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1. INTRODUCTION

The Wiener-Kolmogorov theory of filtering and prediction of stationary processes represents
a funcuonal analytic approach with far-reaching applications in the engineering sciences, in
particular in signal analysis. The main problem consists in extracting or predicting a signal
from observations corrupted by noise. We consider the discrete-time case where both signal
and noise are modelled as weakly stationary stochastic processes which are both imbedded
1n a separable Hilbert space of real random variables with finite second moment. Classically,
the filtering problem 1is translated into a projection problem, and its solution can principally
be constructed provided the autocovariances of the processes involved, i.e. the values of the
pairwise scalar products, are known. Equivalently, one can specify the Fourier transforms of
the autocovariances, the so-called spectral measures. We restrict ourselves to spectral mea-
sures which are absolutely continuous with respect to Lebesgue measure, and we call their
densities the spectral densities of signal and noise respectively.

In practice, the spectral densities of the signal and noise process are not known precisely.
We mvestigate the filtering 1n a situation where there are particular few informations on the
signal. By borrowing some ideas from robust statistics and applying familiar methods for
solving convex extremum problems in function spaces, we are able to derive filters which
exhibit a minimax property, 1.¢. they are in a certain sense optimal in view of the incomplete
knowledge of the process characteristics. The results unify and extend approaches in the
statistical and engineering literature and illustrate the power of functional analytic methods
applied 1o some practical problems.

We first consider the classical filtering problem. Let, for integer time index ¢,

{Xe}, {Se} N}, -0 <1< 00
be weakly stationary stochastic processes with spectral densities f,, £, f, such that
X, =S5, + N,.

We assume that signal {S,} and noise {N,} are uncorrelated. Given the observations
{X,} we want to estimate the signal by means of a linear filter

Sp= Y hXy
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We assume that the filter coefficients {h,} are square-summable, and we write

Hw)= ) he™,  —m<wgm,

k=—00

for the so-called filter transfer function, i.e. for the Fourier transform of the {h, } . We measure
the performance of such a filter by the mean-square error, which depends on signal and noise
spectral densities and filter transfer function only. It is given by the well-known formula

\2
E(SI—S}) =;—ﬂ/{ll—H(w)|f5(w)+]H(w)]zfn(w)}dw=
=:e(f,, f.s H).

(1.1)

We call the function e the error function.

Traditional Wiener-Kolmogorov filtering theory is based on complete knowledge of f,
and f_ . By standard Hilbert space arguments, there exists a unique filter with transfer function
H,,, which we call the Wiener filter with respect to f,, f,, minimizing the mean-square error,
1.€.

€ (fﬁ’fﬂ;Hw) = minE (fE’fﬂ;H) -

H

As is well-known from the literature, €.g. Hannan (1970), the transfer function H  is
given by

(1.2) H (w) = f(w)/{f(w) + f (w)} if fy(w)+ f,(w) >0,

and it can be chosen arbitrarily else.

In this paper, however, we consider the situation, which usually occurs in practice, where
signal and noise spectral densities are not completely known. We assume instead that we have
some partial information of f,, f  which can be summarized in the statement that ( f,, f.) 1S
contained in a given set S of pairs of spectral densities. We call S the spectral information set.
We follow the minimax approach to this kind of filtering problem under spectral uncertainty.
We do not search for a filter which 1s optimal for one particular pair of signal and noise spectral
densities, but we are interested in a filter for which the error function is uniformly bounded
over § and for which the uniform bound on the mean-square error is as small as possible. A
filter with transfer function H_, satisfying these requirements, i.e.

sup e(f,,f.  H,)=min sup e(f,,f.iH),
(f,.f,) €S Ho(f,.1)€s
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i1s called a minimax-robust filter with respect to S .

