, 1 is closed under countable unions,

SO is a a-algebra of sets. Open subsets  of [ 0, 112 bclongs to x, SO every Bore1 subset of
[0, 112 mustbelongto C.

Consequently S,  is actually equal to 9. For evidently S, C: 9. On the other hand, if
A E S,  there  is a Bore1 set E C [O, 112 such that A C E and {t : EL(t)]  $!  -48,)  E  -4’Y
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Now E E C ; let G c  [ 0 , l]* be a Bore1 set with open vertical sections such that GLIIE  e
~~~.InthiscaseG~9.Butthismustbebecause{t:G[{t}l#0)~/Y:SoG~~,
and E E  Ir1  and A E  9,  .

(e) Now we can find a function

suchthatAC(H,x[O,l])UUnENDAS  for every A E  Y= 9,  . Ckarly this is a Tukey
function. So

S$Y-X@N.

(l) But also 43 5 J? TO see this, let 9%  be a countable base for the topology of [ 0 , ll* ,
closed under finite unions, and let Pbe

where ?rl : [0, 112 -f [ 0, l] is the first-coordinate map. If D E  59  and V E  Fthen
7r,[V\D]=[O,l];because[O,l] iscompact,thereisaWEYsuchthatWCV\D.
It follows easily that

~={D:Dc[~,~I~,~vE~~~E~

such that WCV\D},

SO that B 5 s) by 3C.

(g) Now BN 5 YN % Fand

As .Y is a a-idcal,  9 5 /Y-and YE K This completes  the proof.

Remark.  Some of the arguments above were worked out in the course of correspondence
with J. Cichon.

Proposition 3G. Let  9 be the a-algebra of Bore1 subsets  of 10,  112 and Y the idea1 de-
scribed in 3F.  Write j! for the quotient algebra %‘/.93  fl9.  Then $4  - 3  $ ;.

proof:  (a) Let $Il be the measure algebra of Lebesgue measure on [ 0 , 11, SO that j8 E fi w.
We have an order-continuous embcdding of j?3 in 3 given by sending H’ to ( H x [ 0,ll)
for any Bore1 set H c [ 0, l] . It is easy to check that this induces a Tukey function from jIl -
toA-,sothat@?-<j-.
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@)  La KJJ,N enumerate a base for the topology of [ 0,ll with every U,,  non-empty.
Let (bn)nEN  be a disjoint sequence of non-zero elements  of F with SUP,~  b, = 1 in @ .
For each n E N let p n be the relative algebra @ Ib, and let 4,  : @ + p n be a Boolean
isomorphism. For each a E JJ - choose E, E 9 such that Eo = 1 \ a in $ . Then E,

belongs to the algebra 1 described in the proof of 3F; let G, be a Bore1 set in [ 0, 112 with
open vertical sections  such that G,nE,  E 9, SO that 1 \ a = G;. As G, $ 9 there  is an
m(a) f N such that

H, = {t : Umcaj  C GJ{t)l 4 J’-}  .

But H,  is a coanalytic set, therefore Lebesgue measurable, and H; is defined in 7@l . Set

f(a) = 1 \ 6,(,,  (H,) E P -.

(c) 1 claim that f is a Tukey function. For let b E &I - and consider A = {a : f(a) c b} .
ThereisannEN suchthatb,\b#O;setc=~~‘(b,\b),andtakeaBorelsetH~[O,l]
suchthatH’=cinp.Seta,=l\(HxU,)‘Efi-.

If a E A then 4,(,,(H;)Ub = 1 so bub,,,, = 1 and m(a) = n; also H;  =

= Q;‘(b,\f(a))  2 c, SO H \ H, E K Now H, x U,, = H, x U,+)  2 G, SO

(HX~,)‘C  (H,xUJ’CG,=  l\a

aCl\a(HxUn)‘=ao

in ,& . This shows that a0 is an upper bound for A. As b is arbitrary, f is a Tukey function
andA-<I+I-.

(d) Thus$--p--=p;.

