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THE PARTIALLY ORDERED SETS OF MEASURE THEORY
AND TUKEY'S ORDERING

D.H. FREMLIN
Dedicated to the memory of Professor Gottfried Kdthe

In[28], JW. Tukey introduced an ordering on the class of directed sets, designed to illuminate
the theory of Moore-Smith convergence. 1 show how variations of his idea can be used to give
information on a wide variety of partialy ordered sets arising in measure theory.

INTRODUCTION

In [1], [22], [3] and [9] there is a series of results conceming the additivity and cofinality of
a-ideals of measure and category. It tums out that all the main ideas of the proofs can be
expressed in the following scheme: to show that add (%) < add ( Z) and cf (2) < cf
(9), where & and 7 areideals of sets, first show that Z < & in Tukey’s sense. (For
definitions see 1D, 11 below.) In the present paper 1 seek to develop this idea systematically
to cover both known results and some interesting offshoots.

A variety of complications appear, L it is perhaps worth while trying to outline the theory
presented below. Tukey defined a transitive, reflexive relation <, and the associated equiv-
alence relation =, on the class of directed sets; the definition can be usefully applied in the
class of all partidly ordered sets. It is not quite sufficient for our needs and 1 describe simi-
lar relations <_,,, <, to cover transitions between directed and undirected sets and between
ideals and g-ideals. Inall cases theideaisthat if P < ,Qthen P isinsomeway «simpler>
than Q . All the relations are large ones and give a rather coarse classifiction of the partialy
ordered sets discussed; but they nevertheless give some useful information, primarily about
additivity and cofinality, but aso about such things as cellularity (1 J) .

In§ 2 1 deal with partially ordered sets derived from a measure space. Let (X, u) be
aMaharam homogeneous Radon probability space with Maharani type & > w ; write &
for its measure algebra, A = for A\ {1}, 4} for itsideal of negligible sets, and Z; for

{E: ECX,u(E) <1}. Then
=A==, L) =L w=1LW =,

=<uw

(2C, 2E, 2F, 21). Thus all these partialy ordered sets are in some sense at the same level of
complexity. Moreover, for many & (and in simple models of set theory, for all x) we have

2(r) =, £/(N) x [s]=*
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(2)), 0 that the complexity depends on & in a manageable way.

The most important case is of course s =w, X =[0, 1], and p = Lebesgue measure;
in this case write .#~ for .47 . It turns out that the partially ordered sets £ (N), A have
aspecial place among the partially ordered sets arising in real analyss, even those in which
measure theory does not seem to be directly involved. Write % for the ideal of nowhere dense
subsets of NN and _# for the o-ideal of meagre sets. (Any non-empty Polish space without
isolated points could take the place of N N here)) Then

NN<F= #<HN

(3B), w0 that %, % define a level of complexity somewhere between NN¥and 47 In§3 1
seek to locate in this pattem further ideds of interest; for instance, the ideal % of subsets of
N with zero asymptotic density also falls somewhere between NN and £' (N ) (3K), while
the idedl of subsets of R with strong measure zero is dominated by a power of 4" (3I).

Note that nearly all these results are theorems of ZFC in a context in which ZFC leaves
agreat deal of flexibility. In any particular model of set theory - under CH, for instance, or
in random real models - the pattem may collapse dramatically, at least in those parts deding
with aideals. 1 do not attempt to discuss such questions here. Several relevant models of set
theory are described in [20].

1 should like to thank J. Cichén and S. Todorgevi¢ for introducing me to [1] and [28],
respectively, and for helpful correspondence since.

1. TUKEY'S ORDERING WITH VARIATIONS

1 give the definitions on which this paper is based (IA, 1B, ID, 1F, 1I) and a variety of ele-
mentary consequences, with a brief discussion of «bursting numbers» (1K-1M).

Definition 1A. Let P be a partially ordered set and A, B two subsets of P. Say that B
dominates A if for every a € Athere is a b € B witha < b. Say that A is finitely/countably
dominated in P if there is afinitelcountable subset of P dominating A .

Definition 1B. Let P and Q be partially ordered sets and f : P — Q a function.

(a) f is a Tukey function if {p: f(P) < q} is either empty or bounded above in P for
every q € Q.

(b) T isa < w-Tukey function if {p : f(p) < q} is finitely dominated in P for every
geQ.

(c) T is an w-Tukey function if {p : f(p) < q} is countably dominated in P for every
J€Q.
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Proposition 1C. (8) A Tukey function is < w-Tukey; a < w-Tukey function is w-Tukey .

(b) The composition of two Tukey functions is a Tukey function; the composition of two
< w -Tukey functions is a < w - Tukey function; the wmposition of two w -Tukey functions
is anw - Tukey function.

(c) If P is upwards-directed and f: P = Q is a < w -Tukey function, tben f is a
Tukey function. If non-empty wuntable subsets of P are boundedabove in P, and f: P —
— Q is an w -Tukey function, tben f is a Tukey function.

Part of proof, Suppose, for instance, that f: P - Q and g : Q — R are < w-Tukey
functions. Let r € R. Then {q : g(g) < r} is dominated by some finite set BC Q . For
be B, {p: f(p) < b} is dominated by some finite set A, C P. Now it is easy to check
that Usep 4, is afinite subset of P dominating {p: g(  (p)) < r}. Asrisarbitrary, gf is
a < w-Tukey function.

Definition 1D. Let P and Q bepartially ordered sets.
(@) Write P <Q if there is a Tukey function fromP to Q..
(b) Wrte P <, Q if there is a < w -Tukey function from P to Q .
(c) Write P < Q if there is an w -Tukey function fromP to Q.

Proposition 1E. (a) If P<Q thenP <, Q ifP < ,QthenP <, Q.

®) <, <, and < are transitive andreflexive.

() If P <, Q and P is upwards-directed tben P < Q ; if P <, Q and nonempty
countable subsets of P are bounded above in P, then P< Q.

(@) If {P;)ic; and {(Q;);¢; are families of partially ordered sets and P; < Q; for every
i €1, then Jlies P; < Ilier Qi

(€) Zf (P;);c; and (Q;);¢; are finite families of partially ordered sets and F; <, Q; for
every i € I, then [[ie; P, <, Tlier Q-

(f) If (P;);e; 1s afinite family of partially ordered sets and Q is upwards directed and
P, < Q,foreach i € I, then [[;c; P, < Q .

Detinition 1F, Let P and Q be partially ordered sets.
(@) Write P=Q ifP<Qand Q< P.
(b) Wtite P =g QifP < ,QandQ £, P.
(c) Wrte P=,Q ifP<,Q andQ <, P.

Proposition 1G. (a) =,=,
dered sets.
() IFP=Q thenP=_,Q;ifP=_,Q thenP=_, Q.

(c) If Pis a partially ordered set and Q is a cofinal subset of P, thenP=Q .

and =, are equivalence relations on the class of partially or-
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Remark 1H., (a) The phrase «Tukey function» comes from [1]; the concept is due to [28].
The relations <, = (for directed sets) are studied at length in [28], [24], [13], [26].

(b) If P and Q are upwards-directed sets then P = Q iff there is a partially ordered set
R with cofinal subsets isomorphic to P and Q ([28], chap. 11). This is false for undirected
partially ordered sets; for example, [wW] ' =[w]! X w (Where [w] !is the set of singleton
subsets of w, ordere by C ); but a partially ordered set in which a copy of [w] ! is cofinal
must have maximal elements, while a partially ordered set in which a copy of [w]! x w is
cofinal cannot have maximal elements.

(c) Asisdready apparent from the example just given, and will become even clearer in §
2 of this paper, the relations <, <., and <, are large, and relate some unexpected sets; this
is the whole point of their use here.

(d) Throughout this paper, partially ordered sets are considered to be active upwards; thus
a Tukey function is one such that the inverse image of an upwards-bounded set is empty or
upwards-bounded. When we come to study Boolean algebras this will force us to work with
partialy ordered sets A = (2Ad) rather than the more familiar sets A * of non-zero elements.
It seems easier to make a few such inversions than to devise a languagecapable of dealing with
cases in which one partialy ordered set is active upwards and another is active downwards.

(e) Evidently the role of win< ,=, can be played by other cardinals (we shall want
regular cardinals in place of w in< .., =_,). 1 have no applications for such a generaisation
0 1 passit by.

Cardinal functions 11.1 shdl use the following definitions. Let P bea partidly ordered sets.

(@ Write

add( P) = min {#( A) : 0# AC P, A has no upper bound in P},

add( P)=min {#( A): AC P,Aiis not countably dominated in P},

cf( P)=min {#( B): Bisacofina subset of P},

c(P) = sup{#(A): AC Pisan up-antichain in P}.

(The formulae for add( P) , add,( P) may call for an interpretation of «min @ », 1 shall
use « oo » in such cases - e.g. add( P) = oo if P is empty or has a greatest member - with the
convention that x < co for every cardinal «. ) Note that if add( P) > w then add, ( P) =
=add(P).

(b) Zf s, ) and § are cardinals, I say that (n, \, < 6) is atriple precaliber upwards of P
if for every indexed family (p),., in P there isan I € [x]* such that {p,: € €} is

boundedabove in P forevery J €[ 1]<¢.

Theorem 1J. Let P and Q be partially ordered sets.
(@) zf P< Q then
add(Q) < add( P);
add ,(Q) < add(P);
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cf( P) < cf(Q) 5

if (k,\, <00) is atriple precaliber upwards of Q , it is a triple precaliber up wards of P ;
¢(P) < ¢(Q).

® If P <, Q then

add,(Q) <add, (P);

cf(P) < max(w, cf(Q)).

Proof. (a) If P = @ theresultistrivial(add(P) = add, (P) = oo, cf(P) = c(P) = 0,
and (x, ), < oo) is always atriple precaliber of P). So Iet us suppose that P 4@ . Let
f: P —= Q beaTukey function.