The minimax approach to linear filtering, prediction and interpolation has found some in-
terest in the past. Breiman (1973), Kassam and Lim (1977), and Cimini and Kassam (1980)
have discussed the filtering problem under special types of spectral information. Vastola and
Poor (1983) have investigated the merit of the minimax procedure compared with traditional
Wiener-Kolmogorov filtering for a nominal pair of signal and noise spectral densites, and
they have demonstrated with some examples that the latter may result in dangerous losses in
performance. Hosoya (1978), Taniguchi (1981) and Franke (1984) have considered the cor-
responding problem of prediction and interpolation under spectral uncertainty. Poor (1980),
Franke (19835) and Kassam (1983) have proposed general formulations for the problems of
minimax filtering, prediction and interpolation and have described how to determine explicitly
minimax-robust filters for large classes of spectral information sets.

Vastola and Poor (1984) have investigated the general filtering problem with arbitrary re-
strictions on the filters considered, e.g. requiring causality, which encompasses the noncausal
filtering problem, described above, as well as prediction and interpolation. They have formu-
lated theorems on the existence and characterization of minimax-robust filters. Franke and
Poor (1984) have generalized these results and have described how to use them for explicitly
finding the desired filters which perform uniformly well under spectral uncertainty.

In this paper we consider in more detail a situation where we have rather few informations

on the signal spectral density f,. We assume that we only know bounds c,,...,c_ on the
integrals of some functions p,, ..., p, withrespectto f,, i.e.

]
(1.3) -Z—ﬂfpk(w)fs(w)dwgck, k=0,...,m.

Breiman (1973) has given the motivation for this type of spectral informaton, and he has
determined the mimimax-robust filter in the case where the noise spectral density 1s completely
known. We do not want to repeat the complete arguments given by Breiman, but in short the
background for this problem is the following:

The observed process { X, } consists of a low frequency signal {S,} and of a broadband,
e.g. white, noise. The spectral characteristics of the noise are well-known. Think of situations
where the same type of noise is present over and over again whereas the signal changes from
measurement to measurement, or where the noise 1s due to recording equipment and has been
throughly investigated in the absence of signals. On the other hand, all that 1s known about
the signal are the observations on the { X, } process and some vague prior information that f,
15 mainly concentrated in the low frequencics.

For this situation, Breiman proposes to do a preliminary rough smoothing of the data and,
then, getting rough estimates of the variances of some of the differences of the signal. More
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precisely, let A denote the difference operator:
ASy = Sy — 5y

An estimated upper bound ¢, on the variance E(AS,)? translates into the following
mtegral condition of f,:

(1.4) E(ASt):!:21—“./.|eﬁ”—1|2fﬂ(w)dwgcf*

Analogously, one can consider bounds on the variances of higher difference processes
{A*S,}, t00. How many constraints

L (Akst)z < Ci

are used in characterizing the spectral information set depends on two considerations. First,
how many can easily and reliably be determined from the data? Second, how large an upper
bound on the filtering error is tolerable? This error decreases if the spectral information set
gets smaller, and it can be calculated explicitly from the following results.

Another kind of spectral information, which also is characterized by integral constraints
of the form (1.3), has been investigated by Cimini and Kassam (1980). Their so-called
p-point classes are motivated by situations where there is no information on the shape of the
signal spectral density but where one can measure the fractional power of the signal in certain
frequency bands rather accurately. This kind of spectral information amounts to choosing the
functions p; of (1.3) as indicator functions of certain frequency intervals.

For a number of applications, one has some knowledge about the size of the signal-to-noise
ratio (SN R) f,/f, in certain frequency regions, even if there is no additional information
on the spectral characteristics of the signal. Breiman, e.g. assumes a low frequency signal in
broadband noise. This kind of information can be quantified by specifying a, perhaps crude,
lower bound on the SN R for low frequencies and an upper bound for high frequencies.
We propose to exploit this information in minimax filtering, i.e. to characterize the spectral
information set by an additional constraint of the form

(1.5) pr(w) fo(w) < f(w) < B (w) fr(w)  ae,

where 8,, B, arc known bounds, in addition to the integral constraints (1.3). Using this ad-
ditional information can cause a considerable imrovement in the performance of minimax-
robust filters.