Remark.  Of course 8 is isomorphic to C/S.

Theorem 3H. Let 5r be the idea1 of subsets  of [ 0, 112 generated by the Bore1 sets
E c [0, 112 such that

{t  : t E LO,  11,  EI(t)1  $4

ismeagrein [O,l].  Then BE [C!i]~“.

PI-oof:  By the arguments of [4],  Thcorems 1.1 and 2.1 there is a family (E,),Ero,,I  in Ysuch

that~,,,~~foranyuncountableA~[0,1].NowA~~aEAEs:[[O,1]]~W~~

is a Tukey function, SO [M  ] 9~  < Y. On the other hand, 9 is generated by the Bore1 sets it
contains, socf(9)  5 QI and 9< [slow.
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Remark.  [3]  give a variety of applications of their method which may readily be translated
into further results  of this kind.

31. Let us turn now to other ideals for which the techniques of this paper can give some
information, if not a complete classification.

Theorem. L.et  (X, p) be a separable  metric space and 9’ the cr-idea1 of subsets of X of

strong measure zero. Then 9’ 2 J@ , where b = cf (N * ) .

R-ooL (a) If X = 0 then the result is trivial.  Otherwise, let Y be a countable dense subset
of X . Fix an w-Tukey function g : f?’  (Y x N ) + H(using  2G above). Let D c N * be a
cofinal subset  of cardinal ò .

For each d E D, 5’ E 9’ choose a sequence (tSdk)kEN  in Y such that

s  c  n  u  r.J (&P@‘),
TIIEN  n&n

where U(t,6)  = {u : p(t,u) < 6). Take .zSd  E @(Y x N) such that zsd(tsdk,k)  = 2-k
for each k E N . Set

f(S)  = (9 (%&&D E ND

foreachSE9’.
(b)  1 wish to show that f : 9 -P JV~  is a Tukey function. Take (Ed)&n E /zrD  and

set~={S:SE~,f(S)I(Ed)dED},SO=~.My”m”toshowúlatS,E~.
Let (&i)&N  be any sequence of strictly positive real numbers. Let d E D be such that

2-d(k)  < c.  whenever k E N and i < 2k+1. Weknow that- t

iscountablydominatedin~1(YxN);letzE~’(YxN)besuchthat{(t,k):s(t,k)>
> z( t, k)} is finite for every 5 E A. Let n E N be such that

# ({t : z(t, k) > 2-k- }) <2kVk>n

Then mere is a sequence (uJiEN inY suchthatifk>nandz(t,k) >2-k thent=ui

forsomeisuchthat2k<i<2k+1.
1 claim that S, c  UiEN U( ui, ci). For take any S E ~4 . We have g( zSd)  c  Ed SO

zSd  E A ; let T-A  2 n be such that zSd(  t,  k) < z( t,  k) whenever t  E Y and k 2 m . Then
foranyk>m,

2-k  = ZSd  (t,,, k) I z (t,,, k) ,
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so there  is an i < 2&+’ such that t,, = ui; now 2-Gk)  5 ci  so that U(tSdk.2-ak))  c
C: U( ui, ci) . Accordingly

s  c  u u (t,,,2-d’k9  c  u  u (Ui,Ei)  .
k&n iEN

As S is arbitrary, Se c UiEN U( ui, si) .
Since (cJiEN was arbitrary, SO E Y and is an upperbound for J in 9’. Since (Ed)dED

was arbitrary, f is a Tukey function, and 9 5 L@’ ‘Z  J@’  , as rquired.

Corollary  35. In the context of 31,  add (9) 2 add (/t3 .

proof:  add(@ ) = add(&‘) .

Remark.  These results  may be regarded as descendants of T.J. Carlson’s theorem that add
(Y) = QI if X = R and Martin’s axiom is true (see [SI,  33B). Note that for any non-empty
partially ordered sets P and Q, add( P) < add( Q) iff there is some n such that Q 5 Ps.