(i) If add( P) < oo, let A €[ P]*%4(P) be a set with no upper bound in P; then f[ A]
can have no upper bound in Q so add ( Q) < #( f[ Al) < add( P) .

(i) Similarly, add ,( Q) < add,( P) because f[ A] cannot be countably dominated in
Qif AC P isnot countably dominated in P.

(iii) Take C € [Q1¥¢@ which is cofina with Q . For each ¢ € C choose an upper bound
a, of {p:f(p) <c} . Then A= {e :ceC} iscofind with P, so cf( P) <#(A) <
<Lef(Q) .

(iv) If (p¢)ec, iSa familiin P, there isan T € [ x]* such that {f( p): € € J} is
bounded above in Q for every J e[ I1<?; now {pf : £ € J} is bounded above in P for
every J € [I]<.

(v) c(P) <« iff (x*, 2, < 3) isatriple precaliber upwards for p.

(b) Similar to (i), (iii) of(a).

Remark. «Triple precalibers» look unfriendly. 1 mention them because they provide argu-
ments to show that P £ Q (see 2Ma,2Nb below).

Bursting numbers 1K. (a) For an upwards-directed partialy ordered set P, write

bu( P)=min{x : 3 cofina C C P such that
#({c: ce€C,c< b)) <rkYbe P},

the principal bursting number of P (see [ 131, § 4).
(b) Observe that (for directed P)

bu(P) = min{x : 34 € [ P14 such that

#({a: a €A a <b}) < wVbE P}

Theurem 1L. (&) bu( [ s]5¥) < w; for every cardinal k <uw,, .
®) bu([x]%¥) < w, whenevercf([&]S¥) = &
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(c) Suppose that o_is true and cf ( [x] ) < &* Whenever 1C > cf( s) =W . Then
bu( [x] $¥) < w, for every .

@ If

(*) for every f : [wy1<¢ — [ w,] < there iS an uncountable A C w,., such that
{f(D): I € [AI<¥} iS countable, then bu([w,]<¥)> w;.

Proof. () (i) It will help to begin with the following fact: let D be the class of ordinals
A such that bu( [A]S¥) < w,. Suppose that a isan ordinal, that cf( @) > w, and that
a = sup(anN D); then a € D. For we can choose, for each A € a N D, acofinalset
Cp C[ AlSwsuchthat {c: ce C,, € Ca}iscountable for each a € [A]S¥, Next, for
a €[a]¥, set q(a) = min{A: A €an D,aC A}; 1(a) is well-defined (not co!)
because cf(a) > #(a) and a = sup(aN D). Note that y(a) < y(b) if a C b. Write

C= {a: a€la]® 0 € C'v(a)}‘

This C wimesses that bu( [ a]<%) < w,. To see that it is cofind with [ a]<v, take any
a € [a]¥¥; then a € [(a)]S¥ sothereisac € Coa) such that a C ¢; because a C ¢ C

C 7(a), 7(c) = 4(a) and c € C. Finally, given b € [a]<¥,

{c:ceC, cCb}C U {c:ceCA,cgbnA}
O€E

where E = {y(a) : a C b}. Butif A,A" € E and A < /\' then there is an @ C b such
that 4(a) = A/, sothat a C A’ but a € A; in this case bNA' \ A# @ . It follows that E
is countable. But also {c: c € C,, ¢ CbnA} must be countable for every A € E, so
{c:c eC, cCh}is countable, as required.

(ii) Since bu([x] <) = 2 for x < W and bu( [cv] S¥) = bu( [ #( )] S¥) for every ordinal
a, we see at once that if there is any cardinal = such that bu( [ ] S¥) > w, then the lest such
cardina is uncountable and of countable cofinality. In particular, it must be a least w,, ; Which
proves ().

() Consider A=[x]'C[«]<¥; no uncountable subset of A can be bounded above in
[&]$Y; s if #(A) = cf([&]5¥), bu([x]<¥) < w,, by 1KD.

(c) Now suppose that cf(x) = W < &, that bu( [A]<¥) < w, for every ) < &, that o,
istrue and that cf ([ ] <¥) < x*. By Theorem 8.7 of [25] (see also [27], 2.8), there is a set
M C &N such that (i) #(M) = x* (ii) any subset of M of cardinal w; is expressible as
Usen F, where each F, is well-ordered for the lexicographic ordering of s . Consider

A= {f[N]: fe mC[r]%.
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If FC &N is uncountable and well-ordered for the lexicographic ordering of &N then
U{fIN1: f € F} is uncounteble; it follows that if F C M is uncountable sois  J{ f[N ]:
f € F}; consequently #( A) = #( M) = x* and every uncountable subset of A is unbounded
above in [s]<¥. By 1Kb, bu( [ x1<“) < w, .

Putting this together with part (i) of the proof of (a) above, we have a proof of (c).

(d) Now suppose that (*) is true, and that C is cofinal with [ w_1<¥. In this case #(C) >

> w, » Let {cg)e.,,  Deafamily of distinct elements of C and set
£y = e € [w,]
§el
for I €[w,,;15¥. By (*) there is an uncountable A Cw_, ,such that a = J{f(): T €

€ [A]s¥} is countable. Now {c: c €C,c Ca} D {ce - € € Ayis uncountable. As C is
abitrary, bu([w,] <) >w,,

Remarks 1M. (a) 1L(a-b) come from [13].1L(c-d) are due to S. Todor&evic.

(b) The condition of 1Lb is satislied by cardinals x of the form 2*, where X > w, and
by strong limit cardinals of uncountable cotinality.

(c) The conditions of 1Lc are satisfied e.g. whenever Jensen's Covering Lemma is true
(see [5], § V.5).

(d) If it is relatively consistent with ZFC to suppose that there is a 2-huge cardinal, then
it is relatively consistent with ZFC to assume (*) of 1Ld; see [18].

2. THE PARTIALLY ORDERED SETS OF MEASURE THEORY

1 apply the ideas of § 1 to function spaces (specifically L', L® and £' ), measure algebras,
and ideals of negligible sets.

2A. Notation. 1t may be helpful to declare the following, which is supposed to be nearly
standard.

(@) If [isany set, then £' (I) is the Banach lattice {z : z € RY, = Yierlz( <
< oo}, ordered by saying that = <y iff z(q) < y(i) for every i € [. If z € £' ( I) then
£t € £'( I) is defined by writing z* (4) = max ( z( 1), 0) for every i € 1.

@ If (X, ) is ameasure space, write %, for the o-ideal of negligible subsets of X
viz. {E : 3F D E such that u( F) = 0 } . Write L%( ) for the Dedekind u-complete Riesz
space of equivalence classes of u-measurable real-valued functions on X, and L' (p) for
the Banach lattice of equivalence classes of p-integralbe real-valued functions on X .

(c) Following 7] and [8], I take a Radon measure Space to be a quadruple (X, @, £, u)
where (X, £, p) is a complete locally determined (or «saturated») measure space, T is a
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Hausdorff topology on X, @ C £, and g is locally finite and inner regular for the compact
sets. Most of the time we shall be dealing with probability spaces; in this case /Vu =
where v is the restriction of 4 to the algebra of Borel subsets of X .

(d) If & isaBoolean algebra, write A ~ for the partialy ordered set A\ {1} .

(e) Forcardinals « > w, take A _ tobethemeasurealgebraof [0, 11" when [0,1]"
is given its usual measure (the Radon product measure when each copy of [ 0, 1] is given
Lebesgue measure; see [8], A7E).

(f) Recall that the Maharam type of a u-finite measure space (X, ) is the least cardi-
nd (A ) of any subset of the measure algebra A of (X, x) which completely generates
A (see [11]). A e-finite measure space (X, u) is Maharam homogeneous if all its non-
negligible measurable subspaces have the same Maharam type, that is, if its measure agebra
is a homogeneous Boolean algebra.

(g) Findly, 1 write _# for the ided of Lebesgue negligible subsets of [ O, 1} ; note that
([0, 1], isisomorphic to (X,.#7) whenever X is a separable metric space and 4 is an
atomless, nonzero Radon measure on X .

2B. Thefirgt theorem of this section is rather abstract, but its generality enables us to deal
sirnultaneously with partialy ordered setslike L°, [' and A ~,

Theorem. Let P be a partially ordered set such that = vy = sup{ X, y} is defined for qll
X, y € P. Suppose that there is a metric p on P for which P is completeand A :Px P P
is uniformly continuous. Let Q C P be a p-open set, given the induced ordering. Then
Q <, 2 (1c) forany = > d(Q) , where d(Q) is the topological density of Q .

Proof. (3) If Q is finite this is elementary, as Q <_, R for any non-empty partially ordered
set R. SO let us suppose that Q and « are infinite. Fix on afamily (g;),., in Q such that

{g¢:é<r}isdensein Q. For each g € Q let m(g) € N be such that

f(n

{pip€Pplp,g) <27 ™9} CQ.

Foreachne N, let A, > 0 be such that
p(sup I,sup J) < 27" whenever @#1 CJ C P, #(J)<2",

sup inf ) <2A;
qel}pe,p(q p <2A,

such a A\, exists because (p;); F sup;.; p; : P¥ — P is uniformly continuous for every
k, and in particular for k= 2% ; we may suppose aso that A_,; < A, < 272 for every n.
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(b) Define f : Q — £'() as follows. Given p € Q, choose {£(p, n)),x € &~ such
that p(p, gepm ) < A, fOr every ne N . Take f(p) € £' () such that

f)y(m(p) > 1, f(H&(p,m)>2"VEN

(regarding m(p) € N as a member of n).
(¢) 1 now have to show that f is < w-Tukey . Fix z ¢ £!( x), and consider A ={p:p €
€ Q,f(p) < z}. Sel

Ki:{q€;£<n, z(f)22"}
fori € N . Then there isa k € N such that z(i) < 1for i € N, i >k, and also

#K) <27 forevery i >k (for ||z ||> 3 ,n 277 M( K,)). FOr each r € K, define
{(I(r,9));5 by writing

I(r, k) = {r},
I(ryi+ ) ={q: g€ K;,,,3¢ € I(r,1),p(q,4) <2/, }.