In chapter 2 we investigate the existence and calculation of minimax-robust filters for
spectral information of type (1.3) and (1.5). In chapter 3 we illustrate the performance of
minimax-robust filters with an example, and we compare them with an autoregressive-type
filter derived from a traditional approach to filtering under uncertainty.
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2. THE MINIMAX-ROBUST FILTER

As we do not want to discuss some degenerate situations explicitly, we consider only spectral
information sets where the total signal power is uniformly bounded. This amounts to choosing
one of the functions p, identical to 1. Furthermore, we require all p,, k = 0,...,m, to be
essentially bounded. Henceforth, we shall assume

(2.1) p(w)=1 a.e,; Dyy++ey Py € L™,

where L denotes the space of bounded, measurable functions on ( —ar, ] . Breiman (1973)
has discussed only integral constraints with nonnegative, continuous functions p, . To include
the p-point classes of Cimini and Kassam (1980) in our general model we allow for discon-
tinuous p, . This does not cause difficulties as, unlike Breiman, we consider only stationary
processes with absolutely continuous spectral measures. As we dispense with nonnegativity
of the p, the following results are, in particular, applicable to situations where upper and
lower bounds on integrals are available, e¢.g. for some p:

¢ < --pr(w)fa(w)du <c".
2%

Breiman also assumes that f_ is known precisely. This may not always be the case, in par-
ticular if the nominal noise spectral density is actually an estimate. To investigate the effect
of uncertainty in the noise spectrum on the minimax filtering procedure, we allow for some
variation of f_, too. To have a specific situation, we concentrate on the band-model of uncer-
tainty which has been first discussed in the context of minimax filtering by Kassam and Lim
(1977). We assume that

(2.2) 9;(w) < frlw) <g,(w) ae,
where g,, g, are known lower and upper bounds on the noise spectral density satisfying
(2.3) 0<g(w)<g,(w) ae; O0<g(w) ae; g, €L

L! denotes the space of integrable functions on (—m,w]. g, may assume the value oo
on sets of nonvanishing Lebesgue measure which corresponds to the situation where we have
no upper bound on the noise spectral density. Additionally, we restrict the total noise power:

(2.4 %ffn(w)dwgc.
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The bounds 8,, 8, on the SN R have to satisfy the following conditions:
(2.5) 0 <B(w) <B,(w) a.e,; B, € L=; Bulig <o0) € L.

The boundedness assumptions on 3, , 8, are not necessary but make a simpler formulation
of the following results possible. On the set {8, = co} we have no upper boundonthe SN R;
accordingly, we have to interpret the right inequality of (1.5) as f,(w) < oo if B,(w) = oo,
evenif f (w) =0.

Finally, we exclude a degenerate case by assuming that there isa A > 0 such that

(2.6) {1+8 (w)}g,(w) >A >0 ae..

The following theorem guarantees the existence of a minimax-robust filter, and it provides
a criterion which may be used for explicitly determining the required filter. This result follows
immediately from the general Theorems 2.1, 2.2 and Corollary 3.1 of Franke and Poor (1934),
where (2.6), in particular, guarantees that assumption (i) of Theorem 2.1 1s satisfied. Before
we can state the result we have to introduce the notion of a least favorable pair:

Definition. ( fX, fX) € S is a least favorable pair for the spectral information set S iff

2.7 mine (fr ffeH) = max mine (f, fi H).

(2.7) ine (fy fai )= max mine(f), fs H)

Theorem 1. Letp,,...,p._,By,B,.9,,9, be extended real-valued measurable functions sat-
isfving (2.1), (2.3), (2.5), (2.6). Let S be the spectral information set consisting of all pairs

(f,, f.) of spectral densities which satisfy (1.3), (1.5), (2.2) and (2.4).
a) There exists a minimax-robust filter with respect to S .

b) Let (X, f£y € S andlet HE be the transfer function of the Wiener filter with respect
o L fL. (fL fLy is a lest favorable pair for S iff

(2.8) e (fo fus Hy) <e(fy . fs Hy) forall (f,,f,) €S.