Proposition 3K. Let 5%  be the idea1 of subsets  of N with zero asymptotic density. Then
(a)  NN 5 B 5 C’(N);
(b) if X is a second-countable  space and p is a o-finite Bore1  measure on X , then ?Y,,  <

< %, where  c!?~  = {E : p(E) = 0}, asin3E.

RwofI For Q c  N write

d(a) = lim -5#( a II  n) if this exists,
n--n

d*(a) = lim sup 5#( a fl n) in any case,
n-+m n

sotha%  ={a:d(a) = 0) = {a : d*(a) = 0).
(a) (i) The map

cu~{2~i:k~N,  i<a(k)}

is a Tukey function from NN to % , SO NN < % .
(ii) Z carries a metric p defined by

which makes 5Z a separable complete metric space in which U : g x % -+ LZG  is uniformly
continuous. SO % <<,  C’(N) by 2B. As .%  is upwards-directed,  .%  < e’(N)  .
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(b)  By the arguments in 3E, it is enough to consider the case in which p(X) = 1. Let

W,N run over a base for the topology a of X . For each n E N , let SYm be the finite
subalgebra of 9X generated by {Vi : i < n}, and let 57 be the countable algebra U6N SY-.
Then there  is a Boolean homomorphism 8 : 557 -f 9% such that d( fI( C)) exists and is equal
to  p(C) for every C E &3  (the easiest argument for this is an induttive construction for 61 SYn,
using the fact that if a c  N and d(a) exists and 0 5 cy 5 d(a) then there  is a b c a such
that d(b) exists = (Y). Let (k,JnEN  be a strictly increasing sequence in N \ (0) such that

Define f : 8’,, + 5% by setting

f(F)  = N \UUW  \ k.:~EN, GEQI  nFn, GnF=0}.

1 claim that f is a Tukey function from ZY,,  to % . The first thing  to check is that f(F) E
E 2%  forF E Zp. But if F E g,, and m E N then mere is a G E Ql fl 57 such that

G C X \ F and p(G) 2 1 - 2-“; now there  is an n E N such that G E gn,  and
d(G) \k, CN \f(F),  soht

d*(f(F)) 5 d’ (N \ (e(G) \ k,)) = 8(N  \ O(G))  = d’(Q(X  \G))  =

=p(X\G)  12-“.

As m isarbitrary, #(f(F))  = 0 and f(F) E 2%.
TO see that f is a Tukey function, let & c 8,, be a set which is not bounded above; set

H=~,sothat~(H)=&>O,andwritea=U{f(F):FE~}.Ineedtoshowthat
d*(a) >O.Butexamineank,,foranyn~N.Becausek,>k,form>n,

f(F) n k,  = k, \U{Q(G)  \ k, :m<n,G~%  n%‘,,,,GnF=0}  2

>k,\U{B(G)  :GE~ ngn,GnF=O}

for every F E 8,, . If i E k, \ a consider

V=n{G:GEQI  n%‘~,iWG)l;

thenV~ffln~~andi~B(V).IfFE.&  therii@ f(F) sothereisaGEaignsuch
thatGnF=0 andiE8(G);nowVCGsoVnF=0;asFisarbitrary,VnH=0.
This means that



D.H. Fremlin

and
k;‘# (ank,) >.5-2-“.

ThisistrueforeverynEN.So

6*(a)  2 lim sup k;‘#  (a n k,) 2 E > 0
-00

and a $ d . Accordingly f is a Tukey function and b,, < .%  .

More about measure ideals 3L. (a) The results of $ 2 dealt with ideals of negligible sets
for Radon measures. For general measures there will be nothing to correspond to them. For
instante,  if X is any set and Sany rr-ideal of subsets  of X, there is a (0 , 1 }-valued measure
p on X such that Jy; = g. But some of the results do extend to interesting non-Radon
measures. in particular,  to quasi-Radon measures. Reca11  tbat a quasi-Radon measure space,
as detined  in [7]  and [8],  is a quadruple (X,  Ta , C , cl) such that: (i) (X, C , cl) is a complete
1ocalIy determined measure space; (ii) E is a topology on X and ‘6l 2 C ; (iii) if p(E)  >
> 0 there  is an open set G such that p(G)  < 00 and p( EnG)  > 0 ; (iv) p is inner regular
for the family of closed subsets  of X ; (v) if 5P  is a non-empty upwards-directed family of
open sets in X, men p( UW = supcEyp(  G) .