Set p,; = sup I( r,i) € P fori > k; then (p,;),,, is an increasing sequence in P.
Moreover, if i > k,

P (pf.i*fl'pn‘) = p(sup I(r,i+1),sup I(r,4)) < o -i-1

because #(I(r,i+1)) < #K,, < 2! and every member of I( r, i+ 1) is within a distance
2, of some member of I(r,1) . 9 (p,);s, isa Cauchy sequence in P and has a limit
p, € P.

Set B= {p,: r € K,} N Q €[Q] <“.1claim that B dominates A. For suppose that
p € A. Then

27F < f(p)(E(p, k) < 2(E(p,R)),

SO 1 = ggpiy € Ky . Next, 9e(piy € I(r, 1) for every i >_k, because Iepir 1) € K
PUepiv1ys Ge(pi) < Doz ¥ Dii < 2N, foreveryi > k. Findly,

and

1+ 1

1 < f(p)(m(p)) < 2(m(p)),

o m(p) < k . It follows that
P AP =M gepn Ap, =M M Qe A Pry =

= lim lim p] =D,

1—00 ) =00
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so that p < p, ; and also that

p(p,.0) < p(r,p) + Y p (p,,.-u,pr.-) <

i=k

<27F4 Y27l o gkl g omle)
i-k

sothat p. € Q and p, € B.
This shows that B dominates A and that A is finitely dominated in Q . As z is arbitrary,
fis < w-Tukey.

Theorem 2C. Let (X, p) be an atomless probability space of Maharam type x >w . Then

[s1 x £/(N) () =L (W) =y A5

Proof. (8) (i) Choose f: [x]S¥ — £'(x) such that f(a)(f) > O whenever ¢ ca ¢
€ [x]S“. Then f is a Tukey function so [x]<* < £'(x). (ii) Define g : £/(N) — £!(x)
by setting g( z) (n) = z(n) forne N, g(z) (§) =0 for £ € x \ N (identifying the set N
of natural numbers with the set w of finite ordinals). Then g is a Tukey function s ' (N) <
< £ (i) . (iii) Because £' ( ) is upwards-directed, it follows that [n] < x €' (N ) < £!(x) .

(b) Let A be the measure algebra of (X, ) . then there is a digoint sequence (a,,),..x
in A\ {0} such that sup,n a, = 1in A and each relative agebra A a, is Maharam
homogeneous ([11], § 3). Set «, = 7( A a,) for each n; then sup .y x, = & (it may be
that some or all of the &, are equal to n). Let (X, ) .x be adigoint sequence of measurable
subsets of X such that the equivalence class X, of X in A isa,, for each ne N . Define
measures p, on X, by setting

o (E) = u(B)/p (X,)

for each y-measurable set E C X, . Then L' () is isomorphic to the £' -direct sum

{u;ue T2 (k) a3 0w li< oo}
neN neN

of (Ll(pn))nEN .
For eachn€ N, L' (u,) is isomorphic (as Banach lattice) to L'(v,), where v, isthe

usual measure on [0, 1]% . Let P be the £' -direct Sumof (L!(v,))en, SOthat P ¥ L1 (p).
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For each ¢ < » take m( ) € N such that ¢ < Kom(e) and define u € P by writing

ue(i) = 0if i €N \ {m(€)},

ug(m(§)) = w,

the equivalence class in L' ( Vmeey) Of we, where we 1 [ 0, 1]"~0 — R is given by the
formula

w(t) = —J% if #(6) > 0, 0 otherwise

Observe that || ug ||= /] wedy,,, = 2 for every ¢ < «. Observe also that if I'is a
non-empty finite subset of x and m(f) =  for every £ ¢ I, then

I sup 2 ™"ug ||> 2 7"#( 1)/
fel
for every n € N . For || sup,¢; 2 u, ||= [ wd v, where
w(t) = 27" max(¢(£)) "'/
el

if t €[0,1]% and min..; t(§) > 0, w(t) = O if min ¢er 1) = 0. But for each real
a>0,

et T W) <o} = JTue{t: 1© 242} =

{el

#(1)
)

=(1-4""a"? gl—%ﬁza‘z if a>p,

where =2 "#()!1/2. S

vt s w(t) > a} > 12—520_2 if a>f,

and

/wdyk=/wuk{t:w(t) 2a}da2%/wﬁ2a“2da+—21-ﬁ=ﬂ,
0 B

as required.
Now let (y,)., run over anorm-dense subsct of £} (&) . For z € £'( k) choose induc-

tively a sequence {({( z, n)),n IN & SUch that

| 5 - E yz(I’i)”gS“"VneN.

i<n
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Let f:£'(x) - P besuch that

(D) > 3 2 gam | S 2] 2 ||V 2 € 8(x).
nEN

To see that f isaTukey function, fix v € P, and set A = {x : f(x) < v} . Set
Ki= {6 m(©) =k 27 < v}
for k, n € N . Then, by the calculations in the last paragraph,

| v(k) ||[>2"V kneN.

SO

do# (K,) <4my vk P4 <E Il v(k) ||> -

keN keN keN
- 4n ” y ”2,

for every n € N . Consequently
#({é(z,m) i x € A< | v|P VneEN,

and

Sl veam €A} < A 1P s [l v lI<
neN neN I€EA

<llvIF (s o))« o] 3047 (8 4 87) < oo

n=1

(as]| x||<||v]| for every x € A). But this means that
y= Z E {yg(:c,n) T € A}
neN

is detined in ' (&), and is an upper bound for A in £' (n) .

Asy is arhitrary, f isaTukey function, and 7' (n) <P & L' (p) .

(c) By 2B, with P = Q = L' (), p(u,v) =|| u—v ||, we have L'(y) <_, £'(x). But
as [' () is upwards-directed, it follows that L' (u) < £'(x), othat L' (u) = £ (k) .
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(d) Tosee that £' () < A 5, we can use asimpler version of the argument in (b), Define
f:(x) — A, bywriting o, = {{: 2(§) >0},

f()={t:tel0,1]%,F €a,, t() (1+z7(O)) < z* (O} .

Then f(zVy) = f(z) U f(y), and

5(fz) =1-]] (1 z (§) ><1,

o T 14 24(6)

where ¥ is the measure of A, because )~ ﬁ—}% <l z|I< oo. It follows directly that

f is a Tukey function. For suppose that o € A - and that A ={z:f(z) <a} . Then
A contains 0 and is upwards-directed. Set y(&) = sup,. , z(£) for each ¢ € I (allowing,
notiondly, y(§) = 00). Then

YO sup z"(§) for every ¢ < &

T+ y(6)  zea 1+ 27(0

(taking oo/( 1+ 00) as 1), so

wo \ . 2*(6) I
H(l-w‘{))';’é&g(‘—_mwo)21 v >0

E<r

this shows both that y(f) < oo for every ¢ and that 3, Tf(;% <oo0thaty e (n).
Accordingly y is an upper bound for A in £'(x) . As a is arbitrary, f is a Tukey function
and £'(r) <A 7.

(e) Finally, A <, 2'(k),by 2B,using P= A& _and Q = A7, with p(a,b) =
= D(aA\b). So £' (k) =L,Ax.

Theorem 2D. Let (X, u) be an atomless Radon probability space of Maharam type x > w .
Then

(K]S x A< A, < 2(K).

Proof. (8 (i) By [9], Lemma 14 (repeated in [11], 6.10) there is afamily(E£){<n in A,
such that {¢: EcC E} is countable for every E ¢ A, Nowa = e, By [5] <w -,
is a Tukey function, 90 [k] ¥ < A, . (ii) There is an inverse-measure-preserving function
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h:X —[0, 11 ([8], A6I); now E — h~'[EIl: A — ., isaTukey function, by the
argument of [9], §§ 7-8, or [Il], 6.12. Thus 4" < /V‘" (i) Because ., is upwards-directed,
it follows that [x]<“ X #”" < 4.

(b) Let A be the measure algebra of (X, p), and 1 the measure of A . Set

For p, g€ P set
p(p,q) = sup i(p(n) Ng(n)).
neN

Then P satisfies the conditions of 2B, and its topological density ismax (w, 7( A)) = &
0 P<_, £ (s);because P is upwards-directed, P < £' ().

Now define f : ./Vu — P by writing f(E) = (G}, ),ex » Where for E€ 4, nEN,
G, 1S an open set of measure < 2" including E. I claim that f is a Tukey function. For
take p € P. Foreach n e N set

F. ={H:HCX isopen, H Cp(n) in A},

=%,

Then u( H)=sup{u(H): He ¥} (becauseeverycompact subset of H,, isincluded
in some member of # ), O H, =sup{H : He #,}Cp(n). Set F = n H,; then
Fe/t/‘“becauseinf N B(p(n)=0. But if E € .#, and f(E) <p, then G, C H,
forevery n€ N, so E C F. Thus {E : f(E) < p} is bounded above in .4, and f isa
Tukey function.

Accordingly .#, <P and 4} < £'(x).

Remark. The argument of [11], 6.5, can aso be used to show that under the conditions of
this theorem, .4, < A .

Theorem 2E. Let (X, p) be a Maharam homogeneous probability space of Maharam type
k> w. Then L°(u) = ' (x).

Proof. (8) Asin 2C, we have L°( u) < £' (n) , because () carries a complete metric
p for which its density is » and A is uniformly continuous (set p( u, v) = [ L2=2L).