In particular, the Wiener filter with respect to a least favorable pair for S is minimax-robust!
with respect to S .

Intuitively, a least favorable pair corresponds to the worst possible situation which 1s still
compatible with the spectral information representéd by S . The smallest achieveable mean-
square error is largest in § for such a pair. By Theorem 1, we get the desired uniformly
well-behaved filter by choosing the best filter, i.e. the Wiener filter, for the worst possible
situation, 1.e. for the least favorable pair. The following theorem provides a criterion for such
a least favorable pair which follows from the general condituon (2.8) by exploiting the special
structure of the spectral information set S .
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Theorem 2. Let S be the spectral information set of Theorem 1, and let the assumptions of
Theorem 1 be satisfied. Let h,, h  be given by

110y

hi(w) = B(w)/ {1+ B(w)}; hy(w) =B, (w)/ {1+ B,(w)}

where, in particular, h (w) = 1 if B, (w) = oo. Let (fL, f&) € S such that fEi(w)+

+fi(w) > 0 ae., and let HE be the transfer function of theWiener filter with respect to
o

Then, ( fF, fX) is least favorable for S iff there exist Lagrange multipliers X\, Ay, ..., A, >

O satisfying

1
A=0 if -—-——ffi‘(w)dm-:ic
2
: 1 +
)\jzﬂ if E‘/’p}a(m)f;‘(m)dw{cﬁ 7=0,...,m,

such that the following three conditions are satisfied:
1) The Wiener filter with respect to f%, f- is given by

(2.9) HE(w) = max {min{l ~ VAT (@), hy(w) } by (@) }

where A" denoles the positive part of the function
Aw) = E \pi(w).
=0

2) Let A(w)#0 or 8 (w) < oco. Then the function

_ yrL . A(w)

is well-defined, and
fiw) = g (w) it J(w) > )

frw) = g, (w) if J(w) <A,

whereas f,{‘(m) can be chosen arbitrarily between g,(w) and g, ,(w) 1f J(w) = .
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3) fiw) =0 iffA(w) =0, B,(w) = oo

fi(w) HE(w)
1 — Hi(w)

fi(w) = if  fi(w)>0.

Due to its technicality we defer the proof of Theorem 2 to the appendix. The important
assertion is (2.9) which, together with Theorem 1, gives the typical form of the minimax-
robust filter. It depends on m + 1 nonnegative parameters Ay, ..., A,,. If A; is not vanishing
it has to be determined from the relation

1
ﬁfpj(w)fi’(w)dw= C;-

Theorem 2 contains Breiman’s result which corresponds to the special choice
fi(w) =0, B, (w)=o00, g(w)=g,(w) forall w,X=o0,

i.e. there are no SNR-bounds, and the noise spectral density is fixed. Then, the minimax filter
1S given by

(2.10) Hi(w) = {1~ \/A"‘(w)}+.

We call a filter of this form the Breiman filter corresponding to the integral constraints
(1.3).

The constraint (1.5) of f,, f, 18, with exception of frequencies for which f_ 1s vanishing,
equivalent to the following constraint on the corresponding Wiener filter

hi(w) < H (w) <h,(w).

Together with the form (2.10) of the minimax filter in the absence of SNR-bounds this
consideration provides an intuitive interpretation of the minimax filter (2.9): it has the same
form as the Breiman filter, but it is trimmed at its upper and lower bounds h,, h, which
are imposed by the SNR-constraint (1.5). Therefore, we call (2.9) a trimmed Breiman filter
corresponding to the integral constraints (1.3) and the SNR-bounds (1.5). Mark, however,
that imposing SNR-bounds does not only cause trimming of the minimax filter but usually
changes the parameters X\,,..., A, 100,

Condition 2) of Theorem 2 implies that, with the exception of some degenerate situations,
fX(w) coincides a.e. with the upper or lower bound imposed on the noise spectral densities.
This behavior is typical for least favorable spectral densities in band models (compare Kassam
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and Lim (1977)). Condition 3) of Theorem 2 takes account of some degenerate cases where
f5 may vanish. Furthermore, the form of f as a function of fZ and the Wiener filter is
stated explicitly, which is an immediate consequence of (1.2).