(b)  On looking through the results of § 2, we find that the arguments of part (b)  of the
proof  of 2D, some of those of 2H, 21 and 2Jc  remain applicable  to quasi-Radon measures.
Specifically, (i) if (X, PI) is an atomless quasi-Radon probability space of Maharam type
n 2 w, then Jy;  < .4?‘(~)  (see 2D); (ii) if (X, p) is a quasi-Radon measure space, (Y, v)
is a Radon measure space, and their  measure algebras are isomorphic (as Boolean algebras),
then /y; 5 /uy (see 2H; we need [7],  72B,  for the fact that (X, p) is decomposable, and [8],
A7Bk to deaI with  atoms in X ); (iii) if (X, p) is a quasi-Radon measure space with measure
algebra p , and if C; ={E:E~X,~L(X\E)>O},~~~~C,*E~-(justasin21);

(iv) if bu( [n]  SU) < add(fl and (X, j~) is a quasi-Radon probability space of Maharam
type  n, then MP 5 [n]+ x JK

(c) For examples of quasi-Radon measure spaces see, for instante,  [8],  32D. These al1
have separable L’ spaces i.e. countable Maharam types. If (X, cr)  is a quasi-Radon measure
space of countable Maharam type, then add(/Y;)  2 add(/Y),  cf(J$) < cf(J’),  and

add,(l;)  >add(JY)  ; compare [8],  32H. Note that these inequalities will also be true  if
(X, p) is any o-finite measure space in which the domain  of p is a countably-generated
u-algebra (see [8],  32Gc).
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Wo  negative results  3M. Consider the live directed sets NN , 8’,,  (delined  as in 3E and 3K,

with p Lebesgue measure on [O,l]), 5 5%  (as in 3K) and e’ (N ) . We have

(*)

The question immediately arises, whether mere are any further relations of the type P 5 Q
among these Iive sets. Isbe11 ([13]) showed that % $ N N . 1 can offer the following:

Proposition. (a) ZY,,  $ NN ; (b)  % $ J?

Pnwf:(a)Letf:8,-+NN be any function. Let p* bc  Lebesgue outer measure on [O,l]
and choose (o(  n))tiN inductivcly in N SO that

for every n E N . This dehnes Q E NN . Set

C,={t:  f({i})(i) <cY(i)Vi<n},  c= ncn
GN

sothat  p(c)  2 fa  Let  (un)&N enumerate the set of open intervals with rational endpoints
which meet C; then U,,  n C,,  # 0, SO can choose, for each n E N , a t, E U,,  such that
f({t,})(i)<cu(i)  foreveryi<n.ExamineA={{t,}:nEN};then f[A]  isbounded

above  in NN @cause sup,, f ( {t,})(i) < oo for every i) but A is not bounded above  in

iYp @cause {t, :ncN} >C,so{t n : n E N } 4 ZYP). Thus f is not a Tukey function.

As f isarbitrary,  8,, $ NN.

(b)  Let f : % -9 9%~ any function. Lct (U,),, enumerate a base 9%  for the topology
of NN which contains 0 and is closed under finite unions. For each n E N , set

a,={i:i~N,  f(a)nU,#0 whenever  iEaE.S}.

Take a E Z such that a I?  a,  # 0 whenever n E N and a,  is infinite. Set K = {n :

n~N,U,flf(a)  =O},sothatU,,U,=NN\f(a)  isdense,whilea,islìnitefor
every n E K (since otherwise there is an i E a  n a, and f(a) n U,,#  0  ). For n E N,

UmEK,msn  U, E 9% ; say UmEK,m<n U,,,  = Urcnj  . Then r(n) E K for every n. Take-
a strictly  increasing sequence (/c,,)%~  in N such that sup a,(n)  5 k, for each n E N .