1+|u—v|
(b) To check that ' () < L° (p), it is enough to consider the case in which X = [0, 1]*
with its ysual measure, since the Riesz space L° (u) depends only on the measure algebra
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of X ([7], 62L). In this case, for { < &, t €[0,1]%, ¢ € [0, 11" set w(t) = t(§) ™'/ if
t(€)> 0, 0 otherwise; set u; = w; € L(p) . For z € £ () observethat

u ({t  sup (z*(©) " we(t) < a}) =
<K

p{t: 2O <UHVE<K)) =
=[[(1-e?2©) 2 1-a7 |21

{<n

as a — oo. Consequently

iup \/x*(f)wf(t) <oo u-— ae.(t),
<K

and f(z) = sup,) 5o V(€ ug isdefined in LO(p) .

To see that £: 21 ( k) — L°(p) is a Tukey function, take v € L°(p)* . Write A =
{z: f(z) <v}and set y(€) = sup ., =( €) for € < x; because /z*(§)u, < v for every
z €A, y(§) isfinite. Take o > 0 such that p({t: w(t) < a}) =8> 0,where wis a
measurable function with w' = v . Then the calculation just above shows that

[Ta-a?z) >8

{<n

for every z € A ; as A is upwards-directed, it follows that

10 -e?y®) >8

£<n

sothat § ", a"2y(€) < oo and y € £'(x). Thus y is an upper bound for A in £'(x). As
v is arbitrary, f is a Tukey function, and £' (n) < L° () .

Theorem 2F. Let (X, p) be a Maharam homogeneous Radon probability space of Maharam
type x >w. Then A, = £'(x).

Proof. (a) We know aready from 2D that 4 < £' (n) .
(b) () Let (H)e., beafamily in.#] such that { : H,C E} is countable for every
E €, (see (a) (i) of the proof of 2D). Let (G, )¢x scn b€ @ stochastically independent
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family of measurable setsin X such that u(G,,) = 27" foradl { < x,n € N; sucha
family exists because the measure algebra of X is isomorphic, as measure algebra, to that of

[0,11"N . For z € £'(r) set J(z,m) = {€: 27™' > 2(£) > 2™},

= U 5o U U G

z(£)>0 neEN m>n £eJ(z,m)

Because {¢ : z(£)> 0} is countable, f(z) is a measurable set; because

> Y #(Gem) <2lzli<oo,

meN §eJ(z,m)

f(z) e A,.

(i) Let E € 4} and let A= {z: f(z) C E}. Note that [ = {¢: H, CE} is
countable, and that z(£) < 0 whenever z € A and £ € s\ . Because | is countable,
there is a compact set Fy C X\ E such that u(Fy) >0and Fy N G, Fy\ G, are
compact for all £ € I, n € N ; now there is a compact set F' C F, such that p(F) = u( F)
and y( F N G) > 0 whenever G is an open set meeting F ([8], A7Bg). Define = : F' —
— {0, 1}"*N by saying that =(t)(£,n) = 1if t € G,,, O otherwise; then = is continuous.

Write % for the family of open-and-closed subsets of {0, 1 }'*N meeting #[ F] ; then %
is countable. If U € %, then «~! [U] is a non-empty relatively open subset of F, so
p(r=' U] > 0.

ForU € %, ne N set

KUm={¢:6el,m ' [UING,=0}

Then

0<p(r'U)<u (ﬂ U X\Gén) -

neN €K (Um)
= H H 2 (X\an) = H (1 _ 2—'n)”(K(U,n)) ‘
neN €eK(U,n) 2N

SO Y .en27"#( K (U, m) < oo. Take z; € £!(x)* suchthat z,(§) >2 " if ne N
and ¢ € K(U,n), and z,(€) > O forevery ¢ € I. Set

B={kzy:keN, Ue®};
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then B is a countable subset of 2! (n) .
(iii) 1 claim that B dominates A. For suppose that z € A. Then f(z) C E so Fn

Nf(z)=@ .But
Fnf@m 22U U GmnF=
neEN m2n¢eJ(z,m)
=q1 W
OY%
where

W, ={t: 1€ (0, 1} 3¢ € J(z,m) such that t{(¢,m) =1}

is an open set in {0, 1}/*N for each m € N . Now =[ F] is a compact non-empty set not
meeting the G et (. cn Umyn Wi SO therearean n € N anda U € % suchthat

7[F1 U NUnsa W, = 0. Inthis case, 7' [UIN 5, 77 [W,]=0B i

' UIn | U Gm=9,

m2n fcJ(z,m)

and J(z,m) C K(U, m) for every m > n. But this means that z(¢) < 2 z;,(§) whenever

z(€) < 27™1. S0 {£: z(€) > 22,( §)} isfinite. Also Z,(¢) > 0 whenever z(£) > 0,
because such ¢ belong to 7. So there isan k € N such that z < kz;, € B . As z is arbitrary,
B dominates A.

(iv) AsEisarbitrary, f isw-Tukey and £'(x) =, m

Remark, Versions of this argument may be found in [[1], [22], [10], [9] and [11]. The form
here is based on that of [22].

Corollary 2G. 4" =, £/ (N) .

Remark. Theorem 5 of [1] states, in effect, that add(#) = @ iff add(£'(N)) = @ ; the
arguments there include everything necessary to prove that .#" =_ £ (N ) .

Corollary 2H. If (X, u) and (Y, v) are Radon measure spaces with Boolean isomorphic
measure algebras then A7 = 4.

Proof. (8) Suppose first that the measure algebras are homogeneous (as Boolean algebras).
(i) If both are {0} then pX = p¥Y =0, A, =PX and A, = PY, and A, = {B} =
=#,. (ii) If both are {0, 1} then there are t € X, u € Y such that &, = P(X \ {t}),
A, = P(Y \ {u}) s0 again 4, = #,. g If both are atomless, not {0 }, then both must be
ccc 9 there are probability measures v/, p' on X, Y respectively with the same measurable
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sets and the same negligible sets as y, v . Now the measure agebras of (X, u') and (Y, Y’)
are gtill Boolean isomorphic; suppose that their Maharam type is & then

Ny= Nz, L) 5,4
because p’ and /' are still Radon measures, O Vi =1 %4 and (because both are g-ideals)
/V"‘ =4,

(®) In general, the measure algebras A , B of (X, u), (Y, v) are semi-finite, so there
isapartition {a)c., of 1in & such that A |a, is homogeneous for each ¢ < «. Because

(X, u) is decomposable ([7], 72B, or [11], I.1O), there is a partition (X),.
measurable sets such that Xe = o for every ¢ < x and ./Vu_{E. ECXE NnXc€
€ /VV£ <r}.Let p¢ be the restriction of 4 to subsets of Xf for each £ <k ; then /Vu ]
¥ [le<n 7, - It we repeat the argument in Y with the family (#( ag))ecn, Where ¢ 0 A —
— Bis an Boolean isomorphism, we obtain a partition (¥¢),. of Y with a corresponding
family (), Of measures. By (a) above, /Vuf = /V,,e for every ¢ < x; consequently
N, =N, by 1IE d.

of X into

Proposition 21. Let (X, u) be a measure space with measure algebra A , Write E“‘ for
{E: Egdom(u), X\E ¢ .#.}. Then

@ A~<LIh

(d) if (X, p) is a Radon measure space, A~ =X} .

Proof. (8) Choose any function f: A~ o Z; suchthat o = f(a)' forevery a € A~
Then £ is a Tukey function, 0 A = < Iy
(c) For E € Z; choose an open set G D E such that G, € L. Write f(E) = G €

€A Iff(E) Caec A "then EC H, = |J{H :HC X isopen, H C a}. But
HyCa0H,eZ; ThusfisaTukey functionand Zy < A ~.

Theorem 2J. Suppose that k> w and that bu( [ s]15¥) < add () (see IK-IM). Then
@ €(r) =, (k]S x L1(N);
(b) foranyatomlcss space (X, p) of Maharam type x, L°(p) =, £'(K);
(c) for any atomiess Radon probability space ( X, u) of Maharam typek , /V“E [Kk]S“x

N
Proof. () We know already that [n] < x £' (N) < £' () (2C) and that ' (N) =, .#"(2G)
so thatadd (£ (N)) = add,(#) = add(-#) (1Jb).
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If aCxandue ! (a), write y* for the member of ¢! (n) defined by setting u*(¢) =
=u({) for €6, 0for € € n\a. Nowlet C C [x]S¥ bea cofinal set such that #({c: c €
€ C,c C a}) < add(#) forevery a € [x]S¥; of course we may suppose that every
member of C is infinite. For ce Cletm, : N — ¢ be a bijection. For z € £' () choose

c(z) € C suchthat {¢: z(£§)#0} C o(z) . Define £ : £' (k) — []15¥ x £} (N) bywriting
f(2) = (2),2 - 7my() -

Iclaimthat f isanw-Tukey function. Forlet (a,z) € [£]5“ x £'(N) and set A = {z :
f(s) <(a,2)}.SetD={d:deC,dCa}andforde Dset A;,={z: 1€ A, c(x) =
= d}, sothat #(D) < add(.#") and A = | Jycp A;- Ifd € Dand z € Ay, then z-m; < z SO
< y,=(2-my< 2502 < yy=(z-m;')*. Now consider B = {yyla: d € D} C £'(a).
As #(B) < #(D) < add_(£'(N)), B is countably dominated in £'(a); let B, bea
countable subset of £' (&) dominating B ; then {u* : u € B, } is a countable subset of
2! (k) dominating A . As (8, z) is arbitrary, f is an w-Tukey function.

Accordingly £ (x) <, [£]%¥ x £1(N) and £' () =, [x]S¥ x £}(N).

(b) Asin the proof of 2Cb, we can find asequence {(X,, 45,)),en Of Maharam homoge-
neous probability spaces such that LO(u) = [,en L° () = [Tren £ (&,) (by 2E), where
K, iS the Maharani type of (X, p,) . so that & = Sup,cy K, Now [ k.1 <% < £ (k) for
eachne N, so

[x]S¥ 2 H [nn]sw < H 2 (n) = L%p);
neN neN

also £1(N) < £(rq) = L) < L%(p). So [k]1S¥ x £Y(N) < L°(w). By (a), it
follows that £'(x) <, LO(p). Butaso LO(p) <, £'(s), by 2B. SO Lo(p) =, £'(x).
(c) Putting 2D and (a) above together, we have

(RIS X A LA, <8 (R) =, K] x 8 (N) =, [K]IS x A"

SO [kISX A =H,.