A careful look at the proof of Theorem 2 shows that similar results hold for other types
of uncertainty of the noise spectral density instead of (2.2). In particular, the minimax filter
will be a trimmed Breiman filter though the parameters A, ..., A,, depend implicitly on the
constraints on f_ .

3. THE PERFORMANCE OF MINIMAX FILTERS - AN EXAMPLE

In this chapter, an examples serves to illustrate the performance of minimax-robust filters and
to compare them with a more traditional approach to filtering under uncertainty.

Following Vastola and Poor (1983), we measure the performance of a filter with transfer
function H by means of the fofal output signal-to-noise ratio:

ES? ~ ESf
~\2 . '
B(s,-8) ¢Unfuid)

paut (fa!fn;H) =

The terminology is motivated by the decomposition §t =S5, + (§t — S5,), 1.e. the output

§t of the filter can also be interpreted as a noisy version of the signal S,, where the estimation
error acts as noise. Analogously, we measure the relative contribution of signal and noise to
the observed process X,, i.e. to the input of the estimation filter, by means of the fotal input
signal-to-noise ratio:
_ BS?
Pin = E Ntz :

In the following figures, we plot p_ , against p._, where both are measured in logarithmic
dB-scale.

We consider the situation described by Breiman (1973), i.e. we assume that the noise

spectral density f, coincides with a given spectral density, say g, and that E(S;,, — S;) 2 is
bounded from above by a given ¢ .

Additionally to Breiman’s approach, we take only signals into consideration which have
a total power ES? bounded by ¢ > 0 . A perhaps only crude upper bound on the total signal
power should be known in practice. Using this information improves the uniform error bound
corresponding to the application of the minimax filter, and, moreover, we get the convenient

existence of a least favorable patr.

The described knowledge about signal and noise corresponds to the particular spectral
information set § which consists of all pairs ( f,,g) where f, satisfies

(3.1) -I—/fa(w)dwgc, L-/'(1 — COS w)fa(w)dwgc’
2 2
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for suitable constants ¢, c’. S belongs to the class of spectral information sets investigated in
chapter 2 where, in particular, we have to choose g, = g, = g in (2.3).

In the following, let { f2, g} denote a least favorable pair with respect to S, and let H)

be the transfer function of the Wiener filter with respect to f2 ¢. By Theorem 2, HZ is
minimax-robust with respect to §, and it is given as the Breiman filter corresponding to the
integral constraints (3.1):

HJ(w) = |1 = {X+ X (1 = cos a-u--)}”z]+ ,

where \,, )\, are chosen such that (3.1) is satisfied with equality for f, = 2.

Breiman started from some vague knowledge that the signal power is concentrated 1n
the low frequencies. In engineering applications, a more traditional approach to that type of
filtering problem under uncertainty would be to model the signal as an autoregressive process
of order 1 (compare Vastola and Poor, 1983), i.e. to fix f, as the nominal spectral density

a2

|11 — qe™|?’

fi(w) =

where 02, 0 < a < 1 are chosen to reflect the knowledge about the total signal power and
the relative signal power in the low frequencies. To allow for comparisons, we choose «, o
such that f# satisfies (3.1) with equality, i.e. o = 1 — ¢/c and 0% = (1 — o*)c. Let HZ

denote the Wiener filter with respect to f4,g.
Figure 1 is based on the particular choice g = 1, i.e. {N,} is white noise with unit

variance, and ¢ = ¢/10. As EN}? = 1, we always have ¢ = p,_, provided f, satisfies the
first relation of (3.1) with equality. The unbroken curve of Figure 1 shows p_ .( f f, g, H ;j),
i.e. the performance of H#, provided f# is really the spectral density of {S,}. The dotted

curve represents the worst case performance of H2, i.e.