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For i 2 k, set bi = {ì} ; for k, < i 5 k,, choose bi E z% such that i E bi and
f( 4) I-J  Q,,) = 0 (such exists because i 4 a,(,,)  ). Now examine

E= uf(bi) CNN.
iEN

If m E K men U, c Urcnj forevery n.2 m so Umnf(bi)  = 0 forevery i > k,

and U,,,  n E = U{f(  bi) n E : i 5 k,} is nowhere dense. As UmEK U,,,  is a dense open
set, E is nowhere dense, and {f( bi) : i E N} is bounded above  in Y.  But UiEN bi = N SO

{ bi : i E N} is not bounded above  in % , and f is not a Tukey function. As f is arbitrary,
LZ $ Y. For more about the relationship between cPand % see [12], Prop. 23, and [14].

Problems 3N. Innumerable  questions are left open by the work above, besides those men-
tioned  at the end of 9 2. It seems possible that the following may lead somewhere.

(a) Taking % , to be the idea1  of sets of zero asymptotic density as usual, is S$ Z ? IS
.%  E e’(N)  ? (These are the questions left over from 3M above.) 1 have been able to prove

thatcf(LZ’)  = cf(&(N)),  add,(%)  = add,(C’(N))  andtha@(N)  5 ZZZ’ .
(b) Still working with the tive  sets N N , Z?,, , S; 55 and e’  (N ) of 3M, there  are consistent

relations of the form <, which are not consequences of (*)  in 3M (for instante,  under CH we

have NN =w  w1 -w  e’  (N ) ). But are there any theorems of ZFC of the form P 5,  Q, or
add,(  PI I a%(Q)  , or cf(p)  < cf( Q> , where P and Q are taken from these lìve  sets,
which are not consequences of (*)? (Several cases are ruled out by the results of [203.)

(c) Suppose that P and Q are partially ordered sets with Polish topologies  such that their
orderings SP, sQ are Bore1 sets in P*,  Q* respectively. Suppose that P 2 Q. Does it
follow that there  is a Tukey function from P to Q which is Bore1 measurable?

(The point of this question  is that (i) the Tukey functions actually constructed in such the-
orems as 2B, 3B, 3K are generally not complicated  according  to the criteria  of descriptive  set
theory; (ii) an affirmative answer would imply absoluteness results relevant to such questions
as (a) above.)

(d) For a topologica1 space X, let X, be the idea1 of relatively  compact subsets  of X .
What types can X, have? 1 discuss these spaces at length  (concentrating on separable metric
X) in [12]. For instante,  if X c R, then (i) Xx E (0) iff X is compact; (ii) X, E N
iff X is locally  compact not compact; (iii) ..%,  F NN iff X is G,, not locally compact;
and %x E X, iff X is coanalytic, not G, ([12],  Theorem 15). Conceming X,, 1 find

that X, ??w wi x NN and wl x: NN 5 .%o but X, $ wl x NN (see [12], Theorem

16); % $ X, (in fact, % & X, for any separable  metric  X) and X, < e’  but it is
undecidable whether Z’,/+Yo or Y< X, ([12],  Proposition 23). 1 do not know whether
it is relatively consistent with ZFC to suppose that there  is an analytic non-Bore1 set X c  R
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such that Xx 2 X, (this is surely inconsistent  with the axiom of projective determinacy;
see [12], Theorem 18).

(e) For a topologica1 space X, let (Px be the ideal of nowhere dense subsests of X, and
Ax the a-ideai of meagre sets. IS  there a coherent classification of these, in terms of < and
5, and topological  properties of X 1 What iT X is known to be a compact Hausdorff space?

Note added in proof. T. Bartoszyiski and S. Shelah [2b]  have shown that add,(  g,,) = add

(A) , cf ( gp) = cf (-4%) . Further results may be found in [29].
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