Additivity and cofinality 2K. The original impetus for this work was an investigation of the
additivity and cofindity of the partialy ordered sets involved. 1 list some consequences of
the results above in this direction.

(@ If & > w is a cardinal, then

add, (A7) = add, (¢'(r)) =w, if x>w,
= add (#) iIf r=w,
cf (&(x)) = cf (A7) = max (cf(A),cf ([k]%¥)).
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For 2C tells us that
add, (A ;)= add, (£'(x)) < min (add ([x]%¥), add, (¢'(4))) .
cf (€'(x)) = cf (£'(x)) > max (cf ([s1<), cf (£'(1)),
and 2G that
add, (fAN)) = add(A), cf (£(N)) = cf(A).

Of course add ([ x]S¥) = w; if & > w, if x = w . The only point remaining is to check that
cf (£} n) < max( cf(A), cf( [ ]<¥)). But this is straightforward, because if Q C [s]<¥
and C C ' (N ) are cofinal, then {z,. 1q€Q, z€ C} iscofina with ¢' (&), where for
each ¢ € Q we choose an injection Mg = N and set z,,(§) = 2(m,(£)) if £ € ¢,0 if

€ € s\ g;sothatcf(£'(x)) < max(#(Q),#(C)).
() If (X, u) is a probability space of Maharam type < > w , then

add, (L'(w) = add, (L°(w) = wif = > w,
= add(A) if k=W,
cf (L'(p)) = cf (LO(p)) = max (cf (A, cf ([£]S¥)).

For 2C tells us thatadd , (L' (u)) = add,(£'(x)) and that cf(L!(p)) = cf(£'(x)). As
for L, we saw in part (b) of the proof of 21 that LO(p) = [T.en £'( k,,) for some sequence
(nn) 2eN of infinite cardinals with supremum « . S

w, < add, (L%(w) < rnxéig} add, (£ (n)) = w,

if & > w; whileif x =w then add ,(L°()) = add_(£'(x)) by 2E. Finally, cf(L%(u)) <
< cf(£'( n)) by 2B, while aso

(
(81 = [] [s)" < JT ¢ (s.) = L%w)

neN neN

0 cf([k]<¥) < cf (L (p)) . Putting these facts together with those of (), we have fixed

add,, (L (1)) and cf(L° ().
(©) If (X, p) is an atomless Radon probability space of Maharam tupe «, then

add (7, F wif 5> w,
= add(A) if K=w,
cf (/V#) = max (cf ([x1€¥), of (4));

this is immediate from 2D and (a) above (this is the main result of [9]).



The partially ordered sets of measure theory and Tukey’s ordering 197

The Tukey classification of /#; [ ] <% 2L. In the work above 1 have attempted to describe
various partially ordered sets in terms of the basic sets[x]5“,.#". Neither of these isquite
straightforward. For instance, when is [ s]*¥ = [X] ¥ ? For w, < & < w,, We have
cf( [k]S¥) = &, 0 all the [ &,]<¥ are distinct (see [13], 4.5). But if, for instance, bu
([w,]5¥) = w; (see 1Lc), then [x]<* = [w,]<¥ wheneverw, < & < cf([w,]S¥), while
ef([w,15¥) > w, (for if (c)¢, isafamily in [w,] < such that no uncountable subfamily
is bounded above in [w, 1<, then a = Jge, ¢ 1 [N & — [ w,] < is a Tukey function.
See [13],4.9; adso [26], pp. 713-4).

Asfor 4 we see that if add(#") = cf(#) = x (e.g. because add (.#") = € , as under
Martin's axiom, or ¢f(.#") = w,), then #"= . On the other hand, in a random-real model
of set theory, we can expect afamily (t¢),.q¢ in[ 0, 17such that no negligible set contains

more than countably many t, ([13], 3.18), while ¢ can be large. In this case, /"= ¢ EE.

On the structure of 2! (x), A 7, L' (p), L%(u) 2M. (a) From 2C we see that if x > w
there is an upwards-directed partially ordered set (viz. ¢ (x) ) such that & 7 =_, ¢' () ;
which implies, for instance, that ( A ;)%=_, A ;. Asit happens, it is easy to show that
(A)"=A foreveryn > 1. Thisis not to be taken for granted. Suppose, for instance,
that T isa Soudin tree. Then (w, , W, < w;) is atriple precaliber upwards for T (the point
is that any uncountable subset of T, with its induced ordering, is again a Soudin tree, S has
elements of infinite rank). Consequently, any partially ordered set Psuchthat P <_, T
must be upwards-ccc (for if A C P is an up-antichain, no infinite subset of Acan be finitely
dominated in P, and the image of A under a < w-Tukey function must be countable). In

particular, T2 £, T, and there is no upwards-directed P such that T=_ P.

(b) Similarly, from 2F we sec that for every ~ > w there is a y such that ' (n) e w A,
Here it is easy to see that ¢' (n) = 7 for some g-ideal of sets 9. For try  the ideal
of countably-dominated subscts of £! (x) . If (z,).ex 1S @y sequence in £' (n) , there is a
sequence (g, ) Of strictly positive real numbers such that 3 ,cn €,7; is defined in £' (n) .
It follows that if Ag 7 then there isa 2, € £'(x)* such that A is dominated by {kz,, :
k€ N}. Now X = {x} : £/(r) > Tand Atizy 1 7 — 2 ( k) are w -Tukey functions,
sothat 7 =, £' (k). If bu([&]5¥) < add(A), then I = [r]S¥ x A"

(©) In the case of ¢' (N) there is another relatively familiar space involved. Write s, =
={z:z € RN, {i:z(:)#0}isfnite} . Then it is easy to sec that the Ricsz space quotient
£'(N) /s, = &, the idcal of countably-dominated subsets of £ (N) , so that £} (N) /s, =
=4

(d) Similar arguments apply to I,' and .Y because both have the property that a counta-
bly-dominatcd set is dominated by the set of multiples of a fixed element. For atomless prob-
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ability spaces (X, p) we find that

LY (p) =, L'(w)/L®(u) =4,

if v is a Maharam homogeneous Radon probability measure with the same Maharani type as
i, whileforany measurespace (X, u) wehave L(y) =, L%(u)/L(u) .

Further remarks 2N. (a) The outstanding problem |eft open above is: isit consistent to
suppose that for some « > w and for some Radon probability space (X, x) of Maharam
type k, 4, (] Swx _#7 The first case |eft open by 2J is &« = w,, and the arguments
there make it clear that it is enough to consider X ={ 0, 1]* . It seems that we can have
bu( [k]S¥) > w; in a context which allows w, = @ = add(-#") (1Ld); but it is not clear
what happens to £' (n) and 4, under these circumstances. Note that their additivities and
cofindities are what they ought to be (2K).

(b) Some subsidiary questions present themselves. In 2Jb, can the result be sharpened
to L°(u) = €' ( ) ? This is a problem only when cf( &) = w and (X, ) has no Maharam
homogeneous subspace of Maharam type x (a similar question arises in 2Jg; but here it is quite
easy to show that £'(w,) # [w;]15¥ X.@(N), because (w,,w,< w,) isatripleprecaliber
upwards for w, x £'(N) but not for £'(w,)).

(c) S. Todorcevi¢ (private communication, December 1989) has given an example in ZFC
of apartially ordered set P suchthat P> %, P .

3. FURTHER RESULTS

1 show that a wide variety of partialy ordered sets arising in analysis are amenable to the
methods of this paper.

3A. Notation. Apart from £'(N) and .#; which dominated § 2,1 shal be referring often
to the ideal % of nowhere dense subsets of NN and the ideal o-ideal .# of meagre subsets
of NN,

Theorem 3B. () #=~ #N.
) F=, 4.
(c) F< £(N).
) AL N
(e NN &

Proof. Throughout this proof and the next, write Seq = |J,n N™, taking each member of
N as the set of its predecessors, SO that dom( cr) = » if cr € N *. For o € Seq write
d(0) = Y ic om0+ Dand I, = {a:aCa€ NN}. For o € Seq, € NN write
9,(a) = 0"a (sothat g, (@) (1) = ofi) ifi < dom (cr), a(i— dom(o)) if i > dom(0)).
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(a) The map F (g&)l [FI )ien (Where (i) € N 'isthe one-term sequence with value
i) is an isomorphism from #to &N .

(b) (i) For each M € .# choose a sequence (Fy,,);cy in F covering M. Then M
= (Fudien | A — F N is aTukey function, so .4 < #N and 4 < F, by (a).

(ii) Enumerate Seq as (0,)en - FOr F € # choose inductively ( ( F, n) )

neN !
(v(F, m)),en in Seq as follows. The inductive hypothesis is that

lirpy N (FUG o F1) =0 V ij < n

Supposing thet this is satisfied at level n, Set

E=1, 0N (FUUQT(F,:')[F]) :
i<n
If E= @ set v(F,n) = CT,,, 7(F,n) = @ (sothat g,(p, [F1=F). If E+@ then
E isstill nowhere dense, so there isan v( F,n) D o, such that E N1, =@ . Next,
Uj<n Tucr, is @closed set not including I, , sothereisar(F, n) Do, suchthat I p.\N

N U]. < Iy R 0 . Evidently this construction of v( F, n) , 7( F, n) will satisfy the induc-
tive hypothesis at the next level.
On completing the induction, set

FOFY = FU | gypp[F1.
ieN
Then f(F) N I gy =@ forevery ne N, so f(F) € FC A4 . Also,if 0 € Seqis
such that f(F) NI # @, thenthereisa 7 D o such that g [F] C f(F); fortake n € N
such that o = o, ; ther ¥(F,n) cannotbe o,, so 7(F,n) D o and g p [F] C f(F).
This defines f : # — # . Now take M € .# and set

A ={F:Fe% f(F)C M},
£ ={g7' [E]: 7 € Seq, k € N} € [#F]*

where (E,)cn is @ sequence of closed nowhere dense sets covering M . 1 clam that &
dominates .4 . For if F € .4 \ (0} then by Baire's theorem there are o € Seq, k € N
such that @ # f(F) NI, C E,, and now there isa 7 D o such that g [F] C f(F) and
FCg'[EJeSB.
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So f is an w-Tukey function, and #< £ and F=, 4.