inf . HA
A Pot (0195 HL)

where, for getting the right scale, S, consists only of those ( f,,g) € S for which f, satisfies
the first relation of (3.1) with equality.
We see that, for low p. , the performance of the traditional approach, i.e. of choosing the

filter HA can be pretty bad if our imprecise knowledge about the signal allows for variation
of (f,,g) over the whole set S . Similar observations have been made by Vastola and Poor
(1983) for other types of spectral information.
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The unbroken curve of Figure 2 again shows p_..( f4,g; H2). The broken curve rep-
resents p,..(f2,g; HD), ie. the performance of HE if {S,} has the spectral density f52.
As HZP is minimax-robust with respect to S, this curve also describes the worst case per-

formance of H7, i.e. it gives a uniform lower bound of p_,( f,,9; HZ) where f, varies

over all spectral densities satisfying (3.1). The dotted curve represents p_,( f4,9; H By it
describes the performance of the robust procedure if F# is the spectral density of the signal
{S,}. Comparing Figures 1 and 2, we observe that for using the robust approach, i.e. for

choosing H?, we have to pay with a small increase in mean-square error if the traditional

i ?

approach happens to be the optimal one in the sense that HZ really is the Wiener filter with
respect to the signal and noise spectral densities in question. On the other hand, the robust
approach provides a considerable improvement of the worst case performance.

To investigate the effect of additional constraints of f, of the type (1.5), we consider the
spectral information set S’ consisting of all pairs ( f,,g), where f, satisfies (3.1) and, for
suitable 0 < w, < wy <,

f,(w) >a for almost all we[0,w,],
(3.2)
f,(w) <b for almost all w € [wy, 7].

As g=1,achoiceof a > 1, b < 1 corresponds to the idea of a low frequency signal
in broadband noise. Let ( ff,g) denote a least favorable pair with respectto S’, and let Hlﬁ

denote the Wiener filter with respect to fZ g.
We choose moderate signal-to-noise ratio bounds: a = 5, w, = n/10, b= 0.1, w, =

= m/2. The unbroken curve of Figure 3 shows p,_ . (f*,9; HE) which, due to Theorem 2,

represents also the worst case performance of HE:

. L .l
13 o (F9512)

where S'_ consists of those ( f2,g) € S’ for which f, satisfies the first relation of (3.1) with
equality. We remark that it is not possible to consider too small ¢ = p._, as (3.1) and (3.2)
contradict each other if nc < aw, or nc’ < a(w, — sin(w,)) .

We expect that using the first constraint of (3.2) improves the performance of the minimax-
robust filter if the signal is weak, 1.e. if p, 1s small. For the example of Figure 3, this
conjecture is confirmed. The figure also shows that there is not much difference between the
performance of H $ and the Breiman filter ff f if signal and noise are approximately of the

same size. This effect can be explained by observing that, for medium-sized p, , (f2, g)
is almost contained in the smaller spectral information set §”. For large p, , we expect that
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using the second constraint of (3.2) cause a better performance of HZ compared to HZ.
This effect can just be recognized at the right end of Figure 3. As ¢ = 1, we can conclude
that, for ¢ — oo, H, converges to 1, whereas H_ converges to 1(y,,) + hyl(, » Wwith

h, = b/(1+ b). Therefore, for ¢ — oo,

Pout (f2,93HE) /pin — 1,
w

L . L
, gy H - 1.
pﬂut(a g w)/plﬂhiwb+(“_wb)hb}

Finally, let us remark that, by changing the fixed ratio ¢'/¢ and the parameters a, b, w_, w;,
we arrived qualitatively at the same conclusions as exhibited by Figures 1 to 3.