(©) (i) Note first that if X is any non-empty second-countable topological space, then for
each n € N there is a countable family #_ of open subsets of X such that

(@ NF+# 0 whenever ¥ C #,, #( F) <,

(B) if F C X isnowheredensethenthere isanH ¢ #_ suchthatF 0 H = 0 .

To see this, induce on n. For n = O take #, = { @} . For the inductive step, let H‘,)‘.eN
be a sequence running over %, and let % be a countable base for the topology of X which
is closed under finite unions. Set

H.. = {UUH,-:ieN,Ue%,UnﬂH}.;ég

jel

whenever [ C {0,...,i} and ﬂH,-#g} .
JeI

Then #_,, is acountable family of open sets satisfying (8) . If # ¢ # _,, and
0<#(F)<n+1 express F as {U; U Hyy: j < n} where each Uy UHy;isas
described in the formula for &, . Suppose these are arranged <o that i(j) < i(n) for
every j < n. By the inductive hypothesis H = (), Hy;y # @;now U, N H+ 0, so
NFO2UNH#D.

(ii) Nowlet (U,),.x enumerate a countable base for the topology of N N consigting of
non-empty sets, and for each n € N choose a countable family S, of open subsests of U,
such that

(a) NF # @ whenever ¥ C F, A #(H) < 2",

(B) if F CNNisnowheredensethenthereisanH € #, suchthaa F nH = @ .

wite K =J, {N} X #, and choose any function f: # —, ¢! (k) such that for
every F € #, ne N thereisan H € #_ suchthat FNH =@ and f(F)(n, H) >27".

I claim that f is a Tukey function. For take any z € £'(K) . Let m € N such that

E |z(n, H)| <1 VYau>m.
HeH,

Then ¥, = {H : H € %#,,5(n, H) >27"} hascardinal atmost 2" and G, = (| %,
is a non-empty open subset of U, for each n > m, sothat G = | J . G, is adense open

subset of NN, If F € #andf (F) <z, thenforevery n > mwehavean H € #,
such that f(F)(n,H) > 27" and FNH = @; in this case, H € #, so G, C Hand
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FNG, =@;as nisarbitrary, FNG = @. Thus NN \ G is an upper bound in & for
{F :f(F) <z}.As zisabitra-y, f is a Tukey function.

(iii) Accordingly # < 2' (K)<¢'(N ).

(d) Now A& =, F < /(N) =, N s0 # <, A and (because A is a o-ideal)
LN

(€) N < # because add(F#) = W (if (a,),y enumerates any dense subset of NN,
then N - {q; : i < n} isa Tukey function from N to #). SONN < #N 7.

Remarks. The main result of [1] isthat add(.#) < add(.#) . [22] shows in addition that
cf( ) < cf(A) . Theresult that .4 < #"is explicit in [I0]; it depended on an idea of J.
Pawlikowski. [20] showed that add (N ¥) > add( .#) ; the result that cf( N N) < cf( %)
seems to be folklore (I leamt it from J. Cich6n). Note that add, (N N} and cf (N N) are called

b and » in[10] and [6]. An w-Tukey function from NN to . is constructed in [10]; see
aso [2], 2.2. The fact that % = #™ is mentioned in [14]. The argument in part (c) of the
proof above is taken from [2a], 1.2.34.

Proposition 3C. Let X be a set and #"a counrable family of subsets of X . Write
D={D:DCX,VVeZ3W € Z such that W CV\ D}.

Then & < F.

Proof, (For notation see the proof of 3B). If #'= ¢ then & = #2X and the result istrivial.
S0 suppose that #7# 0 . Congtruct a function k@ Seq — ZU {X} such that A( 0) = X and

{h(M :cr CTEN™}={V: h(u) D VE 7}

whenever ne N, cr ¢ N™,
For D e & choose afamily (r( D, cr)),, Seq in Seq such that 7(D, o) D cr, dom(7(D,

o)) > d@ and DN h( (D, o)) = @ for every o € Seq; thisis possible because

{Mn:oCTEN}={V:V €ZV EhD}

whenever ¢ € Seq and k£ > dom (a) . Set

D) = NN L

o€ Seq

then f(D) € % because 7( D, o) D ¢ for every o € Seq.
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If Fe%set
Dy=|{D:De 2, f(D)CF}.

If Ve Pake o € N! suchthat h(o) = V. Take v D o suchthat [, NF =@ . If
DeDand f(D) C Fthen I, C Uye seq Ir(pn + it fOllows that there isag € Seq such that
7( D, a) C u. (Consider any a € I, such that a(4) # 7( D, a)(i) whenever i > dom( u)
and o € Seq and dom(7(D,0)) = i + 1; such exists because dom(7(D,0)) > d(a)
for every o € Seq. Now if o € LDy this implies that dom( (D, o)) < dom(v) and
(D, 0) C v.) Inthiscase h(u) C h(7( D, a)) C X\D. As D isarbitrary, h( v)ND, = 0
and h(v) C V\D,. As V is arbitrary, D, € &. As F is arbitrary, f : & — % is a Tukey
function and & < #, as required.

Corollary 3D. Let X be a topological space with a countable n-base. Write % for the
ideal of nowhere dense subsets of X and .# , for the o-ideal of meagre subsets of X . Then
@ Fx <&
(b) Ax < A
© addu(.g?'x) > add(A#).

Proof. (3) Let #’be a countable n-base for the topology of X . Then %, is precisely
{F:FCX,VVeZIW e ? suchthat W CV\F}.

S0 #y < F by 3C.

(b) Now %, < #y N (asin part (b-i) of the proof of 3B) s0 M , < FN = F=, M
and # , < .

(c) Because # =, 4 we have

add, (#y) > add (%) = add () = add(A4).
Remark. In the language of [8], % has the «( < add (.#), w) -covering property». Thus
Theorem 22B of [8] can be deduced in ZFC from the theorem of [19] that add(.#) > p .

Corollary 3E. Let X be a second-countable topological space and u a a-finite Borel mea-
sure on X . Let &, be the ideal {E:ECX,u(E)=@}. Then &, <&

Proof. (a) If p( X) = 0thisis trivial. Otherwise (because y is o-finite) there is a probability
measure v with the same measurable sets and the same null sts as y, othat &, = &, . Let

% be a countable base for the topology of X, containing X and 0, and closed under finite
unions. For k € N, let % be the countable set

(Vv:veZuwv) >1-27*},
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and write
D, ={D:DCX,VVeZIWe? suhthat wcCV\D},

so that &, < %, by 3C.
(b) The point of thisisthat &, = Men &, TO see this, argue as follows. () If E€ &,
ke Nand Ve #, then

WV\E)=VwV)>1-=27*

Because #% is a base for the topology of X and is closed under finite unions, there is an
increasing sequence (U,) ;cy IN % With union V\ E. Now there is an ; € N such that
v(U;) >1 - 2~* in whichcase U e, and U; C V\ E. AsV isabitrai-y, E € &,
as k and E are arbitrary, &, C (o Z- (ii) If E € Nien Dy, take any k€ N . Then
X eZ and E € &, SO there isa W ¢ #Z; such that W C X\ E. As W is open,
WNE=0 and u(E) < v(X \ W) < 27*%. As k is arbitrary, (E) =0 and E€ &,.

(c) Consequently the map E — (E),y is a Tukey function from & to T], .y &, ad

— N A
g =8,<][o.<F" =7
keN

Remark, Compare [8], 22G, where it is shown that add ,( &) > p; aso Theorem 2.1 of
[20], and 3K below.

3F. 1 now give three results on «cross-ideals», mixing measure and category, in [ 0, 1]% .

Theorem. Let & be the ideal of subsets of [ 0, 1] 2 generated by the Borel sets E C [0, 1]2
such that

{t:tel0,1, E[{t ¢ 4} eN,

where A | is the ideal of meagre subsets of [ 0,1] and E[ {t}] = {u: (t,u)€E} . Then
g=4.

Proof. (a) Themap H — H x [0,1] : 4" — & is a Tukey function, so .4/~ < 7.

(b) For the reverse inequaity, we need to know some facts about the structure of & which
may be of independent interest. Let & be the ideal of subsets D of [0, 1) such that D has
nowhere dense vertical sections, ¥ the o-ideal of subsets of [ 0, 1]? generated by &, and
7, theidealofsubsetsof [0,1]2 generated by 9 U {H x [0,1]: H € #7}. Let )  be
the family of those sets E C [ 0, 1] 2 for which there is some Borel set G C [0, 1] 2 with
open vertical sections such that GAE € 7 .
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(c) Let F be aBorel subset of [ 0,1]2 with closed vertical sections. ThenFe Y. To
see this, let (U,),en €NUmerate a base for the topology of [0, 1]. For each n € N , set

B,={t:te[0,11,U,NnF[{t}1 =0},
C, ={t: telo,1,U, C F[{t}}.
Then B, and C, are coanalytic, therefore Lebesgue measurable ([ 151, 2.9.2). For each

k€N, thereisaclosed set H,c[ 0, 1] suchthat H,\ B,, Hy \ C, are closed for every
n€ N andthemeasureof H, isatleast 1 — 2% Set

G=|J (C,nH)xU,
k.neN

% that G is a Borel Set with open vertical sections and G C F. 1 wish to show that F\ G ¢
€ 9,.For keN set

F.= (H,x [0,11)nF\G.