1.0 . : ' ' B}
”'f,.,r at 1ts worsl case i!‘
‘‘‘‘‘ H& at its worst case LE;
08§
=
o
P
A
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E
=
-
2
m- E
Figure 23
a2 . . ' \ .
-0.2 4] 0.2 0.4 0.8
Input - SNR (dB)

Proof of Theorem 2. To prove the theorem some auxiliary results are needed. First, we have
to derive the general form of supports of the spectral information set S at a point ( fj’, f,f‘),

where such a support is defined as a continuous linear functional ® on L' x L' satisfying

D (f, f,) >®(fL L) forall (f,,f,)€S.
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Lemma Al. Let c,c,,...,c,, be positive constants; let p,,...,p, be bounded measurable

functions on (—m,w], and let py(w) = 1. Let J denote the set of all pairs ( f,, f,) of
integrable functions on ( —m,w] satisfying

1

5= [ fwaw e

2

: d =0

-y pilw f(wdw<c; j=0,...,m.

A continuous linear functional ® on L' x L' is a supportof J at (fL, f&) € J iff there
exist nonnegative A\, Ay, ..., A, salisfying

. 1 .
A=0 if ﬂffn(w)dw{c,
(A1) ,
Ay=0 if Z—Efpj(m)ff‘(w)dw < ¢,

such that

D (f,, fo) = —-2-1-1;_/ {%fn(w) + Eljpj(w)f,(w)} dw.
=0

Proof, Let P be the continuous operator from L' x L! into R™? given by

{P(f, 1)}, = ;—ﬂfpj(w)f,(w)aw i=0,....m
1
{P(falfn)}m.l.l = ﬂ/fﬂ(w)dw
Let

Then, .
J={(f,£.):P(£, f,) €Q}.

Let ¢ be a continuous linear functional on R ™*? given by

Y(y) = — E %jyj — AUm+1-
=0
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By definition ¢ is a support of Q at y* = P(fL, fL) iff

(A2) Y(y) > ¢ (y*) forall yeQ.

(A2) 1s equivalent to requiring

A >0, % =0 if y<c,, j=0,...,m,
(A3)
A>0,2=0 if y-  <c

Let P* be the dual operator of P. By Theorem 4.2.2 of loffe and Tihomirov (1979), ®
is a support of J at (fZ, f%) iff there exists a support ¢ of Q at y* such that ® = P*y.
Together with (A3) this remark implics the assertion of the Lemma. @

Lemma A2. Let g,,9,,B,, B, befunctions satisfying (2.3),(2.5). Let B denote the set of all
pairs ( f,, f.) of integrable functions on (—m,w] satisfying

A continuous linear functional ® on L' x L' is a supportof B at (fX, f£) € B, iff there
exist bounded measurable functions o, satisfying

<0 a.e.on the set Bu={w;ﬁ1ff<ff=ﬁuff}
(Ad) =0 ae.ontheset B;={w B fr<fr<pB,fi}
>0 ae.ontheset B, = {w;ﬁlff=f:‘<iﬁuff}

and
’}'gﬂ a.c.on the set G“:{W;Ql {fff’:gu}
(AS) y=0 ae.ontheset G,={w;g < fr<g,}
~>0 a.e.ontheset G, ={w;91 =ff":§'u}
such that

(46) © (fufy) = —5= [ W) fw)dw+ 53— [ 0(0) {1,) - ) f,w)}dw,



172 Jirgen Franke

where

_ [B,(w) weEB,
ﬁ(“)‘{ﬁl(m) w¢B,.

Proof. Let @ be a continuous linear functional on L' x L! given by
1
® (ffy) =~ 5= [{PW) £, + W) f, @)} dw,

where ¢, 9 are bounded functions. By definition, ® is a support of B at ( fX, fL) iff

f o(w) {£,(w) — fH(w)} dw + f $(w) {£,(w) — F(w)} dw > 0

forall (f,,f,) €B.