Then F \ G C (H x [0, 1D U Ugnen Fi, where H = [0, 1IN\ Uppen He € A7,
S0 it will be enough if 1 can prove that every F, € &. First note that F, C F. For if
(t,u) € [0,1]2\ F thereisan m € N such that u € U,, and U, N F({t}] = @ i.e
t € B,,;now

(10, I\ (H\ B,)) x U,

is a neighbourhood of (t,u) notmeeting (H, x [0,1]) NF, so (t,u) ¢ F,. Now examine
Fy, [{v}Iforve[0,1]. 1 need to show that this is nowhere dense. If it were not, there would
bean n€ N suchthat @ # U, C F,[{v}]. Inthis case U, C F[{v}] sov € C,. Butnow

(0, 11\ (H \ C,)) x Uy

is an open set not meeting (H, x [0, 1]) \ G, so cannot meet Fy, and ({v} xU,)NF, =@,
which is impossible.

Thus every F, belongsto & and FAG=F\G € 4, and F € , as required.

(d) It follows a once (because 7 is an ideal) that the complement in [ 0, 1]? of any
member of 3 belongto }" ; because &) is acr-ided, " is closed under countable unions,
0 isaa-agebraof sets. Open subsets of [ 0,1]2 bclongsto ¥, o every Borel subsct of
[0, 172 mustbelongto 5.

Consequently &7 is actualy equal to 9. For evidently &, C . On the other hand, if
A € & there isa Borel set E C [0,1]?2 suchthat ACE and{t: E[{t}] ¢ 4} € 4"
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Now E€ ¥ ;let G C[ 0, 11% be a Borel set with open vertical sections such that GAE €
€ 9, . In this case G € . But this must be because {t : G[{t}]#B} € 4" S0 G € 9,
andEelr,andA€ 9.

(€) Now we can find a function

A (HA!(DAn)nEN) 2T N x DN

such that A C (H, x [0,1]) UU,en Dy, forevery A € 9= 9. Clearly this is a Tukey
function. So
TN x DV,

(f) But dso & < . Tosee this, let % be a countable base for the topology of [0, g,
closed under finite unions, and let #'be

(V:Ve#, nivli=[0,1},

where m, : [0, 1]2 — [ 0, 1] is the first-coordinate map. If D € & and V € # then
m [V \ D] = [0,1]; because [0, 1] is compact, thereisa W € #'such that W C V \ D.
It follows easily that

P={D:DC[0,1)*,VVEZIWEe
such that W C V' \ D},

L that & < &, by 3C.
(9) Now 9N < #N = #and

TN XFL N XN =N

As 7 isag-ideal, 7 < /Y-and & = 4", This completes the proof.

Remark. Some of the arguments above were worked out in the course of correspondence
with J. Cichon.

Proposition 3G. Let <& be the a-algebra of Borel subsets of [0, 1] and 7 the ideal de-
scribed in 3F. Write A for the quotient algebra £/ £ NJ. Then & = A .

Proof. (a) Let B be the measure algebra of Lebesgue measureon [0, 1], othat B~ A .
We have an order-continuous embedding of B in A given by sending H to ( H x [ 0,1])
for any Borel set § C [0, 1]. It iseasy to check that this induces a Tukey function from B ~
o A7,sothat B~ < A~
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(b) Let (U,),n enumerate a base for the topology of [ 0, 1] with every 7, non-empty.
Let (b,),.n be adigoint sequence of non-zero elements of B with sup, b, = 1in B .
For each n € N let B | be the relative algebra B |b, and let ¢, : B — B | be a Boolean
isomorphism. For each a € A ~ choose E, € B suchthat E; =1\ain A . Then E,

belongs to the algebra E described in the proof of 3F; let G, be a Borel set in [ 0, 1]% with
open vertical sections such that G,AE, € #,sothat 1\ a = G,. ASG, ¢ 7 there is an
m(a) € N such that

H={t:U_,CGI{th¢A}.

m(a) =

But H, is a coanalytic set, therefore Lebesgue measurable, and #, is defined in B . Set
f(&) =1\ §py (H,) €B ™.

(c) 1 claim that f is aTukey function. For let b € B = and consider A ={a : f(a) C b}.
Thereisan ne N suchthat b, \b#0;set c = ¢>;1(bﬂ\b), and take a Borelset H C [0, 1]
suchthat ' =cin B .Setay=1\(H xU,) €A".

If a € Athen ¢, y(H;) Ub= 150 bUb,, =1ard m@ = n;ds0 H, =

=¢7'(b,\ f(a)) 2c,soH\H, e /. Now H, x U, = H,x U, CG, so
(HxU,) C(H,xU,) CG,=1\a

in A and
aC1\a(H xU,) =aq,
in & . This shows that a, is an upper bound for A. As b is arhitrary, f is a Tukey function
and A~ < B
(d) Thus A" =B~ Aj.

Remark. Of course A isisomorphicto )’ /9.

Theorem 3H. Let & be the ideal of subsets of [ 0, 112 generated by the Borel sets
E C [0, 1]? such that

{t :te (0,1, E[{t}] ¢ #}

ismeagrein [0,1]. Then 9= [¢ ¥,

Proof. By the arguments of [4], Thcorems 1.1 and 2.1 there is a family (E,),¢(0.1; in & such
that (J,c, ¢ & for any uncountable A C [0,1]. Now A — J,e4 E, : [[0,11]S¥ = &

is a Tukey function, 0 [@ ] £¥ < &. On the other hand, 9 is generated by the Borel sets it
contains, socf(9) < @ and < [C]<V.
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Remark. [3] give a variety of applications of their method which may readily be trandated
into further results of this kind.

31. Let us turn now to other ideas for which the techniques of this paper can give some
information, if not a complete classification.

Theorem. Let (X, p) be a separable metric space and % the g-ideal of subsets of X of
strong measure zero. Then & < A where 3= cf (N V) .

Proof, () If X = @ then the result is trivial. Otherwise, let Y be a countable dense subset
of X . Fix an w-Tukey function g : ¢! (Y x N ) — #"(using 2G above). Let D CN Nbe a
cofinal subset of cardinal » .

For each d € D, § € & choose asequence (tgy, ) ey IN'Y such that

SCUU (tsa2™®),

meN n>m

where U(t,8) = {u: p(t,u) < 6}. Take zg, € £} (Y x N) such that zg,(tgy, k) = 27*
for each k € N . Set
£(8) = (9 (250))aep € A7

foreach S € %.

(b) 1 wish to show that f : ¥ — 4P isaTukey function. Take (E;) ., € #™ and
set A ={S:8€%,f(S) <(Epup}, Sy =UA.Myaimis to show that S, € & .

Let (g;);en be any sequence of strictly positive real numbers. Let d € D be such that
2740 < ¢, whenever k € N and i < 2**!. Weknow that

A={z:z€8(¥Y xN), g(z) C E;}

is countably dominated in £' (Y x N); let z € £(Y x N) be such that {(t, k) : z(t,k) >
> 2( t, K)} isfinite for every z € A. Let n¢ N be such that

#({t:2t,k)>2"*) <2kVk>n

Then there is a sequence (u,);.x in Y such thatif k > nand 2(t,k) >2~* then t = u,
for some i such that 2% < § < 2%+,

1 clam that Sy C (J;en U( 4y, €;) - For take any S € £ . We have g( z5,) C E, sO
254 € A let m > n be such that zg,( t, k) <2(t, k) whenever t € Y andk > m . Then
forany k > m,

278 = 254 (bsar k) < 2 (L5 K)
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SO there is an i < 2k*1 such that tg,, = u,; Now 2-4P < ¢ s0 that U(tg,,,2~4P) C
C U(y;, €;) . Accordingly

SCUU (tsge 27 U U (up5) -

k>m ieN

As S isarbitrary, S C Uien Uy, €;) -
Since (;),en Was abitrary, S, € % and is an upperbound for £ in . Since (E,) 4
was arbitrary, f is a Tukey function, and % < #P % #? | as rquired.

Corollary 3]. In the context of 3/, add (9) > add (.#") .

Proof, add (4 ) = add(A4) .

Remark. These results may be regarded as descendants of T.J. Carlson’s theorem that add
(¥)=¢qif X =R and Martin's axiom is true (see [8], 33B). Note that for any non-empty
patialy ordered sets P and Q, add( P) < add( Q) iff there is some x such that Q < p*.

Proposition 3K. Let & be the ideal of subsets of N with zero asymptotic density. Then
@ N¥ < & < Z(N);
(b) if X is a second-countable space and y, is a o-finite Bore/ measure on X, then Ef“ <

< %, where &, = {E: p(E) =0}, asin3E.

Proof. For o C N write
. 1 e L
d@ = lim —#(a N n) if this exists,
n—00 7

d*(a) = lim sup -l-n#( anNn)inany case,
sothat & = {a: d(a) = 0} = {a . 0*(a) = 0).
(@ (i) The map
a {2%: k€N, i< alk)}
isaTukey function fromNNto &, ONY< Z.
(ii) & carries ametric p defined by

p(a,b) = sup }—#((aAb) Nn)VabeZ,
n>1 T

which makes % a separable complete metric space in which U : & x & — £ is uniformly
continuous. S0 & <_, C'(N) by 2B. As & isupwards-directed, & < £'(N) .
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(b) By the argumentsin 3E, it is enough to consider the case in which p(X) = 1. Let
(U,)uen runover a base for the topology T of X . For eachne N, let & be the finite
subalgebra of %X generated by {U; : i < n}, and let & be the countable algebra  J .y &, .
Then there is a Boolean homomorphism ¢ : & — 9N such that d( 0( C)) exists and is equal
to p(C) for every C € & (the easiest argument for this is an inductive construction for 6| &,
using the fact that if a C N and d(a) exists and 0 < a < d(a) then there isa b C a such
that d(b) exists = «). Let (k, ), n be a dtrictly increasing sequence in N'\ {0} such that

k7' (0(C)Nk,) <u(C)+2"VCEF, neEN.