(A7)

Choosing f, such that ( f,, f¥) € B, (A7) implies in particular
fw(w) {fy(w) = fi(w)}dw >0 for all £, € L' with B, f, < f, < B,f, ae.

This condition can only be true if (A4) is satisfied.
We define
V=Bt Y.
As B, is finite on B, we conclude from the assumptions on 8,, 3, that £ and, con-

sequently, ~ are bounded functions. Let f, be an arbitrary integrable function satisfying
9; < f, < g, ae.. Thenthe pair (Bf,, f,) is contained in B, and (A7) implies

f*y(w) {f(w) — fAS(w)}dw >0 forall f, € L' with g, < f,<g,ae..

This condition can only be true if (AS5) is satisfied.
We have shown that supports have to be of the form described in the Lemma. Vice versa,

each functional of the form (A6), where ¢, «y satisfy-(A4), (AS),isasupportof B at ( fX, f),
as can be checked by a straightforward calculation. =

To continue with the proof of Theorem 2 let us first remark that, as HZ is bounded, con-

dition (2.8) is equivalent to requiring —e(.,.; HL) to be a support of S at (£, fL). As
S = JNB, and as J has non-empty interior, the Moreau-Rockafellar-Theorem (0.3.3 of
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Ioffe and Tihomirov, 1979) implies that the supports of § at (), f7) are exactly the sums
of supportsof J and B at (ff , f,f) . From Lemma A1, A2, and from (1.1), (2.8) we conclude

that a pair ( fZ, fX) € S isleast favorable in S iff there exist nonnegative X, \g,..., \,. sat-
1sfying (A1) and bounded functions ¢,y satisfying (A4), (AS) such that for all integrable

for fu

/ (1 = HE WP £(w) + [HEW) P f.(w) } dw =
(A8) - f OV (w) + Aw) £ ()} dw — f (W) £, (w)dw+
"fw(w) {fy(w) — f(w) f(w) } dw,

where A (w) =3 75 \;p;(w).
(A8) is equivalent to the following two conditions on HX

(A9) It — HE(W))* = A(w) —p(w)  ae.

(A10) |JHE(w))? = B(w)p(w) + A —y(w)  ae..

First, we use (A9) and the properties of ¢ to conclude that the minimax robust filter H -
has to be a trimmed Breiman-filter of the form given in condition 1) of Theorem 2. On the
degenerate set where 3, , G, coincide the SNR is known precisely, and, therefore,

HiEw)=h (w)=h(w) ae. on {w;B.(w)=p(w}.

Therefore, we may now assume f,(w) < g, (w) and restrict our attention to the sets
B, B; B, of (A4). As 1 — HL = fL/(fE + fLy  we conclude from (A4) and (A9):

Aw) <1/ (14 B,(w))° =1 — Hi(w)|?if w € B,
11— HE W) =1/ (1+ B, (w))° < Aw)if w € By,

1/ (1+ B,(w))”" < A(w) =1 = HE(W)? < 1/ (1+ B (w))’if w € B,, fi(w) >0,
B, (w) =00, 0=A(w) = |1 = Hi(w)|*if we By, fi(w) =0.

Therefore, using the definition of H 1{, (A9) is equivalent to conditions 1) and 3) of the
theorem.
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Finally, we show that condition 2) of the theorem is equivalent to (A10), provided con-
ditions 1) and 3) are satisfied. We assume A(w)#0 or B, (w) < oo. By condition 3),

f,f‘(w) > 0 and, consequently, Hﬁ(u) < 1. Therefore, J(w) 1s well-defined. (A9) and
condition 1) imply

| Ho(w) P = Bw)p(w) = Hi(w) {1 —A(w)/ (1 - Hi(w))} = J(w).
Therefore, we conclude from (AS), (A10):

M < J(w)if weG,,
A= J(w)if we G,
A > J(w)if w e,

1.e. condition 2) is satisfied if g,(w) < g,(w). On the set of frequencies where g,, g,
coincide condition 2) is satisfied anyhow. @
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