Define f : &, — N by setting

FPY =N\ J{0(G)\ k,:n€EN, GET N, GNF=0}.

I claim that f is a Tukey function from &, 10 & . Thefird thing to check is that f(F) €
€ & for Fe&, Buif Fe& andmeN then thereisaG ¢ ¥ N & such that
G CX\F andp(G) >1-2"™; now there isann € N such that G € &_, and
0(G) \ k, C N\ f(F), so that

d*(f(F)) <d* (N \ (e(G) \ k)) = &(N\ 0(G)) = " (0(X\ @) =
=p(X\G) <27

As m isarbitrary, d*(f(F)) =0and f(F) € & .

To see that f is a Tukey function, let £ C &, be a set which is not bounded above; set

H=U#,sothat uy(H) = ¢ > 0, and write a = U{f(F) : F € #}. I need to show that
d*(@) > 0. Butexamine a N k,, forany n € N . Because k,, > k, for m > n,

f(F) Nk, =k, \U{0(G)\ k,: m<nGeT NZ, GNF=0@}D
2k N\NU{0(G) :GeT N, ,GNF=0}

forevery F€& . If i€k \a consider
V=n{G:GeT N, 1€(G)},;

thenV € TN& andi€ (V). 1f F € .4 theni ¢ f(F) sothereisa G € TNE, such
that GNF=@ and i € 0(G);now VC Gso VN F =@ ;as F isarbitrary, VNH =@ .
This means that

k \aCU{O(V):VETNE, VNH=0}=0(W)
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where W =U{V:VeT NF,GVNH=0}e &,. Consequently

# (k,\o) <# (k,NO(W)) <k, (W(W)+27") <
<k,(1—p(HY+2™) =k, (1 —e+27"),

and
k7' (ank,) >e—27"

This is true forevery n€ N . So

d*(a) > limsupk;'#(aNk,) > e >0
n—00

and a ¢ & . Accordingly f isa Tukey function and £,{%.

More about measure ideals 3L. (a) The results of § 2 dealt with ideals of negligible sets
for Radon measures. For general measures there will be nothing to correspond to them. For
instance, if X isany set and % any o-ideal of subsets of X, there isa {0, 1 }-valued measure
p on X such that .4, = . But some of the results do extend to interesting non-Radon
measures. in particular, to quasi-Radon measures. Recall that a quasi-Radon measure space,
as defined in[7) and [8], isa quadruple (X, T, £, p) suchthat: (i) (X, I, u) is acomplete
locally determined measure space; (ii) T isatopology on X and @ C X ; (iii) if u(E) >
> 0 there is an open set G such that p(G) < oo and p( ENG) >0 (iv) p is inner regular
for the family of closed subsets of X ; (v) if & is a non-empty upwards-directed family of
open setsin X, then p( US) = sup, . u( G) .

() On looking through the results of § 2, we find that the arguments of part (b) of the
proof of 2D, some of those of 2H, 21 and 2Jc remain applicable to quasi-Radon measures.
Specifically, (i) if (X, u)is an aomless quasi-Radon probability space of Maharam type
& > w, then /V“ < £'(s) (see 2D); (i) if (X, ) is aquasi-Radon measure space, (Y, v)
is a Radon measure space, and their measure algebras are isomorphic (as Boolean algebras),
then #, < 4, (see 2H; we need [7], 72B, for the fact that (X, ) is decomposable, and [8],
ATBK to deal with atoms in X ); (iii) if (X, ) is a quasi-Radon measure space with measure
dgebra A, andif £} = {E: E C X,u(X \ E) >0}, then £} = A~ (justas in 2I);
(iv) if bu([k] £¥) < add(#") and (X, p) is a quasi-Radon probability space of Maharam
type &, then 7, < [£]S“ x A"

(c) For examples of quasi-Radon measure spaces see, for instance, [8], 32D. These all
have separable L' spaces i.e. countable Maharam types. If (X, p) is a quasi-Radon measure
space of countable Maharam type, then add(/V”) > add(A), cf(A)) < cf(A), and
addw(z;) >add(A) ; compare (8], 32H. Note that these inequalities will dso be true if
(X, p) isany o-finite measure space in which the domain of u is a countably-generated
u-algebra (see [8], 32Gc).
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Two negative results 3M. Consider the five directed sets NN, &, (defined asin 3E and 3K,
with p Lebesgue measure on [0,1]), &, & (asin 3K) and ' (N ) . We have

(%) NN <& <F<8(N),  &,<&<E(N).

The question immediately arises, whether there are any further relations of the type P < Q
among these five sets. Isbell ([13]) showed that & < N N . 1 can offer the following:

Proposition. (8) &, NN, (b) & £ #.

Proof. (a) Let f: &, — N~ be any function. Let u* be Lebesgue outer measure on [0,1]
and choose (a( n)),.x inductively in N so that

Bt €10,1), SN S a(d Vi< n) > 5 +27

for every n ¢ N . This defines « € NN . Set

C,={t: [{th(® <a(mVi<n}, c= [C,
neN

sothat u(C) > 5. Let (U,),x enumerate the set of open intervals with rational endpoints
which meet C; then U, N C, # 0, S0 can choose, for eachn e N, at, € U, such that
F({t, P (1) < a(1) forevery i < n. Examine A = {{t,} : n€ N}; then f[A] isbounded
above in NN (because sup .y f ({t})(i) < oo for every i) but A is not bounded above in
&, (because {t, : n €N} D C, 50 {t,:neN}¢&,). Thusf isnot a Tukey function.
As f is arbitrary, &, ¢ NN,

(b) Let f: & — #be any function. Lct (U,),.y enumerate a base % for the topology
of NN which contains @ and is closed under finite unions. For eachn € N, set

a,={1:1€N, f(a)NU,#9D whenever i€ca€ B},

Take a € & such thata N a, # 0 whenever n € N and g, isinfinite. Set K = {n :
n€ N, U, Nf(a) =D}, sothat {J ., U, = N¥\ f(a) is dense, while a,, is finitc for
every n € K (since otherwise there isan i € a N a, and f(a) N U,#@). Forn €N,
Umexmen Um € # 3 SY Unek mgn Un = Uy - Then r(n) € K for every n. Take
a strictly increasing sequence (k, ).~ in N such that sup a,, <k, for eachn € N .
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For i < ko set b, = {i} ; for k, < i<k, choose b, € & such that i ¢ b, and
fCb)N U, =0 (such exists because i ¢ a,(, ). Now examine

e= s () CNY.

1EN

If m € K then U,, C U,(,, forevery n > m so U, N f(b) =0 forevery i >k,
andU,_ N E ={J{f(b)NE:i<k}isnowhere dense. As (J,,.x U,, is a dense open
set, E is nowhere dense, and {f( b;) :i€ N} isbounded above in % But J;ex b; = N so
{ b; 1 € N} is not bounded above in &, and f is not a Tukey function. As f is arbitrary,
Z £ % . For more about the relationship between % and % see [12], Prop. 23, and [14].

Problems 3N. Innumerable questions are left open by the work above, besides those men-
tioned at the end of § 2. It seems possible that the following may lead somewhere.

(a) Taking & , to be the ideal of sets of zero asymptotic density as usudl, is # £ Z ?Is
% = ¢'(N) ? (These are the questions |eft over from 3M above.) I have been able to prove

that cf (&) = cf(£'(N)), add (&) = add,(£'(N)) and that £'(N) < &2 .

(b) Stll working with the five setsN N, Z’u , F. Zand £' (N) of 3M, there are consistent
relations of the form < which are not consequences of (*) in 3M (for instance, under CH we
have N¥ = w, =, ¢! (N )). But are there any theorems of ZFC of the form P < Q, or
add,( P) < add,(Q) , or cf(P) < cf( Q), where P and Q are taken from these five Sets,
which are not consequences of (*)? (Severd cases are ruled out by the results of [20].)

(c) Suppose that P and Q are partially ordered sets with Polish topologies such that their
orderings <, <, are Borel Sets in P%,(Q* respectively. Suppose that P < Q. Does it
follow that there is a Tukey function from P to Q which is Borel measurable?

(The point of this question is that (i) the Tukey functions actually constructed in such the-
orems as 2B, 3B, 3K are generally not complicated according to the criteria of descriptive set
theory; (ii) an affirmative answer would imply absoluteness results relevant to such questions
as (a) above.)

(d) For a topological space X, let % x be the ideal of relatively compact subsets of X .
What types can ., have? I discuss these spaces a length (concentrating on separable metric
X) in [12]. For instance, if X CR, then (i) %, = {0} iff X is compact; (ii) #&y = N
iff X islocally compact not compact; (iii) %, = NN iff X is G;, not locally compact;
and Z x = #, iff X is coanalytic, not G ([12], Theorem 15). Conceming %, 1 find
that o &5esw wy x NN and w; x NN < % but H £ w; x NN (see [12], Theorem
16); & £ F, (in fact, Z £ F  for any separable metric X) and %, < £' but it is
undecidable whether & %, or % < %, ((12], Proposition 23). 1 do not know whether
it is relatively consistent with ZFC to suppose that there is an anaytic non-Borel set X C R
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such that %'y < % (this is surely inconsistent With the axiom of projective determinacy;
see [12], Theorem 18).

(e) For atopological space X, let %, be the ided of nowhere dense subsests of X, and
# x the g-ideal of meagre Sets. Is there a coherent classification of these, in terms of < and
<, and topological properties of X ? What i X is known to be a compact Hausdorff space?

Note added in proof. T. Bartoszyiski and S. Shelah [2b] have shown that add( g’u) = add
(A), cf (&) =cf (). Further results may be found in [29].
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